All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap
NASA Astrophysics Data System (ADS)
Hagenmüller, David
2016-06-01
We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.
Compact integral three-dimensional imaging device
NASA Astrophysics Data System (ADS)
Arai, J.; Yamashita, T.; Hiura, H.; Miura, M.; Funatsu, R.; Nakamura, T.; Nakasu, E.
2015-05-01
A compact integral three-dimensional (3D) imaging device for capturing high resolution 3D images has been developed that positions the lens array and image sensor close together. Unlike the conventional scheme, where a camera lens is used to project the elemental images generated by the lens array onto the image sensor, the developed device combines the lens array and image sensor into one unit and makes no use of a camera lens. In order to capture high resolution 3D images, a high resolution imaging sensor and a lens array composed of many elemental lenses are required, and in an experimental setup, a CMOS image sensor circuit patterned with multiple exposures and a multiple lens array were used. Two types of optics were implemented for controlling the depth of 3D images. The first type was a convex lens that is suitable for compressing a relatively large object space, and the second was an afocal lens array that is suitable for capturing a relatively small object space without depth distortion. The objects captured with the imaging device and depth control optics were reconstructed as 3D images by using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed images were found to have appropriate motion parallax.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Photonic temporal integrator for all-optical computing.
Slavík, Radan; Park, Yongwoo; Ayotte, Nicolas; Doucet, Serge; Ahn, Tae-Jung; LaRochelle, Sophie; Azaña, José
2008-10-27
We report the first experimental realization of an all-optical temporal integrator. The integrator is implemented using an all-fiber active (gain-assisted) filter based on superimposed fiber Bragg gratings made in an Er-Yb co-doped optical fiber that behaves like an 'optical capacitor'. Functionality of this device was tested by integrating different optical pulses, with time duration down to 60 ps, and by integration of two consecutive pulses that had different relative phases, separated by up to 1 ns. The potential of the developed device for implementing all-optical computing systems for solving ordinary differential equations was also experimentally tested. PMID:18958098
Boundary Integral Solutions to Three-Dimensional Unconfined Darcy's Flow
NASA Astrophysics Data System (ADS)
Lennon, Gerard P.; Liu, Philip L.-F.; Liggett, James A.
1980-08-01
The boundary integral equation method (BIEM) is used to solve three-dimensional potential flow problems in porous media. The problems considered here are time dependent and have a nonlinear boundary condition on the free surface. The entire boundary, including the moving free surface, discretized into linear finite elements for the purpose of evaluating the boundary integrals. The technique allows transient, three-dimensional problems to be solved with reasonable computational costs. Numerical examples include recharge through rectangular and circular areas and seepage flow from a surface pond. The examples are used to illustrate the method and show the nonlinear effects.
Human gesture recognition using three-dimensional integral imaging.
Javier Traver, V; Latorre-Carmona, Pedro; Salvador-Balaguer, Eva; Pla, Filiberto; Javidi, Bahram
2014-10-01
Three-dimensional (3D) integral imaging allows one to reconstruct a 3D scene, including range information, and provides sectional refocused imaging of 3D objects at different ranges. This paper explores the potential use of 3D passive sensing integral imaging for human gesture recognition tasks from sequences of reconstructed 3D video scenes. As a preliminary testbed, the 3D integral imaging sensing is implemented using an array of cameras with the appropriate algorithms for 3D scene reconstruction. Recognition experiments are performed by acquiring 3D video scenes of multiple hand gestures performed by ten people. We analyze the capability and performance of gesture recognition using 3D integral imaging representations at given distances and compare its performance with the use of standard two-dimensional (2D) single-camera videos. To the best of our knowledge, this is the first report on using 3D integral imaging for human gesture recognition. PMID:25401260
Flat tori in three-dimensional space and convex integration
Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris
2012-01-01
It is well-known that the curvature tensor is an isometric invariant of C2 Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C1. This unexpected flexibility has many paradoxical consequences, one of them is the existence of C1 isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash’s results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C1 fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C1 and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations. PMID:22523238
Digital Three-dimensional Reconstruction Based On Integral Imaging
Li, Chao; Chen, Qian; Hua, Hong; Mao, Chen; Shao, Ajun
2015-01-01
This paper presents a digital three dimensional reconstruction method based on a set of small-baseline elemental images captured with a micro-lens array and a CCD sensor. In this paper, we adopt the ASIFT (Affine Scale-invariant feature transform) operator as the image registration method. Among the set of captured elemental images, the elemental image located in the middle of the overall image field is used as the reference and corresponding matching points in each elemental image around the reference elemental are calculated, which enables to accurately compute the depth value of object points relatively to the reference image frame. Using optimization algorithm with redundant matching points can achieve 3D reconstruction finally. Our experimental results are presented to demonstrate excellent performance in accuracy and speed of the proposed algorithm. PMID:26236151
Compact, On-chip, Integrated three dimensional Lattice
NASA Astrophysics Data System (ADS)
Tengdin, Phoebe M.; Salim, Evan A.; Anderson, Dana Z.
2015-05-01
We present the design of a compact atom chip system that provides a three dimensional optical lattice combined with thru-chip imaging. Optical beams are launched from fibers mounted directly to the exterior of a high resolution (0.4NA) imaging objective. Miniature polarizers, wave plates, and mirrors located on the exterior of the objective control the polarization state and alignment of the lattice, while on-chip optics are used to provide retro-reflection. Three mutually orthogonal lattice beams traverse from the ambient side of the chip through a central window of a silicon and glass substrate, intersecting 300 microns below the vacuum side chip surface. The combined atom chip and optical system fills a volume of less than 36 cm3. Atoms may be cooled using standard techniques, and directly loaded into the optical lattice. This system is designed with the intention of reducing vibrational noise, providing high resolution in-lattice imaging, combining electric and magnetic fields to generate arbitrary potentials, and performing high repetition rate experiments. This work was supported by NASA Jet Propulsion Laboratory, and the National Science Foundation Graduate Research Fellowship.
InP-based three-dimensional photonic integrated circuits
NASA Astrophysics Data System (ADS)
Tsou, Diana; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa
2001-10-01
Fast-growing internet traffic volumes require high data communication bandwidth over longer distances than short wavelength (850 nm) multi-mode fiber systems can provide. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low cost, high-speed laser modules at 1310 and 1550 nm wavelengths are required. The great success of GaAs 850 nm VCSELs for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with available intrinsic materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits, which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits (PICs) have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform for fabricating InP-based photonic integrated circuits compatible with surface-emitting laser technology. Employing InP transparency at 1310 and 1550 nm wavelengths, we have created 3-D photonic integrated circuits (PICs) by utilizing light beams in both surface normal and in-plane directions within the InP-based structure
Three-dimensional surface phase imaging based on integrated thermo-optic swept laser
NASA Astrophysics Data System (ADS)
Kim, Hyo Jin; Cho, Jaedu; Noh, Young-Ouk; Oh, Min-Cheol; Chen, Zhongping; Kim, Chang-Seok
2014-03-01
We developed an optical frequency domain imaging (OFDI) system based on an integrated thermo-optic swept laser to achieve three-dimensional surface imaging. The wavelength was swept by applying a heating signal to a thermo-optic polymeric waveguide. The sub-micrometer surface profile was converted from the three-dimensional phase information of the OFDI system on various samples used as resolution targets with a step height of 120 nm.
Integrated all-optical logic discriminators based on plasmonic bandgap engineering
Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2013-01-01
Optical computing uses photons as information carriers, opening up the possibility for ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic devices are indispensible core components of optical computing systems. However, up to now, little experimental progress has been made in nanoscale all-optical logic discriminators, which have the function of discriminating and encoding incident light signals according to wavelength. Here, we report a strategy to realize a nanoscale all-optical logic discriminator based on plasmonic bandgap engineering in a planar plasmonic microstructure. Light signals falling within different operating wavelength ranges are differentiated and endowed with different logic state encodings. Compared with values previously reported, the operating bandwidth is enlarged by one order of magnitude. Also the SPP light source is integrated with the logic device while retaining its ultracompact size. This opens up a way to construct on-chip all-optical information processors and artificial intelligence systems. PMID:24071647
An Exploration of Three-Dimensional Integrated Assessment for Computational Thinking
ERIC Educational Resources Information Center
Zhong, Baichang; Wang, Qiyun; Chen, Jie; Li, Yi
2016-01-01
Computational thinking (CT) is a fundamental skill for students, and assessment is a critical factor in education. However, there is a lack of effective approaches to CT assessment. Therefore, we designed the Three-Dimensional Integrated Assessment (TDIA) framework in this article. The TDIA has two aims: one was to integrate three dimensions…
The solutions of three dimensional Fredholm integral equations using Adomian decomposition method
NASA Astrophysics Data System (ADS)
Almousa, Mohammad
2016-06-01
This paper presents the solutions of three dimensional Fredholm integral equations by using Adomian decomposition method (ADM). Some examples of these types of equations are tested to show the reliability of the technique. The solutions obtained by ADM give an excellent agreement with exact solution.
Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.
Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li
2014-11-17
All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output. PMID:25402095
Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy
NASA Astrophysics Data System (ADS)
Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.
2013-11-01
A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.
Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy
Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.
2013-11-15
A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.
Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits
Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2014-01-01
Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits. PMID:24463956
A three dimensional integral equation approach for fluids under confinement: Argon in zeolites.
Lomba, Enrique; Bores, Cecilia; Sánchez-Gil, Vicente; Noya, Eva G
2015-10-28
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials. PMID:26520539
A three dimensional integral equation approach for fluids under confinement: Argon in zeolites
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Bores, Cecilia; Sánchez-Gil, Vicente; Noya, Eva G.
2015-10-01
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials.
An integrable high resolution all-optical analog-to-digital conversion scheme
NASA Astrophysics Data System (ADS)
Wei, Shile; Jian, Wu; Zhao, Lingjuan; Lu, Dan; Qiu, Jifang
2014-05-01
A novel 4 × 4 multimode interference couplers based phase-shifted photonic quantization scheme using multiwavelength mode locked pulse lasers as sampling source for all-optical analog-to-digital converter is proposed. Numerical analysis indicates that 8-bit quantization resolution operating at 40 GHz bandwidth could be achieved with an incident average optical power of 1.932 mW to each photodiode. The whole scheme can be integrated on a InP-based chip.
Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits
Keast, Craig
2007-02-28
Over the last five years MIT Lincoln Laboratory (MIT-LL) has developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. Advanced focal plane arrays have been the first applications to exploit the benefits of this 3D integration technology because the massively parallel information flow present in 2D imaging arrays maps very nicely into a 3D computational structure as information flows from circuit-tier to circuit-tier in the z-direction. To date, the MIT-LL 3D integration technology has been used to fabricate four different focal planes including: a 2-tier 64 x 64 imager with fully parallel per-pixel A/D conversion; a 3-tier 640 x 480 imager consisting of an imaging tier, an A/D conversion tier, and a digital signal processing tier; a 2-tier 1024 x 1024 pixel, 4-side-abutable imaging modules for tiling large mosaic focal planes, and a 3-tier Geiger-mode avalanche photodiode (APD) 3-D LIDAR array, using a 30 volt APD tier, a 3.3 volt CMOS tier, and a 1.5 volt CMOS tier. Recently, the 3D integration technology has been made available to the circuit design research community through DARPA-sponsored Multiproject fabrication runs. The first Multiproject Run (3DL1) completed fabrication in early 2006 and included over 30 different circuit designs from 21 different research groups. 3D circuit concepts explored in this run included stacked memories, field programmable gate arrays (FPGAs), and mixed-signal circuits. The second Multiproject Run (3DM2) is currently in fabrication and includes particle detector readouts designed by Fermilab. This talk will provide a brief overview of MIT-LL's 3D-integration process, discuss some of the focal plane applications where the technology is being applied, and provide a summary of some of the Multiproject Run circuit results.
Integral three-dimensional television with video system using pixel-offset method.
Arai, Jun; Kawakita, Masahiro; Yamashita, Takayuki; Sasaki, Hisayuki; Miura, Masato; Hiura, Hitoshi; Okui, Makoto; Okano, Fumio
2013-02-11
Integral three-dimensional (3D) television based on integral imaging requires huge amounts of information. Previously, we constructed an Integral 3D television using Super Hi-Vision (SHV) technology, with 7680 pixels horizontally and 4320 pixels vertically. We report on improved image quality through the development of video system with an equivalent of 8000 scan lines for use with Integral 3D television. We conducted experiments to evaluate the resolution of 3D images using an experimental setup and were able to show that by using the pixel-offset method we have eliminated aliasing produced by full-resolution SHV video equipment. We confirmed that the application of the pixel-offset method to integral 3D television is effective in increasing the resolution of reconstructed images. PMID:23481805
A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements
Wang, Weizhong; Zhao, Yulong; Qin, Yafei
2012-01-01
An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields. PMID:22666017
Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data
Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.
2005-01-01
The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Lee, Dongsu; Son, Jung-Young; Kim, Shin-Hwan
2009-09-01
In this paper, we discuss computational reconstruction and statistical pattern classification using integral imaging. Three-dimensional object information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. The longitudinal distance and object boundary are estimated where the standard deviation of the intensity is minimized. Fisher linear discriminant analysis combined with principal component analysis is adopted for the classification of out-of-plane rotated objects. The Fisher linear discriminant analysis maximizes the class-discrimination while the principal component analysis minimizes the error between the original and the restored images. The presented method provides promising results for the distortion-tolerant pattern classification.
Cui, T.J.; Chew, W.C.
1999-03-01
This paper presents a fast method for electromagnetic scattering and radiation problems pertinent to three-dimensional (3-D) buried objects. In this approach, a new symmetrical form of the Green`s function is derived, which can reduce the number of Sommerfeld integrals involved in the buried objects problem. The integration along steepest descent paths and leading-order approximations are introduced to evaluate these Sommerfeld integrals, which can greatly accelerate the computation. Based on the fast evaluation of Sommerfeld integrals, the radiation of an arbitrarily oriented electric dipole buried in a half space is first analyzed and computed. Then, the scattering by buried dielectric objects and conducting objects is considered using the method of moments (MOM). Numerical results show that the fast method can save tremendous CPU time in radiation and scattering problems involving buried objects.
Rosenauer, M; Vellekoop, M J
2010-01-01
Flow cytometry is a standard analytical method in cell biology and clinical diagnostics and is widely distributed for the experimental investigation of microparticle characteristics. In this work, the design, realization, and measurement results of a novel planar optofluidic flow cytometric device with an integrated three-dimensional (3D) adjustable optofluidic lens system for forward-scattering∕extinction-based biochemical analysis fabricated by silicon micromachining are presented. To our knowledge, this is the first planar cytometric system with the ability to focus light three-dimensionally on cells∕particles by the application of fluidic lenses. The single layer microfluidic platform enables versatile 3D hydrodynamic sample focusing to an arbitrary position in the channel and incorporates integrated fiber grooves for the insertion of glass fibers. To confirm the fluid dynamics and raytracing simulations and to characterize the sensor, different cell lines and sets of microparticles were investigated by detecting the extinction (axial light loss) signal, demonstrating the high sensitivity and sample discrimination capability of this analysis system. The unique features of this planar microdevice enable new biotechnological analysis techniques due to the highly increased sensitivity. PMID:21267437
Rosenauer, M.; Vellekoop, M. J.
2010-01-01
Flow cytometry is a standard analytical method in cell biology and clinical diagnostics and is widely distributed for the experimental investigation of microparticle characteristics. In this work, the design, realization, and measurement results of a novel planar optofluidic flow cytometric device with an integrated three-dimensional (3D) adjustable optofluidic lens system for forward-scattering∕extinction-based biochemical analysis fabricated by silicon micromachining are presented. To our knowledge, this is the first planar cytometric system with the ability to focus light three-dimensionally on cells∕particles by the application of fluidic lenses. The single layer microfluidic platform enables versatile 3D hydrodynamic sample focusing to an arbitrary position in the channel and incorporates integrated fiber grooves for the insertion of glass fibers. To confirm the fluid dynamics and raytracing simulations and to characterize the sensor, different cell lines and sets of microparticles were investigated by detecting the extinction (axial light loss) signal, demonstrating the high sensitivity and sample discrimination capability of this analysis system. The unique features of this planar microdevice enable new biotechnological analysis techniques due to the highly increased sensitivity. PMID:21267437
Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides
NASA Astrophysics Data System (ADS)
Krasavin, A. V.; Zayats, A. V.
2008-07-01
Using full three-dimensional numerical modeling, we demonstrate highly efficient passive and active photonic circuit elements based on dielectric-loaded surface plasmon polariton waveguides (DLSPPWs). Highly confined surface plasmon polariton (SPP) mode having subwavelength cross section allows high level of integration of DLSPPW circuitry. We demonstrate very efficient guiding and routing of SPP signals with the passive waveguide elements such as bends, splitters, and Bragg reflectors, having a functional size of just a few microns at telecommunication wavelengths. Introducing a gain in the dielectric, we have found the requirement for lossless waveguiding and estimated the performance of DLSPPW lossless and active elements. DLSPPW based components have prospective implementation in photonic integrated chips, hybrid optical-electronic circuits, and lab-on-a-chip applications.
An Integrated Three-Dimensional Solution for Wire-Sweep Analysis in Microchip Encapsulation
NASA Astrophysics Data System (ADS)
Yang, Wen-Hsien; Hsu, David C.; Chang, Rong-Yeu
2004-06-01
This paper presents an integrated true three-dimensional simulation of resin flow and wire sweep in microchip encapsulation. A FVM-based decoupled solution algorithm with the hybrid elements capability is adopted to calculate the resin flow during mold filling. Furthermore, a highly flexible mesh generation technique especially tailored for the IC packages is also proposed to mesh the model with high quality element both in the flow and gapwize directions. Thanks to the efficiency of the proposed methodology in terms of CPU time and memory requirement, the industrial packages with complex geometry and high pin count can be analyzed with minimum model simplification. Finally, a user-friendly integrated environment is also developed to link the flow analysis with structure analysis to provide the total solution for wire sweep assessment.
Integral three-dimensional television using a 2000-scanning-line video system.
Arai, Jun; Okui, Makoto; Yamashita, Takayuki; Okano, Fumio
2006-03-10
We have developed an integral three-dimensional (3-D) television that uses a 2000-scanning-line video system that can shoot and display 3-D color moving images in real time. We had previously developed an integral 3-D television that used a high-definition television system. The new system uses -6 times as many elemental images [160 (horizontal) x 118 (vertical) elemental images] arranged at -1.5 times the density to improve further the picture quality of the reconstructed image. Through comparison an image near the lens array can be reconstructed at -1.9 times the spatial frequency, and the viewing angle is -1.5 times as wide. PMID:16572684
Projection-type dual-view three-dimensional display system based on integral imaging.
Jeong, Jinsoo; Lee, Chang-Kun; Hong, Keehoon; Yeom, Jiwoon; Lee, Byoungho
2014-09-20
A dual-view display system provides two different images in different directions. Most of them only present two-dimensional images for observers. In this paper, we propose a projection-type dual-view three-dimensional (3D) display system based on integral imaging. To assign directivities to the images, a projection-type display and dual-view screen with lenticular lenses are implemented. The lenticular lenses split the collimated image from the projection device into two different directions. The separated images are integrated by a single lens array in front of the screen, and full-parallax 3D images are observed in two different viewing regions. The visibility of the reconstructed 3D images can be improved by using high-density lenticular lenses and a high numerical aperture lens array. We explain the principle of the proposed method and verify the feasibility of the proposed system with simulations and experimental results. PMID:25322119
Ultrafast all-optical temporal differentiation in integrated phase-shifted Bragg gratings
NASA Astrophysics Data System (ADS)
Rutkowska, Katarzyna A.; Duchesne, David; Strain, Michael J.; Azana, José; Morandotti, Roberto; Sorel, Marc
2010-12-01
All-optical communications and data processing exemplifies an important alternative to overcome the speed and bandwidth limitations imposed by electronics. Specifically, practical implementation of analog operations, including optical temporal differentiation, is fundamental for future ultrafast signal processing and computing networks. In addition, the development of fully integrated systems that allow on-single-chip operations is of significant interest. In this work we report the design, fabrication tolerances and first experimental demonstration of an integrated, ultrafast differentiator based on π-phase-shifted Bragg gratings. By using deeply-sidewall-etched Silicon-on-Insulator (SOI) ridged waveguides, first-order optical differentiation has been achieved on sub-millimeters length scales, reaching THz processing speeds. The proposed device has numerous potential applications, including all-optical, analog solving of differential equations (important for virtual modeling of scientific phenomena)1, data processing and analysis2, as well as for the generation of Hermite-Gaussian waveforms (used for arbitrary optical coding and decoding)3.
Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.
Large-scale photonic integration for advanced all-optical routing functions
NASA Astrophysics Data System (ADS)
Nicholes, Steven C.
Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power
Multiport InP monolithically integrated all-optical wavelength router.
Zheng, Xiu; Raz, Oded; Calabretta, Nicola; Zhao, Dan; Lu, Rongguo; Liu, Yong
2016-08-15
An indium phosphide-based monolithically integrated wavelength router is demonstrated in this Letter. The wavelength router has four input ports and four output ports, which integrate four wavelength converters and a 4×4 arrayed-waveguide grating router. Each wavelength converter is achieved based on cross-gain modulation and cross-phase modulation effects in a semiconductor optical amplifier. Error-free wavelength switching for a non-return-to-zero 2^{31}-1 ps eudorandom binary sequence at 40 Gb/s data rate is performed. Both 1×4 and 3×1 all-optical routing functions of this chip are demonstrated for the first time with power penalties as low as 3.2 dB. PMID:27519116
NASA Astrophysics Data System (ADS)
Lee, Yeonkyung; Yoo, Hoon
2016-02-01
This paper presents a three-dimensional visualization method of 3D objects in a scattering medium. The proposed method employs integral imaging and spectral analysis to improve the visual quality of 3D images. The images observed from 3D objects in the scattering medium such as turbid water suffer from image degradation due to scattering. The main reason is that the observed image signal is very weak compared with the scattering signal. Common image enhancement techniques including histogram equalization and contrast enhancement works improperly to overcome the problem. Thus, integral imaging that enables to integrate the weak signals from multiple images was discussed to improve image quality. In this paper, we apply spectral analysis to an integral imaging system such as the computational integral imaging reconstruction. Also, we introduce a signal model with a visibility parameter to analyze the scattering signal. The proposed method based on spectral analysis efficiently estimates the original signal and it is applied to elemental images. The visibility-enhanced elemental images are then used to reconstruct 3D images using a computational integral imaging reconstruction algorithm. To evaluate the proposed method, we perform the optical experiments for 3D objects in turbid water. The experimental results indicate that the proposed method outperforms the existing methods.
Advances in three-dimensional integration technologies in support of infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Temple, D. S.; Vick, E. P.; Malta, D.; Lueck, M. R.; Skokan, M. R.; Masterjohn, C. M.; Muzilla, M. S.
2015-01-01
Staring infrared focal plane arrays (FPAs) require pixel-level, three-dimensional (3D) integration with silicon readout integrated circuits (ROICs) that provide detector bias, integrate detector current, and may further process the signals. There is an increased interest in ROIC technology as a result of two trends in the evolution of infrared FPAs. The first trend involves decreasing the FPA pixel size, which leads to the increased information content within the same FPA die size. The second trend involves the desire to enhance signal processing capability at the FPA level, which opens the door to the detector behaving like a smart peripheral rather than a passive component—with complex signal processing functions being executed on, rather than off, the FPA chip. In this paper, we review recent advances in 3D integration process technologies that support these key trends in the development of infrared FPAs. Specifically, we discuss approaches in which the infrared sensor is integrated with 3D ROIC stacks composed of multiple layers of silicon circuitry interconnected using metal-filled through-silicon vias. We describe the continued development of the 3D integration technology and summarize key demonstrations that show its viability for pixels as small as 5 microns.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters
Jang, Ju-Seog; Oh, Yong-Seok; Javidi, Bahram
2004-02-23
We present a projection method in integral imaging for large-scale high-resolution three-dimensional display. In the proposed method, the entire set of high resolution elemental images with a large number of pixels is spatially divided into smaller image subsets. Then they are projected separately onto the corresponding lenslet array positions either simultaneously or in a sequence faster than the flicker fusion frequency of human eyes or both (i.e., spatiotemporal multiplexing). Thus display panels that do not have enough pixel numbers can be used to display the entire elemental images with a large number of pixels. Preliminary experiments were performed using a galvanometer-based optical scanner. PMID:19474856
Flat-panel see-through three-dimensional display based on integral imaging.
Takaki, Yasuhiro; Yamaguchi, Yuta
2015-04-15
This study proposes a technique to construct a flat-panel see-through three-dimensional (3D) display based on integral imaging. This display consists of multiple lens arrays, a transparent flat-panel display, and a light-blocking wall (LBW). Rays behind the display are reconstructed in front of it by combination of the lens arrays and the LBW to provide the see-through function. The combination of one of the lens arrays and the transparent flat-panel display produces full-parallax 3D images, which are superimposed on background images. The experimental system is constructed to verify the proposed technique. The see-through and superposition capabilities of the experimental system are demonstrated. PMID:25872096
Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.
Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M
2009-12-15
Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits. PMID:19940239
Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].
Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian
2013-02-01
Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed. PMID:23385893
Integrable Boundary for Quad-Graph Systems: Three-Dimensional Boundary Consistency
NASA Astrophysics Data System (ADS)
Caudrelier, Vincent; Crampé, Nicolas; Zhang, Qi Cheng
2014-02-01
We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the three-dimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term ''integrable boundary'' is justified by the facts that there are Bäcklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.
Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.; Li, Xiuling; Chen, Xiaogang
2015-07-20
We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.
NASA Astrophysics Data System (ADS)
Liu, Jinmei; Cui, Nuanyang; Gu, Long; Chen, Xiaobo; Bai, Suo; Zheng, Youbin; Hu, Caixia; Qin, Yong
2016-02-01
An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry.An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a
Guldner, Ian H; Yang, Lin; Cowdrick, Kyle R; Wang, Qingfei; Alvarez Barrios, Wendy V; Zellmer, Victoria R; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z; Zhang, Siyuan
2016-01-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ. PMID:27068335
NASA Astrophysics Data System (ADS)
Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan
2016-04-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.
Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan
2016-01-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ. PMID:27068335
A facile method for integrating direct-write devices into three-dimensional printed parts
NASA Astrophysics Data System (ADS)
Chang, Yung-Hang; Wang, Kan; Wu, Changsheng; Chen, Yiwen; Zhang, Chuck; Wang, Ben
2015-06-01
Integrating direct-write (DW) devices into three-dimensional (3D) printed parts is key to continuing innovation in engineering applications such as smart material systems and structural health monitoring. However, this integration is challenging because: (1) most 3D printing techniques leave rough or porous surfaces if they are untreated; (2) the thermal sintering process required for most conductive inks could degrade the polymeric materials of 3D printed parts; and (3) the extensive pause needed for the DW process during layer-by-layer fabrication may cause weaker interlayer bonding and create structural weak points. These challenges are rather common during the insertion of conductive patterns inside 3D printed structures. As an avoidance tactic, we developed a simple ‘print-stick-peel’ method to transfer the DW device from the polytetrafluoroethylene or perfluoroalkoxy alkanes film onto any layer of a 3D printed object. This transfer can be achieved using the self-adhesion of 3D printing materials or applying additional adhesive. We demonstrated this method by transferring Aerosol Jet® printed strain sensors into parts fabricated by PolyJet™ printing. This report provides an investigation and discussion on the sensitivity, reliability, and influence embedding the sensor has on mechanical properties.
Liu, Jinmei; Cui, Nuanyang; Gu, Long; Chen, Xiaobo; Bai, Suo; Zheng, Youbin; Hu, Caixia; Qin, Yong
2016-03-01
An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s(-1) for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry. PMID:26883097
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
White, J.; Phillips, J.R.; Korsmeyer, T.
1994-12-31
Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.
Mechanisms of Methylene Blue Degradation in Three-dimensionally Integrated Micro-solution Plasma
NASA Astrophysics Data System (ADS)
Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Shirafuji, Tatsuru; Goto, Motonobu
2015-09-01
Plasma in aqueous solution has attracted much attention because they are expected to have possibilities to solve water-related environmental issues. In such application-oriented researches, degradation of methylene blue (MB) or other organic dyes has been widely used for investigating the effects of the plasma treatment on the water with organic contaminants. However, there are few reports on the detailed analysis of the products after the plasma treatment of MB aqueous solution for understanding mechanisms of the degradation processes. We have hence analyzed our degradation products using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We have performed the MB degradation in three-dimensionally integrated micro-solution plasma, which has shown 16-fold higher performance in MB degradation than conventional solution plasma. The results of MALDI-TOF mass spectrometry have indicated the formation of sulfoxides in the first stage of the degradation. Then, the methyl groups on the sulfoxides are partially oxidized. The sulfoxides are separated to form two benzene derivatives after that. Finally, weak functional groups are removed from the benzene derivatives.
Formation of three-dimensionally integrated nanocrystalline silicon particles by dip-coating method
NASA Astrophysics Data System (ADS)
Yamazaki, Shotaro; Nakamine, Yoshifumi; Zheng, Ran; Kouge, Masahiro; Ishikawa, Tetsuya; Usami, Koichi; Kodera, Tetsuo; Kawano, Yukio; Oda, Shunri
2015-10-01
Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structures of nc-Si quantum dots with a uniform size of 10 nm prepared by the very high frequency plasma decomposition of silane gas. We have clarified the major problem of the dip-coating method, which is the formation of stripe structures. To circumvent this problem, we have proposed two methods: coating onto line-and-space-patterned substrates and utilization of electrophoresis force. We have successfully demonstrated the control of the position and number of layers of nc-Si by using a line-and-space-patterned substrate, however, with a limited shape. We have clarified the conditions of the formation of stripe-free regions by varying applied voltage and nc-Si concentration in the electrophoresis method.
Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps
NASA Astrophysics Data System (ADS)
Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan
2016-02-01
An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.
Calculation of three-dimensional boundary layers on rotor blades using integral methods
Karimipanah, M.T.; Olsson, E. )
1993-04-01
The important effects of rotation and compressibility on rotor blade boundary layers are theoretically investigated. The calculations are based on the momentum integral method and results from calculations of a transonic compressor rotor are presented. Influence of rotation is shown by comparing the incompressible rotating flow with the stationary one. Influence of compressibility is shown by comparing the compressible rotating flow with the incompressible rotating one. Two computer codes for three-dimensional laminar and turbulent boundary layers, originally developed by SSPA Maritime Consulting AB, have been further developed by introducing rotation and compressibility terms into the boundary layer equations. The effect of rotation and compressibility on the transition have been studied. The Coriolis and centrifugal forces that contribute to the development of the boundary layers and influence its behavior generate crosswise flow inside the blade boundary layers, the magnitude of which depends upon the angular velocity of the rotor and the rotor geometry. The calculations show the influence of rotation and compressibility on the boundary layer parameters. Momentum thickness and shape factor increase with increasing rotation and decrease when compressible flow is taken into account. For skin friction such effects have inverse influences. The different boundary layer parameters behave similarly on the suction and pressure sides with the exception of the crossflow angle, the crosswise momentum thickness, and the skin friction factor. The codes use a nearly orthogonal streamline coordinate system, which is fixed to the blade surface and rotates with the blade.
Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A
2012-12-01
In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. PMID:23137621
Gatimu, E. N.; King, T. L.; Sweedler, J. V.; Bohn, P. W.
2007-01-01
The extension of microfluidic devices to three dimensions requires innovative methods to interface fluidic layers. Externally controllable interconnects employing nanocapillary array membranes (NCAMs) have been exploited to produce hybrid three-dimensional fluidic architectures capable of performing linked sequential chemical manipulations of great power and utility. Because the solution Debye length, κ−1, is of the order of the channel diameter, a, in the nanopores, fluidic transfer is controlled through applied bias, polarity and density of the immobile nanopore surface charge, solution ionic strength and the impedance of the nanopore relative to the microfluidic channels. Analyte transport between vertically separated microchannels can be saturated at two stable transfer levels, corresponding to reverse and forward bias. These NCAM-mediated integrated microfluidic architectures have been used to achieve highly reproducible and tunable injections down to attoliter volumes, sample stacking for preconcentration, preparative analyte band collection from an electrophoretic separation, and an actively-tunable size-dependent transport in hybrid structures with grafted polymers displaying thermally-regulated swelling behavior. The synthetic elaboration of the nanopore interior has also been used to great effect to realize molecular separations of high efficiency. All of these manipulations depend critically on the transport properties of individual nanocapillaries, and the study of transport in single nanopores has recently attracted significant attention. Both computation and experimental studies have utilized single nanopores as test beds to understand the fundamental chemical and physical properties of chemistry and fluid flow at nanometer length scales. PMID:19693375
Analysis and optimization of TSV-TSV coupling in three-dimensional integrated circuits
NASA Astrophysics Data System (ADS)
Yingbo, Zhao; Gang, Dong; Yintang, Yang
2015-04-01
Through silicon via (TSV)-TSV coupling is detrimental to the performance of three-dimensional (3D) integrated circuits (ICs) with the major negative effect of introducing coupling noise. In order to obtain an accurate estimation of the coupling level from TSV-TSV in the early design stage, this paper first proposes an impedance-level model of the coupling channel between TSVs based on a two-port network, and then derives the formula of the coupling coefficient to describe the TSV-TSV coupling effect. The accuracy of the formula is validated by comparing the results with 3D full-wave simulations. Furthermore, a design technique for optimizing the coupling between adjacent coupled signal TSVs is proposed. Through SPICE simulations, the proposed technique shows its feasibility to reduce the coupling noise for both a simple TSV-TSV circuit and a complicated circuit with more TSVs, and demonstrates its potential for designers in achieving the goal of improving the electrical performance of 3D ICs. Project supported by the National Natural Science Foundation of China (No. 61334003).
Laan, Hans Paul van der
2007-07-15
Purpose: To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Methods and Materials: Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. Results: PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving {>=}107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving {>=}95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. Conclusion: The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.
Barry, R.E.; Gallman, P.; Jarvis, G.; Griffiths, P.
1999-04-25
The largest problem facing the Department of Energy's Office of Environmental Management (EM) is the cleanup of the Cold War legacy nuclear production plants that were built and operated from the mid-forties through the late eighties. EM is now responsible for the remediation of no less than 353 projects at 53 sites across the country at, an estimated cost of $147 billion over the next 72 years. One of the keys to accomplishing a thorough cleanup of any site is a rigorous but quick contaminant characterization capability. If the contaminants present in a facility can be mapped accurately, the cleanup can proceed with surgical precision, using appropriate techniques for each contaminant type and location. The three dimensional, integrated characterization and archival system (3D-ICAS) was developed for the purpose of rapid, field level identification, mapping, and archiving of contaminant data. The system consists of three subsystems, an integrated work and operating station, a 3-D coherent laser radar, and a contaminant analysis unit. Target contaminants that can be identified include chemical (currently organic only), radiological, and base materials (asbestos). In operation, two steps are required. First, the remotely operable 3-D laser radar maps an area of interest in the spatial domain. Second, the remotely operable contaminant analysis unit maps the area of interest in the chemical, radiological, and base material domains. The resultant information is formatted for display and archived using an integrated workstation. A 3-D model of the merged spatial and contaminant domains cart be displayed along with a color-coded contaminant tag at each analysis point. In addition, all of the supporting detailed data are archived for subsequent QC checks. The 3D-ICAS system is capable of performing all contaminant characterization in a dwell time of 6 seconds. The radiological and chemical sensors operate at US Environmental Protection Agency regulatory levels. Base
Conti, Alfredo; Pontoriero, Antonio; Farago, Giuseppe; Midili, Federica; Siragusa, Carmelo; Granata, Francesca; Pitrone, Antonio; De Renzis, Costantino; Longo, Marcello; Tomasello, Francesco
2011-11-01
Purpose: Accuracy in delineating the target volume is a major issue for successful stereotactic radiosurgery for arteriovenous malformations. The aim of the present study was to describe a method to integrate three-dimensional (3D) rotational angiography ( (3DRA)) into CyberKnife treatment planning and to investigate its potential advantages compared with computed tomography angiography (CTA) and magnetic resonance angiography. Methods and Materials: A total of 20 patients with a diagnosis of cerebral arteriovenous malformation were included in the present study. All patients underwent multislice computed tomography and 3D-volumetric CTA, (3DRA), and 3D magnetic resonance angiography. The contouring of the target and critical volumes was done separately using CTA and thereafter directly using (3DRA). The composite, conjoint, and disjoint volumes were measured. Results: The use of CTA or (3DRA) resulted in significant differences in the target and critical volumes. The target volume averaged 3.49 {+-} 3.01 mL measured using CTA and 3.26 {+-} 2.93 mL measured using (3DRA), for a difference of 8% (p < .05). The conjoint and disjoint volume analysis showed an 88% volume overlap. The qualitative evaluation showed that the excess volume obtained using CTA was mostly tissue surrounding the nidus and venous structures. The mean contoured venous volume was 0.67 mL measured using CTA and 0.88 mL (range, 0.1-2.7) measured using (3DRA) (p < .05). Conclusions: (3DRA) is a volumetric angiographic study that can be integrated into computer-based treatment planning. Although whether (3DRA) provides superior accuracy has not yet been proved, its high spatial resolution is attractive and offers a superior 3D view. This allows a better 3D understanding of the target volume and distribution of the radiation doses within the volume. Additional technical efforts to improve the temporal resolution and the development of software tools aimed at improving the performance of 3D contouring
Multigroup Three-Dimensional Direct Integration Method Radiation Transport Analysis Code System.
1987-09-18
Version 00 TRISTAN solves the three-dimensional, fixed-source, Boltzmann transport equation for neutrons or gamma rays in rectangular geometry. The code can solve an adjoint problem as well as a usual transport problem. TRISTAN is a suitable tool to analyze radiation shielding problems such as streaming and deep penetration problems.
THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)
George Jarvis
2001-06-18
The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two
Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching
Born, Brandon; Krupa, Jeffrey D. A.; Geoffroy-Gagnon, Simon; Holzman, Jonathan F.
2015-01-01
All-optical switching is the foundation of emerging all-optical (terabit-per-second) networks and processors. All-optical switching has attracted considerable attention, but it must ultimately support operation with femtojoule switching energies and femtosecond switching times to be effective. Here we introduce an all-optical switch architecture in the form of a dielectric sphere that focuses a high-intensity photonic nanojet into a peripheral coating of semiconductor nanoparticles. Milli-scale spheres coated with Si and SiC nanoparticles yield switching energies of 200 and 100 fJ with switching times of 10 ps and 350 fs, respectively. Micro-scale spheres coated with Si and SiC nanoparticles yield switching energies of 1 pJ and 20 fJ with switching times of 2 ps and 270 fs, respectively. We show that femtojoule switching energies are enabled by localized photoinjection from the photonic nanojets and that femtosecond switching times are enabled by localized recombination within the semiconductor nanoparticles. PMID:26314911
Extreme ultraviolet lithography and three dimensional integrated circuit—A review
NASA Astrophysics Data System (ADS)
Wu, Banqiu; Kumar, Ajay
2014-03-01
Extreme ultraviolet lithography (EUVL) and three dimensional integrated circuit (3D IC) were thoroughly reviewed. Since proposed in 1988, EUVL obtained intensive studies globally and, after 2000, became the most promising next generation lithography method even though challenges were present in almost all aspects of EUVL technology. Commercial step-and-scan tools for preproduction are installed now with full field capability; however, EUV source power at intermediate focus (IF) has not yet met volume manufacturing requirements. Compared with the target of 200 W in-band power at IF, current tools can supply only approximately 40-55 W. EUVL resist has improved significantly in the last few years, with 13 nm line/space half-pitch resolution being produced with approximately 3-4 nm line width roughness (LWR), but LWR needs 2× improvement. Creating a defect-free EUVL mask is currently an obstacle. Actual adoption of EUVL for 22 nm and beyond technology nodes will depend on the extension of current optical lithography (193 nm immersion lithography, combined with multiple patterning techniques), as well as other methods such as 3D IC. Lithography has been the enabler for IC performance improvement by increasing device density, clock rate, and transistor rate. However, after the turn of the century, IC scaling resulted in short-channel effect, which decreases power efficiency dramatically, so clock frequency almost stopped increasing. Although further IC scaling by lithography reduces gate delay, interconnect delay and memory wall are dominant in determining the IC performance. 3D IC technology is a critical technology today because it offers a reasonable route to further improve IC performance. It increases device density, reduces the interconnect delay, and breaks memory wall with the application of 3D stacking using through silicon via. 3D IC also makes one chip package have more functional diversification than those enhanced only by shrinking the size of the features
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-03-01
We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at lambda=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (lambda=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (lambda=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates. PMID:19474900
All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics
NASA Astrophysics Data System (ADS)
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-03-01
We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
Real-time three-dimensional pickup and display system based on integral photography
NASA Astrophysics Data System (ADS)
Okano, Fumio; Arai, Jun; Hoshino, Haruo; Yuyama, Ichiro
1998-12-01
A real-time three-dimensional (3-D) pickup and display setup called a Real-time IP system is proposed. In this system, erected real images of an object are formed by a GRIN lens array as element images, and are directly shot by a television camera. The video signal of a group of element images is transmitted to display device that combines a liquid crystal panel display and a convex micro-lens array, producing a color 3-D image in real-time. Full-color and autostereoscopic 3-D images with full-parallax can be observed. We confirmed the possibility of the 3-D television system.
Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture
NASA Astrophysics Data System (ADS)
Etchells, R. D.; Grinberg, J.; Nudd, G. R.
1981-12-01
This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.
Yao, J; Obara, H; Sapkota, A; Takei, M
2016-03-01
An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247
NASA Astrophysics Data System (ADS)
Tian, Yue; Leng, Lufeng; Su, Yikai
2008-11-01
All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.
NASA Astrophysics Data System (ADS)
Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang
2016-04-01
The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.
Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang
2016-01-01
The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154
Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang
2016-01-01
The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154
Wu Jianwei; Luo Fengguang; Yu Zhihua; Tao Qing
2009-03-31
An ultrafast all-optical switch based on the integrated Mach - Zehnder interferometer (MZI) with two arms consisting of identical silicon-on-insulator (SOI) optical waveguides is presented. The operability of the presented interferometer is simulated both for the continue wave (cw) and pulsed probe signals. It is shown that at the output port of the MZI, the switching window of the probe signal is strongly dependent on the energy and duration of the ultrafast control pulse and the SOI waveguide length. In addition, the initial delay time between both two optical waves will significantly affect the optical switching window when a pulsed probe signal wave is used. (integrated optics)
Three dimensional fabrication of optical waveguiding elements for on-chip integration
NASA Astrophysics Data System (ADS)
Parsi Sreenivas, V. V.; Bülters, M.; Schröder, M.; Bergmann, R. B.
2014-05-01
We present micro polymer optical waveguide elements fabricated using femtosecond laser and two-photon absorption (TPA) process. The POWs are constructed by tightly focusing a laser beam in SU-8 based resists transparent to the laser wavelength for single-photon absorption. The TPA process enables the patterning of the resist in three dimensions at a resolution of 100-200 nm, which provides a high degree of freedom for POW designs. Using this technology, we provide a novel approach to fabricate Three dimensional Polymer Optical Waveguides (3D-POW) and coupling with single mode fibers in the visible wavelength regions. Our research is also focused on fabricating passive micro optical elements such as splitters, combiners and simple logical gates. For this reason we are aiming to achieve optimum coupling efficiency between the 3D-POW and fibers. The technology also facilitates 3D-POW fabrication independent of the substrate material. We present these fabrication techniques and designs, along with supporting numerical simulations and its transmission properties. With a length of 270 μm and polymer core diameter of 9 μm with air cladding, the waveguides possess a total loss of 12 dB. This value also includes the external in and out mode coupling and in continuously being improved upon by design optimization and simulations. We verify the overall feasibility of the design and coupling mechanisms that can be exploited to execute waveguide based optical functions such as filtering and logical operations.
Baker, Erin L; Lu, Jing; Yu, Dihua; Bonnecaze, Roger T; Zaman, Muhammad H
2010-10-01
While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer. PMID:20923638
In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices
NASA Astrophysics Data System (ADS)
Gillette, Brian M.; Jensen, Jacob A.; Tang, Beixian; Yang, Genevieve J.; Bazargan-Lari, Ardalan; Zhong, Ming; Sia, Samuel K.
2008-08-01
Microscale fabrication of three-dimensional (3D) extracellular matrices (ECMs) can be used to mimic the often inhomogeneous and anisotropic properties of native tissues and to construct in vitro cellular microenvironments. Cellular contraction of fibrous natural ECMs (such as fibrin and collagen I) can detach matrices from their surroundings and destroy intended geometry. Here, we demonstrate in situ collagen fibre assembly (the nucleation and growth of new collagen fibres from preformed collagen fibres at an interface) to anchor together multiple phases of cell-seeded 3D hydrogel-based matrices against cellular contractile forces. We apply this technique to stably interface multiple microfabricated 3D natural matrices (containing collagen I, Matrigel, fibrin or alginate); each phase can be seeded with cells and designed to permit cell spreading. With collagen-fibre-mediated interfacing, microfabricated 3D matrices maintain stable interfaces (the individual phases do not separate from each other) over long-term culture (at least 3weeks) and support spatially restricted development of multicellular structures within designed patterns. The technique enables construction of well-defined and stable patterns of a variety of 3D ECMs formed by diverse mechanisms (including temperature-, ion- and enzyme-mediated crosslinking), and presents a simple approach to interface multiple 3D matrices for biological studies and tissue engineering.
Efficient Integration of Synaptic Events by NMDA Receptors in Three-Dimensional Neuropil
Zheng, Kaiyu; Rusakov, Dmitri A.
2015-01-01
Sustained activation of NMDA receptors (NMDARs) plays an important role in controlling activity of neural circuits in the brain. However, whether this activation reflects the ambient level of excitatory neurotransmitter glutamate in brain tissue or whether it depends mainly on local synaptic discharges remains poorly understood. To shed light on the underlying biophysics here we developed and explored a detailed Monte Carlo model of a realistic three-dimensional neuropil fragment containing 54 excitatory synapses. To trace individual molecules and their individual receptor interactions on this scale, we have designed and implemented a dedicated computer cluster and the appropriate software environment. Our simulations have suggested that sparse synaptic discharges are 20–30 times more efficient than nonsynaptic (stationary, leaky) supply of glutamate in controlling sustained NMDAR occupancy in the brain. This mechanism could explain how the brain circuits provide substantial background activation of NMDARs while maintaining a negligible ambient glutamate level in the extracellular space. Thus the background NMDAR occupancy, rather than the background glutamate level, is likely to reflect the ongoing activity in local excitatory networks. PMID:25992724
NASA Astrophysics Data System (ADS)
Choi, Heejin; Park, Jae-Hyeung; Hong, Jisoo; Lee, Byoungho
2004-08-01
In spite of the many advantages of integral imaging, the depth of reconstructed three-dimensional (3D) image is limited to around the only one image plane. Here, we propose a novel method for increasing the depth of a reconstructed image using a stepped lens array (SLA) or a composite lens array (CLA). We confirm our idea by fabricating SLA and CLA with two image planes each. By using a SLA or a CLA, it is possible to form the 3D image around several image planes and to increase the depth of the reconstructed 3D image.
NASA Technical Reports Server (NTRS)
Mager, Arthur
1952-01-01
The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
Integration of a three-dimensional process-based hydrological model into the Object Modeling System
Technology Transfer Automated Retrieval System (TEKTRAN)
The integration of a spatial process model into an environmental modelling framework can enhance the model’s capabilities. We present the integration of the GEOtop model into the Object Modeling System (OMS) version 3.0 and illustrate its application in a small watershed. GEOtop is a physically base...
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1992-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1991-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
Egorov, Alexander A
2011-07-31
We consider theoretical, experimental and numerical methods which make it possible to analyse the key characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities. The main aspects of the three-dimensional vector electrodynamic problem of waveguide scattering are studied. The waveguide light scattering method is presented and its main advantages over the methods of single scattering of laser radiation are discussed. The experimental setup and results of measurements are described. Theoretical and experimental results confirming the validity of the vector theory of three-dimensional waveguide scattering of laser radiation developed by the author are compared for the first time. (fiber and integrated optics)
NASA Astrophysics Data System (ADS)
Göppl, Martin; Kurpiers, Philipp; Wallraff, Andreas
We propose a novel way to realize three-dimensional circuit QED systems at chip level. System components such as qubits, transmission lines, capacitors, inductors or cross-overs can be implemented as suspended, electromagnetically shielded and optionally, as hermetically sealed structures. Compared to known state-of-the-art devices, volumes of dielectrics penetrated by electromagnetic fields can be drastically reduced. Our intention is to harness process technologies for very-large-scale-integration, reliably applied and improved over decades in micro-sensor- and semiconductor industry, for the realization of highly integrated circuit QED systems. Process capabilities are demonstrated by fabricating first exploratory devices using the back-end-of-line part of a commercial 180 nm CMOS foundry process in conjunction with HF vapor phase release etching.
NASA Astrophysics Data System (ADS)
Jiao, Xiao-xue; Zhang, Lei; Sun, Yu; Zhou, Li-qiu; Zhao, Xing
2015-07-01
A new large-scale three-dimensional (3D) reconstruction technology based on integral imaging with color-position characteristics is presented. The color of the object point is similar to those of corresponding points. The corresponding point coordinates form arithmetic progressions because integral imaging captures information with a senior array which has similar pitches on x and y directions. This regular relationship is used to determine the corresponding point parameters for reconstructing 3D information from divided elemental images separated by color, which contain several corresponding points. The feasibility of the proposed method is demonstrated through an optical indoor experiment. A large-scale application of the proposed method is illustrated by the experiment with a corner of our school as its object.
Zhou, Minniu; Matoba, Osamu; Kitagawa, Yoichi; Takizawa, Yukako; Matsumoto, Tetsuya; Ueda, Hideaki; Mizuno, Akio; Kosaka, Nobuyuki
2010-07-01
We evaluate the imaging characteristics of an integrated optical imaging element that is used to obtain images from opposite directions in one imaging sensor for a three-dimensional eye-gaze detection system. The element consists of a transmission-type holographic imaging element, a reflection-type holographic imaging element, and a noise reduction filter. In the evaluation of the imaging characteristics, modulation transfer functions of both the reflection-type and the transmission-type holographic imaging elements are evaluated. Results indicate that both holographic imaging elements have enough resolution, even under white-light illumination conditions, for eye-gaze detection. We also demonstrate the simultaneous detection of images by an artificial eye and objects by using the integrated element under white light or sunlight. PMID:20648147
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1990-01-01
A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.
Three-dimensional analysis of chevron-notched specimens by boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.; Ghosn, L.
1983-01-01
The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.
Three-dimensional planar-integrated optics: a comparative view with free-space optics
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Song, Seok Ho
2000-04-01
This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.
NASA Astrophysics Data System (ADS)
Huang, YuSheng; Xia, Jun; Yin, HanChun
2009-11-01
Integral imaging is a promising technique for both 3-D scene capturing and reconstruction. Recently, computational simulation has been used to generate the free view of reconstructed scenes without optical devices, which can easily overcome image quality degradation due to the physical limitations of optical devices. In the reconstruction process of integral imaging, current researches focus on the pinhole array model which regards lenslet array as pinhole array for simplicity. But in fact, the optical characteristics of the lenslet such as the focal length, the aperture size of the lenslet, and so on, have significant impact on the reconstructed 3-D scene. In this paper, we proposed a lenslet array model in computational integral imaging. The elemental images were picked up by using a well developed computer graphics programming library OpenGL. And then 3-D scene was reconstructed by an ideal diffraction-limited integral imaging model which taken into account of the effect of the focal length and the aperture size. We presented some simulations and evaluated the image quality by the peak-to-peak signal-to-noise ratio (PSNR). Experimental results show that the proposed lenslet array model increase the depth of field.
Steady and unsteady three-dimensional transonic flow computations by integral equation method
NASA Technical Reports Server (NTRS)
Hu, Hong
1994-01-01
This is the final technical report of the research performed under the grant: NAG1-1170, from the National Aeronautics and Space Administration. The report consists of three parts. The first part presents the work on unsteady flows around a zero-thickness wing. The second part presents the work on steady flows around non-zero thickness wings. The third part presents the massively parallel processing implementation and performance analysis of integral equation computations. At the end of the report, publications resulting from this grant are listed and attached.
Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations
Wannamaker, P.E.; Hohmann, G.W.
1982-01-01
An algorithm based on the method of integral equations has been developed to simulate the electromagnetic response of 3-D bodies in layered earths. The inhomogeneities are replaced mathematically by an equivalent current distribution which is approximated by pulse basis functions. A matrix equation is constructed using the electric dyadic Green's function appropriate to a layered earth and is solved for the vector current in each cell. Subsequently, scattered fields are found by integrating electric and magnetic dyadic Green's functions over the scattering currents. Efficient evaluation of the dyadic Green's functions is a major consideration in reducing computation time. It is found that tabulation/interpolation of the six electric and five magnetic Hankel transforms defining the secondary Green's functions is preferable to any direct Hankel transform calculation using linear filters. A comparison of responses over elongate 3-D bodies with responses over 2-D bodies of identical cross section using plane wave incident fields is the only check available on our solution. Agreement is excellent; however, the length that a 3-D body must have before departures between 2-D transverse electric and corresponding 3-D signatures are insignificant depends strongly on the layering. The 2-D transverse magnetic and corresponding 3-D calculations agree closely regardless of the layered host.
NASA Astrophysics Data System (ADS)
Kokubun, Yasuo
2003-04-01
We have proposed and demonstrated a vertically coupled microring resonator filter as an Add/Drop wavelength filter. The ultra-compact ring resonantor can be realized by the ultra-high index contrast waveguide (=34%) consisting of glass core (n=1.80) and air cladding and the vertically coupled configuration, where a microring resonator with a few tens micron radius is stacked on the crossing point of cross-grid bus waveguides. The cross-grid topology of busline waveguides and very small ring radius enables a dense integration of filter circuit. To achieve the 3D integration, we developed a novel fabrication process of flat-top waveguide using a so-called lift-off process and the SOG (Spin-On-Glass), and successfully obtained a very smooth and flat surface of lower waveguide with a step height less than 0.01μm. In addition, to manipulate the center wavelength after fabrication, we developed two trimming methods; one is the use of UV-sensitive polymer for the over-cladding, and the other is the direct UV irradiation to the ring ocre made of Ta2O5-SiO2 compound glass. Utilizing the former method, the channel spacing of filter array was precisely controlled within 0.5nm, which can not be achieved by the control of ring radius.
Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles
NASA Astrophysics Data System (ADS)
Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.
2007-01-01
In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.
NASA Astrophysics Data System (ADS)
Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu
2015-06-01
In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for λ = 400-620 nm over a wide angular acceptance of θ = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.
NASA Astrophysics Data System (ADS)
Hesch, Christian; Betsch, Peter
2011-10-01
The present work deals with the development of an energy-momentum conserving method to unilateral contact constraints and is a direct continuation of a previous work (Hesch and Betsch in Comput Mech 2011, doi: 10.1007/s00466-011-0597-2) dealing with the NTS method. In this work, we introduce the mortar method and a newly developed segmentation process for the consistent integration of the contact interface. For the application of the energy-momentum approach to mortar constraints, we extend an approach based on a mixed formulation to the segment definition of the mortar constraints. The enhanced numerical stability of the newly proposed discretization method will be shown in several examples.
Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1
1994-07-01
3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.
Three-dimensional lossless digital signature embedding for the integrity of volumetric images
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Huang, H. K.; Liu, B. J.
2006-03-01
Our previous study presented a lossless digital signature embedding (LDSE) method for assuring the integrity of 2D medical images in network transit or during archival. With the advent of multi-detector CT scanners and volume acquisition technologies, a PACS exam can now potentially generate hundreds, even thousands, of images. To perform the 2D LDSE method on each individual image in the volume would be extremely time consuming and inefficient. For this reason, a novel 3D LDSE method has been investigated for 3D image volumes. The method begins with generating a single digital signature (DS) of the entire volume. Embedding of the DS is performed by first identifying a bit stream from the image volume based on the correlation of 3D pixel values. The bit stream is compressed using lossless compression methods and the DS is concatenated with the compressed bit stream. This concatenated bit stream is then embedded within the original image volume. During the verification process, the embedded bit stream is extracted and utilized to recover the original bit stream and the original DS. The original bit stream can be used to restore the image volume which in turn can be used in the verification of the DS. In addition, to 3D LDSE embedding methodology for image volumes, a new procedure is developed to address clinical workflow for 3D image volumes. Experimental results demonstrated that the 3D LDSE method can assure the integrity of 3D image volume efficiently and effectively. In addition, a 3D clinical image workflow procedure was demonstrated.
Hellwig, Tim; Epping, Jörn P; Schnack, Martin; Boller, Klaus-J; Fallnich, Carsten
2015-07-27
We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise nonlinear mode switching exceeding efficiencies of 90% at switching energies below 1 nJ. PMID:26367581
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
NASA Astrophysics Data System (ADS)
Arai, Jun; Okano, Fumio; Hoshino, Haruo; Yuyama, Ichiro
1998-04-01
Because a three-dimensional (3-D) autostereoscopic image can be seen from a desired viewpoint without the aid of special viewing glasses, integral photography (IP) is an ideal way to create 3-D autostereoscopic images. We have already proposed a real-time IP method that offers 3-D autostereoscopic images of moving objects in real time by use of a microlens array and a high-definition television camera. But there are two problems yet to be resolved: One is pseudoscopic images that show a reversed depth representation. The other is interference between the element images that constitute a 3-D autostereoscopic image. We describe a new gradient-index lense-array method based on real-time IP to overcome these two problems. Experimental results indicating the advantages of this method are shown. These results suggest the possibility of using a gradient-index lens array for real-time IP.
Kuang, Ping; Lin, Shawn-Yu; Hsieh, Mei-Li
2015-06-07
In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO{sub 2} nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θ{sub CB} ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.
El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.
2015-01-01
Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542
El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B
2015-04-01
Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542
Three-dimensional display system for medical imaging with computer-generated integral photography
NASA Astrophysics Data System (ADS)
Nakajima, Susumu; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi
2000-05-01
A 3D display system for medical image by computer-generated integral photography (IP) has been developed. A new, fast, 3D-rendering algorithm has been devised to overcome the difficulties that have prevented practical application of computer-generated IP, namely, the cost of computation, and the pseudoscopic image problem. The display system as developed requires on ly a personal computer, a liquid crystal display (LCD), and a fly's eye lens (FEL). Each point in 3D space is reconstructed by the convergence of rays from many pixels on the LCD through the FEL. As the number of such points is limited by the low resolution of the LCD, the algorithm computes a coordinate of the best point for each pixel of the LCD. This reduces computation, performs hidden surface removal and solves the pseudoscopic image problem. In tests of the system, the locations of images projected 10-40 mm distant from the display were found to be less than 2.5 mm in error. Both stationary and moving IP images of a colored skull, generated from 3D computerized tomography, were projected and could be observed with motion parallax within 10 degrees, both horizontally and vertically, from the front of the display. It can be concluded that the simplicity of design and the geometrical accuracy of projection give this system significant advantages over other 3D display methods.
Three-dimensional structures formed by a robotic and meltblowing integrated system
NASA Astrophysics Data System (ADS)
Velu, Yogeshwar Karunakaran
Meltblown nonwovens have been produced as 2D web structures for a variety of end uses. Investigation into the development of 3D structures, has led to the integration of meltblown and robotic technology to form the Robotic Fiber Assembly and Control System. The effects of various process parameters including the fiber stream approach angle and the curvature of the collecting surface on the structural properties of the webs such as the diameter and orientation distribution of the fibers and the pore size distribution on the webs has been investigated. The interrelationships between these structural parameters have been explored and a statistical model developed. Orientation distribution, and the fiber diameter distribution of the webs were measured on image analysis software, while the pore size distribution was measured using equipment developed on the basis of capillary flow technique. SAS was used to develop the correlations between the structural parameters of the web. In general, all the webs show a larger percentage of fibers orienting in the machine direction (MD). The webs with finer fiber diameter produced webs with smaller pore diameter. The take-up speed of the collector had a significant influence on the orientation and diameters of the fibers in the web. Finer fibers were formed which are more oriented in the machine direction as the take-up speed of the collecting surface increased resulting in the formation of a web which has pores with finer diameter. A decrease in the polymer throughput demonstrated a decrease in the fiber diameter, the pore diameter and the basis weights of the webs. The resulting webs also produced pores that are of finer diameter. Lower attenuating air pressures produced larger diameter fibers. The average pore diameter of the analyzed meltblown fabrics decreased significantly when the attenuating air pressure was increased. Increasing the die to collector distance (DCD) shows a decrease in the percentage of fibers that are
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.
Bruno, Oscar P. Lintner, Stéphane K.
2013-11-01
We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities.
NASA Astrophysics Data System (ADS)
Liu, Dan; Shi, Tielin; Tang, Zirong; Zhang, Lei; Xi, Shuang; Li, Xiaoping; Lai, Wuxing
2011-11-01
We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N2 and H2 in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 µm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.
Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca
2016-09-01
Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851
Nadeem, Danish; Smith, Carol-Anne; Dalby, Matthew J; Meek, R M Dominic; Lin, Sien; Li, Gang; Su, Bo
2015-01-01
Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. PMID:25562325
NASA Astrophysics Data System (ADS)
Nath Roy, Jitendra; Gayen, Dilip Kumar
2007-08-01
Interferometric devices have drawn a great interest in all-optical signal processing for their high-speed photonic activity. The nonlinear optical loop mirror provides a major support to optical switching based all-optical logic and algebraic operations. The gate based on the terahertz optical asymmetric demultiplexer (TOAD) has added new momentum in this field. Optical tree architecture (OTA) plays a significant role in the optical interconnecting network. We have tried to exploit the advantages of both OTA- and TOAD-based switches. We have proposed a TOAD-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations.
NASA Technical Reports Server (NTRS)
Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz
1996-01-01
Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.
NASA Astrophysics Data System (ADS)
Markman, A.; Javidi, B.
2016-06-01
Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.
NASA Astrophysics Data System (ADS)
Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing
2016-07-01
A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.
NASA Astrophysics Data System (ADS)
Kang, Ho-Hyun; Shin, Dong-Hak; Kim, Eun-Soo
2010-03-01
An approach to highly enhance the compression efficiency of the integral images by applying the Karhunen-Loeve transform (KLT) algorithm to the motion-compensated sub-images is proposed. The sub-images transformed from the elemental images picked-up from the three-dimensional (3D) object might represent the different perspectives of the object. Thus, the similarity among the sub-images gets better than that among the elemental images, so that an improvement of compression efficiency of the sub-images could be obtained. However, motion vectors occurred among the sub-images might result in an additional increase of image data to be compressed. Accordingly, in this paper, motion vectors have been estimated and compensated in all sub-image in advance. Then the KLT algorithm was applied to these motion-compensated sub-images for compression. It is shown from some experimental results that compression efficiency of the proposed method has been improved up to 24.44%, 40.62%, respectively, on the average compared to that of the conventional KLT compression method and that of the JPEG.
NASA Astrophysics Data System (ADS)
António, J.; Tadeu, A.; Castro, I.
2013-06-01
This paper simulates the propagation of sound generated by point pressure sources in the vicinity of double three-dimensional (3D) barriers, placed so as to create an indoor acoustic space. The barriers are assumed to be very thin rigid elements. The problem is solved by developing and implementing a 3D Boundary Element Method formulation using a normal derivative integral equation (TBEM), thereby allowing the definition of models in which only the discretization of the barriers as single open surfaces is required. The TBEM is formulated in the frequency domain and the resulting hypersingular terms are computed analytically. After the verification of the model against two-and-a-half-dimensional (2.5D) BEM solutions, several numerical applications are described to illustrate the applicability and usefulness of the proposed approaches. Different barrier shape geometries and their relative position with respect to a lateral wall are analyzed to evaluate the performance of double 3D rigid barriers in the creation of an acoustic space.
Pang, Y; Horimoto, Y; Sutoko, S; Montagne, K; Shinohara, M; Mathiue, D; Komori, K; Anzai, M; Niino, T; Sakai, Yasuyuki
2016-01-01
A novel engineering methodology for organizing a large liver tissue equivalent was established by intergrating both 'top down' and 'bottom up' approaches. A three-dimensional (3D) scaffold was engineered comprising 43 culture chambers (volume: 11.63 cm(3)) assembled in a symmetrical pattern on 3 layers, a design which enables further scaling up of the device to a clinically significant size (volume: 500 cm(3)). In addition, an inter-connected flow channel network was designed and proved to homogenously deliver culture medium to each chamber with the same pressure drop. After fabrication using nylon-12 and a selective laser sintering process, co-cultured cellular aggregates of human hepatoma Hep G2 and TMNK-1 cells were loosely packed into the culture chambers with biodegradable poly-L-lactic acid fibre pieces for 9 days of perfusion culture. The device enabled increased hepatic function and well-maintained cell viability, demonstrating the importance of an independent medium flow supply for cell growth and function provided by the current 3D scaffold. This integrative methodology from the macro- to the micro-scale provides an efficient way of arranging engineered liver tissue with improved mass transfer, making it possible to further scale up to a construct with clinically relevant size while maintaining high per-volume-based physiological function in the near future. PMID:27579855
Funamoto, Kenichi; Hayase, Toshiyuki; Saijo, Yoshifumi; Yambe, Tomoyuki
2009-01-01
In ultrasonic-measurement-integrated (UMI) simulation of blood flows, feedback signals proportional to the difference of velocity vector optimally estimated from Doppler velocities are applied in the feedback domain to reproduce the flow field. In this paper, we investigated the transient and steady characteristics of UMI simulation by numerical experiment. A steady standard numerical solution of a three-dimensional blood flow in an aneurysmal aorta was first defined with realistic boundary conditions. The UMI simulation was performed assuming that the realistic velocity profiles in the upstream and downstream boundaries were unknown but that the Doppler velocities of the standard solution were available in the aneurysmal domain or the feedback domain by virtual color Doppler imaging. The application of feedback in UMI simulation resulted in a computational result approach to the standard solution. As feedback gain increased, the error decreased faster and the steady error became smaller, implying the traceability to the standard solution improves. The positioning of ultrasound probes influenced the result. The height less than or equal to the aneurysm seemed better choice for UMI simulation using one probe. Increasing the velocity information by using multiple probes enhanced the UMI simulation by achieving ten times faster convergence and more reduction of error. PMID:19011966
Finn, John M.
2015-03-15
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less
NASA Astrophysics Data System (ADS)
Kashirin, A. A.; Smagin, S. I.; Taltykina, M. Yu.
2016-04-01
Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.
Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli
2015-12-01
Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications. PMID:26554275
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping
2015-07-01
Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.
NASA Astrophysics Data System (ADS)
Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.
2016-03-01
At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Mughal, M. J.
2003-12-01
A new robust approach is presented for achieving very large fiber port count all-optical crossconnect switches. This three dimensional optics-based switch has built-in alignment capabilities with fault-tolerance, allowing graceful port count scaling.
Stamatiadis, C; Stampoulidis, L; Kalavrouziotis, D; Lazarou, I; Vyrsokinos, K; Zimmermann, L; Voigt, K; Preve, G B; Moerl, L; Kreissl, J; Avramopoulos, H
2012-02-13
We present a hybrid integrated photonic circuit on a silicon-on-insulator substrate that performs ultra high-speed all-optical wavelength conversion. The chip incorporates a 1.25 mm non-linear SOA mounted on the SOI board using gold-tin bumps as small as 14 μm. Τhe device performs chirp filtering and signal polarity inversion with two multi-mode interference (MMI) - based cascaded delay interferometers (DIs) monolithically integrated on the same SOI substrate. Full free spectral range (FSR) tuning of the DIs is accomplished by two independently tuneable on-chip thermal heaters. We demonstrate 160Gb/s all-optical wavelength conversion with power penalties of less than 4.6dB. PMID:22418139
Yang, Yiqing; Liu, CuiCui; Lei, Xiaohua; Wang, Hongtao; Su, Pei; Ru, Yongxin; Ruan, Xinhua; Duan, Enkui; Feng, Sizhou; Han, Mingzhe; Xu, Yuanfu; Shi, Lihong; Jiang, Erlie; Zhou, Jiaxi
2016-02-01
Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of the platelet supply limits the care of patients. Although derivation of clinical-scale platelets in vitro could provide a new source for transfusion, the devices and procedures for deriving scalable platelets for clinical applications have not been established. In the present study, we found that a rotary cell culture system (RCCS) can potentiate megakaryopoiesis and significantly improve the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the RCCS improved platelet generation efficiency by as much as ∼3.7-fold compared with static conditions. Shear force, simulated microgravity, and better diffusion of nutrients and oxygen from the RCCS, altogether, might account for the improved efficient platelet generation. The cost-effective and highly controllable strategy and methodology represent an important step toward large-scale platelet production for future biomedical and clinical applications. Significance: Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of platelet supply limits the care of patients. Thus, derivation of clinical-scale platelets in vitro would provide a new source for transfusion. The present study evaluated a rotary suspension cell culture system that was able to potentiate megakaryopoiesis and significantly improved the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the three-dimensional system improved platelet generation efficiency compared with the static condition. The three-dimensional device and the strategy developed in the present study should markedly improve the generation of large-scale platelets for use in future biomedical and clinical settings. PMID:26702125
NASA Astrophysics Data System (ADS)
Jia, Zupeng; Liu, Jun; Zhang, Shudao
2013-03-01
This paper presents an effective second-order three-dimensional unstructured multi-material arbitrary Lagrangian-Eulerian (MMALE) method for compressible fluid dynamics. This is an integration work. The MMALE method utilizes Moment of Fluid (MOF) capability with interface reconstruction for multi-material modeling of immiscible fluids. It is of the explicit time-marching Lagrange plus remap type. In the Lagrangian phase, the staggered compatible discretization for Lagrangian gas dynamics is used also with Tipton's pressure relaxation model for the closure of mixed cells. For the remapping phase, an improved second-order cell-intersection-based method for three-dimensional unstructured mesh is presented. It is conservative for remapping cell-centered variables such as density and internal energy. It is suitable for remapping between two meshes with different topology. By using this remapping method, the new material centroid position in the rezoned cells can be geometrically computed. This enables it to be combined with the MOF algorithm for constructing a second-order MMALE method. The MMALE method can be implemented on three-dimensional unstructured hexahedral meshes. Numerical results have proved the accuracy and robustness of the MMALE method.
Fulton, D R; Marx, G R; Pandian, N G; Romero, B A; Mumm, B; Krauss, M; Wollschläger, H; Ludomirsky, A; Cao, Q L
1994-03-01
Three-dimensional cardiac reconstruction generated from transesophageal interrogation can be performed using an integrated unit that captures, processes, and postprocesses tomographic parallel slices of the heart. This probe was used for infants and young children in the transthoracic position to evaluate the feasibility of producing three-dimensional cardiac images with capability for real-time dynamic display. Twenty-two infants and children (range 1 day-3.5 years) underwent image acquisition using a 16 mm 5 MHz 64 element probe placed over the precordium. Two infants were also imaged from the subcostal position. Data was obtained and stored over a single cardiac cycle after acceptable cardiac and respiratory gating intervals were met. The transducer was advanced in 0.5-1 mm increments over the cardiac structures using identical acquisition criteria. The images were reconstructed from the stored digital cubic format and could be oriented in any desired plane. In 9 of the 22 infants the images obtained were of optimal quality. The images obtained displayed normal cardiac structures emphasizing depth relationships as well as visualization of planes not generally demonstrated by two-dimensional imaging. Several lesions were also depicted in a unique fashion using this technique. Though the method employed was limited by movement artifact and reconstruction time, the quality of the three-dimensional display was excellent and enhanced by real-time demonstration. The transthoracic approach was successful in capturing sufficient data to create three-dimensional images, which may have further application in more accurate diagnosis of complex cardiac abnormalities and generation of planes of view which could duplicate surgical visualization of a lesion. Further assessment of the technique in infants with congenital heart disease is warranted. PMID:10146717
Three-dimensional sonoembryology.
Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav
2002-01-01
Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658
NASA Astrophysics Data System (ADS)
Xu, Bing; Du, Wen-Qiang; Li, Jia-Wen; Hu, Yan-Lei; Yang, Liang; Zhang, Chen-Chu; Li, Guo-Qiang; Lao, Zhao-Xin; Ni, Jin-Cheng; Chu, Jia-Ru; Wu, Dong; Liu, Su-Ling; Sugioka, Koji
2016-01-01
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given ‘Y’ shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 μm to 6.7 μm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips.
Xu, Bing; Du, Wen-Qiang; Li, Jia-Wen; Hu, Yan-Lei; Yang, Liang; Zhang, Chen-Chu; Li, Guo-Qiang; Lao, Zhao-Xin; Ni, Jin-Cheng; Chu, Jia-Ru; Wu, Dong; Liu, Su-Ling; Sugioka, Koji
2016-01-01
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given 'Y' shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 μm to 6.7 μm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips. PMID:26818119
Xu, Bing; Du, Wen-Qiang; Li, Jia-Wen; Hu, Yan-Lei; Yang, Liang; Zhang, Chen-Chu; Li, Guo-Qiang; Lao, Zhao-Xin; Ni, Jin-Cheng; Chu, Jia-Ru; Wu, Dong; Liu, Su-Ling; Sugioka, Koji
2016-01-01
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given ‘Y’ shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 μm to 6.7 μm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips. PMID:26818119
NASA Astrophysics Data System (ADS)
Ten Holter, Koen P. A.; Scholte, Krispijn A.; Willekes MacDonald, Björn C.; Bolderheij, Fok
2011-06-01
Electro-optical sensor systems are fairly commonplace on naval vessels. However, these sensor systems are usually implemented as stand-alone systems or are minimally integrated in shipboard combat management systems, and are mostly used as secondary sensors. Therefore, it is difficult to include these systems in generic command and control concepts; on board they remain an operator aid at best. To facilitate integration in the future, this paper proposes a model of a warship with only EO sensors as its primary sensor suite. The question of whether such a ship is sufficiently capable in a modern naval theater is addressed, as well as specific sensor design challenges and the command and control concepts needed in order to maximize the performance of the proposed vessel.
Three-dimensional coronary angiography
NASA Astrophysics Data System (ADS)
Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John
2005-04-01
Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.
Wang, Jun; Zhong, Hai-xia; Wang, Zhong-li; Meng, Fan-lu; Zhang, Xin-bo
2016-02-23
The development of an efficient catalytic electrode toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of great significance for overall water splitting associated with the conversion and storage of clean and renewable energy. In this study, carbon paper/carbon tubes/cobalt-sulfide is introduced as an integrated three-dimensional (3D) array electrode for cost-effective and energy-efficient HER and OER in alkaline medium. Impressively, this electrode displays superior performance compared to non-noble metal catalysts reported previously, benefiting from the unique 3D array architecture with increased exposure and accessibility of active sites, improved vectorial electron transport capability, and enhanced release of gaseous products. Such an integrated and versatile electrode makes the overall water splitting proceed in a more direct and smooth manner, reducing the production cost of practical technological devices. PMID:26783885
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1994-01-01
It has been found that the Discrete Integral Equation (DSI)technique is a highly effective technique for the analysis of microwave circuits and devices [1,2]. The DSI is much more robust than the traditional Finite Difference Time Domain (FDTD) method in a number of ways.
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Hyun, Joo-Bong; Hwang, Dong-Choon; Shin, Dong-Hak; Kim, Eun-Soo
2007-11-01
A novel curved computational integral imaging reconstruction (C-CIIR) technique for the virtually curved integral imaging (VCII) system is proposed, and its performances are analyzed. In the C-CIIR model, an additional virtual large-aperture lens is included to provide a multidirectional curving effect in the reconstruction process, and its effect is analyzed in detail by using the ABCD matrix. With this method, resolution-enhanced 3D object images can be computationally reconstructed from the picked-up elemental images of the VCII system. To confirm the feasibility of the proposed model, some experiments are carried out. Experiments revealed that the sampling rate in the VCII system could be kept at a maximum value within some range of the distance z, whereas in the conventional integral imaging system it linearly decreased as the distance z increased. It is also shown that resolutions of the object images reconstructed by the C-CIIR method have been significantly improved compared with those of the conventional CIIR method. PMID:17973014
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Zhang, Jinfeng; Tan, Feng; Wu, Yuru; Zhang, Na; Yang, Hua; Pang, Qixiu
2015-03-01
Prediction of cohesive sediment transport in storm process is important for both navigation safety and environment of the coastal zone. The difficulties to simulate cohesive sediment transport for a small-scale area such as around a harbor during storm events mainly include the low spatial resolution of the present reanalysis atmosphere forcing, the complex hydrodynamic and sediment transport processes, and their interactions. In this paper, an integrated atmosphere-wave-3D hydrodynamic and cohesive sediment transport model with unstructured grid, which is comprised of the Weather Research and Forecasting (WRF) model, Simulating WAves Nearshore (SWAN) model, and Finite-Volume Coastal Ocean Model (FVCOM), was developed to solve the abovementioned problems. For cohesive sediment, the flocculation and hindered settling were included, and a self-weight consolidation processes was introduced to the existing FVCOM. Interactions between components were considered by providing data fields to each other in an offline manner. The integrated model was applied to simulate cohesive sediment transport around Lianyungang Harbor, China, during Typhoon Wipha in 2007. Results identify that the atmosphere model WRF performed better in the simulation of wind field during typhoon process compared with QuikSCAT/National Centers for Environmental Prediction (QSCAT/NCEP) data. Simulation of wave model was directly affected by wind results as wave vector field driven by WRF wind field showed anticlockwise vortex while waves driven by QSCAT/NCEP wind field did not. The influence of water elevation and flow field on waves was great at the nearshore area. However, the effect of wave on current was not apparent, while the wind field played a more important role, especially on the current velocity. The cohesive sediment transport was greatly affected by wave due to the combined wave-current-induced shear stress. In general, simulation results of wind, wave, current, and sediment showed
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers. PMID:26368111
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
NASA Astrophysics Data System (ADS)
Koh, Joonyoung; Kim, Jihye; Shin, Jung H.; Lee, Wonhee
2014-09-01
Inertial microfluidics utilizes fluid inertia from high flow velocity to manipulate particles and fluids in 3D. Acquiring a 3D information of particle positions and complex flow patterns within microfluidic devices requires 3D imaging techniques such as confocal microscopy, which are often expensive and slow. Here, we report on a prism-mirror-embedded microfluidic device that allows simultaneous imaging of the top and side view of the microchannel for a high-speed, low-cost 3D imaging. The microprism mirrors are fabricated and integrated into a microfluidic system using conventional microfabrication techniques including wet etch and soft lithography. This inexpensive high quality prism mirror provides a highly reflective, smooth mirror surface with precise 45° reflection angle, enabling 3D measurement of inertial migration of microparticles in a rectangular channel at speeds in excess of 10 000 frame/s.
Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Green, A.; Gribenko, A.; Cuma, M.
2010-08-01
In this paper we apply 3D inversion to MT data collected in the Northwestern United States as a part of the EarthScope project. By the end of 2009 MT data had been collected from 262 stations located throughout Oregon, Washington, Idaho, and most of Montana and Wyoming. We used data from 139 MT stations in this analysis. We developed fully parallelized rigorous 3D MT inversion software based on the integral equation method with variable background conductivity. We also implemented a receiver footprint approach which considerably reduced the computational resources needed to invert the large volumes of data covering vast areas. The data set used in the inversion was obtained through the Incorporated Research Institutions for Seismology (IRIS). The inversion domain was divided into 2.7 M cells. The inverted electrical conductivity distribution agrees reasonably well with geological features of the region.
Tian, Jingqi; Liu, Qian; Cheng, Ningyan; Asiri, Abdullah M; Sun, Xuping
2014-09-01
Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self-supported Cu3 P nanowire arrays on commercial porous copper foam (Cu3 P NW/CF) from its Cu(OH)2 NW/CF precursor by a low-temperature phosphidation reaction. Remarkably, as an integrated three-dimensional hydrogen-evolving cathode operating in acidic electrolytes, Cu3 P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mV dec(-1) , and a Faradaic efficiency close to 100 %. Catalytic current density can approach 10 mA cm(-2) at an overpotential of 143 mV. PMID:25044801
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2016-08-01
We present a method to integrate the gravitational field for general three-dimensional objects. By adopting the spherical polar coordinates centered at the evaluation point as the integration variables, we numerically compute the volume integral representation of the gravitational potential and of the acceleration vector. The variable transformation completely removes the algebraic singularities of the original integrals. The comparison with exact solutions reveals around 15 digits accuracy of the new method. Meanwhile, the 6 digit accuracy of the integrated gravitational field is realized by around 106 evaluations of the integrand per evaluation point, which costs at most a few seconds at a PC with Intel Core i7-4600U CPU running at 2.10 GHz clock. By using the new method, we show the gravitational field of a grand design spiral arm structure as an example. The computed gravitational field shows not only spiral shaped details but also a global feature composed of a thick oblate spheroid and a thin disc. The developed method is directly applicable to the electromagnetic field computation by means of Coulomb's law, the Biot-Savart law, and their retarded extensions. Sample FORTRAN 90 programs and test results are electronically available.
NASA Astrophysics Data System (ADS)
Ito, Yuka; Fukushima, Takafumi; Lee, Kang-Wook; Choki, Koji; Tanaka, Tetsu; Koyanagi, Mitsumasa
2013-04-01
To establish liquid-assisted assembly processes applicable to heterogeneous system integrations, we present flip-chip self-assembly of dies with Cu/Sn microbumps using the difference in droplet wetting between hydrophilic and hydrophobic areas. Flip-chip self-assembly is assisted by a water-soluble flux that has high surface tension comparable to that of pure water and contains an additive of a reducing agent for metal oxides. Control of the additive concentration in the flux provides high wettability contrast that enable spontaneous and precise alignment of chips to hydrophilic areas formed on substrates within 5 µm in alignment accuracy. In the subsequent chip bonding process, the reductant can eliminate the metal oxide layer and improve the solder wettability of Sn to the corresponding electrode pads formed on the chips. In addition, we confirm, through electrical characteristic evaluation after thermal compression bonding, that the resulting daisy chain formed between the substrates and self-assembled chips with the flux shows sufficiently low contact resistance of below 20 mΩ/bump without disconnection.
NASA Astrophysics Data System (ADS)
Bohlen, Thomas; Wittkamp, Florian
2016-03-01
We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.
NASA Astrophysics Data System (ADS)
Fu, Ya-Yuan; Lu, Chih-Hsuan; Lin, Chi-Wen; Juang, Jyuhn-Huarng; Enikolopov, Grigori; Sibley, Eric; Chiang, Ann-Shyn; Tang, Shiue-Cheng
2010-07-01
Microscopic visualization of islets of Langerhans under normal and diabetic conditions is essential for understanding the pathophysiology of the disease. The intrinsic opacity of pancreata, however, limits optical accessibility for high-resolution light microscopy of islets in situ. Because the standard microtome-based, 2-D tissue analysis confines visualization of the islet architecture at a specific cut plane, 3-D representation of image data is preferable for islet assessment. We applied optical clearing to minimize the random light scattering in the mouse pancreatic tissue. The optical-cleared pancreas allowed penetrative, 3-D microscopic imaging of the islet microstructure and vasculature. Specifically, the islet vasculature was revealed by vessel painting-lipophilic dye labeling of blood vessels-for confocal microscopy. The voxel-based confocal micrographs were digitally processed with projection algorithms for 3-D visualization. Unlike the microtome-based tissue imaging, this optical method for penetrative imaging of mouse islets yielded clear, continuous optical sections for an integrated visualization of the islet microstructure and vasculature with subcellular-level resolution. We thus provide a useful imaging approach to change our conventional planar view of the islet structure into a 3-D panorama for better understanding of the islet physiology.
Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Gribenko, A.; Green, M.; Cuma, M.
2010-12-01
We have developed fully parallelized rigorous 3D MT inversion software based on the integral equation method with variable background conductivity. We have also implemented a receiver footprint approach which considerably reduces the computational resources needed to invert the large volumes of data covering vast areas. We apply 3D inversion to MT data collected in the western United States as a part of the EarthScope project. The data set used in the inversion was obtained through the Incorporated Research Institutions for Seismology (IRIS). We have inverted two large datasets: one with the EarthScope MT stations located in the northwestern United States over Washington, Oregon, Montana, and Idaho; another one with the locations of the EarthScope MT stations over Montana, Idaho, and Wyoming, including Yellowstone National Park area. The inversion domains were divided into millions of discretization cells. The geoelectrical model of the northwestern U.S. deep interior produced by 3D inversion indicated several electrical conductivity anomalies in the lithosphere including highly conductive anomalies in the upper mantle in parts of Oregon and Idaho. We can also see an indication of a plume associated with the hot conductive material rising from the mantle toward Yellowstone volcano. The conductive body identified in these images is west-dipping in a similar way as the low-velocity body shown in P-wave seismic tomography image data (Smith et al., 2009). We observe a similarity of the images of the Yellowstone plume produced independently by seismic tomography and 3D MT inversion.
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun
2015-11-01
A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. PMID:26227570
NASA Astrophysics Data System (ADS)
Yang, J.; Abubakar, A.
2012-12-01
The ability to accurately and efficiently simulate elastic wave scattering processes is very important in geophysical prospecting applications. A recently proposed formulation of an integral equation for solving three-dimensional elastic wave scattering problems is numerically implemented. The approach is formulated in terms of the stress tensor and particle velocity vector, where the symmetric tensors of rank two are decomposed into their omnidirectional and deviatoric constituents. Subsequently, this integral equation is used to obtain a contrast-source type integral equation. For solving these integral equations we employ a Conjugate Gradient Fast Fourier Transform (CG-FFT) scheme, which is based on quadrature formulas that provide (second-order) accurate approximations while retaining the convolution nature of the relevant integrals that make them amenable to efficient evaluation via Fast Fourier Transforms. As linear solvers we employ the Conjugate Gradient for Normal Residual (CGNR) scheme, which is always monotonically convergent, but has a slow convergent rate, and the Bi-Conjugate Gradient Stabilized (BiCGSTAB) scheme, which is more efficient, but it is less stable. The convergence rates of iterative schemes are further improved through the use of a simple diagonal preconditioner. We show a number of numerical results that demonstrate the accuracy and efficiency of the implemented 3D elastic modeling approach. Numerical models include both simple synthetic models and classic seismic test models (such as the SEG/EAGE salt model and the Marmousi2 model). Excellent benchmark results against a Finite Difference Time Domain (FDTD) algorithm are also presented. These features suggest that the present numerical scheme may provide the basis for the so-called contrast-source inversion method.
Three dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N.; Liu, Xin; Tomsia, Antoni P.
2011-01-01
Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial–bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial–bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO4 beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. PMID:21875330
NASA Astrophysics Data System (ADS)
Lin, Shih-kang; Chang, Hao-miao; Cho, Cheng-liang; Liu, Yu-chen; Kuo, Yi-kai
2015-07-01
Three-dimensional (3D) integrated circuits (ICs) are the most important packaging technology for next-generation semiconductors. Cu-to-Cu throughsilicon via interconnections with micro-bumps are key components in the fabrication of 3D ICs. However, significant reliability concerns have been raised due to the formation of brittle intermetallic compounds in the entire 3D IC joints. This study proposes a Ga-based Cu-to-Cu bonding technology with Pt under bump metallurgy (UBM). A systematic analysis of reactive wetting between Ga solders and polycrystalline, single-crystalline, and Ptcoated Cu substrates was conducted. Pt UBM as a wetting layer was identified to be a key component for Ga-based Cu-to-Cu bonding. Pt-coated Cu substrates were bonded using Ga solders with various Ga-to-Pt ratios ( n) at 300℃. When n ≥ 4, the Cu/Pt/Ga/Pt/Cu interface evolves to Cu/facecentered cubic (fcc)/γ1-Cu9Ga4/fcc/Cu, Cu/fcc/γ1-Cu9Ga4 + Ga7Pt3/fcc/Cu, and finally Cu/fcc + Ga7Pt3/Cu structures. The desired ductile solid solution joint formed with discrete Ga7Pt3 precipitates. When n ≤ 1, a Cu/Ga7Pt3/Cu joint formed without Cu actively participating in the reactions. The reaction mechanism and microstructure evolution were elaborated with the aid of CALPHAD thermodynamic modeling. [Figure not available: see fulltext.
Hao, Ruixia; Meng, Chengcheng; Li, Jianbing
2016-08-01
A three-dimensional biofilm-electrode reactor (3DBER) was integrated with sulfur autotrophic denitrification (SAD) to improve nitrogen removal performance for wastewater reclamation. The impacts of influent carbon/nitrogen (C/N) ratio, electric current, and hydraulic retention time (HRT) were evaluated. The new process, abbreviated as 3DBER-SAD, achieved a more stable denitrification compared to the recently studied 3DBER in literature. Its nitrogen removal improved by about 45 % as compared to 3DBER, especially under low C/N ratio conditions. The results also revealed that the biofilm bacteria community of 3DBER-SAD contained 21.1 % of the genus Thauera, 19.3 % of the genus Thiobacillus and Sulfuricella, as well as 5.3 % of the genus Alicycliphilus, Pseudomonas, and Paracoccus. The synergy between these heterotrophic, sulfur autotrophic, and hydrogenotrophic denitrification bacteria was believed to cause the high and stable nitrogen removal performance under various operating conditions. PMID:27170320
Abe, Hiroya; Ino, Kosuke; Li, Chen-Zhong; Kanno, Yusuke; Inoue, Kumi Y; Suda, Atsushi; Kunikata, Ryota; Matsudaira, Masahki; Takahashi, Yasufumi; Shiku, Hitoshi; Matsue, Tomokazu
2015-06-16
In the present study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to image dopamine release from three-dimensional (3D)-cultured PC12 cells (PC12 spheroids). The Bio-LSI device consists of 400 sensor electrodes with a pitch of 250 μm for rapid electrochemical imaging of large areas. PC12 spheroids were stimulated with K(+) to release dopamine. Poststimulation dopamine release from the PC12 spheroids was electrochemically imaged using the Bio-LSI device. Bio-LSI clearly showed the effects of the dopaminergic drugs l-3,4-dihydroxyphenylalanine (L-DOPA) and reserpine on K(+)-stimulated dopamine release from PC12 spheroids. Our results demonstrate that dopamine release from PC12 spheroids can be monitored using the device, suggesting that the Bio-LSI is a promising tool for use in evaluating 3D-cultured dopaminergic cells and the effects of dopaminergic drugs. To the best of our knowledge, this report is the first to describe electrochemical imaging of dopamine release by PC12 spheroids using LSI-based amperometric sensors. PMID:25971414
NASA Astrophysics Data System (ADS)
Miyata, Tatsuhiko; Ikuta, Yasuhiro; Hirata, Fumio
2010-07-01
This article proposes a free energy calculation method based on the molecular dynamics simulation combined with the three dimensional reference interaction site model theory. This study employs the free energy perturbation (FEP) and the thermodynamic integration (TDI) along the coupling parameters to control the interaction potential. To illustrate the method, we applied it to a complex formation process in aqueous solutions between a crown ether molecule 18-Crown-6 (18C6) and a potassium ion as one of the simplest model systems. Two coupling parameters were introduced to switch the Lennard-Jones potential and the Coulomb potential separately. We tested two coupling procedures: one is a "sequential-coupling" to couple the Lennard-Jones interaction followed by the Coulomb coupling, and the other is a "mixed-coupling" to couple both the Lennard-Jones and the Coulomb interactions together as much as possible. The sequential-coupling both for FEP and TDI turned out to be accurate and easily handled since it was numerically well-behaved. Furthermore, it was found that the sequential-coupling had relatively small statistical errors. TDI along the mixed-coupling integral path was to be carried out carefully, paying attention to a numerical behavior of the integrand. The present model system exhibited a nonmonotonic behavior in the integrands for TDI along the mixed-coupling integral path and also showed a relatively large statistical error. A coincidence within a statistical error was obtained among the results of the free energy differences evaluated by FEP, TDI with the sequential-coupling, and TDI with the mixed-coupling. The last one is most attractive in terms of the computer power and is accurate enough if one uses a proper set of windows, taking the numerical behavior of the integrands into account. TDI along the sequential-coupling integral path would be the most convenient among the methods we tested, since it seemed to be well-balanced between the computational
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
All optical OFDM transmission systems
NASA Astrophysics Data System (ADS)
Rhee, June-Koo K.; Lim, Seong-Jin; Kserawi, Malaz
2011-12-01
All-optical OFDM data transmission opens up a new realm of advanced optical transmission at extreme data rates, as subcarriers are multiplexed and demultiplexed by all optical discrete Fourier transforms (DFT). This paper reviews the principles of all optical OFDM transmission and its system application techniques, providing the generic ideas and the practical implementation issues to achieve 100Gbps or higher data rates with a spectral efficiency of 1 bps/Hz or better. This paper also include discussions on all-optical OFDM implementation variants such as an AWG-based OFDM multiplexer and demultiplexer, a receiver design without optical sampling, a transmitter design with frequency-locked cw lasers, an OFDM cyclic prefix designs, and a chromatic dispersion mitigation technique.
Three-dimensional silicon micromachining
NASA Astrophysics Data System (ADS)
Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.
2012-11-01
A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.
All-optical analog comparator.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-01-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical '1' or '0' by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function. PMID:27550874
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-01-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function. PMID:27550874
Transformation equation in three-dimensional photoelasticity.
Ainola, Leo; Aben, Hillar
2006-03-01
Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution. PMID:16539073
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
NASA Technical Reports Server (NTRS)
Shay, Thomas M. (Inventor); Poliakov, Evgeni Y. (Inventor); Hazzard, David A. (Inventor)
2001-01-01
An apparatus and method wherein polarization rotation in alkali vapors or other mediums is used for all-optical switching and digital logic and where the rate of operation is proportional to the amplitude of the pump field. High rates of speed are accomplished by Rabi flopping of the atomic states using a continuously operating monochromatic atomic beam as the pump.
Gong, Hui; Chen, Shangbin; Zhang, Bin; Ding, Wenxiang; Luo, Qingming; Li, Anan
2014-01-01
Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1) concave points clustering to determine the seed points of touching cells; and 2) random walker segmentation to obtain cell contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells. Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and high robustness. PMID:25111442
Three-dimensional fault drawing
Dongan, L. )
1992-01-01
In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.
Three-dimensional obstetric ultrasound.
Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H
2008-04-01
Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140
NASA Astrophysics Data System (ADS)
Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM
2011-12-01
A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic
NASA Astrophysics Data System (ADS)
Bocaniov, Serghei A.; Scavia, Donald
2016-06-01
Hypoxia or low bottom water dissolved oxygen (DO) is a world-wide problem of management concern requiring an understanding and ability to monitor and predict its spatial and temporal dynamics. However, this is often made difficult in large lakes and coastal oceans because of limited spatial and temporal coverage of field observations. We used a calibrated and validated three-dimensional ecological model of Lake Erie to extend a statistical relationship between hypoxic extent and bottom water DO concentrations to explore implications of the broader temporal and spatial development and dissipation of hypoxia. We provide the first numerical demonstration that hypoxia initiates in the nearshore, not the deep portion of the basin, and that the threshold used to define hypoxia matters in both spatial and temporal dynamics and in its sensitivity to climate. We show that existing monitoring programs likely underestimate both maximum hypoxic extent and the importance of low oxygen in the nearshore, discuss implications for ecosystem and drinking water protection, and recommend how these results could be used to efficiently and economically extend monitoring programs.
Three-Dimensional Lithium-Ion Battery Model (Presentation)
Kim, G. H.; Smith, K.
2008-05-01
Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.
Three-dimensional Camera Phone
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2004-12-01
An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.
Three-dimensional visual stimulator
NASA Astrophysics Data System (ADS)
Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki
1995-02-01
We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.
Direct three-dimensional patterning using nanoimprint lithography
NASA Astrophysics Data System (ADS)
Li, Mingtao; Chen, Lei; Chou, Stephen Y.
2001-05-01
We demonstrated that nanoimprint lithography (NIL) can create three-dimensional patterns, sub-40 nm T-gates, and air-bridge structures, in a single step imprint in polymer and metal by lift-off. A method based on electron beam lithography and reactive ion etching was developed to fabricate NIL molds with three-dimensional protrusions. The low-cost and high-throughput nanoimprint lithography for three-dimensional nanostructures has many significant applications such as monolithic microwave integrated circuits and nanoelectromechanical system.
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
Mosso, Fabian; Barrera, John Fredy; Tebaldi, Myrian; Bolognini, Néstor; Torroba, Roberto
2011-03-14
We introduce for the first time the concept of an all-optical encrypted movie. This movie joints several encrypted frames corresponding to a time evolving situation employing the same encoding mask. Thanks to a multiplexing operation we compact the encrypted movie information into a single package. But the decryption of this single package implies the existence of cross-talk if we do not adequately pre-process the encoded information before multiplexing. In this regard, we introduce a grating modulation to each encoded image, and then we proceed to multiplexing. After appropriate filtering and synchronizing procedures applied to the multiplexing, we are able to decrypt and to reproduce the movie. This movie is only properly decoded when in possession of the right decoding key. The concept development is carried-out in virtual optical systems, both for the encrypting and the filtering-decrypting stages. Experimental results are shown to confirm our approach. PMID:21445211
High speed all optical networks
NASA Technical Reports Server (NTRS)
Chlamtac, Imrich; Ganz, Aura
1990-01-01
An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2014-08-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-01-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338
Dynamic Three-Dimensional Echocardiography
NASA Astrophysics Data System (ADS)
Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro
2000-08-01
Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Three-Dimensional Schlieren Measurements
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Cochrane, Andrea
2004-11-01
Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.
NASA Astrophysics Data System (ADS)
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Nanowired three-dimensional cardiac patches.
Dvir, Tal; Timko, Brian P; Brigham, Mark D; Naik, Shreesh R; Karajanagi, Sandeep S; Levy, Oren; Jin, Hongwei; Parker, Kevin K; Langer, Robert; Kohane, Daniel S
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches. PMID:21946708
NASA Astrophysics Data System (ADS)
Herbig, U.; Mayer, I.; Mortada, H.; Rasztovits, S.
2014-05-01
3D Laser scanning technology gained more and more importance for the recording and documentation of architectural heritage. Especially for the survey of heterogeneous surfaces and complex structures it is a fast and reliable option for survey and so appreciated sources for research in architecture. Therefore the integration of laser scanning as a part of the building survey became a kind of standard procedure for objects of different scale, shape, age and origin. In some cases more than one team records an object with different devices using altering approaches. For example a client provides existing data from a part of the object that can't be accessed anymore, but is important to be integrated into the overall survey. The merging of the datasets may become challenging, especially if one survey is not documented in detail, in particular when it comes to the quality of the result. For a research about the traditional architecture of Saudi Arabia a building in the historic part of Jeddah has been surveyed in detail by a team of researchers of the Vienna University of Technology. Within this frame a workshop for students of the King Abdul Aziz about building archaeological research has been conducted. As part of the results consists of two sets of laserscan data, recorded with different laser scanners. Using these data a possible approach for the registration of scan data from different and/or unknown provenance has been developed which will be outlined in this paper.
NASA Astrophysics Data System (ADS)
Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna
2016-04-01
In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing
Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian
2014-11-01
The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. PMID:25181696
NASA Astrophysics Data System (ADS)
Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.
2014-07-01
Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.
NASA Astrophysics Data System (ADS)
Zhdanov, Michael S.; Smith, Robert B.; Gribenko, Alexander; Cuma, Martin; Green, Marie
2011-04-01
Interpretation of the EarthScope MT (magnetotelluric) data requires the development of a large-scale inversion method which can address two common problems of 3D MT inversion: computational time and memory requirements. We have developed an efficient method of 3D MT inversion based on an IE (integral equation) formulation of the MT forward modeling problem and a receiver footprint approach, implemented as a massively parallel algorithm. This method is applied to the MT data collected in the western United States as a part of the EarthScope project. As a result, we present one of the first 3D geoelectrical images of the upper mantle beneath Yellowstone revealed by this large-scale 3D inversion of the EarthScope MT data. These images show a highly conductive body associated with the tomographically imaged mantle plume-like layer of hot material rising from the upper mantle toward the Yellowstone volcano. The conductive body identified in these images is west-dipping in a similar way to a P-wave low-velocity body.
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
All-optical signal processing using dynamic Brillouin gratings
NASA Astrophysics Data System (ADS)
Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc
2013-04-01
The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science.
All-optical signal processing using dynamic Brillouin gratings
Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc
2013-01-01
The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159
Three-dimensional urban GIS for Atlanta
NASA Astrophysics Data System (ADS)
Bhaumik, Dharmajyoti; Faust, Nickolas L.; Estrada, Diana; Linares, Jairo
1997-07-01
Georgia Tech has developed a prototype system for the demonstration of the concepts of a virtual 3D geographic information system (GIS) in an urban environment. The virtual GIS integrates the technologies of GIS, remote sensing, and visualization to provide an interactive tool for the exploration of spatial data. A high density urban environment with terrain elevation, imagery, GIS layers, and three dimensional natural and manmade features is a stressing test for the integration potential of such a virtual 3D GIS. In preparation for the 1996 Olympic Games, Georgia Tech developed two highly detailed 3D databases over parts of Atlanta. A 2.5 meter database was used to depict the downtown Atlanta area with much higher resolution imagery being used for photo- texture of individual Atlanta buildings. Less than 1 meter imagery data was used to show a very accurate map of Georgia Tech, the 1996 Olympic Village. Georgia Tech developed visualization software was integrated via message passing with a traditional GIS package so that all commonly used GIS query and analysis functions could be applied within the 3D environment. This project demonstrates the versatility and productivity that can be accomplished by operating GIS functions within a virtual GIS and multi-media framework.
NASA Astrophysics Data System (ADS)
Tanaka, Masahiro; Hachiya, Shogo; Ishii, Tomoya; Ning, Sheyang; Tsurumi, Kota; Takeuchi, Ken
2016-04-01
A 0.6-1.0 V, 25.9 mm2 boost converter is proposed to generate resistive random access memory (ReRAM) write (set/reset) voltage for three-dimensional (3D) integrated ReRAM and NAND flash hybrid solid-state drive (SSD). The proposed boost converter uses an integrated area-efficient V BUF generation circuit to obtain short ReRAM sector write time, small circuit size, and small energy consumption simultaneously. In specific, the proposed boost converter reduces ReRAM sector write time by 65% compared with a conventional one-stage boost converter (Conventional 1) which uses 1.0 V operating voltage. On the other hand, by using the same ReRAM sector write time, the proposed boost converter reduces 49% circuit area and 46% energy consumption compared with a conventional two-stage boost converter (Conventional 2). In addition, by using the proposed boost converter, the operating voltage, V DD, can be reduced to 0.6 V. The lowest 159 nJ energy consumption can be obtained when V DD is 0.7 V.
Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei
2016-02-14
Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process. PMID:26796603
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-08-20
We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Three-dimensional coherent structures of electrokinetic instability
NASA Astrophysics Data System (ADS)
Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.
2014-07-01
A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge-selective surface (electric membrane, electrode, or system of micro- or nanochannels) has been carried out and analyzed. A special finite-difference method has been used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. The calculations employ parallel computing. Three characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles, and triangles. The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary pulses.
Three-dimensional coherent structures of electrokinetic instability.
Demekhin, E A; Nikitin, N V; Shelistov, V S
2014-07-01
A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge-selective surface (electric membrane, electrode, or system of micro- or nanochannels) has been carried out and analyzed. A special finite-difference method has been used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. The calculations employ parallel computing. Three characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles, and triangles. The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary pulses. PMID:25122393
On three-dimensional quasi-Stäckel Hamiltonians
NASA Astrophysics Data System (ADS)
Marikhin, V. G.
2014-05-01
A three-dimensional integrable generalization of the Stäckel systems is proposed. A classification of such systems is obtained, which results in two families. The first family is the direct sum of the two-dimensional system which is equivalent to the representation of the Schottky-Manakov top in the quasi-Stäckel form and a Stäckel one-dimensional system. The second family is probably a new three-dimensional system. The system of hydrodynamic type, which we get from this family in the usual way, is a three-dimensional generalization of the Gibbons-Tsarev system. A generalization of the quasi-Stäckel systems to the case of any dimension is discussed.
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S{sub N}2 reaction (Cl{sup −} + CH{sub 3}Cl → ClCH{sub 3} + Cl{sup −}) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
NASA Astrophysics Data System (ADS)
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF. PMID:26156461
The GALAXIE all-optical FEL project
Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others
2012-12-21
We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Three-dimensional stellarator equilibria by iteration
Boozer, A.H.
1983-02-01
The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
Device fabrication: Three-dimensional printed electronics
NASA Astrophysics Data System (ADS)
Lewis, Jennifer A.; Ahn, Bok Y.
2015-02-01
Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.
Three-Dimensional Icosahedral Phase Field Quasicrystal
NASA Astrophysics Data System (ADS)
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Electromagnetic scattering from three dimensional periodic structures
NASA Astrophysics Data System (ADS)
Barnes, Andrew L.
We have developed a numerical method for solving electromagnetic scattering problems from arbitrary, smooth, three dimensional structures that are periodic in two directions and of finite thickness in the third direction. We solve Maxwell's equations via an integral equation that was first formulated by Claus Muller. The Muller integral equation is Fredholm of the second kind, so it is a well-posed problem. The original Muller formulation was for compact scatterers and it used a free space Green's function for the Helmholtz equation. We solve a periodic problem with a periodic Helmholtz Green's function. This Green's function has the same degree of singularity as the free space Helmholtz Green's function, but it is an infinite sum that converges very slowly. We use a resummation technique (due to P. P. Ewald) to perform an efficient calculation of the periodic Green's function. We solve the integral equation by a Galerkin method and use RWG vector basis functions to discretize surface currents on the scatterer. We perform a careful extraction of all singularities from the integrals that we compute. We use a triangular Gaussian quadrature method for calculation of the non-singular parts of the integrals. We analytically compute the remaining singular and nearly singular integrals. We also perform an acceleration technique that treats several frequencies simultaneously and leads to decreased computational times. In addition to the numerical code, we present an alternative way of looking at electromagnetic scattering in terms of Calderon projection operators. We have validated our computer code by comparing the numerical results with results from two separate cases. The first case is that of a flat dielectric slab of finite thickness, for which exact formulae are available. The second case is a periodic array of a row of infinite cylinders. In this case, we compare our results with those obtainedv from a two dimensional code developed by S. P. Shipman, S. Venakides
NASA Astrophysics Data System (ADS)
Meng, Zi-Ming; Zhong, Xiao-Lan; Wang, Chen; Li, Zhi-Yuan
2012-06-01
With the development of micro- or nano-fabrication technologies, great interest has been aroused in exploiting photonic crystal nanobeam structures. In this article the design of high-quality-factor (Q) polymeric photonic crystal nanobeam microcavities suitable for realizing ultrafast all-optical switching is presented based on the three-dimensional finite-difference time-domain method. Adopting the pump-probe technique, the ultrafast dynamic response of the all-optical switching in a nanobeam microcavity with a quality factor of 1000 and modal volume of 1.22 (λ/n)3 is numerically studied and a switching time as fast as 3.6 picoseconds is obtained. Our results indicate the great promise of applying photonic crystal nanobeam microcavities to construct integrated ultrafast tunable photonic devices or circuits incorporating polymer materials with large Kerr nonlinearity and ultrafast response speed.
Huang, Song-Bin; Wang, Shih-Siou; Hsieh, Chia-Hsun; Lin, Yung Chang; Lai, Chao-Sung; Wu, Min-Hsien
2013-03-21
Although microfluidic cell culture systems are versatile tools for cellular assays, their use has yet to set in motion an evolutionary shift away from conventional cell culture methods. This situation is mainly due to technical hurdles: the operational barriers to the end-users, the lack of compatible detection schemes capable of reading out the results of a microfluidic-based cellular assay, and the lack of fundamental data to bridge the gap between microfluidic and conventional cell culture models. To address these issues, we propose a high-throughput, perfusion, three-dimensional (3-D) microfluidic cell culture system encompassing 30 microbioreactors. This integrated system not only aims to provide a user-friendly cell culture tool for biologists to perform assays but also to enable them to obtain precise data. Its technical features include (i) integration of a heater chip based on transparent indium tin oxide glass, providing stable thermal conditions for cell culturing; (ii) a microscale 3-D culture sample loading scheme that is both efficient and precise; (iii) a non-mechanical pneumatically driven multiplex medium perfusion mechanism; and (iv) a microplate reader-compatible waste medium collector array for the subsequent high throughput bioassays. In this study, we found that the 3-D culture sample loading method provided uniform sample loading [coefficient of variation (CV): 3.2%]. In addition, the multiplex medium perfusion mechanism led to reasonably uniform (CV: 3.6-6.9%) medium pumping rates in the 30 microchannels. Moreover, we used the proposed system to perform a successful cell culture-based chemosensitivity assay. To determine the effects of cell culture models on the cellular proliferation, and the results of chemosensitivity assays, we compared our data with that obtained using three conventional cell culture models. We found that the nature of the cell culture format could lead to different evaluation outcomes. Consequently, when establishing a
Vision in our three-dimensional world.
Parker, Andrew J
2016-06-19
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Three dimensional responsive structure of tough hydrogels
NASA Astrophysics Data System (ADS)
Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng
2015-04-01
Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Binocular three-dimensional measurement system using a Dammann grating
NASA Astrophysics Data System (ADS)
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Li, Shubin; Li, Yanyang; Wang, Jin; Lu, Yancong
2014-11-01
In this paper, we develop a binocular three-dimensional measurement system using a Dammann grating. A laser diode and a Dammann grating are employed to generate a regular and square laser spot array. Dammann array illuminator is placed between two cameras and narrowband-pass filters are embedded in the project lens to eliminate the interference of background light. During the measurement, a series of laser spot arrays are projected toward the target object and captured by two cameras simultaneously. Similar to stereo vision of human eyes, stereo matching will be performed to search the homologous spot which is a pair of image points resulting from the same object point. At first, the sub-pixel coordinates of the laser spots are extracted from the stereo images. Then stereo matching is easily performed based on a fact that laser spots with the same diffraction order are homologous ones. Because the system has been calibrated before measurement, single frame three-dimensional point cloud can be obtained using the disparity of homologous points by triangulation methods. Finally, three-dimensional point clouds belong to different frame which represent different view of the object will be registered to build up an integral three-dimensional object using ICP algorithm. On one hand, this setup is small enough to meet the portable outdoor applications. On the other hand, measurement accuracy of this system is better than 0.3 mm which can meet the measurement accuracy requirements in most situations.
Three-Dimensional Robotic Vision System
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Three-Dimensional Extended Bargmann Supergravity.
Bergshoeff, Eric; Rosseel, Jan
2016-06-24
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712
Three-Dimensional Extended Bargmann Supergravity
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Rosseel, Jan
2016-06-01
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images. PMID:27534470
Three-dimensional models. [For orbital celestial mechanics
Hunter, C. )
1990-06-01
The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.
Three-dimensional photon counting double-random-phase encryption.
Cho, Myungjin; Javidi, Bahram
2013-09-01
In this Letter, we present a three-dimensional (3D) photon counting double-random-phase encryption (DRPE) technique using passive integral imaging. A 3D photon counting DRPE can encrypt a 3D scene and provides more security and authentications due to photon counting Poisson nonlinear transformation on the encrypted image. In addition, 3D imaging allows verification of the 3D object at different depths. Preliminary results and performance evaluation have been presented. PMID:23988912
Growing Three-Dimensional Cocultures Of Cells
NASA Technical Reports Server (NTRS)
Wolf, David A.; Goodwin, Thomas J.
1995-01-01
Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Three-dimensional rf structure calculations
Cooper, R.K.; Browman, M.J.; Weiland, T.
1988-01-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.
Three-dimensional RF structure calculations
NASA Astrophysics Data System (ADS)
Cooper, R. K.; Browman, M. J.; Weiland, T.
1989-04-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Three-Dimensional Pointers for Stereoscopic Projection.
ERIC Educational Resources Information Center
Hayman, H. J. G.
1984-01-01
Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…
Cohomology of real three-dimensional triquadrics
NASA Astrophysics Data System (ADS)
Krasnov, Vyacheslav A.
2012-02-01
We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.
Quadratic algebras for three-dimensional superintegrable systems
Daskaloyannis, C. Tanoudis, Y.
2010-02-15
The three-dimensional superintegrable systems with quadratic integrals of motion have five functionally independent integrals, one among them is the Hamiltonian. Kalnins, Kress, and Miller have proved that in the case of nondegenerate potentials with quadratic integrals of motion there is a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral implies that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. In this contribution we investigate the structure of this algebra. We show that in all the nondegenerate cases there is at least one subalgebra of three integrals having a Poisson quadratic algebra structure, which is similar to the two-dimensional case.
All-optical flip-flop based on coupled SOA-PSW
NASA Astrophysics Data System (ADS)
Wang, Lina; Wang, Yongjun; Wu, Chen; Wang, Fu
2016-07-01
The semiconductor optical amplifier (SOA) has obvious advantages in all-optical signal processing, because of the simple structure, strong non-linearity, and easy integration. A variety of all-optical signal processing functions, such as all-optical wavelength conversion, all-optical logic gates and all-optical sampling, can be completed by SOA. So the SOA has been widespread concerned in the field of all-optical signal processing. Recently, the polarization rotation effect of SOA is receiving considerable interest, and many researchers have launched numerous research work utilizing this effect. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented.
Single florescent nanodiamond in a three dimensional ABEL trap
Kayci, Metin; Radenovic, Aleksandra
2015-01-01
Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890
Analysis of three-dimensional transonic compressors
NASA Technical Reports Server (NTRS)
Bourgeade, A.
1984-01-01
A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.
Three-dimensional visualization of a qutrit
NASA Astrophysics Data System (ADS)
Kurzyński, Paweł; Kołodziejski, Adrian; Laskowski, Wiesław; Markiewicz, Marcin
2016-06-01
We present a surprisingly simple three-dimensional Bloch sphere representation of a qutrit, i.e., a single three-level quantum system. We start with a symmetric state of a two-qubit system and relate it to the spin-1 representation. Using this representation we associate each qutrit state with a three-dimensional vector a and a metric tensor Γ ̂ which satisfy a .Γ ̂.a ≤1 . This resembles the well known condition for qubit Bloch vectors in which case Γ ̂=1 . In our case the vector a corresponds to spin-1 polarization, whereas the tensor Γ ̂ is a function of polarization uncertainties. Alternatively, a is a local Bloch vector of a symmetric two-qubit state and Γ ̂ is a function of the corresponding correlation tensor.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Simulation of complex three-dimensional flows
NASA Technical Reports Server (NTRS)
Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.
1985-01-01
The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.
Three-Dimensional Images For Robot Vision
NASA Astrophysics Data System (ADS)
McFarland, William D.
1983-12-01
Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Three-dimensional adjustment of trilateration data
NASA Technical Reports Server (NTRS)
Sung, L.-Y.; Jackson, D. D.
1985-01-01
The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.
Three-dimensional Lorentz-violating action
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.
2014-03-01
We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-Dimensional Dispaly Of Document Set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Stress tensor correlators in three dimensional gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout
2016-03-01
We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Generating Three-Dimensional Grids About Anything
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1991-01-01
Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
The first three-dimensional vanadium hypophosphite.
Maouel, Hind A; Alonzo, Véronique; Roisnel, Thierry; Rebbah, Houria; Le Fur, Eric
2009-07-01
The title synthesized hypophosphite has the formula V(H(2)PO(2))(3). Its structure is based on VO(6) octahedra and (H(2)PO(2))(-) pseudo-tetrahedra. The asymmetric unit contains two crystallographically distinct V atoms and six independent (H(2)PO(2))(-) groups. The connection of the polyhedra generates [VPO(6)H(2)](6-) chains extended along a, b and c, leading to the first three-dimensional network of an anhydrous transition metal hypophosphite. PMID:19578249
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Teaching and Assessing Three-Dimensional M
NASA Astrophysics Data System (ADS)
Bateman, Robert C., Jr.; Booth, Deborah; Sirochman, Rudy; Richardson, Jane; Richardson, David
2002-05-01
Structural concepts such as the exact arrangement of a protein in three dimensions are crucial to almost every aspect of biology and chemistry, yet most of us have not been educated in three-dimensional literacy and all of us need a great deal of help in order to perceive and to communicate structural information successfully. It is in the undergraduate biochemistry course where students learn most concepts of molecular structure pertinent to living systems. We are addressing the issue of three-dimensional structural literacy by having undergraduate students construct kinemages, which are plain text scripts derived from Protein Data Bank coordinate files that can be viewed with the program MAGE. These annotated, interactive, three-dimensional illustrations are designed to develop a molecular story and allow exploration in the world of that story. In the process, students become familiar with the structure-based scientific literature and the Protein Data Bank. Our assessment to date has shown that students perceive kinemage authorship to be more helpful in understanding protein structure than simply viewing prepared kinemages. In addition, students perceived kinemage authorship as being beneficial to their career and a significant motivation to learn biochemistry.
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
Three-dimensional printing of the retina
Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.
2016-01-01
Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545
Three-Dimensional Imaging. Chapter 10
NASA Technical Reports Server (NTRS)
Kelso, R. M.; Delo, C.
1999-01-01
This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
A generalized flux function for three-dimensional magnetic reconnection
Yeates, A. R.; Hornig, G.
2011-10-15
The definition and measurement of magnetic reconnection in three-dimensional magnetic fields with multiple reconnection sites is a challenging problem, particularly in fields lacking null points. We propose a generalization of the familiar two-dimensional concept of a magnetic flux function to the case of a three-dimensional field connecting two planar boundaries. In this initial analysis, we require the normal magnetic field to have the same distribution on both boundaries. Using hyperbolic fixed points of the field line mapping, and their global stable and unstable manifolds, we define a unique flux partition of the magnetic field. This partition is more complicated than the corresponding (well-known) construction in a two-dimensional field, owing to the possibility of heteroclinic points and chaotic magnetic regions. Nevertheless, we show how the partition reconnection rate is readily measured with the generalized flux function. We relate our partition reconnection rate to the common definition of three-dimensional reconnection in terms of integrated parallel electric field. An analytical example demonstrates the theory and shows how the flux partition responds to an isolated reconnection event.
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
Three dimensional self-assembly at the nanoscale
NASA Astrophysics Data System (ADS)
Gracias, D. H.
2013-05-01
At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.
All-optical photoacoustic microscopy using a MEMS scanning mirror
NASA Astrophysics Data System (ADS)
Chen, Sung-Liang; Xie, Zhixing; Ling, Tao; Wei, Xunbin; Guo, L. Jay; Wang, Xueding
2013-03-01
It has been studied that a potential marker to obtain prognostic information about bladder cancer is tumor neoangiogenesis, which can be quantified by morphometric characteristics such as microvascular density. Photoacoustic microscopy (PAM) can render sensitive three-dimensional (3D) mapping of microvasculature, providing promise to evaluate the neoangiogenesis that is closely related to the diagnosis of bladder cancer. To ensure good image quality, it is desired to acquire bladder PAM images from its inside via the urethra, like conventional cystoscope. Previously, we demonstrated all-optical PAM systems using polymer microring resonators to detect photoacoustic signals and galvanometer mirrors for laser scanning. In this work, we build a miniature PAM system using a microelectromechanical systems (MEMS) scanning mirror, demonstrating a prototype of an endoscopic PAM head capable of high imaging quality of the bladder. The system has high resolutions of 17.5 μm in lateral direction and 19 μm in the axial direction at a distance of 5.4 mm. Images of printed grids and the 3D structure of microvasculature in animal bladders ex vivo by the system are demonstrated.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Three-dimensional stereo by photometric ratios
Wolff, L.B.; Angelopoulou, E.
1994-11-01
We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661
Three-dimensional quantitative flow diagnostics
NASA Technical Reports Server (NTRS)
Miles, Richard B.; Nosenchuck, Daniel M.
1989-01-01
The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.
Three-dimensional x-ray microtomography
Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.
1987-09-18
The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.
Three dimensional digital holographic aperture synthesis.
Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R
2015-09-01
Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
Three-dimensional instability of elliptical flow
NASA Astrophysics Data System (ADS)
Bayly, B. J.
1986-10-01
A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.
Three-dimensional ultrasonic colloidal crystals
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2016-05-01
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"
Electrode With Porous Three-Dimensional Support
Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier
1999-07-27
Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m
Three-dimensional simulations of burning thermals
NASA Astrophysics Data System (ADS)
Aspden, Andy; Bell, John; Woosley, Stan
2010-11-01
Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.
Three-dimensional lock and key colloids.
Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Yi, Gi-Ra; Sacanna, Stefano; Pine, David J; Weck, Marcus
2014-05-14
Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as "lock" particles with multiple "key holes". Up to n "key" particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding. PMID:24785203
All-Optical Nanomechanical Heat Engine
NASA Astrophysics Data System (ADS)
Dechant, Andreas; Kiesel, Nikolai; Lutz, Eric
2015-05-01
We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters and the efficient optimization of the performance of the engine. We develop a systematic optimization procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic parameters and evaluate the maximum power and the corresponding efficiency.
All-optical nanomechanical heat engine.
Dechant, Andreas; Kiesel, Nikolai; Lutz, Eric
2015-05-01
We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters and the efficient optimization of the performance of the engine. We develop a systematic optimization procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic parameters and evaluate the maximum power and the corresponding efficiency. PMID:26001001
Simple novel all-optical wavelength converter
NASA Astrophysics Data System (ADS)
Chen, Zhixin
2009-02-01
Based on Sagnac interferometric structure, a simple novel ultrafast scheme for an all-optical wavelength converter is proposed. The operations of this scheme with a 80-Gbits/s return to zero (RZ) pseudorandom bit sequence (PRBS) are simulated correctly with an output extinction ratio of more than 17.2 dB. Through numerical analysis, by comparison of the performance at 40- and 80-Gbits/s operation, the operating characteristics of the scheme are illustrated. Furthermore, the carrier recovery time of the semiconductor amplifier (SOA) is no longer a crucial parameter to restrict the operation speed of this scheme.
Ultrafast all-optical switching in bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.
2001-04-01
All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.
All-optical symmetric ternary logic gate
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
All optical binary delta-sigma modulator
NASA Astrophysics Data System (ADS)
Sayeh, Mohammad R.; Siahmakoun, Azad
2005-09-01
This paper describes a novel A/D converter called "Binary Delta-Sigma Modulator" (BDSM) which operates only with nonnegative signal with positive feedback and binary threshold. This important modification to the conventional delta-sigma modulator makes the high-speed (>100GHz) all-optical implementation possible. It has also the capability to modify its own sampling frequency as well as its input dynamic range. This adaptive feature helps designers to optimize the system performance under highly noisy environment and also manage the power consumption of the A/D converters.
All-optical clock recovery for 40Gbs using an amplified feedback DFB laser
NASA Astrophysics Data System (ADS)
Sun, Yu; Pan, J. Q.; Zhao, L. J.; Chen, W. X.; Wang, W.; Wang, L.; Zhao, X. F.; Lou, C. Y.
2009-11-01
All-optical clock recovery is a key technology in all-optical 3R signal regeneration (Re-amplification, Retiming, and Reshaping) process. In this paper, a monolithic integrated three-section amplified feedback semiconductor laser (AFL) is demonstrated as an all optical clock regenerator. We fabricated a three-section AFL using quantum well intermixing process without regrowth instead of butt-joint process. The tunable characteristics of three-section AFL were investigated, and all optical clock recovery for 40Gb/s return to zero (RZ) 231-1 pseudorandom binary sequence (PRBS) is demonstrated experimentally using AFL with time jitter about 689.2fs.
All-optical switching of magnetoresistive devices using telecom-band femtosecond laser
He, Li; Chen, Jun-Yang; Wang, Jian-Ping E-mail: moli@umn.edu; Li, Mo E-mail: moli@umn.edu
2015-09-07
Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.
Three-dimensional television: a broadcaster's perspective
NASA Astrophysics Data System (ADS)
Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.
2009-02-01
The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.
Three-dimensional image signals: processing methods
NASA Astrophysics Data System (ADS)
Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru
2010-11-01
Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.
On three-dimensional dilational elastic metamaterials
NASA Astrophysics Data System (ADS)
Bückmann, Tiemo; Schittny, Robert; Thiel, Michael; Kadic, Muamer; Milton, Graeme W.; Wegener, Martin
2014-03-01
Dilational materials are stable, three-dimensional isotropic auxetics with an ultimate Poisson's ratio of -1. Inspired by previous theoretical work, we design a feasible blueprint for an artificial material, a metamaterial, which approaches the ideal of a dilational material. The main novelty of our work is that we also fabricate and characterize corresponding metamaterial samples. To reveal all modes in the design, we calculate the phonon band structures. On this basis, using cubic symmetry we can unambiguously retrieve all different non-zero elements of the rank-four effective metamaterial elasticity tensor from which all effective elastic metamaterial properties follow. While the elastic properties and the phase velocity remain anisotropic, the effective Poisson's ratio indeed becomes isotropic and approaches -1 in the limit of small internal connections. This finding is also supported by independent, static continuum-mechanics calculations. In static experiments on macroscopic polymer structures fabricated by three-dimensional printing, we measure Poisson's ratios as low as -0.8 in good agreement with the theory. Microscopic samples are also presented.
Three-dimensional fluorescence lifetime tomography
Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.
2005-04-01
Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
In-lab three-dimensional printing
Partridge, Roland; Conlisk, Noel; Davies, Jamie A.
2012-01-01
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907
Three-dimensional model of lignin structure
Jurasek, L.
1995-12-01
An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.
Three-dimensional flow in Kupffer's Vesicle.
Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S
2016-09-01
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus. PMID:26825450
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Three-dimensional singular points in aerodynamics
NASA Technical Reports Server (NTRS)
Unal, Aynur
1988-01-01
When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.
Intersection of three-dimensional geometric surfaces
NASA Technical Reports Server (NTRS)
Crisp, V. K.; Rehder, J. J.; Schwing, J. L.
1985-01-01
Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Three-dimensional asymptotically flat Einstein-Maxwell theory
NASA Astrophysics Data System (ADS)
Barnich, Glenn; Lambert, Pierre-Henry; Mao, Pujian
2015-12-01
Three-dimensional Einstein-Maxwell theory with non-trivial asymptotics at null infinity is solved. The symmetry algebra is a Virasoro-Kac-Moody type algebra that extends the bms3 algebra of the purely gravitational case. Solution space involves logarithms and provides a tractable example of a polyhomogeneous solution space. The associated surface charges are non-integrable and non-conserved due to the presence of electromagnetic news. As in the four-dimensional purely gravitational case, their algebra involves a field-dependent central charge.
Green's function evaluation for three-dimensional exponentially graded elasticity
Criado Portero, Rafael M; Gray, Leonard J; Mantic, Vladislav; Paris, Federico
2008-01-01
The numerical implementation of the Green's function for an isotropic exponentially graded three dimensional elastic solid is reported. The formulas for the nonsingular {\\lq}grading term{\\rq} in this Green's function, originally deduced by Martin et al., \\emph{Proc. R. Soc. Lond. A, 458, 1931-1947, 2000}, are quite complicated, and a small error in one of the formulas is corrected. The evaluation of the fundamental solution is tested by employing indirect boundary integral formulation using a Galerkin approximation to solve several problems having analytic solutions. The numerical results indicate that the Green's function formulas, and their evaluation, are correct.
Kaon-nucleon scattering in three-dimensional technique
NASA Astrophysics Data System (ADS)
Salam, Agus; Fachruddin, Imam
2016-03-01
Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum's magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.
Distributional properties of the three-dimensional Poisson Delaunay cell
Muche, L.
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in {Re}{sup 3}. The considerations are based on a well-known formula given by Miles which describes the size and shape of the {open_quotes}typical{close_quotes} three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
Three-dimensional shape optimization using the boundary element method
NASA Astrophysics Data System (ADS)
Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami
1994-06-01
A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.
Three-dimensional shape optimization using boundary element method
NASA Astrophysics Data System (ADS)
Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami
1993-04-01
A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.
Distributional properties of the three-dimensional Poisson Delaunay cell
NASA Astrophysics Data System (ADS)
Muche, Lutz
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in ℝ3. The considerations are based on a well-known formula given by Miles which describes the size and shape of the "typical" three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
Chang, Jessica B; Small, Kevin H; Choi, Mihye; Karp, Nolan S
2015-05-01
Three-dimensional surface imaging has gained clinical acceptance in plastic and reconstructive surgery. In contrast to computed tomography/magnetic resonance imaging, three-dimensional surface imaging relies on triangulation in stereophotography to measure surface x, y, and z coordinates. This study reviews the past, present, and future directions of three-dimensional topographic imaging in plastic surgery. Historically, three-dimensional imaging technology was first used in a clinical setting in 1944 to diagnose orthodontologic conditions. Karlan established its use in the field of plastic surgery in 1979, analyzing contours and documenting facial asymmetries. Present use of three-dimensional surface imaging has focused on standardizing patient topographic measurements to enhance preoperative planning and to improve postoperative outcomes. Various measurements (e.g., volume, surface area, vector distance, curvature) have been applied to breast, body, and facial topography to augment patient analysis. Despite the rapid progression of the clinical applications of three-dimensional imaging, current use of this technology is focused on the surgeon's perspective and secondarily the patient's perspective. Advancements in patient simulation may improve patient-physician communication, education, and satisfaction. However, a communal database of three-dimensional surface images integrated with emerging three-dimensional printing and portable information technology will validate measurements and strengthen preoperative planning and postoperative outcomes. Three-dimensional surface imaging is a useful adjunct to plastic and reconstructive surgery practices and standardizes measurements to create objectivity in a subjective field. Key improvements in three-dimensional imaging technology may significantly enhance the quality of plastic and reconstructive surgery in the near future. PMID:25835245
Three dimensional echocardiography in congenital heart defects
Shirali, Girish S.
2008-01-01
Three dimensional echocardiography (3DE) is a new, rapidly evolving modality for cardiac imaging. Important technological advances have heralded an era where practical 3DE scanning is becoming a mainstream modality. We review the modes of 3DE that can be used. The literature has been reviewed for articles that examine the applicability of 3DE to congenital heart defects to visualize anatomy in a spectrum of defects ranging from atrioventricular septal defects to mitral valve abnormalities and Ebstein's anomaly. The use of 3DE color flow to obtain echocardiographic angiograms is illustrated. The state of the science in quantitating right and left ventricular volumetrics is reviewed. Examples of novel applications including 3DE transesophageal echocardiography and image-guided interventions are provided. We also list the limitations of the technique, and discuss potential future developments in the field. PMID:20300232
Volumetric techniques: three-dimensional midface modeling
Pierzchała, Ewa; Placek, Waldemar
2014-01-01
Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354
Three-dimensional modular electronic interconnection system
NASA Technical Reports Server (NTRS)
Bolotin, Gary S. (Inventor); Cardone, John (Inventor)
2001-01-01
A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.
Modelling of Three-Dimensional Nanographene.
Mathioudakis, Christos; Kelires, Pantelis C
2016-12-01
Monte Carlo simulations and tight-binding calculations shed light on the properties of three-dimensional nanographene, a material composed of interlinked, covalently-bonded nanoplatelet graphene units. By constructing realistic model networks of nanographene, we study its structure, mechanical stability, and optoelectronic properties. We find that the material is nanoporous with high specific surface area, in agreement with experimental reports. Its structure is characterized by randomly oriented and curved nanoplatelet units which retain a high degree of graphene order. The material exhibits good mechanical stability with a formation energy of only ∼0.3 eV/atom compared to two-dimensional graphene. It has high electrical conductivity and optical absorption, with values approaching those of graphene. PMID:26983431
THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.
KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.
2003-05-04
BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Three-dimensional tori and Arnold tongues
NASA Astrophysics Data System (ADS)
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-01
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Three-dimensional structures of magnesium nanopores
NASA Astrophysics Data System (ADS)
Wu, Shujing; Zheng, He; Jia, Shuangfeng; Sheng, Huaping; Cao, Fan; Li, Lei; Hu, Shuaishuai; Zhao, Penghui; Zhao, Dongshan; Wang, Jianbo
2016-03-01
The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.
Three-dimensional pancreas organogenesis models.
Grapin-Botton, A
2016-09-01
A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129
Heterogeneous, three-dimensional texturing of graphene.
Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2015-03-11
We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Three-dimensional joint transform correlator cryptosystem.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2016-02-01
We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method. PMID:26907433
The Three-Dimensional EIT Wave
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.
Three dimensional fabric evolution of sheared sand
Hasan, Alsidqi; Alshibli, Khalid
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Ford, C. P., III
1975-01-01
The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.
Three-dimensional hybrid vortex solitons
NASA Astrophysics Data System (ADS)
Driben, Rodislav; Kartashov, Yaroslav V.; Malomed, Boris A.; Meier, Torsten; Torner, Lluis
2014-06-01
We show, by means of numerical and analytical methods, that media with a repulsive nonlinearity which grows from the center to the periphery support a remarkable variety of previously unknown complex stationary and dynamical three-dimensional (3D) solitary-wave states. Peanut-shaped modulation profiles give rise to vertically symmetric and antisymmetric vortex states, and novel stationary hybrid states, built of top and bottom vortices with opposite topological charges, as well as robust dynamical hybrids, which feature stable precession of a vortex on top of a zero-vorticity soliton. The analysis reveals stability regions for symmetric, antisymmetric, and hybrid states. In addition, bead-shaped modulation profiles give rise to the first example of exact analytical solutions for stable 3D vortex solitons. The predicted states may be realized in media with a controllable cubic nonlinearity, such as Bose-Einstein condensates.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Towards microscale electrohydrodynamic three-dimensional printing
NASA Astrophysics Data System (ADS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-02-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.
Three-dimensional cultured glioma cell lines
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)
1991-01-01
Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Three-Dimensional Gear Crack Propagation Studies
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.
1998-01-01
Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254
Three dimensional thrust chamber life prediction
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Brogren, E. W.
1976-01-01
A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.
Magneto Transport in Three Dimensional Carbon Nanostructures
NASA Astrophysics Data System (ADS)
Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa
Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.
Three-dimensional image contrast using biospeckle
NASA Astrophysics Data System (ADS)
Godinho, Robson Pierangeli; Braga, Roberto A., Jr.
2010-09-01
The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.
A three-dimensional asymmetric magnetopause model
NASA Astrophysics Data System (ADS)
Lin, R. L.; Zhang, X. X.; Liu, S. Q.; Wang, Y. L.; Gong, J. C.
2010-04-01
A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus Pd + Pm is a bit less than -1/6, the northward IMF Bz almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how Pd + Pm compresses the magnetopause, how the southward IMF Bz erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations.
All-optical time-stretch digitizer
NASA Astrophysics Data System (ADS)
Fard, A. M.; Buckley, B.; Zlatanovic, S.; Brès, C.-S.; Radic, S.; Jalali, B.
2012-07-01
We propose and demonstrate an all-optical time-stretch digitizer for real-time capture of ultrafast optical signals, beyond the bandwidths achievable by electronics. This approach uniquely combines four-wave mixing and photonic time-stretch technique to slow down and record high-speed optical signals. As a proof-of-concept, real-time recording of 40-Gb/s non-return-to-zero on-off-keying optical data stream is experimentally demonstrated using a stretch factor of 54 and 1.5-GHz back-end electronic bandwidth. We also report on the observation of dispersion penalty and its mitigation via single-sideband conversion enabled by an optical bandpass filter. Our technique may provide a path to real-time capture of ultrahigh-speed optical data streams.
Primary and Secondary Three Dimensional Microbatteries
NASA Astrophysics Data System (ADS)
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
All-Optical Interrogation of Neural Circuits
2015-01-01
There have been two recent revolutionary advances in neuroscience: First, genetically encoded activity sensors have brought the goal of optical detection of single action potentials in vivo within reach. Second, optogenetic actuators now allow the activity of neurons to be controlled with millisecond precision. These revolutions have now been combined, together with advanced microscopies, to allow “all-optical” readout and manipulation of activity in neural circuits with single-spike and single-neuron precision. This is a transformational advance that will open new frontiers in neuroscience research. Harnessing the power of light in the all-optical approach requires coexpression of genetically encoded activity sensors and optogenetic probes in the same neurons, as well as the ability to simultaneously target and record the light from the selected neurons. It has recently become possible to combine sensors and optical strategies that are sufficiently sensitive and cross talk free to enable single-action-potential sensitivity and precision for both readout and manipulation in the intact brain. The combination of simultaneous readout and manipulation from the same genetically defined cells will enable a wide range of new experiments as well as inspire new technologies for interacting with the brain. The advances described in this review herald a future where the traditional tools used for generations by physiologists to study and interact with the brain—stimulation and recording electrodes—can largely be replaced by light. We outline potential future developments in this field and discuss how the all-optical strategy can be applied to solve fundamental problems in neuroscience. SIGNIFICANCE STATEMENT This review describes the nexus of dramatic recent developments in optogenetic probes, genetically encoded activity sensors, and novel microscopies, which together allow the activity of neural circuits to be recorded and manipulated entirely using light. The
Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR).
Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Lee, Moo Yul
2006-12-01
Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.
Three-dimensional multimodal image-guidance for neurosurgery
Peters, T.; Munger, P.; Comeau, R.; Evans, A.; Olivier, A.; Davey, B.
1996-04-01
The authors address the use of multimodality imaging as an aid to the planning and guidance of neurosurgical procedures, and discuss the integration of anatomical (CT and MRI), vascular (DSA), and functional (PET) data for presentation to the surgeon during surgery. The workstation is an enhancement of a commercially available system, and in addition to the guidance offered via a hand-held probe, it incorporates the use of multimodality imaging and adds enhanced realism to the surgeon through the use of a stereoscopic three-dimensional (3-D) image display. The probe may be visualized stereoscopically in single or multimodality images. The integration of multimodality data in this manner provides the surgeon with a complete overview of brain structures on which he is performing surgery, or through which he is passing probes or cannulas, enabling him to avoid critical vessels and/or structures of functional significance.
A three-dimensional magnetostatics computer code for insertion devices.
Chubar, O; Elleaume, P; Chavanne, J
1998-05-01
RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica [Mathematica is a registered trademark of Wolfram Research, Inc.]. The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented. PMID:15263552
Three-Dimensional Facial Adaptation for MPEG-4 Talking Heads
NASA Astrophysics Data System (ADS)
Grammalidis, Nikos; Sarris, Nikos; Deligianni, Fani; Strintzis, Michael G.
2002-12-01
This paper studies a new method for three-dimensional (3D) facial model adaptation and its integration into a text-to-speech (TTS) system. The 3D facial adaptation requires a set of two orthogonal views of the user's face with a number of feature points located on both views. Based on the correspondences of the feature points' positions, a generic face model is deformed nonrigidly treating every facial part as a separate entity. A cylindrical texture map is then built from the two image views. The generated head models are compared to corresponding models obtained by the commonly used adaptation method that utilizes 3D radial bases functions. The generated 3D models are integrated into a talking head system, which consists of two distinct parts: a multilingual text to speech sub-system and an MPEG-4 compliant facial animation sub-system. Support for the Greek language has been added, while preserving lip and speech synchronization.
All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound
NASA Astrophysics Data System (ADS)
Wang, Tianxiong; Cao, Rui; Ning, Bo; Dixon, Adam J.; Hossack, John A.; Klibanov, Alexander L.; Zhou, Qifa; Wang, Anbo; Hu, Song
2015-10-01
We report on an implementation of all-optical photoacoustic microscopy (PAM), which capitalizes on the effect of surface plasmon resonance (SPR) for optical detection of ultrasound. The SPR sensor in our all-optical PAM shows, experimentally, a linear response to the acoustic pressure from 5.2 kPa to 2.1 MPa, an ultra-flat frequency response (±0.7 dB) from 680 kHz to 126 MHz, and a noise-equivalent pressure sensitivity of 3.3 kPa. With the broadband ultrasonic detection, our SPR-PAM has achieved high spatial resolution with relatively low anisotropy (i.e., 2.0 μm laterally and 8.4 μm axially). Three-dimensional high-resolution imaging of a single melanoma cell is demonstrated.
All-optical beamlet train generation
Cary, John; Giacone, Rodolfo; Nieter, Chet; Bruhwiler, David; Esarey, Eric; Fubiani, Gwenael; Leemans, Wim
2003-05-12
One of the critical issues for the development of Laser Wake Field Acceleration (LWFA), which has the promise of creating table-top, GeV accelerators, is the loading of beamlets into the accelerating buckets. All optical injection schemes, which include LILAC, beat-wave colliding pulse injection, wave breaking injection, and phase-kick injection, provide a technique for doing so. Although a single bunch can have desirable properties such as energy spread of the order of a few percent, femtosecond duration k and low emittance (<1 mm-mrad), recent simulations show that such methods lead to efficiencies of transfer of plasma wave energy to beam energy that are low compared with conventional RF accelerators when only a single pulse is generated. Our latest simulations show that one can improve on this situation through the generation of a beamlet train. This can occur naturally through phase-kick injection at the front of the train and transverse wave breaking for the trailing pulses. The result is an efficiency improvement of the order of the number of beamlets in the train.
Two and three dimensional magnetotelluric inversion
Booker, J.
1993-01-01
Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.
PLOT3D- DRAWING THREE DIMENSIONAL SURFACES
NASA Technical Reports Server (NTRS)
Canright, R. B.
1994-01-01
PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1996-04-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.
Three-dimensional modeling of ovarian cancer
Erin, White; Hilary, Kenny; Ernst, Lengyel
2015-01-01
New models for epithelial ovarian cancer initiation and metastasis are required to obtain a mechanistic understanding of the disease and to develop new therapeutics. Modeling ovarian cancer however is challenging as a result of the genetic heterogeneity of the malignancy, the diverse pathology, the limited availability of human tissue for research, the atypical mechanisms of metastasis, and because the origin is unclear. Insights into the origin of high-grade serous ovarian carcinomas and mechanisms of metastasis have resulted in the generation of novel three-dimensional (3D) culture models that better approximate the behavior of the tumor cells in vivo than prior two-dimensional models. The 3D models aim to recapitulate the tumor microenvironment, which has a critical role in the pathogenesis of ovarian cancer. Ultimately, findings using models that accurately reflect human ovarian cancer biology are likely to translate into improved clinical outcomes. In this review we discuss the design of new 3D culture models of ovarian cancer primarily using human cells, key studies in which these models have been applied, current limitations, and future applications. PMID:25034878
Three-dimensional charge coupled device
Conder, Alan D.; Young, Bruce K. F.
1999-01-01
A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.
Three-dimensional laser velocimeter simultaneity detector
NASA Technical Reports Server (NTRS)
Brown, James L. (Inventor)
1990-01-01
A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Two and three dimensional magnetotelluric inversion
Booker, J.R.
1994-07-01
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Collimation and Stability of Three Dimensional Jets
NASA Astrophysics Data System (ADS)
Hardee, P. E.; Clarke, D. A.; Howell, D. A.
1993-12-01
Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.
Three-dimensional modeling equatorial spread F
NASA Astrophysics Data System (ADS)
Huba, J. D.; Krall, J.; Joyce, G.
2008-12-01
Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR
Three-dimensional null point reconnection regimes
Priest, E. R.; Pontin, D. I.
2009-12-15
Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
Three Dimensional Numerical Analysis on Discharge Properties
NASA Astrophysics Data System (ADS)
Takaishi, Kenji; Katsurai, Makoto
2003-10-01
A three dimensional simulation code with the finite difference time domain (FDTD) method combined with the two fluids model for electron and ion has been developed for the microwave excited surface wave plasma in the RDL-SWP device. This code permits the numerical analysis of the spatial distributions of electric field, power absorption, electron density and electron temperature. At low gas pressure of about 10 mTorr, the numerical results compared with the experimental measurements that shows the validity of this 3-D simulation code. A simplified analysis assuming that an electron density is spatially uniform has been studied and its applicability is evaluated by 3-D simulation. The surface wave eigenmodes are determined by electron density, and it is found that the structure of the device strongly influences to the spatial distribution of the electric fields of surface wave in a low density area. A method to irradiate a microwave to the whole surface area of the plasma is proposed which is found to be effective to obtain a high uniformity distribution of electron density.
Three-Dimensional Tomography of Interplanetary Disturbances
NASA Astrophysics Data System (ADS)
Jackson, Bernard V.; Hick, P. Paul
2004-09-01
We have developed a Computer Assisted Tomography (CAT) program that modifies a three-dimensional kinematic heliospheric model to fit interplanetary scintillation (IPS) or Thomson scattering observations. The tomography program iteratively changes this global model to least-squares fit the data. Both a corotating and time-dependent model can be reconstructed. The short time intervals of the time-dependent modeling (to shorter than 1 day) force the heliospheric reconstructions to depend on outward solar wind motion to give perspective views of each point in space accessible to the observations, allowing reconstruction of interplanetary Coronal Mass Ejections (CMEs) as well as corotating structures. We show these models as velocity or density Carrington maps and remote views. We have studied several events, including the 2000 July 14 Bastille-Day halo CME and several intervals using archival Cambridge IPS data, and we have also used archival Helios photometer data to reproduce the heliosphere. We check our results by comparison with additional remote-sensing observations, and in-situ observations from near-Earth spacecraft. A comparison of these observations and the Earth forecasts possible using them is available in real time on the World Wide Web using IPS data from the Solar Terrestrial Environment Laboratory, Japan.
A three-dimensional human walking model
NASA Astrophysics Data System (ADS)
Yang, Q. S.; Qin, J. W.; Law, S. S.
2015-11-01
A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
Three-dimensional Printing in the Intestine.
Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John
2016-08-01
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913
Three-dimensional assessment of hand outcome
Belcher, HJCR
2013-01-01
Introduction Patient reported outcome measures are central to National Health Service quality of care assessments. This study investigated the benefit of elective hand surgery by the simultaneous analysis of pain, function and appearance, using a three-dimensional (3D) graphical model for evaluating and presenting outcome. Methods A total of 188 patients scheduled for surgery completed pre- and postoperative questionnaires grading the severity of their pain, dysfunction and deformity of their hand(s). Scores were plotted on a 3D graph to demonstrate the degree of ‘normalisation’ following surgery. Results Surgical groups included: nerve compression (n=53), Dupuytren’s disease (n=51), trigger finger (n=20), ganglion (n=17) or other lump (n=21), trapeziometacarpal joint osteoarthritis (n=10), rheumatoid disease (n=5) and other pathology (n=13). A significant improvement towards normality was seen after surgery in each group except for patients with rheumatoid disease. Conclusions This study provides a simple, visual representation of hand surgery outcome by plotting patient scores for pain, function and appearance simultaneously on a 3D graph. PMID:24025292
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-10-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.
Three-dimensional solidification and melting using magnetic field control
NASA Technical Reports Server (NTRS)
Dulikravich, George S.; Ahuja, Vineet
1993-01-01
A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.
Three-dimensional bioprinting in tissue engineering and regenerative medicine.
Gao, Guifang; Cui, Xiaofeng
2016-02-01
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology. PMID:26466597
An algebraic turbulence model for three-dimensional viscous flows
NASA Technical Reports Server (NTRS)
Chima, R. V.; Giel, P. W.; Boyle, R. J.
1993-01-01
An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.
Three-Dimensional Displays In The Future Flight Station
NASA Astrophysics Data System (ADS)
Bridges, Alan L.
1984-10-01
This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.
Three-dimensional floating images as overt security features
NASA Astrophysics Data System (ADS)
Dunn, Douglas S.; Potts, Travis L.; Lorimor, Lynn E.; Jonza, James M.; Smithson, Robert M.; Maki, Stephen P.
2006-02-01
3M has developed a proprietary laser process for creating three-dimensional images that appear to float above and/or below the plane of a substrate containing an array of microlenses. During the imaging process the laser records a microscopic image of the desired three-dimensional pattern in the material located at the focal point of each microlens in the array. The images exhibit motion parallax comparable to that seen from holograms and are easily visible in a wide range of ambient lighting conditions. The images are therefore similar, but not identical, to integral images, first proposed in 1908 by Lippmann. The fidelity of these floating images requires maintaining exact registration between the microlens array and the corresponding microimage array. In addition, the use of an ablative laser process for the production of the microimages enables the production of microimage features smaller than the diffraction limit (up to approximately 50,000 dpi). The images are therefore very difficult to simulate, counterfeit, or modify and are highly desirable as an overt security feature. 3M has scaled up the floating image process to produce images in Confirm TM Retroreflective Security Laminate to authenticate passports and driver's licenses and in retroreflective license plate sheeting as the Ensure TM Virtual Security Thread to authenticate vehicle registration. This allows addition of features to a secure document that are easily verifiable, using only the human eye, by a large and widely disperse population to create an identity document that is easily identified as genuine.
Álvarez-González, Begoña; Meili, Ruedi; Bastounis, Effie; Firtel, Richard A.; Lasheras, Juan C.; del Álamo, Juan C.
2015-01-01
Fast amoeboid migration requires cells to apply mechanical forces on their surroundings via transient adhesions. However, the role these forces play in controlling cell migration speed remains largely unknown. We used three-dimensional force microscopy to measure the three-dimensional forces exerted by chemotaxing Dictyostelium cells, and examined wild-type cells as well as mutants with defects in contractility, internal F-actin crosslinking, and cortical integrity. We showed that cells pull on their substrate adhesions using two distinct, yet interconnected mechanisms: axial actomyosin contractility and cortical tension. We found that the migration speed increases when axial contractility overcomes cortical tension to produce the cell shape changes needed for locomotion. We demonstrated that the three-dimensional pulling forces generated by both mechanisms are internally balanced by an increase in cytoplasmic pressure that allows cells to push on their substrate without adhering to it, and which may be relevant for amoeboid migration in complex three-dimensional environments. PMID:25692587
Three-dimensional endoscopic photoacoustic imaging based on multielement linear transducer array
NASA Astrophysics Data System (ADS)
Yuan, Yi; Yang, Sihua; Xing, Da
2011-09-01
An implementation system of three-dimensional endoscopic photoacoustic imaging is presented. The developed endoscopic photoacoustic detector integrates a multielement linear transducer array, a reflective device, a Plexiglass tube, and ultrasonic coupling medium. To match with the acoustic impendence of Plexiglass tube, a glycerin solution with 45% volume percentage was used as the ultrasonic coupling medium. This ultrasonic coupling medium can decrease photoacoustic pressure transmission loss during the progress of photoacoustic signal propagation. The capability of the system for three-dimensional imaging was verified with chicken breast tissue. Furthermore, pig normal rectal tissue and mouse breast tumor tissue in an ex vivo cavity model were imaged by the system. The reconstructed three-dimensional photoacoustic image presented the structural information of normal and lesion tissue. The experimental results demonstrate the multielement-based endoscopic photoacoustic imaging system with inside-out laser exciting mode has the ability of reconstructing three-dimensional images of biology tissue.
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Nanofiber-based all-optical switches
NASA Astrophysics Data System (ADS)
Le Kien, Fam; Rauschenbeutel, A.
2016-01-01
We study all-optical switches operating on a single four-level atom with the N -type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of 20 mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the D2 line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers of the cavity driving field pulses. For a nanofiber cavity with fiber radius of 250 nm, cavity length of 20 mm, and cavity finesse of 313 and a cesium atom at a distance of 200 nm from the fiber surface, we numerically obtain a switching contrast on the order of about 67% for the first scheme and of about 95% for the second scheme. These switching operations require small mean numbers of photons in the nanofiber cavity gate and probe modes.
All optical modulator based on silicon resonator
NASA Astrophysics Data System (ADS)
Pinhas, Hadar; Bidani, Liron; Baharav, Oded; Sinvani, Moshe; Danino, Meir; Zalevsky, Zeev
2015-08-01
In this paper we present an all-optical silicon modulator, where a silicon slab (450 μm) thick is coated on both sides to get a Fabry-Perot resonator for laser beam at wavelength of 1550nm. Most of the modulators discussed in literature, are driven by electrical field rather than by light. We investigate new approaches regarding the dependence of the absorption of the optical signal on the control laser pulse at 532 nm having 5nm pulse width. Our silicon based Fabry-Perot resonator increases the intrinsic c-Si finesse to >10, instead of the uncoated silicon with natural finesse of 2.5. The improved finesse is shown to have significant effect on the modulation depth using a pulsed laser. A modulation of 12dB was attained. The modulation is ascribed to two different effects - The Plasma Dispersion Effect (PDE) and the Thermo- Optic Effect (TOE). The PDE causes increase in the signal absorption in silicon via the absorption of the control laser light. On top of that, the transmission of the signal can decrease dramatically in high finesse resonators due to change in the refractive index due to TOE. The changes in the signal's absorption coefficient and in the refractive index are the result of incremental change in the concentration of free carriers. The TOE gives rise to higher refractive index as opposed to the PDE which triggers a decrease in the refractive index. Finally, tradeoff considerations are presented on how to modify one effect to counter the other one, leading to an optimal device having reduced temperature dependence.
Zhang, Edward Z.; Povazay, Boris; Laufer, Jan; Alex, Aneesh; Hofer, Bernd; Pedley, Barbara; Glittenberg, Carl; Treeby, Bradley; Cox, Ben; Beard, Paul; Drexler, Wolfgang
2011-01-01
A noninvasive, multimodal photoacoustic and optical coherence tomography (PAT/OCT) scanner for three-dimensional in vivo (3D) skin imaging is described. The system employs an integrated, all optical detection scheme for both modalities in backward mode utilizing a shared 2D optical scanner with a field-of-view of ~13 × 13 mm2. The photoacoustic waves were detected using a Fabry Perot polymer film ultrasound sensor placed on the surface of the skin. The sensor is transparent in the spectral range 590-1200 nm. This permits the photoacoustic excitation beam (670-680 nm) and the OCT probe beam (1050 nm) to be transmitted through the sensor head and into the underlying tissue thus providing a backward mode imaging configuration. The respective OCT and PAT axial resolutions were 8 and 20 µm and the lateral resolutions were 18 and 50-100 µm. The system provides greater penetration depth than previous combined PA/OCT devices due to the longer wavelength of the OCT beam (1050 nm rather than 829-870 nm) and by operating in the tomographic rather than the optical resolution mode of photoacoustic imaging. Three-dimensional in vivo images of the vasculature and the surrounding tissue micro-morphology in murine and human skin were acquired. These studies demonstrated the complementary contrast and tissue information provided by each modality for high-resolution 3D imaging of vascular structures to depths of up to 5 mm. Potential applications include characterizing skin conditions such as tumors, vascular lesions, soft tissue damage such as burns and wounds, inflammatory conditions such as dermatitis and other superficial tissue abnormalities. PMID:21833358
Three-Dimensional Tectonic Model of Taiwan
NASA Astrophysics Data System (ADS)
Wu, Francis; Kuo-Chen, Hao; McIntosh, kirk
2014-05-01
We built a three-dimensional model of the interactions of the Eurasian plate (EUP) the Philippine Sea plate (PSP) and the collisional orogen, in and around Taiwan. The model is based on the results of comprehensive, milt-prong TAIGER experiments on land and at sea as well as other existing data. The clockwise rotating PSP moves NWW at ~8 cm/year relative to the Taiwan Strait. Under northern Taiwan the northward subducting PSP terminates near the edge of eastern Taiwan and collides with EUP at in increasing depth toward the north. Mountain building due to collision of EUP and PSP tapers off where the PSP goes below about 60 km. The PSP in the asthenosphere continues to advance NWW-ward. In central Taiwan PSP and EUP collide fully, lithosphere against lithosphere in the upper 60 km or so, leading to significant thickening of the crust to about 55 km on the Central Range side and about 35 km on the Coastal Range/Arc side. In between these "roots" a high velocity rise is found. Although a clear, steep dipping high velocity zone under Central Taiwan is detected, it is found not to be associated with seismicity. In southern Taiwan, mountains form over well-defined, seismically active subduction zone. The upper mantle high velocity anomaly appears to be continues with that under central Taiwan, but here an inclined seismic zone is found. In this area the Luzon Arc has not yet encountered the continental shelf - thus arc-continental collision has not yet occurred. The orogeny here may involve inversion of the subducted South China Sea lithosphere, rifted Eurasian continent, and/or escape of continental material from central Taiwan. GPS and Leveling data reflect well the 3-D plate collision model.
Three-dimensional ring current decay model
NASA Astrophysics Data System (ADS)
Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-06-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995
Remote Dynamic Three-Dimensional Scene Reconstruction
Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue
2013-01-01
Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417
Three Dimensional Printing in Orthopaedic Surgery
Mulford, Jonathan; MacKay, N; Babazadeh, S
2016-01-01
Objectives: Three dimensional (3D) printing technology has many current and future applications in orthopaedics. The objectives of this article are to review published literature regarding applications of 3D technology in orthopaedic surgery with a focus on knee surgery. Methods: A narrative review of the applications of 3D printing technology in orthopaedic practice was achieved by a search of computerised databases, internet and reviewing references of identified publications. Results: There is current widespread use of 3D printing technology in orthopaedics. 3D technology can be used in education, preoperative planning and custom manufacturing. Custom manufacturing applications include surgical guides, prosthetics and implants. Many future applications exist including biological applications. 3D printed models of anatomy have assisted in the education of patients, students, trainees and surgeons. 3D printed models also assist with surgical planning of complex injuries or unusual anatomy. 3D printed surgical guides may simplify surgery, make surgery precise and reduce operative time. Computer models based on MRI or CT scans are utilised to plan surgery and placement of implants. Complex osteotomies can be performed using 3D printed surgical guides. This can be particularly useful around the knee. A 3D printed guide allows pre osteotomy drill holes for the plate fixation and provides an osteotomy guide to allow precise osteotomy. 3D printed surgical guides for knee replacement are widely available. 3D printing has allowed the emergence of custom implants. Custom implants that are patient specific have been particularly used for complex revision arthroplasty or for very difficult cases with altered anatomy. Future applications are likely to include biological 3D printing of cartilage and bone scaffolds. Conclusion: 3D printing in orthopaedic surgery has and will continue to change orthopaedic practice. Its role is to provide safe, reproducible, reliable models with
Three-dimensional topological insulator based nanospaser
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Apalkov, Vadym; Stockman, Mark I.
2016-04-01
After the discovery of the spaser (surface plasmon amplification by stimulated emission of radiation), first proposed by Bergman and Stockman in 2003, it has become possible to deliver optical energy beyond the diffraction limit and generate an intense source of an optical field. The spaser is a nanoplasmonic counterpart of a laser. One of the major advantages of the spaser is its size: A spaser is a truly nanoscopic device whose size can be made smaller than the skin depth of a material to a size as small as the nonlocality radius (˜1 nm). Recently, an electrically pumped graphene based nanospaser has been proposed that operates in the midinfrared region and utilizes a nanopatch of graphene as a source of plasmons and a quantum-well cascade as its gain medium. Here we propose an optically pumped nanospaser based on three-dimensional topological insulator (3D TI) materials, such as Bi2Se3 , that operates at an energy close to the bulk band-gap energy ˜0.3 eV and uses the surface as a source for plasmons and its bulk as a gain medium. Population inversion is obtained in the bulk and the radiative energy of the exciton recombination is transferred to the surface plasmons of the same material to stimulate spasing action. This is truly a nanoscale spaser as it utilizes the same material for dual purposes. We show theoretically the possibility of achieving spasing with a 3D TI. As the spaser operates in the midinfrared spectral region, it can be a useful device for a number of applications, such as nanoscopy, nanolithography, nanospectroscopy, and semiclassical information processing.
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
Three-dimensional kinematics of hummingbird flight.
Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A
2007-07-01
Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species. PMID:17575042
Roy, Sharmili; Brown, Michael S; Shih, George L
2014-02-01
This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications in Medicine (DICOM) object and is automatically added to the study for archival in Picture Archiving and Communication System (PACS). In addition, a video summary (e.g., MPEG4) can be generated for sharing with patients and for situations where DICOM viewers are not readily available to referring physicians. The current version of VITA is compatible with ClearCanvas; however, VITA can work with any PACS workstation that has a structured annotation implementation (e.g., Extendible Markup Language, Health Level 7, Annotation and Image Markup) and is able to seamlessly integrate into the existing reporting workflow. In a survey with referring physicians, the vast majority strongly agreed that 3D visual summaries improve the communication of the radiologists' reports and aid communication with patients. PMID:23979113
All-optical switching and all-optical logic gates based on bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan
2004-06-01
We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.
Fault tolerant all-optical router with photorefractive all-optical switch
NASA Astrophysics Data System (ADS)
Kaino, Toshiya; Okamoto, Atsushi; Honma, Satoshi
2003-08-01
We propose a new type of the fault tolerant all-optical router (FTAR) by using an all-optical switch with photorefractive two-wave mixing. FTAR can detect a cutoff of a main transmitting line and automatically reroute a signal beam from the main line to a backup line. These functions can increase communication reliability of optical wireless. FTAR is composed of ony all-optical devices without any electronic devices or any mechanical operations. In the new type of FTAR, the routing of the signal beam is controlled by a control beam transmitting on the main line from a different light source at a receiver in the opposite direction with the signal beam. Compared with the previous type of FTAR composed of two photorefractinve crystals, the new configuration offers the simplification of the construction and high transmission efficiency of the signal beam. In this report, we experiment on the FTAR by usign a BaTiO3 and Ar+ laser whose wavelength is 514.5nm, and confirm the fundamental fucntin of FTAR. We give comparison of the result with the numerical analysis. We also analyze the dependence of the switching time on the input beam intensity of the crystal by a numerical analysis and an experiment.
Photonic encryption using all optical logic.
Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George
2003-12-01
With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an
Three dimensional CAD model of the Ignitor machine
NASA Astrophysics Data System (ADS)
Orlandi, S.; Zanaboni, P.; Macco, A.; Sioli, V.; Risso, E.
1998-11-01
defind The final, global product of all the structural and thermomechanical design activities is a complete three dimensional CAD (AutoCAD and Intergraph Design Review) model of the IGNITOR machine. With this powerful tool, any interface, modification, or upgrading of the machine design is managed as an integrated part of the general effort aimed at the construction of the Ignitor facility. ind The activities that are underway, to complete the design of the core of the experiment and that will be described, concern the following: ind - the cryogenic cooling system, ind - the radial press, the center post, the mechanical supports (legs) of the entire machine, ind - the inner mechanical supports of major components such as the plasma chamber and the outer poloidal field coils.
Augmented reality three-dimensional display with light field fusion.
Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chengyu
2016-05-30
A video see-through augmented reality three-dimensional display method is presented. The system that is used for dense viewpoint augmented reality presentation fuses the light fields of the real scene and the virtual model naturally. Inherently benefiting from the rich information of the light field, depth sense and occlusion can be handled under no priori depth information of the real scene. A series of processes are proposed to optimize the augmented reality performance. Experimental results show that the reconstructed fused 3D light field on the autostereoscopic display is well presented. The virtual model is naturally integrated into the real scene with a consistence between binocular parallax and monocular depth cues. PMID:27410076
Three-dimensional landing zone joint capability technology demonstration
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Ott, Carl; Szoboszlay, Zoltan; Perez, Alfonso; Soukup, Joel; Burns, H. N.
2014-06-01
The Three-Dimensional Landing Zone (3D-LZ) Joint Capability Technology Demonstration (JCTD) is a 27-month program to develop an integrated LADAR and FLIR capability upgrade for USAF Combat Search and Rescue HH-60G Pave Hawk helicopters through a retrofit of current Raytheon AN/AAQ-29 turret systems. The 3D-LZ JCTD builds upon a history of technology programs using high-resolution, imaging LADAR to address rotorcraft cruise, approach to landing, landing, and take-off in degraded visual environments with emphasis on brownout, cable warning and obstacle avoidance, and avoidance of controlled flight into terrain. This paper summarizes ladar development, flight test milestones, and plans for a final flight test demonstration and Military Utility Assessment in 2014.
Functional Three-Dimensional Graphene/Polymer Composites.
Wang, Meng; Duan, Xidong; Xu, Yuxi; Duan, Xiangfeng
2016-08-23
Integration of graphene with polymers to construct three-dimensional porous graphene/polymer composites (3DGPCs) has attracted considerable attention in the past few years for both fundamental studies and diverse technological applications. With the broad diversity in molecular structures of graphene and polymers via rich chemical routes, a number of 3DGPCs have been developed with unique structural, electrical, and mechanical properties, chemical tenability, and attractive functions, which greatly expands the research horizon of graphene-based composites. In particular, the properties and functions of the 3DGPCs can be readily tuned by precisely controlling the hierarchical porosity in the 3D graphene architecture as well as the intricate synergistic interactions between graphene and polymers. In this paper, we review the recent progress in 3DGPCs, including their synthetic strategies and potential applications in environmental protection, energy storage, sensors, and conducting composites. Lastly, we will conclude with a brief perspective on the challenges and future opportunities. PMID:27403991
On multiscale approaches to three-dimensional modelling of morphogenesis
Chaturvedi, R; Huang, C; Kazmierczak, B; Schneider, T; Izaguirre, J.A; Glimm, T; Hentschel, H.G.E; Glazier, J.A; Newman, S.A; Alber, M.S
2005-01-01
In this paper we present the foundation of a unified, object-oriented, three-dimensional biomodelling environment, which allows us to integrate multiple submodels at scales from subcellular to those of tissues and organs. Our current implementation combines a modified discrete model from statistical mechanics, the Cellular Potts Model, with a continuum reaction–diffusion model and a state automaton with well-defined conditions for cell differentiation transitions to model genetic regulation. This environment allows us to rapidly and compactly create computational models of a class of complex-developmental phenomena. To illustrate model development, we simulate a simplified version of the formation of the skeletal pattern in a growing embryonic vertebrate limb. PMID:16849182
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time-dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that remove the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock-capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional viscous flow over a blunt biconic.
Airway branching morphogenesis in three dimensional culture
2010-01-01
Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching
All-optical nonlinear plasmonic ring resonator switches
NASA Astrophysics Data System (ADS)
Nozhat, N.; Granpayeh, N.
2014-11-01
In this paper, all-optical nonlinear plasmonic ring resonator (PRR) switches containing 90o sharp and smooth bends have been proposed and numerically analyzed by the finite-difference time-domain method. Kerr nonlinear self-phase modulation (SPM) and cross-phase modulation (XPM) effects on the switching performance of the device have been studied. By applying a high-power lightwave, the signal can switch from one port to the other port due to the ON/OFF resonant states of the ring. We have shown that by utilizing the XPM effect, the output power ratio is improved by a factor of 2.5 and the required switching power is 31% of that of the case with only the SPM effect. Moreover, by utilizing sharp bend square-shaped ring resonators, the switching power is 10.4% lower than that of the smooth ones. The nonlinear PRR switches are suitable for application in photonic-integrated circuits as all-optical switches because of their nanoscale size and low required switching power.
Three-dimensional carbon nanotube based photovoltaics
NASA Astrophysics Data System (ADS)
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.
Structured image reconstruction for three-dimensional ghost imaging lidar.
Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng
2015-06-01
A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three-Dimensional Gear Crack Propagation Studied
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1999-01-01
Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth
Blanco; Chomski; Grabtchak; Ibisate; John; Leonard; Lopez; Meseguer; Miguez; Mondia; Ozin; Toader; van Driel HM
2000-05-25
Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 microm, produced by growing silicon inside the voids of an opal template of dose-packed silica spheres that are connected by small 'necks' formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics. PMID:10839534
Realistic three-dimensional radiative transfer simulations of observed precipitation
NASA Astrophysics Data System (ADS)
Adams, I. S.; Bettenhausen, M. H.
2013-12-01
Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral response of the simulated instrument. This work presents three-dimensional simulations of WindSat brightness temperatures for an oceanic rain event sampled by the Tropical Rainfall Measuring Mission (TRMM) satellite. The 2B-31 combined Precipitation Radar / TRMM Microwave Imager (TMI) retrievals provide profiles that are the input to the radiative transfer model. TMI brightness temperatures are also simulated. Comparisons between monochromatic, pencil beam simulations and
Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis.
Lozito, Thomas P; Alexander, Peter G; Lin, Hang; Gottardi, Riccardo; Cheng, Anthony Wai-Ming; Tuan, Rocky S
2013-01-01
Osteoarthritis (OA), the most prevalent form of arthritis, affects up to 15% of the adult population and is principally characterized by degeneration of the articular cartilage component of the joint, often with accompanying subchondral bone lesions. Understanding the mechanisms underlying the pathogenesis of OA is important for the rational development of disease-modifying OA drugs. While most studies on OA have focused on the investigation of either the cartilage or the bone component of the articular joint, the osteochondral complex represents a more physiologically relevant target because the disease ultimately is a disorder of osteochondral integrity and function. In our current investigation, we are constructing an in vitro three-dimensional microsystem that models the structure and biology of the osteochondral complex of the articular joint. Osteogenic and chondrogenic tissue components are produced using adult human mesenchymal stem cells derived from bone marrow and adipose seeded within biomaterial scaffolds photostereolithographically fabricated with defined internal architecture. A three-dimensional-printed, perfusion-ready container platform with dimensions to fit into a 96-well culture plate format is designed to house and maintain the osteochondral microsystem that has the following features: an anatomic cartilage/bone biphasic structure with a functional interface; all tissue components derived from a single adult mesenchymal stem cell source to eliminate possible age/tissue-type incompatibility; individual compartments to constitute separate microenvironment for the synovial and osseous components; accessible individual compartments that may be controlled and regulated via the introduction of bioactive agents or candidate effector cells, and tissue/medium sampling and compositional assays; and compatibility with the application of mechanical load and perturbation. The consequences of mechanical injury, exposure to inflammatory cytokines, and
Three-Dimensional Morphology of a Coronal Prominence Cavity
NASA Technical Reports Server (NTRS)
Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Rachmeler, L.; Reeves, K. K.; Schmieder, B.; Schmit, D. J.; Seaton, D. B.; Sterling, A. C.; Tripathi, D.; Williams, D. R.; Zhang, M.
2010-01-01
We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs
Three-dimensional Magnetic Resonance Imaging of fossils across taxa
NASA Astrophysics Data System (ADS)
Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.
2007-08-01
The visibility of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide an interesting methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.
Three-dimensional Magnetic Resonance Imaging of fossils across taxa
NASA Astrophysics Data System (ADS)
Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.
2008-01-01
The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.
Three-dimensional face model reproduction method using multiview images
NASA Astrophysics Data System (ADS)
Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio
1991-11-01
This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.
Three-dimensional optofluidic device for isolating microbes
NASA Astrophysics Data System (ADS)
Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.
2015-03-01
Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.
Surface representations of two- and three-dimensional fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1990-01-01
We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.
Floating three-dimensional display viewable from 360 degrees
NASA Astrophysics Data System (ADS)
Miyazaki, Daisuke; Akasaka, Nobuhiro; Okoda, Kenta; Maeda, Yuki; Mukai, Takaaki
2012-03-01
The aim of this research is to develop a full-parallax auto-stereoscopic display system, which can generate a floating three-dimensional (3-D) image viewable from a surrounding area. A 3-D display method based on the combination of integral imaging, 360-degree scanning with a rotating mirror, and imaging in the air with a concave mirror is proposed. A scanning system is composed of a hemisphere concave mirror and a mirror scanner, which is located around the center of the concave mirror. By putting an image generated by an integral imaging system into the scanning system, a floating stereoscopic image can be formed around the center of the concave mirror. When the mirror scanner rotates and the image on the integral imaging system is switched in accordance with mirror angle, each directional image can be observed from each viewing angle. The feasibility of the proposed method was examined by preliminary experiments. The abilities of generation of a floating full-parallax image and a floating auto-stereoscopic image with 360-degree viewing angle are demonstrated.
Three-dimensional imaging of the myocardium with isotopes
NASA Technical Reports Server (NTRS)
Budinger, T. F.
1975-01-01
Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.
Pathogen Propagation in Cultured Three-Dimensional Tissue Mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Pathogen propagation in cultured three-dimensional tissue mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
A three-dimensional digital visualization model of cervical nerves in a healthy person.
Cao, Jiaming; Fu, Dong; Li, Sen
2013-07-15
Three-dimensional reconstruction nerve models are classically obtained from two-dimensional ages of "visible human" frozen sections. However, because of the flexibility of nerve tissues and small color differences compared with surrounding tissues, the integrity and validity of nerve tissues can be impaired during milling. Thus, in the present study, we obtained two-dimensional data from a healthy volunteer based on continuous CT angiography and magnetic resonance myelography. Semi-automatic segmentation and reconstruction were then conducted at different thresholds in different tissues using Mimics software. Small anatomical structures such as muscles and cervical nerves were reconstructed using the medical computer aided design module. Three-dimensional digital models of the cervical nerves and their surrounding structures were successfully developed, which allowed visualization of the spatial relation of anatomical structures with a strong three-dimensional effect, distinct appearance, clear distribution, and good continuity, precision, and integrality. These results indicate the validity of a three-dimensional digital visualization model of healthy human cervical nerves, which overcomes the disadvantages of milling, avoids data loss, and exhibits a realistic appearance and three-dimensional image. PMID:25206491
Bilbao-Castro, J R; Marabini, R; Sorzano, C O S; García, I; Carazo, J M; Fernández, J J
2009-01-01
Three-dimensional electron microscopy allows direct visualization of biological macromolecules close to their native state. The high impact of this technique in the structural biology field is highly correlated with the development of new image processing algorithms. In order to achieve subnanometer resolution, the size and number of images involved in a three-dimensional reconstruction increase and so do computer requirements. New chips integrating multiple processors are hitting the market at a reduced cost. This high-integration, low-cost trend has just begun and is expected to bring real supercomputers to our laboratory desktops in the coming years. This paper proposes a parallel implementation of a computation-intensive algorithm for three-dimensional reconstruction, ART, that takes advantage of the computational power in modern multicore platforms. ART is a sophisticated iterative reconstruction algorithm that has turned out to be well suited for the conditions found in three-dimensional electron microscopy. In view of the performance obtained in this work, these modern platforms are expected to play an important role to face the future challenges in three-dimensional electron microscopy. PMID:18940260
Radiative transfer for a three-dimensional raining cloud
NASA Technical Reports Server (NTRS)
Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.
1993-01-01
Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
NASA Astrophysics Data System (ADS)
Gu, Jian
This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on
Three-dimensional simulation of helix traveling wave tubes
Freund, H.P.; Zaidman, E.G.; Mankofsky, A.; Kodis, M.A.; Vanderplaats, N.R.
1995-12-31
The authors present a three-dimensional nonlinear formulation and simulation of a helix traveling wave tube (TWT) using a sheath helix model. The simulation is capable of treating both DC and pulsed electron beams as well as single-frequency or multi-tone operation. The model relies upon a spectral decomposition of the electromagnetic fields in terms of the vacuum sheath helix polarizations. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found. Simulation of a prebunched beam is also discussed, and compared with an experiment at the Naval Research Laboratory.
A microfluidically perfused three dimensional human liver model.
Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S
2015-12-01
Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. PMID:26322723
Three dimensional boundary element solutions for eddy current nondestructive evaluation
NASA Astrophysics Data System (ADS)
Yang, Ming; Song, Jiming; Nakagawa, Norio
2014-02-01
The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.
Advanced three-dimensional Eulerian hydrodynamic algorithm development
Rider, W.J.; Kothe, D.B.; Mosso, S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project is to investigate, implement, and evaluate algorithms that have high potential for improving the robustness, fidelity and accuracy of three-dimensional Eulerian hydrodynamic simulations. Eulerian computations are necessary to simulate a number of important physical phenomena ranging from the molding process for metal parts to nuclear weapons safety issues to astrophysical phenomena such as that associated with a Type 2 supernovae. A number of algorithmic issues were explored in the course of this research including interface/volume tracking, surface physics integration, high resolution integration techniques, multilevel iterative methods, multimaterial hydrodynamics and coupling radiation with hydrodynamics. This project combines core strengths of several Laboratory divisions. The project has high institutional benefit given the renewed emphasis on numerical simulations in Science-Based Stockpile Stewardship and the Accelerated Strategic Computing Initiative and LANL`s tactical goals related to high performance computing and simulation.
The topology and vorticity dynamics of a three-dimensional plane compressible wake
NASA Technical Reports Server (NTRS)
Chen, Jacqueline H.; Cantwell, Brian J.; Mansour, Nagi N.
1989-01-01
The three-dimensional aspects of transition in a low Mach number plane compressible wake are studied numerically. Comparisons are made between the topology of the velocity field and the vorticity dynamics of the flow based on results from direct numerical simulations of the full compressible Navier-Stokes equations. The velocity field is integrated to obtain instantaneous streamlines at different stages in the evolution. A generalized three-dimensional critical point theory is applied to classify the critical points of the velocity field.
Grid Generator for Two, Three-dimensional Finite Element Subsurface Flow Models
1993-04-28
GRIDMAKER serves as a preprocessor for finite element models in solving two- and three-dimensional subsurface flow and pollutant transport problems. It is designed to generate three-point triangular or four-point quadrilateral elements for two-dimensional domains and eight-point hexahedron elements for three-dimensional domains. A two-dimensional domain of an aquifer with a variable depth layer is treated as a special case for depth-integrated two-dimensional, finite element subsurface flow models. The program accommodates the need for aquifers with heterogeneousmore » systems by identifying the type of material in each element.« less
A three-dimensional approach for analysis of sidewall injector mixing and combustion
NASA Technical Reports Server (NTRS)
Quan, Victor; Smith, Donald M.; Mathur, Atul B.; Edelman, Raymond B.
1990-01-01
A three-dimensional (3-D) analytical approach to calculate the mixing and combustion efficiency along engine combustors that use sidewall fuel injectors is described. The analysis consists of three parts: (1) an empirical correlation for fuel penetration, (2) application of integral conservation laws following jet turning and pressure equilibration, and (3) an analytical solution for the simplified three-dimensional partial differential equations to describe the downstream mixing and combustion process. Numerical results are compared to some empirical and experimental work, and favorable agreements are shown. The importance of including anisotropic turbulence and three-dimensional effects are illustrated by comparison with data and other less comprehensive analyses. The analytical solution is suitable for rapid estimates of engine performance and parametric studies of combustor designs containing transverse or angled injector ports arranged in rows and/or columns.
Obtaining three-dimensional height profiles from a two-dimensional slope measuring instrument
Irick, S.C.; Kaza, R.K.; McKinney, W.R. )
1995-02-01
The long trace profiler (LTP) was developed in order to measure the mid- and long-period variations in optical components for beamlines of high-brightness synchrotron sources. The LTP is a slope measuring instrument, and the optic under test is typically measured along a single tangential line, giving a two-dimensional profile. If a three-dimensional height profile (surface map) is desired, it is necessary to combine the integrated slopes of several measurements. A series of LTP measurements and a data processing method used to combine standard LTP data into a three-dimensional height profile are described. The measurement of a synchrotron beamline mirror and its three-dimensional height profile are presented.
Three-dimensional endoscopic photoacoustic imaging based on multi-element linear transducer array
NASA Astrophysics Data System (ADS)
Yuan, Yi; Yang, Sihua; Xing, Da
2012-03-01
An implementation system of three-dimensional endoscopic photoacoustic imaging is presented. The developed endoscopic photoacoustic detector integrates a multielement linear transducer array, a reflective device, a Plexiglass tube and ultrasonic coupling medium. To match with the acoustic impendence of Plexiglass tube, a glycerin solution with 45% volume percentage was used as the ultrasonic coupling medium. This ultrasonic coupling medium can decrease photoacoustic pressure transmission loss during the progress of photoacoustic signal propagation. The capability of the system for three-dimensional imaging was verified with chicken breast tissue. The experimental results demonstrate the multielement-based endoscopic photoacoustic imaging system with inside-out laser exciting mode has the ability of reconstructing three-dimensional images of biology tissue.
Three-dimensional endoscopic photoacoustic imaging based on multi-element linear transducer array
NASA Astrophysics Data System (ADS)
Yuan, Yi; Yang, Sihua; Xing, Da
2011-11-01
An implementation system of three-dimensional endoscopic photoacoustic imaging is presented. The developed endoscopic photoacoustic detector integrates a multielement linear transducer array, a reflective device, a Plexiglass tube and ultrasonic coupling medium. To match with the acoustic impendence of Plexiglass tube, a glycerin solution with 45% volume percentage was used as the ultrasonic coupling medium. This ultrasonic coupling medium can decrease photoacoustic pressure transmission loss during the progress of photoacoustic signal propagation. The capability of the system for three-dimensional imaging was verified with chicken breast tissue. The experimental results demonstrate the multielement-based endoscopic photoacoustic imaging system with inside-out laser exciting mode has the ability of reconstructing three-dimensional images of biology tissue.
Rendering Three-Dimensional Solar Coronal Structures
NASA Technical Reports Server (NTRS)
Gary, G. Allen
1997-01-01
An X-ray or EUV image of the corona or chromosphere is a 2D representation of an extended 3D complex for which a general inversion process is impossible. A specific model must be incorporated in order to understand the full 3D structure. We approach this problem by modeling a set of optically-thin 3D plasma flux tubes which we render these as synthetic images. The resulting images allow the interpretation of the X-ray/EUV observations to obtain information on (1) the 3D structure of X-ray images, i.e., the geometric structure of the flux tubes, and on (2) the internal structure using specific plasma characteristics, i.e., the physical structure of the flux tubes. The data-analysis technique uses magnetograms to characterize photospheric magnetic fields and extrapolation techniques to form the field lines. Using a new set of software tools, we have generated 3D flux tube structures around these field lines and integrated the plasma emission along the line of sight to obtain a rendered image. A set of individual flux-tube images is selected by a non-negative least-squares technique to Provide a match with an observed X-ray image. The scheme minimizes the squares of the differences between the synthesized image and the observed image with a non-negative constraint on the coefficients of the brightness of the individual flux-tube loops. The derived images are used to determine the specific photospheric foot points and physical data, i.e., scaling laws for densities and loop lengths. The development has led to Computer efficient integration and display software that is compatible for comparison with observations (e.g., Yohkoh SXT data, NIXT, or EIT). This analysis is important in determining directly the magnetic field configuration, which provides the structure of coronal loops, and indirectly the electric currents or waves, which provide the energy for the heating of the plasma. We have used very simple assumptions (i.e., potential magnetic fields and isothermal
Femtosecond laser internal manufacturing of three-dimensional microstructure devices
NASA Astrophysics Data System (ADS)
Zheng, Chong; Hu, Anming; Chen, Tao; Oakes, Ken D.; Liu, Shibing
2015-10-01
Potential applications for three-dimensional microstructure devices developed rapidly across numerous fields including microoptics, microfluidics, microelectromechanical systems, and biomedical devices. Benefiting from many unique fabricating advantages, internal manufacturing methods have become the dominant process for three-dimensional microstructure device manufacturing. This paper provides a brief review of the most common techniques of femtosecond laser three-dimensional internal manufacturing (3DIM). The physical mechanisms and representative experimental results of 3D manufacturing technologies based on multiphoton polymerization, laser modification, microexplosion and continuous hollow structure internal manufacturing are provided in details. The important progress in emerging applications based on the 3DIM technologies is introduced as well.
Three-dimensional X-ray micro-velocimetry
Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa
2011-01-01
A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921
Three-dimensional test requirement for random vibration testing
NASA Technical Reports Server (NTRS)
Chang, Kurng; Frydman, Abraham M.
1987-01-01
An approach to defining and evaluating three-dimensional vibration test requirements is discussed. The approach is used to develop the three-dimensional space random-vibration test requirements for missile components subjected to truck transportation environments. One-dimensional testing parameters such as power spectral density and overall g rms values for three mutually perpendicular directions represent the test requirements. The coherence characteristics between each input axis were established and adjusted empirically in an attempt to simulate the cross-correlation in three-dimensional random vibration excitation.
Recognizing parameterized three-dimensional objects
NASA Astrophysics Data System (ADS)
Goldberg, Robert R.
1994-10-01
Complex object models require multiple components affixed to each other in specific and variable geometric paths. This paper expands upon earlier research to present an unified approach for relating components' coordinate systems to each other in the same model. Particularly, we show that rather complex relationships such as ball joints and geometric transformations about arbitrary axes are no more complicated than describing the model base in terms of the camera coordinate system. These require only simple rotations and translations about the major axes. This modeling approach was next integrated with a verification module of a model based vision system. We recovered from a single 2D image the original model and camera parameters that would align the projected model edges with the image segments by solving a nonlinear least squares system. A specific example of the theory is implemented. A lamp head is seceded to its base by a ball joint with three parameters of rotational freedom. From a wide range of initial guess error, the numerical system converged to the correct set of model and camera parameters. Thus, the theory of parameterized affixments and the numerical implementation to obtain these values from 2D images will aid in associated recognition tasks and in real-time tracking of complex conglomerate objects.
Three dimensional, multi-chip module
Bernhardt, A.F.; Petersen, R.W.
1993-08-31
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Three dimensional, multi-chip module
Bernhardt, Anthony F.; Petersen, Robert W.
1993-01-01
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Fully automated three-dimensional microscopy system
NASA Astrophysics Data System (ADS)
Kerschmann, Russell L.
2000-04-01
Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.
Developing three-dimensional display technologies
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Allen, Daniel J.
2008-08-01
Stereo, multi-perspective, and volumetric display technologies have made several recent gains. We are seeing increased availability of such systems for entertainment, both in theaters and for the home. The concurrent advent of medical imaging modalities that deliver very large data sets such as, spiral CT, high-field MRI, and 3-D ultrasound, makes renewed assessment of 3-D display of medical images attractive. We concentrate on autostereographic displays, those that are viewed without viewing aids such as special eye-glasses or goggles. We begin with a very brief review of a few stereo-display, multi-perspective, and volumetric display technologies. We focus our attention primarily on the integral display (ID) and the computer-generated hologram (CGH). We will examine the boost that ID has gotten from the availability of flat-panel displays with very high pixel counts. We also discuss some recent advances in CGH's included the emergence of rewritable holographic materials. We also look at one, undeveloped 3-D display technology: the Correlelogram.
NASA Astrophysics Data System (ADS)
Gayen, Dilip Kumar; Nath Roy, Jitendra
2008-03-01
An all-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer (TOAD)-based tree architecture is proposed. We describe the all-optical arithmetic unit by using a set of all-optical multiplexer, all-optical full-adder, and optical switch. The all-optical arithmetic unit can be used to perform a fast central processor unit using optical hardware components. We have tried to exploit the advantages of both optical tree architecture and TOAD-based switch to design an integrated all-optical circuit that can perform binary addition, addition with carry, subtract with borrow, subtract (2's complement), double, increment, decrement, and transfer operations.
Three dimensional characterization and archiving system
Clark, R.; Gallman, P.; Gaudreault, J.; Mosehauer, R.; Slotwinski, A.; Jarvis, G.; Griffiths, P.
1996-12-31
This system (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. It is in the final phase of a 3-phase program to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and radioactive and organic contamination is a critical D&D task. Surface characterization includes identification of dangerous inorganic materials such as asbestos and transite. 3D-ICAS robotically conveys a multisensor probe near the surfaces to be inspected, using coherent laser radar tracking, which also provides 3D facility maps. High-speed automated organic analysis is provided by means of gas chromatograph-mass spectrometer sensor which can process a sample without contact in one minute. Volatile organics are extracted directly from contaminated surfaces without sample removal; multiple stage focusing is used for high time resolution. Additional discrimination is obtained through a final stage time-of-flight mass spectrometer. The radionuclide sensors combines {alpha}, {beta}, and {gamma} counting with energy discrimination of the {alpha} channel; this quantifies isotopes of U, Pu, Th, Tc, Np, and Am in one minute. The Molecular Vibrational Spectrometry sensor is used to characterize substrate material such as concrete, transite, wood, or asbestos; this can be used to provide estimates of the depth of contamination. The 3D-ICAS will be available for real-time monitoring immediately after each 1 to 2 minute sample period. After surface mapping, 3-D displays will be provided showing contours of detected contaminant concentrations. Permanent measurement and contaminant level archiving will be provided, assuring data integrity and allowing regulatory review before and after D&D operations.
Three-dimensional display: stereo and beyond
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Allen, Daniel J.
2008-03-01
With the advent of large, high-quality stereo display monitors and high-volume 3-D image acquisition sources, it is time to revisit the use of 3-D display for diagnostic radiology. Stereo displays may be goggled, or goggleless. Goggleless displays are called autostereographic displays. We concentrate on autostereographic technologies. Commercial LCD flat-screen 3-D autostereographic monitors typically rely on one of two techniques: blocked perspective and integral display. On the acquisition modality side: MRI, CT and 3-D ultrasound provide 3-D data sets. However, helical/spiral CT with multi-row detectors and multiple x-ray sources provides a monsoon of data. Presenting and analyzing this large amount of potentially dynamic data will require advanced presentation techniques. We begin with a very brief review the two stereo-display technologies. These displays are evolving beyond presentation of the traditional pair of views directed to fixed positions of the eyes to multi-perspective displays; at differing head positions, the eyes are presented with the proper perspective pairs corresponding to viewing a 3-D object from that position. In addition, we will look at some of the recent developments in computer-generated holograms or CGH's. CGH technology differs from the other two technologies in that it provides a wave-optically correct reproduction of the object. We then move to examples of stereo-displayed medical images and examine some of the potential strengths and weaknesses of the displays. We have installed a commercial stereo-display in our laboratory and are in the process of generating stereo-pairs of CT data. We are examining, in particular, preprocessing of the perspective data.
Advances in three-dimensional diagnostic radiology
TER HAAR ROMENY, BART M.; ZUIDERVELD, KAREL J.; VAN WAES, PAUL F. G. M.; VAN WALSUM, THEO; VAN DER WEIJDEN, REMKO; WEICKERT, JOACHIM; STOKKING, RIK; WINK, ONNO; KALITZIN, STILIYAN; MAINTZ, TWAN; ZONNEVELD, FRANS; VIERGEVER, MAX A.
1998-01-01
The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (<$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile
High-order all-optical differential equation solver based on microring resonators.
Tan, Sisi; Xiang, Lei; Zou, Jinghui; Zhang, Qiang; Wu, Zhao; Yu, Yu; Dong, Jianji; Zhang, Xinliang
2013-10-01
We propose and experimentally demonstrate a feasible integrated scheme to solve all-optical differential equations using microring resonators (MRRs) that is capable of solving first- and second-order linear ordinary differential equations with different constant coefficients. Employing two cascaded MRRs with different radii, an excellent agreement between the numerical simulation and the experimental results is obtained. Due to the inherent merits of silicon-based devices for all-optical computing, such as low power consumption, small size, and high speed, this finding may motivate the development of integrated optical signal processors and further extend optical computing technologies. PMID:24081039
Three-dimensional Simulation of Backward Raman Amplification
A.A. Balakin; G.M. Fraiman; N.J. Fisch
2005-11-12
Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761
Improving Students' Sense of Three-Dimensional Shapes.
ERIC Educational Resources Information Center
Leeson, Neville J.
1994-01-01
Describes activities to be used with fifth and sixth graders to improve students' spatial sense with respect to three-dimensional shapes. Includes the use of cubes, triangular prisms, tetrahedrons, and square pyramids. (MKR)
Three-dimensional speckle holography of cellular motion inside tissue
NASA Astrophysics Data System (ADS)
Nolte, David D.; Turek, John
2009-07-01
Three-dimensional imaging assays of anti-cancer drugs applied to tissues are performed using motility contrast imaging (MCI), a speckle holographic imaging technique that detects sub-cellular motion as a fully-endogenous imaging contrast agent.
Analysis and validation of carbohydrate three-dimensional structures
Lütteke, Thomas
2009-02-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Photopolymer-based three-dimensional optical waveguide devices
NASA Astrophysics Data System (ADS)
Kagami, M.; Yamashita, T.; Yonemura, M.; Kawasaki, A.; Watanabe, O.; Tomiki, M.
2012-02-01
Photopolymer based three-dimensional (3D) waveguide devices are very attractive in low-cost optical system integration. Especially, Light-Induced Self-Written (LISW) technology is suitable for this application, and the technology enables low-loss 3D optical circuitry formation from an optical fiber tip which soaked in photopolymer solution by employing its photo-polymerization due to own irradiation from the fiber tip. This technology is expected drastic mounting cost reduction in fields of micro-optic and hybrid integration devices assembly. The principle of the LISW optical waveguides is self-trapping effect of the irradiation flux into the self-organized waveguide, where, used wavelength can be chosen to fit photopolymer's reactivity from visible to infrared. Furthermore, this effect also makes possible grating formation and "optical solder" interconnection. Actually fabricated self-written grating shows well defined deep periodic index contrast and excellent optical property for the wavelength selectivity. And the "optical solder" interconnection realizes a passive optical interconnection between two faceted fibers or devices by the LISW waveguide even if there is a certain amount of gap and a small degree of misalignment exist. The LISW waveguides grow towards each other from both sides to a central point where the opposing beams overlap and are then combined into one waveguide. This distinctive effect is confirmed in all kind optical fibers, such as from a singlemode to 1-mm-corediameter multimode optical fiber. For example of complicated WDM optical transceiver module, mounted a branchedwaveguide and filter elements, effectiveness of LISW technology is outstanding. In assembling and packaging process, neither dicing nor polishing is needed. In this paper, we introduce LISW technology principles and potential application to integrated WDM optical transceiver devices for both of singlemode and multimode system developed in our research group.
Three dimensional multilayer solenoid microcoils inside silica glass
NASA Astrophysics Data System (ADS)
Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun
2016-01-01
Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.
Utilizing stem cells for three-dimensional neural tissue engineering.
Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas
2016-05-26
Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524
Elastic waves in discontinuous media: Three-dimensional scattering
NASA Astrophysics Data System (ADS)
Molino, F. R.; Sabatier, P. C.
1994-09-01
This report contains an exact study of elastic wave propagation and its scattering in discontinuous media where hard reflectors are onionlike sets of surfaces. In order to reformulate the problem as a finite set of boundary integral equations, the wave motion between reflectors is represented by means of elastic potentials which involve vectorial densities on the surfaces. In the external medium, an outgoing asymptotic condition generalizes the Silver-Müller (and the Sommerfeld) condition to the case of coupled waves (S and P waves) moving with different velocities. The uniqueness of the Green's function, which guarantees the uniqueness of the direct problem solution, is proven. For any incident wave and arbitrary number of surfaces, the transmission and scattering problems are studied, with and without the simplification obtained by assuming constant Poisson ratios. According to the parameter ranges, the equations which are obtained are well posed, either as second kind Fredholm equations, or because they reduce to the inverse of the sum of the identity operator and a ``small norm'' bounded operator. The results can be used to describe rigorously the three-dimensional scattering of elastic waves in the frequency domain for any kind of incident wave function (P,S,...) as well as the response to a localized source.
Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials
Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun
2014-01-01
Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable of steering the convergence of acoustic waves in three-dimensional space. A theoretical approach is developed to analytically describe the proposed metamaterial with hybrid labyrinthine units, which reveals the mechanism of coexistence of high refractive index and well-matched impedance. A hyperbolic gradient-index lens design is fabricated and characterized, which can enhance the acoustic energy by 15 dB at the focal point with very high transmission efficiency. Remarkably, the thickness of the lens is only approximately 1/6 of the operating wavelength. The lens can work within a certain frequency band for which the ratio between the bandwidth and the center frequency reaches 0.74. By tailoring the structure of the metamaterials, one can further reduce the thickness of the lens or even realize other acoustic functionalities, opening new opportunity for manipulation of low-frequency sounds with versatile potential. PMID:25354997
Three-dimensional acceleration planning for atmospheric entry
NASA Astrophysics Data System (ADS)
Chen, David Teh-Han
The next generation of reusable launch vehicles will benefit from an improved entry guidance algorithm. Improvements have been made to the current Space Shuttle entry guidance algorithm that will provide an ability to handle aborts, reach large crossranges, and provide complete onboard planning capability. Building on the entry guidance algorithm for the Space Shuttle, three versions of a three-dimensional acceleration based entry guidance algorithm have been created and tested. The Space Shuttle entry guidance algorithm is extended to three dimensions by planning the drag profile and the occurrence of bank reversals. The three versions of the planning algorithm that have been developed are a single bank reversal planner, a two bank reversal planner, and a single bank reversal update planner. Tests of the single and two bank reversal versions show that the planning algorithms are capable of producing feasible trajectories for a wide range of various entry conditions. Integration and testing of the update planning algorithm with a feedback linearizing control law in a high fidelity simulation developed by NASA Marshall has demonstrated the algorithm's ability to handle a variety of entry conditions in an onboard environment.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
The perception of three-dimensionality across continuous surfaces
NASA Technical Reports Server (NTRS)
Stevens, Kent A.
1989-01-01
The apparent three-dimensionality of a viewed surface presumably corresponds to several internal preceptual quantities, such as surface curvature, local surface orientation, and depth. These quantities are mathematically related for points within the silhouette bounds of a smooth, continuous surface. For instance, surface curvature is related to the rate of change of local surface orientation, and surface orientation is related to the local gradient of distance. It is not clear to what extent these 3D quantities are determined directly from image information rather than indirectly from mathematically related forms, by differentiation or by integration within boundary constraints. An open empirical question, for example, is to what extent surface curvature is perceived directly, and to what extent it is quantitative rather than qualitative. In addition to surface orientation and curvature, one derives an impression of depth, i.e., variations in apparent egocentric distance. A static orthographic image is essentially devoid of depth information, and any quantitative depth impression must be inferred from surface orientation and other sources. Such conversion of orientation to depth does appear to occur, and even to prevail over stereoscopic depth information under some circumstances.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials
NASA Astrophysics Data System (ADS)
Li, Yong; Yu, Gaokun; Liang, Bin; Zou, Xinye; Li, Guangyun; Cheng, Su; Cheng, Jianchun
2014-10-01
Acoustic lenses find applications in various areas ranging from ultrasound imaging to nondestructive testing. A compact-size and high-efficient planar acoustic lens is crucial to achieving miniaturization and integration, and should have deep implication for the acoustic field. However its realization remains challenging due to the trade-off between high refractive-index and impedance-mismatch. Here we have designed and experimentally realized the first ultrathin planar acoustic lens capable of steering the convergence of acoustic waves in three-dimensional space. A theoretical approach is developed to analytically describe the proposed metamaterial with hybrid labyrinthine units, which reveals the mechanism of coexistence of high refractive index and well-matched impedance. A hyperbolic gradient-index lens design is fabricated and characterized, which can enhance the acoustic energy by 15 dB at the focal point with very high transmission efficiency. Remarkably, the thickness of the lens is only approximately 1/6 of the operating wavelength. The lens can work within a certain frequency band for which the ratio between the bandwidth and the center frequency reaches 0.74. By tailoring the structure of the metamaterials, one can further reduce the thickness of the lens or even realize other acoustic functionalities, opening new opportunity for manipulation of low-frequency sounds with versatile potential.
The three-dimensional structure of aquaporin-1
NASA Astrophysics Data System (ADS)
Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas
1997-06-01
The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.
The three-dimensional structure of aquaporin-1.
Walz, T; Hirai, T; Murata, K; Heymann, J B; Mitsuoka, K; Fujiyoshi, Y; Smith, B L; Agre, P; Engel, A
1997-06-01
The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6A resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning alpha-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane. PMID:9177353
Three-dimensional organization of a human water channel.
Cheng, A; van Hoek, A N; Yeager, M; Verkman, A S; Mitra, A K
1997-06-01
Aquaporins (AQP) are members of the major intrinsic protein (MIP) superfamily of integral membrane proteins and facilitate water transport in various eukaryotes and prokaryotes. The archetypal aquaporin AQP1 is a partly glycosylated water-selective channel that is widely expressed in the plasma membranes of several water-permeable epithelial and endothelial cells. Here we report the three-dimensional structure of deglycosylated, human erythrocyte AQP1, determined at 7 A resolution in the membrane plane by electron crystallography of frozen-hydrated two-dimensional crystals. The structure has an inplane, intramolecular 2-fold axis of symmetry located in the hydrophobic core of the bilayer. The AQP1 monomer is composed of six membrane-spanning, tilted alpha-helices. These helices form a barrel that encloses a vestibular region leading to the water-selective channel, which is outlined by densities attributed to the functionally important NPA boxes and their bridges to the surrounding helices. The intramolecular symmetry within the AQP1 molecule represents a new motif for the topology and design of membrane protein channels, and is a simple and elegant solution to the problem of bidirectional transport across the bilayer. PMID:9177354
Wicking Enhancement in Three-Dimensional Hierarchical Nanostructures.
Wang, Zhiting; Zhao, Junjie; Bagal, Abhijeet; Dandley, Erinn C; Oldham, Christopher J; Fang, Tiegang; Parsons, Gregory N; Chang, Chih-Hao
2016-08-16
Wicking, the absorption of liquid into narrow spaces without the assistance of external forces, has drawn much attention due to its potential applications in many engineering fields. Increasing surface roughness using micro/nanostructures can improve capillary action to enhance wicking. However, reducing the structure length scale can also result in significant viscous forces to impede wicking. In this work, we demonstrate enhanced wicking dynamics by using nanostructures with three-dimensional (3D) hierarchical features to increase the surface area while mitigating the obstruction of liquid flow. The proposed structures were engineered using a combination of interference lithography and hydrothermal synthesis of ZnO nanowires, where structures at two length scales were independently designed to control wicking behavior. The fabricated hierarchical 3D structures were tested for water and ethanol wicking properties, demonstrating improved wicking dynamics with intermediate nanowire lengths. The experimental data agree with the derived fluid model based on the balance of capillary and vicious forces. The hierarchical wicking structures can be potentially used in applications in water harvesting surfaces, microfluidics, and integrated heat exchangers. PMID:27459627
Modelling for three dimensional coalescence of two bubbles
NASA Astrophysics Data System (ADS)
Han, R.; Li, S.; Zhang, A. M.; Wang, Q. X.
2016-06-01
This paper is concerned with the three dimensional (3D) interaction and coalescence of two bubbles subject to buoyancy and the dynamics of the subsequent joined bubble using the boundary integral method (BIM). An improved density potential method is implemented to control the mesh quality. It helps to avoid the numerical instabilities, which occur after coalescence. Numerical convergence tests are conducted in terms of mesh sizes and time steps. The 3D numerical model agrees well with an axisymmetric BIM model for axisymmetric cases as well as experimental results captured by high-speed camera. The bubble jetting, interaction, and coalescence of the two bubbles depend on the maximum bubble radii, the centre distance between two bubbles at inception, and the angle β between the centre line and the direction of buoyancy. We investigate coalescence of two bubbles for β = 0, π/4, and π/2, respectively, and at various centre distances at inception. Numerical results presented include the bubble and jet shapes, the velocity, and pressure fields surrounding the bubbles, as well as the time histories of bubble volumes, jet velocities, and positions of centroid of the bubble system.
At the leading edge of three-dimensional cell migration
Petrie, Ryan J.; Yamada, Kenneth M.
2012-01-01
Summary Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell–matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration. PMID:23378019
Three-dimensional density distributions in the Asian lithosphere
NASA Astrophysics Data System (ADS)
Zhang, G.; Li, C.; Wang, X.; Wang, Z.; Fang, J.; Sino-probe-cugb
2011-12-01
We have inversed the residual Bouguer gravity anomalies to study the three-dimensional density distributions of the Asian lithosphere (60°~150°E and 15°~60°N). Firstly, we have collected the free-air gravity anomalies (30'×30') and topography data of GTOP030 with 5'×5' grid spacing, and then calculated the Bougouer gravity anomalies by terrain correction and Bougouer correction. We have also collected the depth data of the Moho discontinuity (30'×30') and the discontinuity of sedimentary layer. By using the Oldenburg-Parker formula (Parker, 1972) and the forward modeling method, we calculated the theoretical gravity anomalies which mainly are caused by the Moho discontinuity and the sedimentary layer discontinuity. In our study, the average depths of Moho discontinuity and sedimentary layer discontinuity are 33 km and 4 km, and the density differences are 0.42 g/cm3 and 0.2 g/cm3, respectively. In addition, we have simulated the gravity anomalies of the spherical harmonics with the 2-6 order for the lower mantle by using the formula of Bowin (1983) which represented the relation between the depth of field source and the order of the geopotential spherical harmonics. Using all data mentioned above, we have calculated the residual Bougouer gravity anomalies, which may be caused by anomalous density bodies in the lithosphere. Secondly, we used the calculated residual Bougouer gravity anomalies to inverse the three-dimensional density differences in the Asian lithosphere by using the Algebra Reconstruction Techniques (ART). During the inversion, the densities converted from the P-wave velocity data (with grid spacing of 2°×2°) according to the Birch Law are considered as the initial density model. The grid spacing is set as 2°×2° in the horizontal direction, and it is 25 km, 55 km and 100 km in the vertical direction, respectively. Comparing the density anomalies at the three depths, we can conclude that (1) the density in the lithosphere beneath Asian
Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Shieh, Ian C.
Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films
Use of three-dimensional photoelasticity in fracture mechanics
NASA Technical Reports Server (NTRS)
Smith, C. W.
1973-01-01
The philosophy of fracture mechanics is reviewed and utilized to formulate a simplified approach to the determination of the stress-intensity factor photoelastically for three-dimensional problems. The method involves a Taylor Series correction for the maximum in-plane shear stress (TSCM) and does not involve stress separation. The results are illustrated by applying the TSCM to surface flaws in bending fields. Other three-dimensional problems solved by the TSCM are cited.
Three-dimensional study of the multi-cavity FEL
Krishnagopal, S.; Kumar, V.
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.