Science.gov

Sample records for all-pressure fluid drop

  1. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  2. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  3. Fluid dynamics and solidification of levitated drops and shells

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The fluid dynamic investigaton of simple free liquid drops is described based on ground-based and low-gravity experimental results. The behavior of compound drops and liquid shells as described in recent theoretical and experimental studies is discussed. Experimental investigations using both levitation devices and drop tubes are considered in the case of 1-g laboratory investigations, highlighting the advantages and drawbacks of both techniques.

  4. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  5. Measurements of fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay X.

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  6. Breakup modes of fluid drops in confined shear flows

    NASA Astrophysics Data System (ADS)

    Barai, Nilkamal; Mandal, Nibir

    2016-07-01

    Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.

  7. Interferometric technique for nanoscale dynamics of fluid drops on arbitrary substrates

    NASA Astrophysics Data System (ADS)

    Verma, Gopal; Pandey, Mrityunjay; Singh, Kamal P.

    2015-07-01

    We demonstrate a simple interferometric probe to detect nanoscale dynamics of sessile fluid drops on arbitrary rough or flexible substrates. The technique relies on producing high-contrast Newton-ring like dynamical fringes by interference between a weak Fresnel reflection from the air-fluid interface of the drop and an air-glass interface of a convex lens placed above the drop in quasi-normal geometry. By analyzing the dynamical fringes, we observed 100-700 nm/s fluctuations in water drops evaporating on metal, leaves, insect wing, and sand paper due to their surface roughness. Similar fluctuations were also observed during spreading of non-volatile glycerin drops on various rough surfaces. Another application of the technique is demonstrated in precision measurement of change in evaporation rate of a water drop due to cooling of a metal substrate. This technique can be further miniaturized with a microscope objective with potential for wide applications.

  8. Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.

    2009-02-01

    We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.

  9. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Astrophysics Data System (ADS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-11-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  10. Drop Tower Experiments concerning Fluid Management under Microgravity

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Dreyer, Michael

    2012-07-01

    Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the

  11. Coalescence of drops and bubbles rising through a non-Newtonian fluid in a tube.

    PubMed

    Al-Matroushi, Eisa; Borhan, Ali

    2009-04-01

    We conducted an experimental study of the interaction and coalescence of two drops (of the same fluid) or bubbles translating under the action of buoyancy in a cylindrical tube. The close approach of two Newtonian fluid particles of different size in a non-Newtonian continuous phase was examined using image analysis, and measurements of the coalescence time are reported for various particle size ratios, Bond numbers, and particle-to-suspending-fluid viscosity ratios. The flow disturbance behind the leading bubble and the viscoelastic nature of the continuous phase seemed to retard bubble coalescence. The time scale for coalescence of liquid drops in highly elastic continuous phase was influenced by the relative motion of the drops and their coalescence behavior. PMID:19426320

  12. Applied holography for drop formation of non-Newtonian fluids in centrifugal atomizers

    NASA Astrophysics Data System (ADS)

    Timko, J. J.

    Holography made possible the analysis of drop formation in Newtonian and non-Newtonian fluids. The drops were illuminated at the moment of their formation with an impulse ruby laser, and from the holograms the whole spray was reconstructed with a closed-circuit TV loop. From the pictures taken from different planes of the spray, the size and the spatial distribution of the drops were determined with an electrooptical analyzer. The holographic measuring method provided quantitative data phenomena which were qualitatively observable on high-speed films. The experiments also verified an equation involving dimensionless criteria, deduced fo the atomization of non-Newtonian substances.

  13. Collision and coalescence of liquid drops in a dynamically active ambient fluid

    NASA Astrophysics Data System (ADS)

    Sambath, Krishnaraj; Subramani, Hariprasad; Basaran, Osman

    2012-11-01

    The fluid dynamics of the collision and coalescence of liquid drops has intrigued scientists and engineers for more than a century owing to its ubiquitousness in nature, e.g. raindrop coalescence, and industry, e.g. breaking of emulsions in the oil and gas industry. The complexity of the underlying dynamics, e.g. occurrence of hydrodynamic singularities, has required study of the problem at different scales - macroscopic, mesoscopic and molecular - using stochastic and deterministic methods. In this work, we adopt a multiscale, deterministic method to simulate the approach, collision, and eventual coalescence of two drops where the drops as well as the ambient fluid are incompressible, Newtonian fluids. The free boundary problem governing the dynamics consists of the Navier-Stokes system and associated initial and boundary conditions that have been augmented to account for the effects of disjoining pressure as the separation between the drops becomes of the order of a few hundred nanometers. This free boundary problem is solved by a Galerkin finite element-based algorithm. The approach and results to be reported build on earlier work by Leal and coworkers, and are used to identify conditions conducive for coalescence in terms of flow and fluid properties.

  14. Pressure drop and pumping power for fluid flow through round tubes

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1973-01-01

    Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.

  15. Acoustic microfluidics: Capillary waves and vortex currents in a spherical fluid drop

    NASA Astrophysics Data System (ADS)

    Lebedev-Stepanov, P. V.; Rudenko, O. V.

    2016-07-01

    We calculate the radiation forces in a spherical drop lying on a solid substrate. The forces form as a result of the action of a capillary wave on a fluid as it propagates along the free spherical surface. We study the structure of acoustic currents excited by the radiation forces.

  16. Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: Drops less conductive than the suspending fluid

    NASA Astrophysics Data System (ADS)

    Fernández, Arturo

    2008-04-01

    Direct numerical simulations of the effects of an electric field on an emulsion of drops are presented. A simple shear flow configuration is adopted where the electric field is applied perpendicular to the sliding plates. Both the drops and the suspending fluid are assumed to behave as leaky dielectric fluids. Here, drops less conductive than the suspending fluid with an electrical conductivity ratio smaller than the dielectric permittivity ratio are considered. This combination of electrical properties leads to a viscous fluid motion from the poles to the equator. The response of an emulsion is governed by the competition between the electrical forces, the fluid shear, and the capillary forces. The Mason number [Mn=(3λ+2)μγ˙/6(λ+1)ɛ0β2E∞2] and the electric capillary number [Ce=ɛ0β2E∞2a/γ] are used to describe the response of the systems. As previously observed in experiments at low shear rates, Mn <0.2, the drops aggregate in chains that tilt under a shear. The competition between the electrical forces and the fluid shear results in shorter chains at intermediate shear rates, 0.2fluid shear becomes stronger than the electrical attraction, Mn >2.0, the chains of drops break up. The rheological properties mainly depend on the emulsion microstructure. The effective viscosity exhibits a strong shear-thinning response because the chains of drops, which appear at low shear rates, increase the resistance of the system to shear. As the chains shorten and break up, the effective viscosity decreases. The elastic properties of the emulsion are also affected by the presence of the electric field. Normal stress differences arise as a consequence of the deformation of the drops and the surface tension acting on the interface between the fluids. The shape of the drops is determined by the deformation caused by the viscous forces and the deformation due to the electric stresses. At low shear rates, the electric effects are predominant and the

  17. An undergraduate lab on measuring fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay

    2015-11-01

    I would like to describe measurement of fluid viscosity using a small ball drop device. It requires as little as 100 microliters of fluid. Each measurement can be performed in seconds. Through simple experimentation, students observe fluid flow confined in a thin cylindrical tube. They analyze forces and torques on a tiny ball falling and rolling down in an inclined tube. They gain practice in observing and identifying sources of errors and variability in their measurements beyond those indicated by standard error bars. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized fluids such as mixtures of glycerol and water. The technique is also useful in research and technological applications as the device is easy to assemble and it allows the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Work Partially Supported by the NSF Fluid Physics Program (Award number CBET 1438033).

  18. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  19. Diamond formation due to a pH drop during fluid-rock interactions.

    PubMed

    Sverjensky, Dimitri A; Huang, Fang

    2015-01-01

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water-silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water-rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly with eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water-rock interactions without changes in oxidation state. PMID:26529259

  20. Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid

    NASA Astrophysics Data System (ADS)

    Antanovskii, L. K.

    1991-12-01

    An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.

  1. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  2. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  3. Free surface fluid behavior in two-dimensional container with arbitrary configuration - Computer simulation and experiment by using drop tower

    NASA Astrophysics Data System (ADS)

    Ohnishi, Mitsuru; Ogiwara, Sachio; Yoshihara, Shoichi; Azuma, Hisao

    1989-10-01

    A new and powerful program based on the SOLA-VOF code is presented which is designed to study the behavior of fluids with free surfaces under reduced gravity. The capability of the program is demonstrated using a drop tower for fluid transportation and formation of spherical voids. Good agreement is found between the results and computational findings.

  4. Numerical modelling of the impact of a liquid drop on the surface of a two-phase fluid system

    NASA Astrophysics Data System (ADS)

    Sochan, Agata; Lamorski, Krzysztof; Bieganowski, Andrzej; Ryżak, Magdalena

    2014-05-01

    The aim of the study was validation of a numerical model of the impact of a liquid drop on the surface of a two-phase system of immiscible fluids. The drop impact phenomenon was recorded using a high-speed camera (Vision Research MIRO M310) and the data were recorded at 2000 frames per second. The numerical calculations were performed with the Finite Volume Method (FVM) solving the three-dimensional Navier-Stokes equations for three phases: air and two selected immiscible fluids. The Volume of Fluid (VOF) technique was employed for modelling of the boundaries between the phases. Numerical modelling was done with the Finite Volume Method using an available OpenFOAM software. The experiment was based on three variables: • the height from which the drop of the selected fluids fell (the speed of the drop), • the thickness of the layers of the two selected immiscible fluids (a thin layer of the fluid with a lower density was spread over the higher-density fluid), • the size of the fluid droplet. The velocity and radius of the falling drop was calculated based on the recorded images. The used parameters allowed adequate projection of the impact of fluid droplets on a system of two immiscible liquids. Development of the numerical model of splash may further have practical applications in environmental protection (spraying of hazardous fluids, spread of fuels and other hazardous substances as a result of disasters, spraying (water cooling) of hot surfaces), and in agriculture (prevention of soil erosion). The study was partially funded from the National Science Centre (Poland) based on the decision no. DEC-2012/07/N/ST10/03280.

  5. Fast Imaging Technique to Study Drop Impact Dynamics of Non-Newtonian Fluids

    PubMed Central

    Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich

    2014-01-01

    In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena. PMID:24637404

  6. Fast imaging technique to study drop impact dynamics of non-Newtonian fluids.

    PubMed

    Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich

    2014-01-01

    In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena.

  7. Equilibrium shapes and stability of nonconducting pendant drops surrounded by a conducting fluid in an electric field

    SciTech Connect

    Harris, M.T.; Basaran, O.A.

    1995-03-15

    The shapes and stability of pendant drops in the presence of an electric field is a classical problem in capillarity. This problem has been studied in great detail by numerous investigators when the drops are either perfect conductors or nonconductors and the surrounding fluid is a nonconductor. In this paper, the axisymmetric equilibrium shapes and stability of a nonconducting drop hanging from a nonconducting nozzle that is immersed in a perfectly conducting ambient fluid, a problem that has heretofore not been considered in the literature, are determined by solving the free boundary problem comprised of the Young-Laplace equation for drop shape and an integral equation for the electric field distribution. Here the free boundary problem is discretized by a hybrid technique in which the Young-Laplace equation is solved by the finite element method and the electrostatic problem solved by the boundary element method.

  8. Sizing of colloidal particle and protein molecules in a hanging fluid drop

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.

    1995-01-01

    We report non-invasive particle size measurements of polystyrene latex colloidal particles and bovine serum albumin (BSA) protein molecules suspended in tiny hanging fluid drops of 30 micro-Liter volume using a newly designed fiber optic probe. The probe is based upon the principles of the technique of dynamic light scattering (DLS). The motivation for this work comes from growing protein crystals in outer space. Protein crystals have been grown previously in hanging drops in microgravity experiments on-board the space shuttle orbiter. However, obtaining quantitative information on nucleation and growth of the protein crystals in real time has always been a desired goal, but hitherto not achieved. Several protein researchers have shown interest in using DLS to monitor crystal growth process in a droplet, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. We demonstrate that such an experiment is now possible. Our system offers fast (5 seconds) determination of particle size, utilize safe levels of very low laser power (less than or equal to 0.2 mW), a small scattering volume (approximately 2 x 10(exp -5) cu mm) and high spatial coherence (Beta) values. This is a major step forward when compared to currently available DLS systems.

  9. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground. PMID:27652146

  10. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  11. Merging drops in a Teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening.

    PubMed

    Feuerborn, A; Prastowo, A; Cook, P R; Walsh, E

    2015-01-01

    The ability to manipulate drops with small volumes has many practical applications. Current microfluidic devices generally exploit channel geometry and/or active external equipment to control drops. Here we use a Teflon tube attached to a syringe pump and exploit the properties of interfaces between three immiscible liquids to create particular fluidic architectures. We then go on to merge any number of drops (with volumes of micro- to nano-liters) at predefined points in time and space in the tube; for example, 51 drops were merged in a defined order to yield one large drop. Using a different architecture, specified amounts of fluid were transferred between 2 nl drops at specified rates; for example, 2.5 pl aliquots were transferred (at rates of ~500 fl s(-1)) between two drops through inter-connecting nano-channels (width ~40 nm). One proof-of-principle experiment involved screening conditions required to crystallize a protein (using a concentration gradient created using such nano-channels). Another demonstrated biocompatibility; drugs were mixed with human cells grown in suspension or on surfaces, and the treated cells responded like those grown conventionally. Although most experiments were performed manually, moderate high-throughput potential was demonstrated by mixing ~1000 different pairs of 50 nl drops in ~15 min using a robot. We suggest this reusable, low-cost, and versatile methodology could facilitate the introduction of microfluidics into workflows of many experimental laboratories. PMID:26246015

  12. Merging drops in a Teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening.

    PubMed

    Feuerborn, A; Prastowo, A; Cook, P R; Walsh, E

    2015-01-01

    The ability to manipulate drops with small volumes has many practical applications. Current microfluidic devices generally exploit channel geometry and/or active external equipment to control drops. Here we use a Teflon tube attached to a syringe pump and exploit the properties of interfaces between three immiscible liquids to create particular fluidic architectures. We then go on to merge any number of drops (with volumes of micro- to nano-liters) at predefined points in time and space in the tube; for example, 51 drops were merged in a defined order to yield one large drop. Using a different architecture, specified amounts of fluid were transferred between 2 nl drops at specified rates; for example, 2.5 pl aliquots were transferred (at rates of ~500 fl s(-1)) between two drops through inter-connecting nano-channels (width ~40 nm). One proof-of-principle experiment involved screening conditions required to crystallize a protein (using a concentration gradient created using such nano-channels). Another demonstrated biocompatibility; drugs were mixed with human cells grown in suspension or on surfaces, and the treated cells responded like those grown conventionally. Although most experiments were performed manually, moderate high-throughput potential was demonstrated by mixing ~1000 different pairs of 50 nl drops in ~15 min using a robot. We suggest this reusable, low-cost, and versatile methodology could facilitate the introduction of microfluidics into workflows of many experimental laboratories.

  13. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  14. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell.

    PubMed

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-01-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. PMID:27562151

  15. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-08-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes’ drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented.

  16. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell.

    PubMed

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-08-26

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented.

  17. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    PubMed Central

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-01-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes’ drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. PMID:27562151

  18. Near-field acousto monitoring shear interactions inside a drop of fluid: The role of the zero-slip condition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Fernandez, Rodolfo; Li, Nan; Hung, Hsien-Chih; Venkataraman, Anuradha; Nordstrom, Richard; La Rosa, Andres H.

    2016-05-01

    A full understanding of nanometer-range (near-field) interactions between two sliding solid boundaries, with a mesoscopic fluid layer sandwiched in between, remains challenging. In particular, the origin of the blue-shift resonance frequency experienced by a laterally oscillating probe when approaching a substrate is still a matter of controversy. A simpler problem is addressed here, where a laterally oscillating solid probe interacts with a more sizable drop of fluid that rests on a substrate, aiming at identifying interaction mechanisms that could also be present in the near-field interaction case. It is found that the inelastic component of the probe-fluid interaction does not constitute the main energy-dissipation channel and has a weak dependence on fluid's viscosity, which is attributed to the zero-slip hydrodynamic condition. In contrast, the acoustic signal engendered by the fluid has a stronger dependence on the fluid's viscosity (attributed also to the zero-slip hydrodynamic condition) and correlates well with the probe's resonance frequency red-shift. We propose a similar mechanism happens in near field experiments, but a blue-shift in the probe's resonance results as a consequence of the fluid molecules (subjected to the zero-slip condition at both the probe and substrate boundaries) exerting instead a spring type restoring force on the probe.

  19. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  20. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  1. The bubble, drop and particle unit: A second-generation fluid physics facility

    NASA Astrophysics Data System (ADS)

    Kingdon, J.; Gonfalone, A.

    The objectives of the Bubble, Drop and Particle Unit (BDPU) can be summarised as follows: Investigation into hydrostatics, dynamics, thermodynamics, electrodynamics, and more generally the dynamics of two phase mixtures. As a middle course between dedicated autonomy and multi-purpose usage, a modular approach has been adopted that should allow assembly into `as required facilities' that can be reconfigured between flights to accommodate the mission's peculiar requirements of the investigators. The concept is centered around a service module which provides electronic control and monitoring data management, power supply, stimuli and diagnostic services. Interchangeable diagnostic modules will be available with a particular emphasis on the use of laser techniques.

  2. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  3. Sodium Replacement and Plasma Sodium Drop During Exercise in the Heat When Fluid Intake Matches Fluid Loss

    PubMed Central

    Anastasiou, Costas A; Kavouras, Stavros A; Arnaoutis, Giannis; Gioxari, Aristea; Kollia, Maria; Botoula, Efthimia; Sidossis, Labros S

    2009-01-01

    Context: Sodium replacement during prolonged exercise in the heat may be critically important to maintaining fluid and electrolyte balance and muscle contractility. Objective: To examine the effectiveness of sodium-containing sports drinks in preventing hyponatremia and muscle cramping during prolonged exercise in the heat. Design: Randomized crossover study. Patients or Other Participants: Thirteen active men. Intervention(s): Participants completed 4 trials of an exercise protocol in the heat (30°C) consisting of 3 hours of exercise (alternating 30 minutes of walking and cycling at a heart rate of 130 and 140 beats per minute, respectively); a set of standing calf raises (8 sets of 30 repetitions); and 45 minutes of steep, brisk walking (5.5 km⋅h−1 on a 12% grade). During exercise, participants consumed fluids to match body mass loss. A different drink was consumed for each trial: carbohydrate-electrolyte drink containing 36.2 mmol/L sodium (HNa), carbohydrate-electrolyte drink containing 19.9 mmol/L sodium (LNa), mineral water (W), and colored and flavored distilled water (PL). Main Outcome Measure(s): Serum sodium, plasma osmolality, plasma volume changes, and muscle cramping frequency. Results: During both HNa and LNa trials, serum sodium remained relatively constant (serum sodium concentration at the end of the protocol was 137.3 mmol/L and 136.7 mmol/L, respectively). However, a clear decrease was observed in W (134.5 ± 0.8 mmol/L) and PL (134.4 ± 0.8 mmol/L) trials compared with HNa and LNa trials (P < .05). The same trends were observed for plasma osmolality (P < .05). Albeit not significant, plasma volume was preserved during the HNa and LNa trials, but a reduction of 2.5% was observed in the W and PL trials. None of the volunteers experienced cramping. Conclusions: The data suggest that sodium intake during prolonged exercise in the heat plays a significant role in preventing sodium losses that may lead to hyponatremia when fluid intake matches

  4. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. PMID:24994652

  5. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  6. Controlling the Mobility of the Fluid Interface of Moving Gas Bubbles or Liquid Drops by Using Micellar Solutions of Surfactants

    NASA Technical Reports Server (NTRS)

    Maldarelli, Charles; Papageorgiou, Demetrios

    1998-01-01

    Microgravity processes must rely on mechanisms other than buoyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. A significant and as yet unresolved impediment to the use of thermocapillary migration to direct bubble or drop motion is that these migrations can be significantly retarded by the adsorption onto the fluid particle surface of surface active impurities unavoidably present in the continuous or (if the particle is a liquid) droplet phases. The focus of our research was to develop a theory for remobilizing fluid particle interfaces retarded by a surfactant impurity in an effort to make more viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity. We postulated that a surfactant at high bulk concentration which kinetically exchanges rapidly with the surface can restore interface mobility. The scaling arguments along with a discussion of the previous literature is reviewed in the context of the scaling framework. The specific objectives of the research were twofold. The first was to prove the remobilization theory by studying a model problem. As the mechanism for remobilization is independent of the force which drives the particle, the fluid particle shape and the presence of fluid inertia, we chose the simplest model consisting of a spherical bubble rising steadily by buoyancy in creeping flow. We solved the hydrodynamic and surfactant transport equations for rapid kinetic exchange to demonstrate that as the concentration increases, the Marangoni retardation at first increases (the low k behavior) and then decreases (the high k behavior). The second objective was to develop a method to determine the kinetic rate constants of a surfactant molecule, since this information is necessary to select surfactants which will exchange rapidly enough relative to the

  7. Experimental and numerical investigations of pressure drop in a rectangular duct with modified power law fluids

    NASA Astrophysics Data System (ADS)

    Park, Simsoo; Lee, Dong-Ryul

    2003-09-01

    Numerical solutions are presented for fully developed laminar flow for a modified power law fluid (MPL) in a rectangular duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian behavior at low shear rates, through a transition region, to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which, for a given set of operating conditions, specifies where in the shear rate range a particular system is operating, i.e. in the Newtonian, transition, or power law regions. The numerical results of the friction factor times Reynolds number for the Newtonian and power law region are compared with previously published results showing agreement within 0.05% in the Newtonian region, and 0.9% and 5.1% in the power law region. Rheological flow curves were measured for three CMC-7H4 solutions and were found to be well represented by the MPL constitutive equation. The friction factor times Reynolds number values were measured in the transition region for which previous measurements were unavailable. Good agreement was found between experiment and calculation thus confirming the validity of the analysis.

  8. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  9. Retaining activity of enzymes after capture and extraction within a single-drop of biological fluid using immunoaffinity membranes.

    PubMed

    Shimazaki, Youji; Sato, Yuki

    2016-05-15

    The purpose of this study was the measurement of enzyme activity within a single-drop of biological fluid after micropurification. Esterase and lactate dehydrogenase (LDH) retained their enzymatic activities after being captured by membrane-immobilized antibodies, which were prepared by non-denaturing two-dimensional electrophoresis, transferred to polyvinylidene difluoride and then stained by Ponceau S. The activities of both enzymes were also measured after being captured by antibodies and biotinylated antibodies bound to membrane-immobilized protein A or avidin, respectively. After esterase and LDH were captured from biological samples by membrane-immobilized protein A or avidin, their activities were semi-quantitatively measured on the surface of the membrane using fluorescence determination. More than 51% of enzyme activities were retained even after the enzymes were captured by biotinylated antibody bound to membrane-immobilized avidin and eluted by rinsing with 5μL of 1% Triton X-100, compared with the activities of the enzyme on the immunoaffinity membrane.

  10. Evidence for the existence of an effective interfacial tension between miscible fluids. 2. Dodecyl acrylate-poly(dodecyl acrylate) in a spinning drop tensiometer.

    PubMed

    Zoltowski, Brian; Chekanov, Yuri; Masere, Jonathan; Pojman, John A; Volpert, Vitaly

    2007-05-01

    We studied drops of dodecyl acrylate in poly(dodecyl acrylate) (molecular weight of 25,000) in a spinning drop tensiometer to determine whether an effective interfacial tension (EIT) existed between these two miscible fluids. We found convincing evidence. We estimated the mechanical relaxation time from an immiscible analogue (1-propanol and poly(dodecyl acrylate)) and showed that the dodecyl acrylate drops maintained quasi-steady diameters long after this relaxation period. Drops continuously grew in length and became more diffuse, but the width of the transition zone did not grow with t(1/2) as expected from Fick's law although this system had been shown to follow Fick's law in a static configuration (Antrim, D.; Bunton, P.; Lewis, L. L.; Zoltowski, B. D.; Pojman, J. A. J. Phys. Chem. B 2005, 109, 11842-11849). The EIT was determined from Vonnegut's equation, EIT = (Deltarho)omega(2)r(3)/4; both the inner and outer diameters were measured, yielding values of 0.002 and 0.02 mN m(-1), respectively. The EIT was found to be independent of the rotation rate above 6000 rpm and independent of the initial drop volume. The EIT was found to decrease with temperature and increase with the difference in concentration between the monomer drop and polymer-monomer fluid. The square gradient parameter, k, was determined from EIT = k(Deltac(2)/delta), where Deltac is the difference in mole fraction and delta is the width of the transition zone. The square gradient parameter was on the order of 10(-9) N. The square gradient parameter was found to decrease with temperature, to be independent of concentration, and to increase with the molecular weight of the polymer.

  11. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  12. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  13. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  14. The precipitation of silica gels along seismogenic faults due to sudden fluid pressure drops: an example from the Zuccale low angle normal fault, Italy

    NASA Astrophysics Data System (ADS)

    Holdsworth, R. E.; Smith, S.; Lloyd, G. E.

    2012-04-01

    Based on experimental and some field-based studies several authors have proposed that silica gel (hydrated amorphous silica) layers are generated by frictional slip along seismogenic faults. The precise mechanism(s) of formation have remained somewhat enigmatic, but most studies invoke a mixture of frictional and chemical processes simultaneous with seismogenic slip. In this presentation we describe a new occurrence of ultrafine grained silica fault rocks that are hosted along a number of detachment faults developed within the Zuccale low angle normal fault on the island of Elba, Italy. Based on the geological and microstructural observations, including very detailed EBSD measurements, we propose an alternative mechanism of formation in which the gels precipitate rapidly from supersaturated pore fluids formed due to sudden drops in fluid pressure along faults during or immediately following episodes of seismogenic slip. This mechanism may have widespread application to other examples of fault-hosted silica gels. Furthermore, given the field appearance of these layers (see figure) and the recognition of ultrafine quartz crystallites in thin section, it is possible that similar examples in other natural fault zones may have been mistakenly identified as pseudotachylytes. The implications for fault weakening will also be discussed.

  15. Numerical Simulations of Drop Collisions

    NASA Technical Reports Server (NTRS)

    Nobari, M. R. H.; Tryggvason, G.

    1994-01-01

    Three-dimensional simulations of the off-axis collisions of two drops are presented. The full Navier-Stokes equations are solved by a Front-Tracking/Finite-Difference method that allows a fully deformable fluid interface and the inclusion of surface tension. The drops are accelerated towards each other by a body force that is turned off before the drops collide. Depending on whether the interface between the drops is ruptured or not, the drops either bounce or coalesce. For drops that coalesce, the impact parameter, which measures how far the drops are off the symmetry line, determines the eventual outcome of the collision. For low impact parameters, the drops coalesce permanently, but for higher impact parameters, a grazing collision, where the drops coalesce and then stretch apart again is observed. The results are in agreement with experimental observations.

  16. Liquid Metal Drop Impingement

    NASA Astrophysics Data System (ADS)

    Che, Judy; Han, Jaehoon; Tryggvason, Gretar; Ceccio, Steven

    1996-11-01

    "Ballistic Partical Manufacturing" is a process in which individual drops are layered to form a part. We examine how metal drops deform and solidify, and how the solidification rate affects the material microstructure using both numerical simulations and experiments. A single set of equations governing the conservation of mass, energy, and momentum are written for all phases involved, and the phase boundary is treated as an imbedded interface by adding the appropriate source terms. We have simulated single drops colliding with a surface using a simple model which assumes that a melt solidifies below the melting point. Although simple, this model captures many aspects of the fluid flow and solidification. The experimental apparatus creates a single drop of prescribed size and propels it toward a cooled substrate. Favorable comparisons of experimental and numerical results have been achieved.

  17. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  18. Encapsulating Ellipsoids in Drops

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Brugarolas, Teresa; Chou, Jonathan; Bau, Haim; Lee, Daeyeon

    2012-11-01

    Large aspect ratio particles were produced by embedding spherical polystyrene particles within a polymer film and subsequently heating and stretching the film. Particles were released by dissolving the film. Using a flow-focusing device, the elongated particles were partially encapsulated within droplets of fluid A, such as water, surrounded by an immiscible fluid B, such as oil. Drop volumes were controlled by adjusting the flow rates of fluids A and B. The contact angle was adjusted indirectly by varying the amount of surfactant adsorbed to the particle surface. The encapsulation process was visualized with a high-speed video camera. We observed cases ranging from partial to complete encapsulation and examined experimentally and theoretically the shape of the interface between fluid A and fluid B as a function of the drop volume. The numerically predicted position of the pinning line and the shape of the drop were compared to experimentally produced conformations and agreed favorably. This work was supported by ITMAT (UL1RR024134 from the NCRR) and the Penn MRSEC (NSF DMR-1120901).

  19. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  20. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-01

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  1. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  2. Proceedings of the Second International Colloquium on Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  3. Pressure Drop and Heat Transfer Characteristics of The Fluid Flow through an Array of Interrupted, Parallel-Plate Heat Transfer Surfaces

    NASA Astrophysics Data System (ADS)

    Mochizuki, Sadanari; Yagi, Yoshinao

    A scale-up modeling technique was used to examine the effect of the geometrical properties of interrupted surfaces on the heat transfer and pressure drop performance of compact heat exchangers having off-set-strip and slotted fins. The test cores, each consisting of a number of machined copper finns, were tested in a subsonic wind tunnel. The heat transfer and the pressure drop for each test core was measured for various fin lengths (in flow direction) and slot distances. Flow visualization and local turbulence intensity and pressure measurements within each test core were also performed to gain insight into the mechanisms of heat transfer augmentation in compact heat exchangers with interrupted surfaces. The effect of the geometrical properties of the fins as well as the Reynolds number on the heat transfer rate and the pressure drop were determined and those results were interpreted in terms of observed flow structure. Basic heat transfer and pressure drop data are presented in terms of Colburn j-factors and Fanning friction factors plotted versus Reynolds number. An empirical correlation for heat transfer and pressure drop characteristics for off-set-strip fins are presented.

  4. The effect of an anti-allergic, nasal decongestant combination ('Dimotapp') and sodium cromoglycate nose drops on the histamine content of adenoids, middle ear fluid and nasopharyngeal secretions of children with secretory otitis media.

    PubMed

    Collins, M P; Church, M K

    1983-01-01

    Twenty-four children with secretory otitis media awaiting operation for removal of adenoids were studied to investigate the effects of an antihistamine/nasal decongestant combination ('Dimotapp') and sodium cromoglycate nasal drops on the histamine content of adenoids, middle ear fluid and nasopharyngeal secretions. The children were divided into three age and sex matched groups, one of which acted as a control, and received recommended therapeutic doses of either drug for 7 days immediately prior to operation. The results showed that total adenoid histamine content of both drug groups was significantly raised (p less than 0.05) when compared to the control group. Where present, neither 'Dimotapp' nor sodium cromoglycate had any effect on the mean free histamine in the middle ear fluid. In the sodium cromoglycate group the mean free histamine content of the nasopharyngeal secretions was significantly higher than in the control or 'Dimotapp' groups.

  5. Characterisation of heat transfer and pressure drop in condensation processes within mini-channel tubes with last generation of refrigerant fluids

    NASA Astrophysics Data System (ADS)

    Lopez Belchi, D. Alejandro

    Heat exchanger developments are driven by energetic efficiency increase and emissionreduction. To reach the standards new system are required based on mini-channels. Mini-channels can be described as tubes with one or more ports extruded in aluminiumwith hydraulic diameter are in the range of 0.2 to 3 mm. Its use in refrigeration systemsfor some years ago is a reality thanks to the human ability to made micro-scale systems.Some heat exchanger enterprises have some models developed specially for their use inautomotive sector, cooling sector, and industrial refrigeration without having a deepknowledge of how these reduced geometries affect the most important parameters suchas pressure drop and the heat transfer coefficient. To respond to this objective, an exhaustive literature review of the last two decades hasbeen performed to determinate the state of the research. Between all the publications,several models have been selected to check the predicting capacities of them becausemost of them were developed for single port mini-channel tubes. Experimentalmeasurements of heat transfer coefficient and frictional pressure drop were recorded inan experimental installation built on purpose at the Technical University of Cartagena.Multiple variables are recorded in this installation in order to calculate local heattransfer coefficient in two-phase condensing flow within mini-channels. Both pressure drop and heat transfer coefficient experimental measurements arecompared to the previously mentioned models. Most of them capture the trend correctlybut others fail predicting experimental data. These differences can be explained by theexperimental parameters considered during the models development. In some cases themodels found in the literature were developed specific conditions, consequently theirpredicting capacities are restricted. As main contributions, this thesis provides new modelling tools for mini-channelscondensing pressure drop and heat transfer coefficient

  6. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  7. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  8. Leidenfrost drops: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Brandenbourger, M.; Sobac, B.; Biance, A.-L.; Colinet, P.; Dorbolo, S.

    2015-04-01

    A specific experimental set-up has been installed in a large centrifuge facility in order to study different aspects of Leidenfrost drops under high-gravity conditions (5, 10, 15 and 20 times the Earth gravity). In particular, the drop lifetime and more precisely the variations of drop diameter vs. time have shown to be in good agreement with previous experiments and scaling analysis (Biance A.-L. et al., Phys. Fluids, 15 (2003) 1632). Moreover, so-called chimneys are expectedly observed in the large puddles, the distance between two chimneys depending linearly on the capillary length. Finally, the Leidenfrost point, i.e. the temperature above which the Leidenfrost effect takes place, was unexpectedly found to increase slightly with gravity. A qualitative explanation based on a refined model (Sobac B. et al., Phys. Rev. E, 90 (2014) 053011) recognizing the non-trivial shape of the vapor film under the drop is proposed to explain this observation.

  9. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  10. Binary drop coalescence in liquids

    NASA Astrophysics Data System (ADS)

    Kim, Jungyong

    Experiments on binary drop collisions within an index-matched liquid were conducted for Weber numbers (We) of 1-50 and collision angles of 15-80° below the horizontal. Drop pairs of water/glycerin mixture were injected into silicone oil and, due to gravitational effects, traveled on downward trajectories before colliding. A dual-field high-speed PIV measurement system was employed to quantify drop trajectories and overall collision conditions while simultaneously examining detailed velocity fields near the collision interface. In the We range examined, for equal size drops, both rebounding and coalescing behavior occurred. The drops coalesced for We > 10 and rebounded for We < 10, and this boundary was found to be insensitive to collision angle. Coalescence was found to result from a combination of vortical flow within drops and strong drop deformation characteristic of higher We. Flow through the centers of opposing ring vortices, strengthened by drop deformation, enhanced drainage of the thin film in the impact region, leading to film rupture and coalescence. The collision angle affected the eventual location of film rupture, with the rupture location moving higher in the thin film region as the collision angle increased. The film rupture location correlated closely with the location of maximum downward velocity in the thin film. The time between collision and rupture increases with We until We = 30. For We > 30, the time decreases as We increases. Unequal size drop collisions with drop size ratios (Ds/D L) of 0.7 and 0.5 were also examined. Coalescence occurs above We* = 11 similar to equal size drops. As drop size ratio decreases, the intervening film deforms more. If the velocity ratio uL/u s < 1, the deformed interface becomes flat before coalescence. The rupture location varies due to the asymmetry of the drops. As collision offset increases (B > 0), the film rupture time is shortened and mixing of the fluid from both drops is enhanced after coalescence

  11. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  12. Review on drop towers and long drop tubes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.

    1987-01-01

    A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.

  13. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  14. Computational analysis of drop-on-demand drop formation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Basaran, Osman A.

    2007-10-01

    Motivated by the desire to improve the theoretical understanding of drop-on-demand (DOD) ink-jet printing, a computational analysis is carried out to simulate the formation of liquid drops of incompressible Newtonian fluids from a simple capillary tube by imposing a transient flow rate upstream of the nozzle exit. Since the flow in a typical ink-jet nozzle is toward the nozzle outlet during part of the time and away from the nozzle outlet at other times, an inflow rate is adopted here that captures the essential physics and is given in dimensionless form by Q =(π√We /2)sinΩt, where We is the Weber number (inertial/surface tension force), Ω is the frequency, and t is time. The dynamics are studied as functions of We, Ω, and the Ohnesorge number Oh (viscous/surface tension force). For a common ink forming from a nozzle of 10μm radius, Oh =0.1. For this typical case, a phase or operability diagram in (We,Ω)-space is developed that shows that three regimes of operation are possible. In the first regime, where We is low, breakup does not occur, and drops remain pendant from the nozzle and undergo time periodic oscillations. Thus, the simulations show that fluid inertia, and hence We, must be large enough if a DOD drop is to form, in accord with intuition. A sufficiently large We causes both drop elongation and onset of drop necking, but flow reversal is also necessary for the complete evacuation of the neck and capillary pinching. In the other two regimes, at a given Ω, We is large enough to cause drop breakup. In the first of these two regimes, where Wec1drops do form but have negative velocities, i.e., they would move toward the nozzle upon breakup, which is undesirable. In the second breakup regime, where We >Wec2, not only are DOD drops formed, but they do so with positive velocities.

  15. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  16. Head-on collision of drops: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Nobari, M. R.; Jan, Y.-J.; Tryggvason, G.

    1993-01-01

    The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again.

  17. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  18. A Different Cone: Bursting Drops in Solids

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  19. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  20. Thermocapillary Migration and Interactions of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Lacy, Claud E.; Wozniak, Guenter; Subramanian, R. Shankar

    1996-01-01

    When a drop or bubble is placed in another fluid and subjected to the action of a temperature gradient, the drop will move. Such motion is a direct consequence of the variation of interfacial tension with temperature, and is termed thermocapillary migration. This paper discusses results from experiments conducted in reduced gravity on the thermocapillary motion of bubbles and drops.

  1. Non-coalescence of oppositely charged drops.

    PubMed

    Ristenpart, W D; Bird, J C; Belmonte, A; Dollar, F; Stone, H A

    2009-09-17

    Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to 'bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction. PMID:19759616

  2. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup

    NASA Astrophysics Data System (ADS)

    Pillai, R.; Berry, J. D.; Harvie, D. J. E.; Davidson, M. R.

    2015-07-01

    The deformation and breakup of an axisymmetric, conducting drop suspended in a nonconducting medium and subjected to an external electric field is numerically investigated here using an electrokinetic model. This model uses a combined level set-volume of fluid formulation of the deformable surfaces, along with a multiphase implementation of the Nernst-Planck equation for transport of ions, that allows for varying conductivity inside the drop. A phase diagram, based on a parametric study, is used to characterize the stability conditions. Stable drops with lower ion concentration are characterized by longer drop shapes than those achieved at higher ion concentrations. For higher drop ion concentration, greater charge accumulation is observed at drop tips. Consequently, such drops break up by pinching off rather than tip streaming. The charge contained in droplets released from unstable drops is shown to increase with drop ion concentration. These dynamic drop behaviors depend on the strength of the electric field and the concentration of ions in the drop and result from the interplay between the electric forces arising from the permittivity jump at the drop interface and the ions in the bulk.

  3. Method and apparatus for producing drops using a drop-on-demand dispenser

    SciTech Connect

    Chen, Alvin U.; Basaran, Osman A.

    2003-01-01

    A method and apparatus for dispensing fluid from a drop-on-demand (DOD) fluid dispenser. The method involves withdrawing fluid in the dispenser for a first duration of time, followed by a second duration of time during which the fluid is propelled toward the orifice of the dispenser. Following the period during which the fluid is propelled, there is a second withdrawing of the fluid into the dispenser. The duration of the propelling period is shorter than the duration of either the first withdrawing or the second withdrawing. The propelling of the fluid results in the extension of a small tongue of fluid from the meniscus of the fluid. The second withdrawing of the fluid results in a retraction of the meniscus into the passageway such that only the small tongue of fluid separates and is ejected from the dispenser.

  4. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  5. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  6. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  7. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  8. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  9. Apfel's superheated drop detector

    NASA Astrophysics Data System (ADS)

    D'Errico, Francesco

    2001-05-01

    The introduction of new approaches for radiation dosimetry is rare. A similar breakthrough occurred in 1979, when Robert Apfel invented the superheated drop detector, a miniature relative of the bubble chamber. A fundamental in high-energy particle physics, the bubble chamber utilizes a liquid briefly brought to a transient, radiation-sensitive superheated state by reducing its pressure. Mass boiling of the liquid is prevented by cyclic pressurization, drastically limiting the detection efficiency. In Apfel's detector, the liquid is kept in a steady superheated state by fractionating it into droplets and dispersing them in an immiscible host fluid, a perfectly smooth and clean container. The approach extends the lifetime of the metastable droplets to the point that practical application in radiation dosimetry is possible. Bubble formation is measured from the volume of vapor or by detecting individual vaporizations acoustically. Various halocarbons are employed and this permits a wide range of applications. Moderately superheated halocarbons are used for neutron measurements, since they are only nucleated by energetic neutron recoil particles. Highly superheated halocarbons nucleate with much smaller energy deposition and are used to detect photons and electrons. This paper reviews the radiation physics of superheated emulsions and their manifold applications.

  10. Conically shaped drops in electric fields

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  11. Low-Pressure-Drop Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Thornborrow, John

    1994-01-01

    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  12. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  13. Computations of drop collision and coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nobari, Mohammed H. R.; Nas, Selman

    1994-01-01

    Computations of drops collision and coalescence are presented. The computations are made possible by a recently developed finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the boundaries between the various collision modes for drops of equal size and two examples, one of a 'reflective' collision and another of a 'grazing' collision is shown. From drops of unequal size, coalescence can result in considerable mixing between the fluid from the small and the large drop. This problem is discussed and one example showed. In many cases it is necessary to account also for heat transfer along with the fluid mechanics. We show two preliminary results where we are using extensions of the method to simulate such a problem. One example shows pattern formation among many drops moving due to thermal migration, the other shows unstable evolution of a solidification front.

  14. Computational analysis of DOD drop formation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Basaran, Osman

    2007-11-01

    A fundamental theoretical understanding of drop-on-demand (DOD) ink jet printing remains weak despite the widespread use of the method in practical applications for two decades. To overcome this deficiency, a computational analysis is carried out to simulate the formation of liquid drops of incompressible Newtonian fluids from a nozzle by imposing a transient flow rate upstream of the nozzle exit. The dynamics are studied as functions of the Ohnesorge number Oh (viscous/surface tension force) and the Weber number We (inertial/surface tension force). For a common ink forming from a nozzle of 10 micrometer radius, Oh=0.1. For this typical case, a phase or operability diagram is developed that shows that three regimes of operation are possible. In the first regime, where We is low, breakup does not occur, and drops remain pendant from the nozzle and undergo time periodic oscillations. Thus, the simulations show that sufficient fluid inertia, or a sufficiently large We, is required if a DOD drop is to form, in accord with intuition. At high We, two regimes exist. In the first of these two regimes, DOD drops do form but have negative velocities, i.e. they would move toward the nozzle upon breakup, which is undesirable. In the second breakup regime, not only are DOD drops formed but they do so with positive velocities.

  15. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  16. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  17. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  18. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  19. Sessile Rayleigh drop instability

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  20. Dielectrophoresis of a surfactant-laden viscous drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  1. Pattern formation in drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J.

    2011-01-01

    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.

  2. Gravity driven current during the coalescence of two sessile drops

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Oberdick, Samuel D.; Swanson, Ellen R.; Anna, Shelley L.; Garoff, Stephen

    2015-02-01

    Coalescence of liquid drops is critical in many phenomena such as emulsion stability, inkjet printing, and coating applications. For sessile drops on a solid surface, the coalescence process is more complicated than the coalescence of drops suspended in a fluid medium as a result of the coupling of the contact line motions to the fluid flow. In this paper, we use video microscopy to track the evolution of the interfaces and contact lines as well as the internal fluid motion within a merged sessile droplet. In this study, the fluids in the coalescing drops are miscible and have similar surface tensions and drop volumes but different viscosities and densities. Coalescence occurs in three stages. During the first stage, rapid healing of the bridge between the drops occurs just after they touch. In the second stage, slower rearrangement of the liquids occurs. We show that these intermediate rearrangements are driven by gravity even for density differences of the two fluids as small as 1%. For the systems examined, little to no mixing occurs during these first two stages. Finally, in the third stage, diffusion leads to mixing of the fluids. Dimensional analysis reveals the scaling of the intermediate flow behavior as a function of density difference and geometric dimensions of the merged drop; however, the scaling with viscosity is more complicated, motivating development of a lubrication analysis of the coalescence problem. Numerical calculations based on the lubrication analysis capture aspects of the experimental observations and reveal the governing forces and time scales of the coalescence process. The results reveal that internal fluid motions persist over much longer time scales than imaging of the external interface alone would reveal. Furthermore, nearly imperceptible motions of the external composite drop interface can lead to important deviations from the predominant gravity current scaling, where viscous resistance of the lighter fluid layer plays a

  3. Characterization of biofluids prepared by sessile drop formation.

    PubMed

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J

    2014-06-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.

  4. Characterization of biofluids prepared by sessile drop formation.

    PubMed

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J

    2014-06-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques. PMID:24757707

  5. The Flow Induced by the Coalescence of Two Initially Stationary Drops

    NASA Technical Reports Server (NTRS)

    Nobari, M. R.; Tryggvason, G.

    1994-01-01

    The coalescence of two initially stationary drops of different size is investigated by solving the unsteady, axisymmetric Navier-Stokes equations numerically, using a Front-Tracking/Finite Difference method. Initially, the drops are put next to each other and the film between them ruptured. Due to surface tension forces, the drops coalesce rapidly and the fluid from the small drop is injected into the larger one. For low nondimensional viscosity, or Ohnesorge number, little mixing takes place and the small drop fluid forms a blob near the point where the drops touched initially. For low Ohnesorge number, on the other hand, the small drop forms a jet that penetrates far into the large drop. The penetration depth also depends on the size of the drops and shows that for a given fluid of sufficiently low viscosity, there is a maximum penetration depth for intermediate size ratios.

  6. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  7. Sliding viscoelastic drops on slippery surfaces

    NASA Astrophysics Data System (ADS)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  8. Jumps, somersaults, and symmetry breaking in Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Chen, Simeng; Bertola, Volfango

    2016-08-01

    When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has been found that small quantities (˜100 ppm) of polymer additives such as polyethylene oxide can significantly increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity drops.

  9. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.

    PubMed

    Chen, Simeng; Bertola, Volfango

    2016-08-01

    When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has been found that small quantities (∼100 ppm) of polymer additives such as polyethylene oxide can significantly increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity drops. PMID:27627234

  10. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics

    PubMed Central

    Bithi, Swastika S.; Wang, William S.; Sun, Meng; Blawzdziewicz, Jerzy; Vanapalli, Siva A.

    2014-01-01

    Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples. PMID:25379078

  11. Characterization of Biofluids Prepared by Sessile Drop Formation

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.; Roessler, Blake J.

    2014-01-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50–90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50–90°, a ring-shaped deposit was formed. Analysis of the drying drop’s geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques. PMID:24757707

  12. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  13. Electrohydrodynamics of a surfactant-covered drop

    NASA Astrophysics Data System (ADS)

    Oberlander, Andrew; Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for a polybutadiene (PB) drop suspended in silicon oil (PDMS). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with the theory of Nganguia et al. (2013) for the steady shapes, and a new model developed by us which accounts for polarization relaxation. The latter effect turns to be significant for our system of very low conductivity fluids, for which the Maxwell-Wagner time is of the order of tens of seconds. We will discuss the complex interplay of shape deformation, surfactant redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. Supported by NSF-CBET-1132614.

  14. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  15. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  16. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  17. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  18. The fate of electrospray drops

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Collins, Robert; Sambath, Krishnaraj; Harris, Michael

    2015-11-01

    Drops subjected to strong electric fields emit thin fluid jets from conical structures (Taylor cones) that form at their surfaces. Such behavior has practical, e.g. electrospray mass spectrometry, and fundamental, e.g. raindrops in thunderclouds, implications. Theoretical analysis of the temporal development of such EHD tip-streaming phenomena is challenging given the large disparity in length scales between the macroscopic drops and the microscopic jets. Furthermore, there exist conflicting theories and measurements on the size and charge of these small electrospray droplets. We use theory and simulation to show that conductivity can be tuned to yield three scaling regimes for droplet radius and charge, a finding missed by previous studies. The amount of charge Q that electrospray droplets carry determines whether they are coulombically stable and charged below the Rayleigh limit of stability R or are unstable and hence prone to further explosions once formed. Previous experiments reported droplet charge values ranging from 1/10th to in excess of R. Simulations unequivocally show that electrospray droplets are coulombically stable at the instant they are created and that there exists a universal scaling law for droplet charge, Q=0.44 R.

  19. On the Stability of Rotating Drops

    PubMed Central

    Nurse, A. K.; Coriell, S. R.; McFadden, G. B.

    2015-01-01

    We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system (“driven drops”), or (ii) a prescribed angular momentum (“isolated drops”). For families of axisymmetric drops instabilities may occur for either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013]. PMID:26958440

  20. Surface structuring of particle laden drops using electric fields

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Fossum, J. O.

    2016-07-01

    Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

  1. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  2. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  3. Drop interaction with the ejecta sheet

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.; Takehara, K.; Etoh, T. G.; Ray, P.; Josserand, C.; Zaleski, S.

    2011-11-01

    We studied experimentally and numerically the dynamics of the ejecta sheet produced by a drop impacting on a deep pool of the same liquid at high Reynolds and Weber numbers. Ultra-high speed imaging revealed a diversity of evolutions by using different mixtures of water and glycerine, and different impact velocities. We observed a transition from a smooth ejecta sheet to a more irregular splashing for a Reynolds number of 3500. In this transition regime, the ejecta sheet interacts with the impacting drop. This interaction can pull the ejecta sheet towards the centre of the drop at lower splash parameters, or generate a bumping on the ejecta sheet moving outwards at higher splash parameters. The volume of fluid (VOF) code Gerris was used to reproduce numerically this peculiar dynamics in axisymmetric conditions. Very good agreement with the experiments was reached by using adaptive refinement and parallelization of the calculations.

  4. Drum drop test report

    SciTech Connect

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  5. Hydrodynamic interaction of two deformable drops in confined shear flow

    NASA Astrophysics Data System (ADS)

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  6. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation. PMID:25314532

  7. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels.

    PubMed

    Stan, Claudiu A; Guglielmini, Laura; Ellerbee, Audrey K; Caviezel, Daniel; Stone, Howard A; Whitesides, George M

    2011-09-01

    Particles, bubbles, and drops carried by a fluid in a confined environment such as a pipe can be subjected to hydrodynamic lift forces, i.e., forces that are perpendicular to the direction of the flow. We investigated the positioning effect of lift forces acting on buoyant drops and bubbles suspended in a carrier fluid and flowing in a horizontal microchannel. We report experiments on drops of water in fluorocarbon liquid, and on bubbles of nitrogen in hydrocarbon liquid and silicone oil, inside microchannels with widths on the order of 0.1-1 mm. Despite their buoyancy, drops and bubbles could travel without contacting with the walls of channels; the most important parameters for reaching this flow regime in our experiments were the viscosity and the velocity of the carrier fluid, and the sizes of drops and bubbles. The dependencies of the transverse position of drops and bubbles on these parameters were investigated. At steady state, the trajectories of drops and bubbles approached the center of the channel for drops and bubbles almost as large as the channel, carried by rapidly flowing viscous liquids; among our experiments, these flow conditions were characterized by larger capillary numbers and smaller Reynolds numbers. Analytical models of lift forces developed for the flow of drops much smaller than the width of the channel failed to predict their transverse position, while computational fluid dynamic simulations of the experiments agreed better with the experimental measurements. The degrees of success of these predictions indicate the importance of confinement on generating strong hydrodynamic lift forces. We conclude that, inside microfluidic channels, it is possible to support and position buoyant drops and bubbles simply by flowing a single-stream (i.e., "sheathless") carrier liquid that has appropriate velocity and hydrodynamic properties.

  8. Drop breakup and deformation in sudden onset strong flows

    NASA Astrophysics Data System (ADS)

    Marks, Charles Raphael

    This work characterizes the deformation and breakup of a single drop subjected to a sudden onset shear flow. The drop is immersed in a second fluid (the matrix) with which it is immiscible. A cylindrical couette device is used to create a flow field which, in the absence of the drop, would constitute a close approximation of simple shear flow. The magnitude of the imposed shear rate was greater than that which would be necessary to just break the drop. The experiments conducted were limited to matrix fluid viscosities above 7Pa˙ s and shear rates below 15/s, ensuring that the flows considered were inertialess. The matrix fluid was a corn syrup solution. The drop fluids were polybutadiene, paraffin oil and silicone oil, leading to a range of interfacial tensions. At the shear rates used in these experiments the fluids used Newtonian. Viscosity ratios (drop/matrix) ranging from 0.01 to 1 were considered. Two breakup mechanisms were observed to contribute to the dispersion of the original drop. In all cases elongative end pinching, defined by this study, caused the ends of a stretching drop to break off and form daughter drops. Breakup due to elongative end pinching was always the first breakup observed. The daughter drops formed by elongative end pinching were always the largest daughter drops formed. In cases when the experimental conditions were sufficiently stronger than the critical conditions (needed to just barely break up the drop), a second type of breakup, capillary wave breakup, was also observed. Measurement of the characteristic time scales and length scales were made of each type of breakup. The lengths (a) were found to scale as capillary numbers: Ca=a mg/s. The times (t) were found to scale as strains: s=t g. A qualitative explanation for the capillary number scaling is presented and quantitatively compared to predictions based on small deformation analysis. Additionally the daughter drop size distributions resulting from drop breakup is characterized

  9. Bursting drops in solid dielectrics caused by high voltages

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-10-01

    Fluid drops tend to be spheres—a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  10. Bursting drops in solid dielectrics caused by high voltages.

    PubMed

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-01-01

    Fluid drops tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting. PMID:23093194

  11. Bursting drops in solid dielectrics caused by high voltages.

    PubMed

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-01-01

    Fluid drops tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  12. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  13. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface

  14. Creeping motion and deformation of liquid drops in flow through 2D model porous media

    SciTech Connect

    Fong, I. )

    1988-01-01

    The motion, deformation and breakup of immiscible drops suspended in low Reynolds number flow through cylinder arrays has been studied experimentally to assess the applicability of the 2D model as a prototype for 2-phase flow through porous media. Both Newtonian and non-Newtonian fluid systems are considered. The relationship between key flow and geometric parameters and the critical condition for breakup, the resulting drop site distribution and the drop mobility is investigated. It is observed that the headon impact of a drop with a cylinder is an effective precursor to severe drop deformation and even breakup. The sequence of flow leading to impact is also important in determining the effectiveness of impact to result in breakup. When many drops fragments are present, the interaction between nearby drops strongly influences the final disposition of the fragments. Fluid elasticity appears to enhance the elongation of drops to form strands, but also to stabilize the strand against breakup.

  15. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  16. Dynamics of Rising Dispersant Laden Oil Drops in a Quiescent Environment

    NASA Astrophysics Data System (ADS)

    Castillo-Aponte, Khalil; Mehdi, Faraz; Sheng, Jian

    2014-11-01

    We study the dynamics of rising oil drops in a quiescent fluid chamber under uniform and density stratified conditions. Digital in-line holography allows for high resolution topological measurements and tracking of drop trajectories. Statistics of rising velocities, drop shapes and sizes are compared as functions of different oil-dispersant ratios. A conceptual model of an oil drop developing appendages and its subsequent breakdown into much smaller droplets is also discussed.

  17. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  18. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  19. Liquid drops impacting superamphiphobic coatings.

    PubMed

    Deng, Xu; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2013-06-25

    The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol-water and glycerin-water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase.

  20. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  1. Pressure Drop Reduction of Slush Nitrogen in Turbulent Pipe Flows

    NASA Astrophysics Data System (ADS)

    Ohira, K.; Nozawa, M.; Ishimoto, J.; Koizumi, N.; Kamiya, T.

    2008-03-01

    Slush fluid such as slush hydrogen and slush nitrogen is a two-phase (solid-liquid) single-component cryogenic fluid containing solid particles in liquid, and consequently its density and refrigerant capacity are greater than for liquid state fluid. Experimental tests were performed with slush nitrogen to obtain the frictional pressure drop flowing in a 15 mm internal diameter, 400 mm long, horizontal, stainless steel pipe. The primary objective of this study was to investigate the pressure drop reduction phenomenon with changes in velocity and solid fraction. From the experimental results, the pressure drop correlation between the friction factor and the Reynolds number was obtained and an empirical correlation was derived. Flow patterns for slush nitrogen inside a pipe and the behavior of solid particles were also observed using a high speed camera.

  2. Coalescence of Liquid Drops

    NASA Technical Reports Server (NTRS)

    Yao, Wei-Jun

    2003-01-01

    When two liquid drops come into contact, a neck forms between them and grows rapidly. We are interested in the very early stage of the coalescence process, which can be characterized by the time dependence of the radius of the neck. The functional dependence of the size of the neck on time depends on the properties of the liquid. Experimentally, we are investigating a liquid in Stokes flow regime where the viscosity provides the principal retarding force to the surface tension. Recently, it has been predicted that the neck radius should change as t ln|t| in this regime. Theoretically, we have studied the situation when the velocity at each point on the surface is proportional to the local curvature and directed normal to the surface. This is the case that should be applicable to superfluid helium at low temperature when the mean free path of the thermal excitations are comparable to the size of liquid drops. For this system, the radius of the neck is found to be proportional to t(sup 1/3). We are able to find a simple expression for the shape of the interface in the vicinity of the neck.

  3. Symmetry breaking in drop bouncing on curved surfaces

    PubMed Central

    Liu, Yahua; Andrew, Matthew; Li, Jing; Yeomans, Julia M.; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time. PMID:26602170

  4. Deformation and stability of surfactant - or particle - laden drop

    NASA Astrophysics Data System (ADS)

    Brosseau, Quentin; Pradillo, Gerardo; Oberlander, Andrew; Vlahovska, Petia; SoftMech@Brown Team

    2015-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant or colloidal particles in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for leaky dielectric fluids: Polybutadiene (PB), Silicon oil (PDMS), and Castor oil (CO). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with existing theoretical models for the steady shape of surfactant covered droplet, and adjusted models taking into account the presence of colloidal spheres with range of electrical properties. We will discuss the complex interplay of shape deformation, surfactant elasticity, particle redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. We acknowledge grant NSF CBET 1437545 for funding.

  5. Patterns from drying drops.

    PubMed

    Sefiane, Khellil

    2014-04-01

    The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients.

  6. Patterns from drying drops.

    PubMed

    Sefiane, Khellil

    2014-04-01

    The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients. PMID:23746427

  7. Two-dimensional, high flow, precisely controlled monodisperse drop source

    NASA Astrophysics Data System (ADS)

    Dressler, John L.

    1993-03-01

    A versatile acoustically-driven fluid atomizer was designed and operated that creates precise monodisperse sprays by Rayleigh breakup or polydisperse sprays by the acoustic driving of amplitude dependent instabilities. The atomizer forms a cylindrical, conical, or flat (sheet) liquid jet by means of a photofabricated nozzle. The spray pattern and spray volume are altered by changing the nozzle. A piezoelectric driver, constructed to efficiently couple energy to the liquid, modulates the fluid velocity. When operated at low power, the drop generator can produce arrays of monodisperse drops as small as 15 microns in diameter. Operating the piezoelectric driver at high power produces perturbations with sufficient energy to break the liquid jets into drops, with a net increase in surface energy. The resulting drop sizes are influenced by the frequency and amplitude of the driving signal and nozzle size. The spatial distribution of the spray is controlled by the spacing and geometry of the holes in the nozzle plate, the amplitude of the acoustic signal, and the swirl in the fluid manifold. This device is more robust than the typical acoustic drop generator because small drops can be made from large holes, reducing the plugging problem. No air flow is used.

  8. Mechanically-Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua; Daniel, Susan; Steen, Paul

    2010-11-01

    The volume and contact-line mobility of a sessile drop determine the frequency response of the drop to mechanical excitation. A useful signature of the drop is its response to a sweep of frequency. At particular frequencies the drop exhibits standing wave patterns of different mode numbers and/or azimuthal, spinning motion. We report observations of the spectrum of standing wave patterns and compare to predictions of a linear stability theory. On the side of application, the results suggest how to tune the pinning-unpinning of a sessile drop in order to maximize its translation.

  9. Coffee Stains from Drops with Receding Contact Lines

    NASA Astrophysics Data System (ADS)

    Freed-Brown, Julian

    2015-03-01

    We present a framework for calculating the surface density profile of a coffee stain deposited by a drying drop with a receding contact line. For standard coffee stains, the fluid pins to the substrate, forces flow towards the exterior of the drop and deposits a thin, concentrated ring of particles. Unlike a pinned drop, a receding drop pushes fluid towards its interior and continuously deposits mass across its substrate as it evaporates. This gives rise to a new class of mountain-like morphologies that are not seen in the standard coffee ring effect but are reminiscent of recent experimental results. For a thin, circular drop with uniform evaporation, we calculate the surface density profile analytically and find that it diverges towards the center of the drop as η ~r - 1 / 2 , where r is the distance from the center. We estimate how this divergence is softened due to solute interactions at the final stage of drying. Our framework can easily be extended numerically or analytically to investigate novel stain morphologies left by drying drops of different shapes and evaporation profiles. This work is part of a thesis project advised by Tom Witten. It was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR 0820054.

  10. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  11. [The abdominal drop flap].

    PubMed

    Bodin, F; Liverneaux, P; Seigle-Murandi, F; Facca, S; Bruant-Rodier, C; Dissaux, C; Chaput, B

    2015-08-01

    The skin between the mastectomy scar and the future infra-mammary fold may be managed in different ways in delayed breast reconstruction using a DIEP (deep inferior epigastric perforator). Conserving this skin and positioning the flap skin paddle in the middle of the breast usually highlights skin color disparity because of two visible transition zones. Resection of the entire skin under the scar may be more aesthetic but limits direct closure possibility in case of flap failure. In order to benefit from both aesthetic result and safe surgical method, we propose the abdominal drop flap. The inferior thoracic skin flap is detached from the thoracic wall beyond the future infra-mammary fold, preserved and pushed under the breast.

  12. Drop shape visualization and contact angle measurement on curved surfaces.

    PubMed

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  13. Drop shape visualization and contact angle measurement on curved surfaces.

    PubMed

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. PMID:21889152

  14. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  15. Fluid imbalance

    MedlinePlus

    ... fluid imbalance; Hypernatremia - fluid imbalance; Hypokalemia - fluid imbalance; Hyperkalemia - fluid imbalance ... of sodium or potassium is present as well. Medicines can also affect fluid balance. The most common ...

  16. Free vibrations of a spherical drop constrained at an azimuth

    NASA Astrophysics Data System (ADS)

    Ramalingam, Santhosh; Ramkrishna, Doraiswami; Basaran, Osman A.

    2012-08-01

    Two droplets coupled through a liquid filled (a) hole in a plate or (b) tube is referred to as a double droplet system (DDS) or a capillary switch. Such capillary systems are gaining increasing attention due to their utility in applications. A particularly exciting application is one where a DDS is employed as a liquid lens, one flavor of which entails using a DDS as a variable focus lens by keeping it under sustained oscillations at its natural frequencies. The natural modes of oscillation of a DDS are determined analytically here in the limit in which the plate thickness (or tube length) is vanishingly small and when the effect of gravity is negligible compared to that of surface tension. In this limit, a DDS at rest reduces to two spherical caps that are pinned to and coupled along a common circular ring of contact of negligible thickness. Here, the caps are taken to be complementary pieces of a sphere so that the equilibrium state of the system is a sphere that is constrained by a ring of negligible thickness at an azimuthal angle with respect to the center of the sphere. Both the constrained drop and the fluid exterior to it are taken to be inviscid fluids undergoing irrotational flow. Similar to the linear oscillations of a free drop first studied by Rayleigh, the analytical formulation of the linear oscillations of the constrained drop results in a linear operator eigenvalue problem but with one additional boundary condition, i.e., that which accounts for zero shape perturbation along the circle of contact. Exploiting properties of linear operators, an implicit expression is obtained for the frequency of each mode of oscillation, a feat that appears not to have been accomplished to date in any problem involving oscillations of constrained drops. An extension of a method based on Green's functions that was developed to analyze the linear oscillations of a drop in contact with a spherical bowl [M. Strani and F. Sabetta, "Free-vibrations of a drop in partial

  17. Ultrasonic characterization of single drops of liquids

    SciTech Connect

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  18. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1990-01-01

    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature.

  19. Origin and dynamics of vortex rings in drop splashing

    NASA Astrophysics Data System (ADS)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  20. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  1. Origin and dynamics of vortex rings in drop splashing

    SciTech Connect

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  2. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  3. Electrohydrodynamic flow and chaotic mixing inside drops

    NASA Astrophysics Data System (ADS)

    Xu, Xiumei

    Electrohyodynamics, proposed by G. I. Taylor (1966), is the study of fluid motion under the influence of electric fields. In this work, we investigate theoretically and experimentally the electrohydrodynamic flow field inside a dielectric liquid drop and its application in driving chaotic mixing. Previous works on the electrohydrodynamic flows are mainly restricted to neutrally buoyant drops. Since settling drops are expected to occur more commonly in applications, in the first part of this thesis we extend Taylor's theory to deal with translating drops. Both shape distortion and charge convection, when coupled with an asymmetric velocity profile, will produce a net drag and a shift in the settling speed. Corrections to the settling velocity from both contributions are calculated to the first order. Experiments are performed using a PMM/castor oil system, and are in qualitative agreement with the theory: the deformations and the change in settling velocity are all proportional to E2, as predicted, and the settling speed shows the correct trends with drop size. In the second part of this thesis, we investigate three dimensional chaotic mixing driven by the electrohydrodynamic flows. A spatially uniform electric field is periodically switched through an angle, which is equivalent to switching the symmetry axis of the Taylor circulation back and forth, chaotic mixing is therefore generated inside a drop. Mixing efficiency is studied numerically by tracing trajectories of Lagrangian particles. Our calculations of the mixed volume fraction and Lyapunov exponents give optimal mixing conditions. Mixing experiments for a switching angle of 0.5pi are performed using a silicone oil/castor oil system, and show excellent agreement with the theory. In the third part of this thesis, we discuss effects of finite charge relaxation and charge convection on the flow field in both DC and AC electric fields. A pole-to-equator convection, acting together with a slow charge relaxation

  4. Bed of polydisperse viscous spherical drops under thermocapillary effects

    NASA Astrophysics Data System (ADS)

    Sharanya, V.; Raja Sekhar, G. P.; Rohde, Christian

    2016-08-01

    Viscous flow past an ensemble of polydisperse spherical drops is investigated under thermocapillary effects. We assume that the collection of spherical drops behaves as a porous media and estimates the hydrodynamic interactions analytically via the so- called cell model that is defined around a specific representative particle. In this method, the hydrodynamic interactions are assumed to be accounted by suitable boundary conditions on a fictitious fluid envelope surrounding the representative particle. The force calculated on this representative particle will then be extended to a bed of spherical drops visualized as a Darcy porous bed. Thus, the "effective bed permeability" of such a porous bed will be computed as a function of various parameters and then will be compared with Carman-Kozeny relation. We use cell model approach to a packed bed of spherical drops of uniform size (monodisperse spherical drops) and then extend the work for a packed bed of polydisperse spherical drops, for a specific parameters. Our results show a good agreement with the Carman-Kozeny relation for the case of monodisperse spherical drops. The prediction of overall bed permeability using our present model agrees well with the Carman-Kozeny relation when the packing size distribution is narrow, whereas a small deviation can be noted when the size distribution becomes broader.

  5. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  6. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  7. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  8. Electrokinetics of isolated electrified drops.

    PubMed

    Pillai, Rohit; Berry, Joseph D; Harvie, Dalton J E; Davidson, Malcolm R

    2016-04-14

    Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows.

  9. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  10. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  11. Orion Capsule Mockup is Dropped

    NASA Video Gallery

    An Orion capsule mockup is dropped from a plane 25,000 feet above the Arizona desert to test its parachute design. Orion will return to Earth at speeds faster than previous human spacecraft, and wi...

  12. He II heat transfer through random packed spheres: Pressure drop

    NASA Astrophysics Data System (ADS)

    Vanderlaan, M. H.; Van Sciver, S. W.

    2014-09-01

    Heat flow induced pressure drop through superfluid helium (He II) contained in porous media is examined. In this experiment, heat was applied to one side of a He II column containing a random pack of uniform size polyethylene spheres. Measured results include steady state pressure drops across the random packs of spheres (nominally 35 μm, 49 μm, and 98 μm diameter) for different heat inputs. Laminar, turbulent, and transition fluid flow regimes are examined. The laminar permeability and equivalent channel shape factor are compared to our past studies of the temperature drop through He II in the same porous media of packed spheres. Results from the pressure drop experiments are more accurate than temperature drop experiments due to reduced measurement errors achieved with the pressure transducer. Turbulent results are fitted to models with empirically derived friction factors. A turbulent model considering only dynamic pressure losses in the normal fluid yields the most consistent friction factors. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits all regimes to within 10%.

  13. Unsteady Thermocapillary Migration of Isolated Drops in Creeping Flow

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1992-01-01

    The problem of an isolated immiscible drop that slowly migrates due to unsteady thermocapillary stresses is considered. All physical properties except for interfacial tension are assumed constant for the two Newtonian fluids. Explicit expressions are found for the migration rate and stream functions in the Laplace domain. The resulting microgravity theory is useful, e.g., in predicting the distance a drop will migrate due to an impulsive interfacial temperature gradient as well as the time required to attain steady flow conditions from an initially resting state.

  14. Damping of drop oscillations by surfactants and surface viscosity

    NASA Technical Reports Server (NTRS)

    Rush, Brian M.; Nadim, Ali

    1999-01-01

    An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.

  15. Structure and Dynamics of Interfaces: Drops and Films

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein

    2015-01-01

    We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.

  16. Dynamics of Drop Formation in an Electric Field.

    PubMed

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  17. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  18. Distinguishing between microscale gaseous bubbles and liquid drops

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.

  19. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  20. Automation of Axisymmetric Drop Shape Analysis Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Cheng, Philip Wing Ping

    The Axisymmetric Drop Shape Analysis - Profile (ADSA-P) technique, as initiated by Rotenberg, is a user -oriented scheme to determine liquid-fluid interfacial tensions and contact angles from the shape of axisymmetric menisci, i.e., from sessile as well as pendant drops. The ADSA -P program requires as input several coordinate points along the drop profile, the value of the density difference between the bulk phases, and gravity. The solution yields interfacial tension and contact angle. Although the ADSA-P technique was in principle complete, it was found that it was of very limited practical use. The major difficulty with the method is the need for very precise coordinate points along the drop profile, which, up to now, could not be obtained readily. In the past, the coordinate points along the drop profile were obtained by manual digitization of photographs or negatives. From manual digitization data, the surface tension values obtained had an average error of +/-5% when compared with literature values. Another problem with the ADSA-P technique was that the computer program failed to converge for the case of very elongated pendant drops. To acquire the drop profile coordinates automatically, a technique which utilizes recent developments in digital image acquisition and analysis was developed. In order to determine the drop profile coordinates as precisely as possible, the errors due to optical distortions were eliminated. In addition, determination of drop profile coordinates to pixel and sub-pixel resolution was developed. It was found that high precision could be obtained through the use of sub-pixel resolution and a spline fitting method. The results obtained using the automatic digitization technique in conjunction with ADSA-P not only compared well with the conventional methods, but also outstripped the precision of conventional methods considerably. To solve the convergence problem of very elongated pendant drops, it was found that the reason for the

  1. Bubble and Drop Nonlinear Dynamics experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  2. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  3. The dynamics of free liquid drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1988-01-01

    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space.

  4. Solidification of Drops in the MSFC Drop Tube

    NASA Technical Reports Server (NTRS)

    Brush, Lucien N.

    1998-01-01

    Silver drops (99.9%, 7 mm diameter) were levitated, melted, and released to fall through the Marshall Space Flight Center's 105 m drop tube in an He-6% H atmosphere at 170 degrees superheat. The extent of solidification during the approx. 4.6 s of free fall time prior to impact was measured experimentally and computed numerically using a newly developed solidification heat transfer model. Comparison of the experimental observation of the fraction of liquid transformed with the numerical solutions showed reasonable agreement. Possible modifications of the model, in an attempt to close the gap between the experiment and the model comparison are discussed.

  5. The stress system generated by an electromagnetic field in a suspension of drops

    NASA Technical Reports Server (NTRS)

    Erdogan, M. E.

    1982-01-01

    The stress generated in a suspension of drops in the presence of a uniform electric field and a pure straining motion, taking into account that the magnetohydrodynamic effects are dominant was calculated. It was found that the stress generated in the suspension depended on the direction of the applied electric field, the dielectric constants, the vicosity coefficients, the conductivities, and the permeabilities of fluids inside and outside the drops. The expression of the particle stress shows that for fluids which are good conductors and poor dielectrics, especially for larger drops, magnetohydrodynamic effects end to reduce the dependence on the direction of the applied electric field.

  6. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  7. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure. PMID:27385506

  8. Measurement of extensional viscosity using the falling drop technique. Final report, October 27, 1992--September 27, 1996

    SciTech Connect

    Jones, D.K.; Wildman, D.J. |

    1998-02-01

    In the falling drop technique, a drop is formed by slowly extruding a liquid downward through a small tube. The drop eventually falls, and fluid adheres to both the tube and the drop, creating a distinct extending fiber. Extensional viscosity may be determined by measuring the dimensions of the fiber as it extends. The flow of fluid in a falling drop has been modeled in order to determine extensional viscosity by measuring the extending fiber. A falling drop rheometer was built, and fiber dimensions were measured using two digital cameras and an image processing system. Extensional viscosity was measured for various solutions of glycerol, xanthan gum, and water. The falling drop technique proved to be an effective extensional rheometer for a range of solution concentrations. 6 refs., 3 figs., 1 tab.

  9. Fat drops in wrist tendon sheaths on MRI in conjunction with a radius fracture.

    PubMed

    Verhagen, Martijn V; Chesaru, Ileana

    2016-08-01

    A case is presented in which fat drops are seen on MRI inside extensor compartment 2 and 3, in conjunction with a radius fracture. The occurrence of traumatic tendon sheath fat-fluid levels has been sparsely reported on CT and MR imaging. This case is the first report of post-traumatic tendon sheath fat drops. Although the clinical relevance of tendon sheath fat drops seems to be limited, it is important to detect and correctly diagnose these fat drops in order to provide an accurate and complete radiologic report. PMID:27170371

  10. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  11. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  12. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.

    PubMed

    Riboux, Guillaume; Gordillo, José Manuel

    2014-07-11

    Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from μ=3×10(-4) to μ=10(-2)  Pa s, and interfacial tension coefficients varying between σ=17 and σ=72  mN m(-1). Our predictions are also in fair agreement with the measured critical speed of drops impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005). PMID:25062193

  13. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.

    PubMed

    Riboux, Guillaume; Gordillo, José Manuel

    2014-07-11

    Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from μ=3×10(-4) to μ=10(-2)  Pa s, and interfacial tension coefficients varying between σ=17 and σ=72  mN m(-1). Our predictions are also in fair agreement with the measured critical speed of drops impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005).

  14. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be...

  15. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to...

  16. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960....

  17. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point...

  18. Getting the Drop on Sediment

    ERIC Educational Resources Information Center

    Galindez, Peter

    1977-01-01

    In this exercise, students examine Aristotle's weight hypothesis by testing variously shaped marble chips. These chips are weighed and dropped down a water tube. Average fall times and weights are recorded and graphed. Students are asked to apply this information to rock and soil deposition by streams. (MA)

  19. Egg Drop: An Invention Workshop

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1973-01-01

    Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)

  20. ``Quantum'' interference with bouncing drops

    NASA Astrophysics Data System (ADS)

    Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens

    2013-11-01

    In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.

  1. The rate of collisions due to Brownian or gravitational motion of small drops

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoguang; Davis, Robert H.

    1991-01-01

    Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.

  2. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.

    PubMed

    Das, Arup K; Das, Prasanta K

    2009-10-01

    Smoothed particle hydrodynamics (SPH) is used to numerically simulate the movement of drops down an inclined plane. Diffuse interfaces have been assumed for tracking the motion of the contact line. The asymmetric shape of the three-dimensional drop and the variation of contact angle along its periphery can be calculated using the simulation. During the motion of a liquid drop down an inclined plane, an internal circulation of liquid particles is observed due to gravitational pull which causes periodic change in the drop shape. The critical angle of inclination required for the inception of drop motion is also evaluated for different fluids as a function of drop volume. The numerical predictions exhibit a good agreement with the published experimental results.

  3. Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient.

    PubMed

    Das, A K; Das, P K

    2010-06-15

    A liquid drop placed over a solid surface with a wettability gradient self-propels to minimize its surface energy. It can also climb an inclined plane if the applied gradient strength is high enough. We investigate the motion of liquid drops over an inclined gradient surface using a unique 3D computational technique. The technique combines diffuse interface in a smoothed particle hydrodynamics simulation to study the internal fluid structure and the contact line dynamics. Simulation results reveal that drop motion is dependent on its volume, surface inclination, and the strength of the wettability gradient. It has been demonstrated that, depending on these parameters, a drop can experience upward or downward motion or can remain stationary on the inclined plane. Finally, drop mobility maps which give an idea about the regimes of uphill and downhill movement of a drop over gradient surfaces have been proposed.

  4. Computations of the deformation and solidifcation of impinging liquid metal drops

    NASA Astrophysics Data System (ADS)

    Che, Judy; Tryggvason, Gretar; Ceccio, Steven

    1997-11-01

    The solidification of individual liquid metal drops impacting a cold wall, as well as the deposition of subsequent drops characterized by drop remelt, coalescence, and solidification, are simulated numerically. The numerical method fully couples fluid flow and heat transfer and is based on a single set of conservation equations written for all phases, allowing for arbitrary changes in material properties. Solidification is modeled as a stable, planar solid-liquid interface, which is valid for both pure and eutectic systems with no initial thermal undercooling. Using this technique, towers have been built by depositing drops on top of one another. Low Weber number simulations produce short, squat towers, while high Weber number cases generate tall, slender towers. Within a tower, each drop takes on a final shape based on the Peclet number and the non- dimensional freezing temperature. In some high Peclet number cases, divots freeze onto a drop's surface forming a pore at the axis of the tower. Supported by NASA.

  5. More investigations in capillary fluidics using a drop tower

    NASA Astrophysics Data System (ADS)

    Wollman, Andrew; Weislogel, Mark; Wiles, Brently; Pettit, Donald; Snyder, Trevor

    2016-04-01

    A variety of contemplative demonstrations concerning intermediate-to-large length scale capillary fluidic phenomena were made possible by the brief weightless environment of a drop tower (Wollman and Weislogel in Exp Fluids 54(4):1, 2013). In that work, capillarity-driven flows leading to unique spontaneous droplet ejections, bubble ingestions, and multiphase flows were introduced and discussed. Such efforts are continued herein. The spontaneous droplet ejection phenomena (auto-ejection) is reviewed and demonstrated on earth as well as aboard the International Space Station. This technique is then applied to novel low-g droplet combustion where soot tube structures are created in the wakes of burning drops. A variety of new tests are presented that routinely demonstrate `puddle jumping,' a process defined as the spontaneous recoil and ejection of large liquid drops from hydrophobic surfaces following the step reduction in `gravity' characteristic of most drop towers. The inverse problem of `bubble jumping' is also demonstrated for the case of hydrophilic surfaces. A variety of puddle jump demonstrations are presented in summary as a means of suggesting the further exploitation of drop towers to study such large length scale capillary phenomena.

  6. Experimental study of drop impacts on soap films

    NASA Astrophysics Data System (ADS)

    Yawar, Ali; Basu, Saikat; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Impinging drops on flowing and static soap films demonstrate at least three distinct types of impact regimes: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow for a moving film and for static films it gets assimilated within the film, and (c) it pierces through the film. The interaction presents a unique opportunity to explore the impact of a quasi one-dimensional object on a two-dimensional fluid, much like a comet impacting on a thin atmosphere. We present a detailed experimental study of droplet impacts on soap film flow, for a number of film inclination angles and falling heights of the drop. Imaging techniques employed include sodium lamp interferometry to measure film thickness fluctuations and particle tracking velocimetry to measure the velocity field. Film thickness measures approximately 10 microns and the drop diameter is 1 mm. We mostly observe the bouncing-off regime for smaller inclination angles. However, at higher impact angles, puncturing of the film becomes a more common occurrence. We show that when the drop bounces off the film, there is a momentum transfer leading to vortex dipole shedding, along with the generation of capillary waves; an impulsive regime that may share correspondence with the locomotion of water striders.

  7. Inkjet printing - the physics of manipulating liquid jets and drops

    NASA Astrophysics Data System (ADS)

    Martin, G. D.; Hoath, S. D.; Hutchings, I. M.

    2008-03-01

    Over the last 30 years inkjet printing technology has been developed for many applications including: product date codes, mailing shots, desktop printing, large-area graphics and, most recently, the direct writing of materials to form electronic, biological, polymeric and metallic devices. The new non-graphical applications require higher print rates, better resolution and higher reliability while printing more complex, non-Newtonian and heavily solids-loaded liquids. This makes the understanding of the physics involved in the precise manipulation of liquid jets and drops ever more important. The proper understanding and control of jet formation and subsequent motion of the jetted materials requires physical studies into material properties at very high shear rates, acoustic modes in print heads, instabilities of jets, drop formation, drop motion, stretching of fluid ligaments, the role of polymers in jet break up, electrical charging of drops and the aerodynamic and electrostatic interaction of jets and drops in flight. Techniques for observation, measurement and analysis are evolving to assist these studies. This paper presents some examples of the application of physics to understanding and implementing inkjet printing, including recent work at the Cambridge Inkjet Research Centre.

  8. Rayleigh Taylor instability of viscoelastic drops at high Weber numbers

    NASA Astrophysics Data System (ADS)

    Joseph, D. D.; Beavers, G. S.; Funada, T.

    2002-02-01

    Movies of the breakup of viscous and viscoelastic drops in the high-speed airstream behind a shock wave in a shock tube have been reported by Joseph, Belanger & Beavers (1999). They performed a Rayleigh Taylor stability analysis for the initial breakup of a drop of Newtonian liquid and found that the most unstable Rayleigh Taylor wave fits nearly perfectly with waves measured on enhanced images of drops from the movies, but the effects of viscosity cannot be neglected. Here we construct a Rayleigh Taylor stability analysis for an Oldroyd-B fluid using measured data for acceleration, density, viscosity and relaxation time [lambda]1. The most unstable wave is a sensitive function of the retardation time [lambda]2 which fits experiments when [lambda]2/[lambda]1 = O(10-3). The growth rates for the most unstable wave are much larger than for the comparable viscous drop, which agrees with the surprising fact that the breakup times for viscoelastic drops are shorter. We construct an approximate analysis of Rayleigh Taylor instability based on viscoelastic potential flow which gives rise to nearly the same dispersion relation as the unapproximated analysis.

  9. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    ERIC Educational Resources Information Center

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  10. Two touching spherical drops in a uniaxial compressional flow: The effect of interfacial slip

    NASA Astrophysics Data System (ADS)

    Goel, Sachin; Ramachandran, Arun

    2016-05-01

    This study presents a semi-analytical solution for the problem of two touching drops with slipping interfaces pushed against each other in a uniaxial compressional flow at low capillary and Reynolds numbers. The jump in the tangential velocity at the liquid-liquid interface is modeled using the Navier slip condition. Analytical solutions of the contact force, the drop-scale stresses, and the drop-scale pressure are provided as functions of the slip coefficient (" separators=" α ) , the viscosity ratio (" separators=" κ ) , and the drop size ratio (" separators=" k ) . Since unequal drop sizes are considered, two problems are solved in the tangent sphere co-ordinate system to determine the steady state position: a pair of touching drops with its contact point at the origin of an axisymmetric straining flow, and two touching drops placed in a uniform flow parallel to the axis of symmetry of the drops. A general observation is that the effect of slip is manifested most strongly for drops whose viscosity is much greater than the suspending fluid (" separators=" κ ≫ 1 ) . For highly viscous drops, the flow and stress fields transition from those corresponding to solid particles for ακ ≪ 1, to those for inviscid drops in the limit ακ ≫ 1. The analytical expressions provided here for the contact force and the stress distributions will serve to provide the restrictions that complete the definition of the lubrication flow problem in the thin film between the two colliding drops. While the contact force that drains fluid out of the thin film is relatively unaffected by slip, the tangential stress and pressure in the near-contact region are mitigated significantly for ακ ≫ 1. The latter is expected to assist coalescence at high capillary numbers.

  11. Shape change, engulfment, and breakup of partially engulfed compound drops undergoing thermocapillary migration.

    PubMed

    Lavrenteva, O M; Rosenfeld, L; Nir, A

    2011-11-01

    Compound drops comprise two or more immiscible phases, one of which entirely or partially engulfs the others. In this work we consider the thermocapillary-induced motion of partially engulfed compound drops, composed of two phases, in an immiscible fluid. If the capillary number is negligibly small, Ca < 1, the partially engulfed compound drop is composed of three spherical surface segments, intersecting at contact angles that are determined by the three interfacial tensions associated with the three fluid phases that make up the compound drop and the ambient medium. Corrections to the shapes of the undeformable case at Ca = 0 are expected to be of the order Ca. However, as the drop propagates through the nonisothermal fluid, the temperature at the three-phase contact line and, hence, the contact angles, may considerably change, resulting in a dramatic change of the compound drop shape. Moreover, the changes in the interfacial tensions may be so significant that the partially engulfed configuration may become impossible and either two immiscible parts of the compound drop separate or one of them becomes completely engulfed by the other.

  12. The Stability of Two Connected Pendant Drops

    NASA Technical Reports Server (NTRS)

    Slobozhanin, Lev A.; Alexander, J. Iwan

    2004-01-01

    The stability of an equilibrium system of two drops suspended from circular holes is examined. The drop surfaces are disconnected surfaces of a connected liquid body. For holes of equal radii and identical pendant drops axisymmetric perturbations are always the most dangerous. The stability region for two identical drops differs considerably from that for a single drop. Loss of stability leads to a transition from a critical system of identical drops to a stable system of axisymmetric non-identical. This system of non-identical drops reaches its own stability limit (to isochoric or non-isochoric paturbations). For non-identical drops, loss of stability results in dripping or streaming from the holes. Critical volumes for non-identical drops have been calculated as functions of the Bond number, B. For unequal hole radii, stability regions have been constructed for a set of hole radius, K. The dependence of critical volumes on K and B is analyzed.

  13. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  14. Automated Electric Charge Measurements of Fluid Microdrops Using the Millikan Method

    SciTech Connect

    Lee, E.

    2004-12-14

    Automated measurements of the electric charge of fluid microdrops precise to up to 0.016 of an electron charge have been made using machine-vision systems to observe the motion of fluid microdrops in air under the influence of an oscillating electric field. The fluid drop diameters have ranged from 7 to 25 mu m with smaller diameter drops being measured to higher precision. The experimental runs performed for the purpose of attempting to find isolated fractionally electrically charged particles have measured the charges of tens of millions of fluid microdrops using piezoelectrically driven drop-on-demand inkjet-like droplet ejectors as fluid drop sources.

  15. Surfactant Saturation of Drops in Microgravity by Terrestrial Simulation

    NASA Astrophysics Data System (ADS)

    Viviani, Antonio

    It is well known that diffusion plays an appreciable role in mass transfer only in the case of weak gravitational convection. However, even under such conditions the use of a surfactant as a dif-fusing substance essentially complicates the mass transfer processes. The appearance of gas or liquid inclusions in the surfactant solution causes the development of solutocapillary motion on their surface, which may become a generator of the large-scale flows in the surrounding liquid, especially in microgravity conditions. The paper presents the results of terrestrial simulation of such flows during saturation of the drop of weakly soluble fluid by a surfactant from its water solution forming a thin ( 1 ) horizontal layer. In our experiments, we used chlorobenzene and water as the basic fluids of the drop and the surrounding medium, respectively, and isopropyl alcohol -as a surfactant. The initial concentration 0 of the alcohol in the solution ranged from 5 to 50%. This lent specific feature to the saturation process, manifesting itself in the fact that at concentration higher than 25% a mutual dissolution of water and chlorobenzene began to increase. Visualization of flow structures and concentration fields showed that in laboratory conditions even at maximum suppression of the gravitational convection the saturation of the surfactant is a rather complicated process specified by the initial surfactant concentration in the solution and by the degree of the solution homogeneity. In the case of initially homoge-neous solution, a complicated character of mass transfer between the drop and the surrounding medium is evidently due to the small values of surfactant diffusion coefficients in basic flu-ids. Penetration of the surfactant into the drop leads to the formation of local inhomigeneities of the solution density at both sides of the interface and to the development of a slow three-dimensional flow of gravitational nature. An increase in the concentration gives rise to a

  16. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  17. Fluid fertilizers. [Fluids

    SciTech Connect

    Potts, J.M.

    1984-09-01

    The use of fertilizer in the United States has increased spectacularly in the past 20 years. In 1981 plant nutrient use (N + P/sub 2/O/sub 5/ + K/sub 2/O) totaled 23.5 million short tons - compared with only 7.5 million tons in 1960 (table 2). Nutrient use doubled from 1960 to 1970 and tripled from 1960 to 1981. In 1981 fluid nutrient use (mixtures plus nitrogen solutions) totaled 4.1 million tons, more than doubling since 1970 and increasing from 6.3% to 17.5% of the total nutrient use since 1960. Fluid mixtures (NPK) use in 1981 totaled 1.8 million tons of nutrients - about 17% of total mixed fertilizers or 7.5% of total nutrients used. The proportion of total fertilizer nutrients applied in fluid from increases greatly if anhydrous ammonia is included. The 4.6 million tons of nitrogen applied as anhydrous ammonia in 1981 increases total fluid nutrients to 8.1 million tons - 34.5% of the total nutrients applied in the United States. Fluid fertilizer use has grown nearly twice as fast as total fertilizer use, averaging more than 15% per year increase between 1960 and 1970, and an 11% increase between 1960 and 1980. A large part of this increase occurred during the introductory stages of the new product form and was aided by rapid advances in technology.

  18. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  19. Progress on Concepts for Next-Generation Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich

    2016-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher

  20. Drag and drop display & builder

    SciTech Connect

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  1. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  2. Unusual Contact-Line Dynamics of Thick Films and Drops

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia

    1999-01-01

    We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.

  3. 14 CFR 91.15 - Dropping objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Dropping objects. 91.15 Section 91.15... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.15 Dropping objects. No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in...

  4. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  5. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  6. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  7. Drop deformation and breakup in flows with and without shear

    NASA Astrophysics Data System (ADS)

    Kékesi, Tímea; Amberg, Gustav; Prahl Wittberg, Lisa

    2015-11-01

    The deformation and breakup of liquid drops in gaseous flows are studied numerically using the Volume of Fluid method. Fragmentation of fuel drops has a key role in combustion, determining the rate of mixing and the efficiency of the process. It is common to refer to Weber number 12 as the onset of breakup, and to define breakup mode regimes as a function of Weber number. These definitions are established for simple flows and do not take density and viscosity ratios into account. The main objective of this work is the dynamics of the drop leading to breakup. Fully developed uniform flows and flows with various shear rates are considered. A Weber number of 20, Reynolds numbers 20-200, density ratios 20-80, and viscosity ratios 0.5-50 were used. Results for uniform flows are presented in Kékesi T. et al. (2014). The final aim of the project is to extend existing atomization models for fuel sprays by accounting for density and viscosity ratios in addition to the Reynolds and Weber numbers already present in current models. Estimations for the lifetime of the drop are provided; furthermore, the history of the drag coefficient is compared for several cases. Examples of the observed phenomena and ideas for possible model modifications will be presented. This work is supported by the Swedish Research Council and the Linné FLOW Centre.

  8. Measurement of surface and interfacial tension using pendant drop tensiometry.

    PubMed

    Berry, Joseph D; Neeson, Michael J; Dagastine, Raymond R; Chan, Derek Y C; Tabor, Rico F

    2015-09-15

    Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision. However, despite its beguiling simplicity, there are complications and limitations that accompany pendant drop tensiometry connected with both Bond number (the balance between interfacial tension and gravitational forces) and drop volume. Here, we discuss the process involved with going from a captured experimental image to a fitted interfacial tension value, highlighting pertinent features and limitations along the way. We introduce a new parameter, the Worthington number, Wo, to characterise the measurement precision. A fully functional, open-source acquisition and fitting software is provided to enable the reader to test and develop the technique further.

  9. Capillarity driven contact line motion in cyclic bridge-drop grab-release events

    NASA Astrophysics Data System (ADS)

    van Lengerich, Henrik; Steen, Paul

    2009-11-01

    Motivated by a reversible adhesion device which uses capillary forces to adhere to a substrate, we study the mechanical work done in a grab-release cycle. That is, the volume of a drop is increased until it grabs the substrate and forms a bridge and then shrunk until it goes unstable and releases from the substrate and forms a drop again. In the instant that a drop becomes a bridge (or vice versa) no work is done on the system, however, energy is dissipated due to the decrease in interfacial energy. This dissipation can be compared with the mechanical dissipation based on the fluid flow. For viscous fluids, a wedge model shows that most of the dissipation occurs in the vicinity of the contact line. The thermodynamic dissipation is compared with that expected in the fluid without the need of static contact angle or slip length.

  10. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations. PMID:27300985

  11. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  12. Small drops from large nozzles

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  13. Liquid-metal pin-fin pressure drop by correlation in cross flow

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-08-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed.

  14. Analysis of Skylab fluid mechanics science demonstrations

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Butz, J. R.

    1975-01-01

    The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.

  15. Channel drop filter for CWDM systems

    NASA Astrophysics Data System (ADS)

    Youcef Mahmoud, Mahmoud; Bassou, Ghaouti; de Fornel, Frédérique; Taalbi, Ahmed

    2013-10-01

    In this paper, a new design of channel drop filter (CDF) based on two-dimensional photonic crystal ring resonators (PCRRs) is provided by two-dimensional (2D) finite-difference time-domain (FDTD) simulations in triangular lattice photonic crystal (PC) silicon rods. 100% forward dropping efficiency and a quality factor of over 1000 can be achieved at maximum transfer efficiency while the operating wavelength is 1550 nm. Through this novel component, three channel drop operation with 100% dropping efficiencies at all output channels can be obtained. The proposed filter provides a possibility of channel drop filter and could be used in coarse wavelength division multiplexing (CWDM) systems.

  16. Charged drop levitators and their applications

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Hyson, M. T.; Elleman, D. D.

    1987-01-01

    An account is given of the charged drop levitation characteristics of two different devices: (1) a feedback-controlled electrostatic levitator able to lift a several mm-diameter drop in 1g conditions, which is applicable to drop dynamics, crystal growth, and supercooling/solidification experiments; and (2) a linear quadrupole levitator, whose advantages are demonstrated in light of the results obtained for the charged drop instability experiment. The cause of the premature drop burstings observed is suggested to be an electron avalanche in the surrounding gaseous medium rather than the Rayleigh limit.

  17. Why a falling drop does not in general behave like a rising bubble

    PubMed Central

    Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama

    2014-01-01

    Is a settling drop equivalent to a rising bubble? The answer is known to be in general a no, but we show that when the density of the drop is less than 1.2 times that of the surrounding fluid, an equivalent bubble can be designed for small inertia and large surface tension. Hadamard's exact solution is shown to be better for this than making the Boussinesq approximation. Scaling relationships and numerical simulations show a bubble-drop equivalence for moderate inertia and surface tension, so long as the density ratio of the drop to its surroundings is close to unity. When this ratio is far from unity, the drop and the bubble are very different. We show that this is due to the tendency for vorticity to be concentrated in the lighter fluid, i.e. within the bubble but outside the drop. As the Galilei and Bond numbers are increased, a bubble displays underdamped shape oscillations, whereas beyond critical values of these numbers, over-damped behavior resulting in break-up takes place. The different circulation patterns result in thin and cup-like drops but bubbles thick at their base. These shapes are then prone to break-up at the sides and centre, respectively. PMID:24759766

  18. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  19. Visual recovery using small dilating eye drops.

    PubMed

    Gray, R H; Franklin, S J; Reeves, B C

    1992-08-01

    It is well established that reduced size dilating eye drops of 1% tropicamide and 10% phenylephrine (micro drops) are effective for clinical purposes. Excellent pupil dilatation (mydriasis) is achieved and pupil constriction does not occur in response to light. In this study, the effect of micro drops of 1% tropicamide on distance and near visual recovery was compared with standard drops in a group of 20 healthy volunteers. For each person studied, one eye was selected at random to be tested first with the standard drop size, and then after a minimum of one week, the same eye was again tested using a drop of the same drug one fifth standard size. An iris photograph, Snellen visual acuity at 6 m, and reading visual acuity was obtained for each test procedure: before drop instillation and at 30 min, 1, 2 and 4 h after drug instillation. Use of the micro drops caused a small but statistically significant improvement in the rate of recovery of distance and near visual acuity. These findings, allied to the known beneficial effects of reduced systemic absorption using micro drops, lend further weight to the argument that mydriasis may be achieved more safely, with fewer side effects, and with earlier return of normal vision when reduced size drops are used. It is hoped that practical micro drop dispensers will be developed.

  20. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  1. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  2. Who is dropping your course?

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  3. Drop processes in natural clouds

    NASA Technical Reports Server (NTRS)

    Latham, J.

    1982-01-01

    A model of the diffusive mixing of dry and cloudy air, a process considered to be fundamental to the development of natural clouds, is presented. Water drops are formed at the cloud base by condensation upon nuclei and as they rise they grow by vapor diffusion in the slightly supersaturated environment of the clouds. Turbulent mixing between cloudy air and undersaturated air entrained from outside produces fluctuations in supersaturation, not linked to changes in vertical velocity, which cause broadening of the condensate spectrum and the rapid production of droplets large enough to engage in growth by coalescence. The probabilities of permanent union or the production of satellite droplets following the collision of a pair of raindrops is a sensitive function of several parameters. In some circumstances electrohydrodynamic bursting may influence the properties of clouds.

  4. Fluid Mechanics of Taste

    NASA Astrophysics Data System (ADS)

    Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David

    2015-11-01

    Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.

  5. Dynamics of squeezing fluids: Clapping wet hands

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim.

  6. Planar Microfluidic Drop Splitting and Merging

    NASA Astrophysics Data System (ADS)

    Collignon, Sean; Friend, James; Yeo, Leslie; MAD-LAB Team

    2015-11-01

    Open drop microfluidic platforms offer attractive alternatives to closed microchannel devices, however, to be effective they require efficient schemes for planar drop transport and manipulation. While there are many methods that have been reported for drop transport, it is far more difficult to carry out drop operations of dispensing, merging and splitting. In this work, we introduce a novel alternative to merge and split drops using laterally-offset modulated surface acoustic waves (SAWs). To do so, the energy delivery into the drop is modulated to induce drop stretching. Upon removal of the SAW energy, capillary forces at the center of the elongated drop drain the capillary bridge region towards both ends, resulting in its collapse and consequential splitting of the drop. This occurs only below a critical Ohnesorge number, a balance between the viscous forces that retard the drainage and the sufficiently large capillary forces that cause the liquid bridge to pinch. By this scheme we show the possibility of both reliable symettric splitting of a drop with an average deviation in droplet volumes of only around 4%, and no greater than 10%, as well as asymmetric splitting, by tuning the input energy to the device--thus presenting a comparable alternative to electrowetting.

  7. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  8. Interfacial tension measurements using MRI drop shape analysis.

    PubMed

    Hussain, R; Vogt, S J; Honari, A; Hollingsworth, K G; Sederman, A J; Mitchell, J; Johns, M L

    2014-02-18

    Accurate interfacial tension data for fluid systems such as hydrocarbons and water is essential to many applications such as reservoir oil and gas recovery predictions. Conventional interfacial tension measurement techniques typically use optical images to analyze droplet shapes but require that the continuous-phase fluid be optically transparent and that the fluids are not refractive index matched. Magnetic resonance images obtain contrast between fluids using other mechanisms such as magnetic relaxation weighting, so systems that are impossible to measure with optical methods may be analyzed. In this article, we present high-field (9.4 T) MRI images of various droplets analyzed with axisymmetric drop shape analysis. The resultant interfacial tension data show good agreement with literature data. The method is subsequently demonstrated using both opaque continuous phases and refractive-index-matched fluids. We conclude with a brief consideration of the potential to extrapolate the methodology to lower magnetic fields (0.3 T), featuring more accessible hardware; although droplet imaging is possible, resolution and stability do not currently permit accurate interfacial tension measurements. PMID:24471906

  9. Interfacial wave dynamics of a drop with an embedded bubble

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  10. Effects of brush seal morphology on leakage and pressure drops

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Yang, Y.; Hendricks, R. C.

    1991-01-01

    Research on brush seals which was undertaken earlier by Braun et al. (1990) is continued. Particular attention is given to the effects of brush positioning, design, and morphology on sealing surfaces, fluid leakage, and associated pressure drops. It is found that both the structure and the design of the brush are important to its performance. High resistance to the flow of the brush/fence combination can result in catastrophic failure of the brush, while at lower flow resistances, the failure is more gradual.

  11. A numerical study of drop-on-demand ink jets

    NASA Technical Reports Server (NTRS)

    Fromm, J.

    1982-01-01

    Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.

  12. Stability of an acoustically levitated and flattened drop: An experimental study

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. V.; Lee, C. P.; Wang, T. G.

    1993-11-01

    This is an experimental study of the flattening and breakup of liquid drops in a single-axis acoustic levitation field, and is an extension of the authors' previous work [C. P. Lee et al., Phys. Fluids A 3, 2497 (1991); Proceedings of the 30th Aerospace Sciences Meeting and Exibit, Reno, NV (1992)], on the static shape and stability of acoustically levitated drops. Two aspects, namely (i) the variation of drop equilibrium shape with sound pressure level and, (ii) the mechanism of disintegration of small drops in intense sound fields, have been studied mainly with water drops. The drop-shape study reveals that the critical acoustic Bond number Ba,cr [Ba = A2Rs/(σρc2); A: acoustic amplitude; Rs: spherical radius of the drop; σ : surface tension of the drop liquid; ρ: density of air and; c: sound speed in air], at which a downturn in acoustic intensity occurs for the larger drops, or loss of stability occurs for the smaller drops, varies from about 2.6 (for kRs˜0.74; k: acoustic wave number) to about 3.6 (for kRs˜0.25). The corresponding nondimensional critical equatorial radius R*cr (R*=R/Rs, R: equatorial radius of the drop) varies between 1.5 and 1.4. The study also reveals that, for deformation R* greater than about 1.3, the drop assumes the shape of a disk. The study of the dynamics of disintegration of small drops reveals that, following loss of stability, the drop expands horizontally with the liquid close to the edge drawn into a sheet by acoustic suction. The sheet continuously thins during expansion and two types of waves, one in the azimuthal direction, and the other in the radial direction, are parametrically excited on it. The ensuing violent vibration shatters the drop; with the whole process having a time scale of the order of 0.5 msec. These results partially confirm the mechanism of drop disintegration postulated by Danilov and Mironov [J. Acoust. Soc. Am. 92, 2747 (1992)]. The parametric instability of the thin sheet differs from that of the

  13. Relaxation or breakup of a low-conductivity drop upon removal of a uniform dc electric field

    NASA Astrophysics Data System (ADS)

    Lanauze, Javier A.; Walker, Lynn M.; Khair, Aditya S.

    2016-07-01

    We quantify the dynamics of a prolate leaky dielectric drop upon removal of a uniform dc electric field. Experiments consisting of a castor oil drop suspended in silicone oil are compared against axisymmetric boundary integral computations that account for transient charging, or charge relaxation, of the interface. A temporal asymmetry between the drop deformation and relaxation processes is observed in the experiments and computations: The drop relaxes back to its spherical equilibrium shape faster than the time taken to achieve its steady-state deformation. During the deformation process, the electrical (Maxwell) stress deforms the drop along the direction of the applied field; it is counteracted by the capillary stress. During the relaxation process, i.e., after the field is removed, the electrical stress acts together with the capillary stress to quickly restore the drop back to equilibrium. This change in action of the electrical stress is responsible for the asymmetry between the drop deformation and relaxation. Notably, the electrical stress acts over the charge relaxation time scales of the fluids: Thus, counterintuitively, longer charging time scales yield faster drop relaxation. That is, the longer it takes for the interface to discharge, the faster the drop shape relaxes. We also present computational results for a drop that does not relax back to its initial spherical shape upon removal of the electric field; rather, the drop breaks up via an end-pinching mechanism.

  14. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  15. Coalescence dynamics of viscous conical drops

    NASA Astrophysics Data System (ADS)

    Lu, Jiakai; Fang, Shengyang; Corvalan, Carlos M.

    2016-02-01

    When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior—which has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass spectrometry—has been studied theoretically and experimentally for inertial liquid drops. Little is known, however, about the influence of the liquid viscosity on the critical cone angle. Here, we use high-fidelity numerical simulations to gain insight into the coalescence dynamics of conical drops at intermediate Reynolds numbers. The simulations, which account for viscous, inertial, and surface tension effects, predict that the critical cone angle increases as the viscosity of the drops decreases. When approaching the inertial regime, however, the predicted critical angle quickly stabilizes at approximately 27∘, as observed in experiments.

  16. Hydrodynamic instability and drop fragmentation modes

    NASA Astrophysics Data System (ADS)

    Girin, A. G.

    1985-05-01

    A linear analysis of the stability of the drop surface is employed to evaluate the dispersion parameters and to propose mechanisms for several types of degradation. The calculations show that in the Weber number range from 5 to 60 the drop is subjected to periodic perturbations whose wavelengths are larger than the initial drop diameter and comparable to the diameter of the deformed drop. The case where half-wavelength is approximately equal to the drop diameter corresponds to the formation of a parachute shape of the deformed drop; larger Weber numbers (and, correspondingly, smaller wavelengths) lead to the formation of a 'claviform'. A similar approach can be assumed to study the interphase interaction leading to degradation in other systems, such as bubble and film systems.

  17. Microgravity Experiment Programs for Students at the Bremen Drop Tower

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM established as a research center and currently headed by Prof. Dr. Claus Lämmerzahl is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM more than 70 scientists, engineers and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important university institutes for space sciences and technologies in Europe as well as worldwide well known in the space community. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM’s ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10 (-6) g (microgravity). The provided quality is one of the purest for experiments under weightlessness worldwide achieved. The scientists may choose between a single drop experiment with 4.74 s in simple free fall and a catapult experiment with 9.3 s of weightlessness. Either in the drop or in the worldwide unique catapult operation routine the repetition rates of microgravity experiments at ZARM are always the same, generally up to 3 times per day. Since the start of operation of the facility in 1990, over 6750 launches of more than 160 different experiment types from various scientific fields like Fundamental Physics, Combustion, Fluid Dynamics, Planetary Formation / Astrophysics, Biology and Materials Sciences have been successfully accomplished so far. In our paper we will report and inform about microgravity experiment programs for students like „Drop Your Thesis!“ by ESA and

  18. Equilibrium shapes of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C.-J.

    1986-05-01

    The quantitative determination of the shape of liquid drops levitated in an ultrasonic standing wave has provided experimental data on the radiation pressure-induced deformations of freely suspended liquids. Within the limits of small deviations from the spherical shape and small drop diameter relative to the acoustic wavelength, an existing approximate theory yields a good agreement with experimental evidence. The data were obtained for millimeter and submillimeter drops levitated in air under 1 g, where g is the sea level gravitational acceleration.

  19. Surface-Controlled Drop Oscillations in Space

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Tian, Yuren; Janovsky, Joseph; Apfel, Robert E.

    1996-01-01

    Large liquid drops were deformed by an acoustic standing wave in a resonant air chanber called the Drop Physics Module, which was carried on Space Shuttle Columbia as part of the second United States Microgravity Laboratory mission. When this deforming force was suddenly reduced, the drops executed free oscillations about a perfect sherical equilibrium. Results are presented for pure water and aqueous solutions of soluble surfactants. [PACS: 43.25.U, 47.55Dz, 68.10.Cr, 83.10.-y].

  20. A perspective on the interfacial properties of nanoscopic liquid drops

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Jackson, George

    2012-11-01

    century by Gibbs and then promoted by Tolman) with a microscopic DFT treatment allows for a direct and unambiguous description of the interfacial properties of drops of arbitrary size; DFT provides all of the bulk and surface characteristics of the system that are required to uniquely define its thermodynamic properties. In this vein, we propose a non-local mean-field DFT for Lennard-Jones (LJ) fluids to examine drops of varying size. A comparison of the predictions of our DFT with recent simulation data based on a second-order fluctuation analysis (Sampayo et al 2010 J. Chem. Phys. 132 141101) reveals the consistency of the two treatments. This observation highlights the significance of fluctuation effects in small drops, which give rise to additional entropic (thermal non-mechanical) contributions, in contrast to what one observes in the case of planar interfaces which are governed by the laws of mechanical equilibrium. A small negative Tolman length (which is found to be about a tenth of the molecular diameter) and a non-monotonic behaviour of the surface tension with the drop radius are predicted for the LJ fluid. Finally, the limits of the validity of the Tolman approach, the effect of the range of the intermolecular potential, and the behaviour of bubbles are briefly discussed.

  1. Rapid Drop Dynamics During Superhydrophobic Condensation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua

    2008-11-01

    Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 μm can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

  2. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  3. Impact force of a falling drop

    NASA Astrophysics Data System (ADS)

    Soto, Dan; Clanet, Cristophe; Quere, David; Xavier Boutillon Collaboration

    2012-11-01

    Controlling droplet deposition is crucial in many industrial processes such as spraying pesticides on crops, inkjet printing or spray coating. Therefore, the dynamics of drop impacts have been extensively studied for more than one century. However, few literature describe the impacting force of a drop on a solid flat surface, although it might be a way to measure the size distribution of a collection of falling drops. We investigated experimentally how the instantaneous force at impact depends on impact velocity and drop radius. We also propose a new model to understand our observations. Physique et Mecanique des Milieux Heterogenes, CNRS, ESPCI, Paris France & Ladhyx, CNRS, Ecole Polytechnique, Palaiseau, France.

  4. Capillary Oscillations of Drops on a Fan-Shaped Pillar

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon Jeong; Fontelos, Marco A.; Hwang, Hyung Ju

    2016-07-01

    We study the capillary oscillations of the surface of a 2D drop attached to a fan-shaped pillar. The fluid flow is modeled by means of a velocity potential and we assume a no-flux condition at the liquid-solid interface. The natural oscillation frequencies and oscillation modes are computed for two different physical situations depending on the contact line behavior: (1) free-end, when the contact line moves along the solid with a constant contact angle and (2) pinned-end when the contact line is pinned to the solid and does not move. We also study the linearized initial value problem and prove well-posedness results in both free-end and pinned-end cases. Hence, for capillary oscillations when the fluid is in partial contact with a solid, not only initial conditions must be prescribed but also the behavior of the contact line.

  5. Saving every drop of water

    NASA Astrophysics Data System (ADS)

    Jinyu, J.

    2012-04-01

    Since the beginning of 2011 there has been extremely low rainfall, which has resulted in drought conditions that have affected several provinces in China. The situation of the acute water shortage requires people to make many changes in the little things they do in their daily life. Saving every drop of water and forming good habits of using water is of the utmost importance. Based on this need, our students, organized by our teachers, reached out into to the communities. By visiting, observing and issuing questionnaires, the students identified unreasonable water usage in the communities. The results of the research showed that the ratio of secondary treatment of domestic waste is very low, especially the ratio of collecting wastewater from washing, greywater, to flush the toilet. In order to solve this problem, students themselves designed a set of water saving facilities by collecting greywater to flush the toilet. They successfully installed these facilities in residential houses in the XiYinLi community, which achieved satisfactory results regarding saving water.

  6. Planar equilibrium shapes of a liquid drop on a membrane.

    PubMed

    Hui, Chung-Yuen; Jagota, Anand

    2015-12-14

    The equilibrium shape of a small liquid drop on a smooth rigid surface is governed by the minimization of energy with respect to the change in configuration, represented by the well-known Young's equation. In contrast, the equilibrium shape near the line separating three immiscible fluid phases is determined by force balance, represented by Neumann's Triangle. These two are limiting cases of the more general situation of a drop on a deformable, elastic substrate. Specifically, we have analyzed planar equilibrium shapes of a liquid drop on a deformable membrane. We show that to determine its equilibrium shape one must simultaneously satisfy configurational energy and mechanical force balance along with a constraint on the liquid volume. The first condition generalizes Young's equation to include changes in stored elastic energy upon changing the configuration. The second condition generalizes the force balance conditions by relating tensions to membrane stretches via their constitutive elastic behavior. The transition from Young's equation to Neumann's triangle is governed by the value of the elasto-capillary number, β = TRo/μh, where TRo is twice the surface tension of the solid-vapor interface, μ is the shear modulus of the membrane, and h is its thickness.

  7. Dynamics of liquid drops coalescing in the inertial regime.

    PubMed

    Sprittles, James E; Shikhmurzaev, Yulii D

    2014-06-01

    We examine the dynamics of two coalescing liquid drops in the "inertial regime," where the effects of viscosity are negligible and the propagation of the front of the bridge connecting the drops can be considered as "local." The solution fully computed in the framework of classical fluid mechanics allows this regime to be identified, and the accuracy of the approximating scaling laws proposed to describe the propagation of the bridge to be established. It is shown that the scaling law known for this regime has a very limited region of accuracy, and, as a result, in describing experimental data it has frequently been applied outside its limits of applicability. The origin of the scaling law's shortcoming appears to be the fact that it accounts for the capillary pressure due only to the longitudinal curvature of the free surface as the driving force for the process. To address this deficiency, the scaling law is extended to account for both the longitudinal and azimuthal curvatures at the bridge front, which, fortuitously, still results in an explicit analytic expression for the front's propagation speed. This expression is shown to offer an excellent approximation for both the fully computed solution and for experimental data from a range of flow configurations for a remarkably large proportion of the coalescence process. The derived formula allows one to predict the speed at which drops coalesce for the duration of the inertial regime, which should be useful for the analysis of experimental data. PMID:25019880

  8. Flow Induced Coalescence of Drops in a Viscous Liquid

    NASA Astrophysics Data System (ADS)

    Leal, L. Gary

    2002-11-01

    The problem of flow-induced coalescence has been the subject of many experimental and theoretical studies. In recent years, this work has been motivated by the role that this process plays in the formation of polymer blends, which is currently the major route to new polymeric materials with desired macroscopic properties. In order to control this process, we need to understand the conditions for coalescence and their dependence on fluid and flow properties, including the effects of surfactants (known as "compatibilizers" in the polymer blend literature). With a few exceptions, experimental studies have been based upon measurements of the mean drop size (or size distribution) in an emulsion or blend following flow in either blending devices or simple rheometry flows. The four-roll mill, on the other hand, provides an opportunity to study the coalescence process at the scale of individual drops. When such experiments are carried out, we find some surprises vis a vis expectations from simple models of the drop collision/film drainage and rupture process that leads to coalescence. In this talk, we review recent experimental work in this field, and discuss the relationship to present theory

  9. Building designed granular towers one drop at a time

    NASA Astrophysics Data System (ADS)

    Chopin, Julien; Kudrolli, Arshad

    2012-02-01

    The impact of a drop on a surface leads to beautiful dynamical shapes that result from a subtle interplay between inertial effects, fluid properties and substrate characteristics. In this talk, we will present an experiment where the successive impacts of drops lead to surprisingly slender mechanically stable structures that we called granular towers. They are created by dripping a dense granular suspension on a liquid absorbing surface such as a blotter paper or a dry granular bed. These towers formed by rapid solidification of the drop upon impact are analogous to many natural structures found in nature including frozen lava flows, icicles and stalagmites. We find that the height can be determined by balancing the excess liquid flux and the drainage through the granular tower. The velocity impact, the free fall time and the density of the suspension are found to control the tower width and its detailed morphology. We show that these facts can be manipulated to obtain various symmetric, smooth, corrugated, zigzag, and chiral structures. Further, the shape of the tower can be used as a quick diagnostic tool to characterize the rheology of a granular suspension. [J. Chopin and A. Kudrolli, Phys. Rev. Lett. 107, 208304 (2011)

  10. Internal Flow in a Free Drop (IFFD) Bubble Surface Tension Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This digital QuickTime movie is of the Internal Flow in a Free Drop (IFFD) Bubble Surface Tension Experiment taking place in the Microgravity laboratory at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The Bubble provides scientists with information about fluid surface tensions in a low-gravity environment.

  11. Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide

    2011-07-01

    Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase single-component fluids containing solid particles in a liquid. Their density and refrigerant capacity are greater than those of a liquid-state fluid alone. Owing to these advantages, there are high expectations for use of slush fluids in various applications such as a clean-energy fuel, fuel for space-planes to improve the efficiency of transportation and storage, and as a refrigerant for high-temperature superconducting power machines. Experimental tests were performed with slush nitrogen to obtain the frictional pressure drop flowing in a horizontal pipe with an inner diameter of 15 mm and a length of 400 mm. The primary objective of the study was to investigate the pressure drop reduction phenomenon according to changes in velocity and solid fraction. The pressure drop correlation between the friction factor and the Reynolds number was obtained, and an empirical correlation between them was derived. The flow pattern for slush nitrogen inside a pipe and the behavior of solid particles were observed using a high-speed video camera and the PIV method. From the experimental results, the pressure drop reduction phenomenon emerged clearly when the flow velocity was higher than 3.6 m/s and the flow pattern of solid particles inside the pipe was pseudo-homogeneous.

  12. Rectilinear migration of a drop in a nonlinear thermal gradient

    SciTech Connect

    Sharma, K.R.

    1999-07-01

    The studies hitherto on thermocapillary migration of isolated drops/bubble in a vertical temperature gradient are for the case of linear temperature gradient when the experimental apparatus reaches steady state. The purpose of this study is to quantitate the effect of nonlinear temperature gradient that affects the thermocapillary stress among other things. A good example of this is during the unsteady thermocapillary migration of an isolated immiscible drop that slowly migrates subject to an impulsive interfacial temperature gradient. All other physical properties such as viscosity, heat capacity, density, and thermal conductivity are assumed invariant with temperature and the interfacial tension varies linearly with temperature for the fluid such as silicone oil. The problem requires a numerical solution. The solution was obtained using fourth order Rung Kutta method. The solution was bonded by the asymptotic solutions at short distances and large distances. This analysis can be extended for the periodic temperature profile maintained at the warm pole at sustained state when the thermocapillary motion in microgravity limits is expected to exhibit the yo yo or quasi periodic structure. The findings are applicable to materials that exhibit a nonlinear interfacial tension gradient with temperature and can be studied in the steady state limit of the temperature gradient. The ongoing study is to include the viscosity variation with temperature of the continuous fluid.

  13. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on a wide... feet). (C) Packing Group III: SG × 0.67 m (2.2 feet). (f) Criteria for passing the test. A package...

  14. Drop Ejection From an Oscillating Rod

    NASA Technical Reports Server (NTRS)

    Wilkes, E. D.; Basaran, O. A.

    1999-01-01

    The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.

  15. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  16. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  17. [Nasal drops addiction--the case report].

    PubMed

    Korzeniowska, Katarzyna; Simon, Karolina; Jabłecka, Anna

    2012-01-01

    The article describes the case of 34-years old man, who has used nasal drops with xylomethazoline for three years. Health consequence of uncontrolled use of the drops and treatment were prescribed. Described problem confirms the need of physicians and pharmacists cooperation to limit the problem of drug-addiction. PMID:23421118

  18. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  19. University Drop-Out: An Italian Experience

    ERIC Educational Resources Information Center

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  20. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  1. Two-dimensional variational vibroequilibria and Faraday's drops

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Ivan; Lukovsky, Ivan; Timokha, Alexander

    2004-11-01

    When contacting with acoustically-vibrated structures a fluid volume can take a [time-averaged] geometric shape differing from capillary equilibrium. In accordance with theorems by Beyer et al. (2001) this shape (vibroequilibrium) furnishes a local minimum of a [quasi-potential energy] functional. The variational problem contains five dimensionless parameters evaluating the fluid volume, the wave number of acoustic field in the fluid domain, the contact angle and two newly-introduced numbers (η1, η2) giving relationships between (surface tension, gravitation) and Kapitsa’s vibrational forces/energy. The paper focuses on negligible small wave numbers (incompressible fluid) and two-dimensional flows. Although the variational problem may in some isolated cases have analytical solutions, it requires in general numerical approaches. Numerical examples simulate experiments by Wolf (1969) and Ganiyev et al. (1977) on vibroequilibria in horizontally vibrating tanks. These show that there appear at least two types of stable vibroequilibria associated with symmetric (possible non-connected) and asymmetric surface shapes. The paper represents also numerical results on flattening and vibrostabilisation of a drop hanging beneath a vibrating plate (experiments by Faraday (1831)).

  2. Fluid spray simulation with two-fluid nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1988-01-01

    Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varyig from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.

  3. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  4. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  5. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  6. The lift force on a drop in unbounded plane Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Wohl, P. R.

    1976-01-01

    The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.

  7. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles. PMID:18074287

  8. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  9. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  10. Fiber length and orientation prevent migration in fluid filters

    NASA Technical Reports Server (NTRS)

    Reiman, P. A.

    1966-01-01

    Stainless steel fiber web filter resists fiber migration which causes contamination of filtered fluids. This filter is capable of holding five times more particulate matter before arbitrary cutoff pressure drop and shows excellent retention in fuel flow at high rates.

  11. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and

  12. Transport of Substances on Different Stages of Processes Initiated by Free Fallen Drop Impact on Surface of Quiescent Water

    NASA Astrophysics Data System (ADS)

    Ilyinykh, A. Yu.

    2012-04-01

    Collision of a free fallen drop with a surface of quiescent layer of water initiates a sequence of processes including initial shock, formation of cavern and crown with a chevron edge emitted small water drops, wide central trough surrounding by a train of running surface circular capillary waves, splash, secondary cavern collapsing with a streamer discharge and gradual decal of all disturbances. Fine structure of the drop splashes and transport of substances carrying by the drop inside accepting target fluid are studied by methods of direct registering of flow images by fast video- and photo cameras. Different directions of observations were realized that are side, top and bottom view of flow patterns. Flow patterns produced by clean and coloured water, alcohol (changing the surface tension) and oil drops were investigated. Attention was concentrated on small scale processes dynamics studying which produce fast variations of water surface shapes with sharp local irregularities. Shapes and textures of craters and surrounding rim surfaces as well as coloured filaments of a drop substance inside the fluid body were registered and analyzed. Two groups of flows with relatively large scales defined by the drop diameter and very fine scales were identified. It is supposed that short living and fast changing flow components are result of strong short-acting forces impact. Their manifestations depend on surface tension on the boundaries fluid-fluid and fluid-air. Effects of surface tension gradients on the drop dye propagation pattern are also demonstrated and discussed. Experiments were performed on set-up USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059).

  13. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  14. A Novel Acousto-Electric Levitator for Studies of Drop and Particle Clusters and Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Yuren; Apfel, Robert E.; Zheng, Yibing

    1999-01-01

    A novel and compact instrumentation for studying the behavior of drop sprays and of clusters of drops now permits fundamental research into the behavior of reacting and non-reacting fluid and solid species. The new capability is made possible by simultaneous acousto-electric levitation and charging of "seed" droplets (10-30 microns in diameter) which come together in 2-D clusters (with up to 300 droplets). These clusters are interesting in their own right because of their crystalline and quasi-crystalline forms, which depend on the acoustic and electric field parameters. By varying the electric and acoustic field intensities, one can cause a cluster of droplets to condense into larger drops (e.g. 50-300 microns) which, because of their charge, form uniformly spaced 2-D arrays of monodispersed drops (e.g. 30-40 array drops in preliminary experiments). One or more layers of these 2-D arrays can form in the acoustic standing wave. Such a configuration permits a wide range of fundamental studies of drop evaporation, combustion, and nucleation. The drops can be single or multicomponent. Therefore, fundamental materials studies can also be performed. Using this same Cluster and Array Generation (CAG) instrumentation, it has been also possible in preliminary experiments to demonstrate the clustering and arraying of solid particles, both coated with an electrically conducting layer and uncoated, and both charged and uncharged.

  15. Pattern formation in evaporating drops

    NASA Astrophysics Data System (ADS)

    Li, Fang-I.

    The redistribution of organic solutes during drop evaporation is a nanoscale self assembly process with relevance to technologies ranging from inkjet printing of organic displays to synthesis of bio-smart interfaces for sensing and screening. Atomic force microscopy studies comparing the behavior of different generation dendrimers with different surface chemistry in two solvent alcohols on mica substrates confirm that the detailed morphologies of condensed dendrimer ring structures resulting from micro-droplet evaporation sensitively depend on the surface chemistry, the solute evaporation rate and the dendrimer generation. For the dilute concentration studied here the presence of periodically 'scalloped' molecular rings is ubiquitous. The instability wavelength of the scalloped rings is found to be proportional to the width of the ring, similar to observations of the rim instability in dewetting holes. The effect of the surface chemistry of the dendrimer molecules is obvious in the detailed structure of the self assembled rings. Varying the chain length of solvent alcohol leads to modification of ring patterns. The influence of dendrimer generation on ring structure primarily reflects the increase in dendrimer density with generation number. The evolution of G2-50%C12 -pentanol rings as a function of dendrimer concentration is also described. High surface mobility and phase transformation phenomena in condensed, micro-scale dendrimer structures are documented, again using atomic force microscopy. Stratified dendrimer rings undergo dramatic temperature, time and dendrimer generation dependent morphological changes associated with large-scale molecular rearrangements and partial melting. These transformations produce ring structures consisting of a highly stable first monolayer of the scalloped structure in equilibrium with spherical cap shaped dendrimer islands that form at the center of each pre-existing scallop (creating a 'pearl necklace' structure). Analysis of

  16. The Parkfield Stress Drop Controversy

    NASA Astrophysics Data System (ADS)

    Abercrombie, R. E.; Nadeau, R. M.

    2003-12-01

    Nadeau et al. (1995) found that the seismicity on the San Andreas fault at Parkfield is highly clustered. Individual clusters consist of a sequence of near periodically repeating small earthquakes of similar seismic moment. Nadeau and Johnston (1998) compared the moments and timing of these repeating earthquakes (Mw < 2), and some larger events, with the surface creep rate on the fault to estimate the slip and stress drop (Δ σ ). They obtained conventional values (0.1 to 10 MPa) for the larger earthquakes, but Δ σ increased with decreasing Mw to extremely high values (> 1000 MPa) for the small earthquakes (Mw < 2). Such values are just about physically possible, but they are much higher than those estimated by seismic methods for small earthquakes elsewhere (e. g. Abercrombie 1995). These controversial high Δ σ estimates have sparked a number of theoretical and laboratory studies (e. g. Sammis & Rice 2000, Anooshepoor & Brune 2001, Beeler 2001) aimed at investigating whether the observations could result from earthquakes with more normal Δ σ occurring within the unusual tectonic setting at Parkfield. Lane & Nadeau (2000, 2002) considered whether localized patches of high Δ σ would be resolvable by standard seismic methods. However, to date nobody has used seismic methods to determine source parameters for these controversial small earthquakes at Parkfield. We use closely located earthquakes of different sizes (for example, the sub-clusters of cluster CL14, Nadeau et al., 1995, Mw-0.2 to 1), recorded on the HRSN borehole network to analyse the source parameters. The smaller earthquakes are used as empirical Green's functions to resolve source processes of the larger events. Preliminary results from the earthquakes in cluster CL14 result in a source dimension of about 25 m and Δ σ of about 1 MPa for the Mw1 earthquakes, assuming that rupture velocity is the same as that for large earthquakes. We also resolve source-time functions for these earthquakes at

  17. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    NASA Astrophysics Data System (ADS)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  18. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    PubMed

    Macner, Ashley M; Daniel, Susan; Steen, Paul H

    2014-02-25

    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  19. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  20. Nonmonotonic Response of Drop Impacting Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Zhu, Delin; Sun, Chao; Law, Chung K.

    2015-11-01

    Drop impact on liquid film is ubiquitous in both natural phenomena and industrial applications. The dynamics of the gas layer trapped between the drop and the deformed liquid surface play a crucial role in determining the impact outcomes. However, a quantitative measurement of this gas layer dynamics is extremely challenging because it is hidden behind the deformed liquid film. In this study, high-speed white light interferometry enables the measurement of the gas layer dynamics during the drop impact with high resolutions and is complemented by side view shadowgraphy to observe the penetration process below the liquid surface. Drop impacting with different inertia onto liquid film with various thicknesses is systematically studied to obtain a phase diagram of different outcomes in the h/R-We space, where h/R is the liquid thickness normalized by drop radius, and We is the drop Weber number. It is observed that there exists a critical WeC beyond which the drop always merges with the liquid film. However, for `subcritical' conditions, there exists a merging peninsula in otherwise globally bouncing region. Across this peninsula, as the liquid film thickness increases, the impact outcome transits from bouncing to merging and to bouncing again. The merging time within this peninsula is longer compared to its `supercritical' counterpart, indicating different merging mechanisms. Based on scaling analysis, the boundaries between different zones are identified and compared with experiments.

  1. Drop rebound in clouds and precipitation

    NASA Technical Reports Server (NTRS)

    Ochs, H. T., III; Beard, K. V.

    1982-01-01

    The possibility of rebound for colliding cloud drops was measured by determining the collection efficiency. The collection efficiency for 17 size pairs of relatively uncharged drops in over 500 experimental runs was measured using two techniques. The collection efficiencies fall in a narrow range of 0.60 to 0.70 even though the collection drop was varied between 63 and 326 microns and the size ratio from 0.05 to 0.33. In addition the measured values of collection efficiencies (Epsilon) were below the computed values of collision efficiencies (E) for rigid spheres. Therefore it was concluded that rebound was occurring for these sizes since inferred coalescence (epsilon = Epsilon/E) efficiencies are about 0.6 yo 0.8. At a very small size ratio (r/R = p = 0.05, R = 326 microns) the coalescence efficiency inferred is in good agreement with the experimental findings for a supported collector drop. At somewhat large size ratios the inferred values of epsilon are well above results of supported drop experiments, but show a slight correspondence in collected drop size dependency to two models of drop rebound. At a large size ratio (p = 0.73, R = 275) the inferred coalescence efficiency is significantly different from all previous results.

  2. Mitomycin eye drops as treatment for pterygium.

    PubMed

    Singh, G; Wilson, M R; Foster, C S

    1988-06-01

    The authors used an antineoplastic-antibiotic agent, mitomycin, in the form of eye drops as adjunctive treatment for primary and recurrent pterygia after surgical excision. Sixteen primary and four recurrent pterygia were treated with 1.0 mg/ml mitomycin eye drops, 14 primary and 10 recurrent pterygia were treated with 0.4 mg/ml mitomycin eye drops, and 18 primary pterygia were treated with placebo eye drops. Postoperative follow-up for the eyes treated with mitomycin eye drops ranged from 3 to 34 weeks (mean, 23 weeks). One of 44 pterygia treated with mitomycin recurred after 5 months (recurrence rate, 2.3%), whereas 16 of 18 primary pterygia treated with placebo eye drops developed postoperative granulomas and recurrent pterygia with a mean postoperative period of 6 weeks (recurrence rate, 88.9%). Topical mitomycin (1.0 mg/ml) caused conjunctival irritation, excessive lacrimation, and mild superficial punctate keratitis. These topical side effects were minimized with the 0.4 mg/ml mitomycin dosage. No systemic toxicity was noted with either dosage. The authors believe that mitomycin eye drops is a safe and effective adjunct to surgical excision in the treatment of primary or recurrent pterygia, or both.

  3. Microjetting from wave focusing on oscillating drops

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.

    2007-05-01

    We present experimental observations of microjetting from an oscillating drop. The jet is generated by the focusing of axisymmetric capillary waves that overturn and collide at an apex of the drop. These jets are up to two orders of magnitude smaller than the original drops. We present two widely different configurations that produce such microjets. The first occurs on a satellite drop, produced by the pinch-off of a water drop from a vertical nozzle. The large oscillations following the contraction of the satellite bridge focus waves at the bottom, sending out a 30μm jet at 9.9m/s. The second jet arises when a water drop, containing surfactants, falls onto and passes through a hemispherical soap film. The gentle deformation of the drop creates a surface wave that focuses at its top, shooting out a tiny jet and entrapping a small bubble inside the drop. This jet is 16±5μm in diameter and emerges at 6.3m/s. In this configuration, the soap film wraps around the drop and acts as a sensor of the air flow, revealing that the liquid jet is preceded by a localized faster-moving air jet. The jetting in both configurations is quite robust and occurs even for slightly asymmetric conditions. These microjets appear for much lower values of the Reynolds and Weber numbers than previously observed, suggesting that free-surface jetting is not limited to the inviscid capillary-inertial regime, which has been the focus of much of the theoretical work.

  4. Double-emulsion drops with ultra-thin shells for capsule templates.

    PubMed

    Kim, Shin-Hyun; Kim, Jin Woong; Cho, Jun-Cheol; Weitz, David A

    2011-09-21

    We introduce an emulsification technique that creates monodisperse double-emulsion drops with a core-shell geometry having an ultra-thin wall as a middle layer. We create a biphasic flow in a microfluidic capillary device by forming a sheath flow consisting of a thin layer of a fluid with high affinity to the capillary wall flowing along the inner wall of the capillary, surrounding the innermost fluid. This creates double-emulsion drops, using a single-step emulsification, having a very thin fluid shell. If the shell is solidified, its thickness can be small as a hundred nanometres or even less. Despite the small thickness of this shell, these structures are nevertheless very stable, giving them great potential for encapsulation. We demonstrate this by creating biodegradable microcapsules of poly(lactic acid) with a shell thickness of a few tens of nanometres, which are potentially useful for encapsulation and delivery of drugs, cosmetics, and nutrients. PMID:21811710

  5. Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part

    NASA Technical Reports Server (NTRS)

    Sadhal, S. S.; Trinh, Eugene H.

    1997-01-01

    The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.

  6. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface. PMID:19905120

  7. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  8. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  9. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  10. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  11. Rotating drops of axion dark matter

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Schwetz, Thomas

    2016-06-01

    We consider how QCD axions produced by the misalignment mechanism could form galactic dark matter halos. We recall that stationary, gravitationally stable axion field configurations have the size of an asteroid with masses of order 10-13M⊙ (because gradient pressure is insufficient to support a larger object). We call such field configurations "drops." We explore whether rotating drops could be larger, and find that their mass could increase by a factor ˜10 . This mass is comparable to the mass of miniclusters generated from misalignment axions in the scenario where the axion is born after inflation. We speculate that misalignment axions today are in the form of drops, contributing to dark matter like a distribution of asteroids (and not as a coherent oscillating background field). We consider some observational signatures of the drops, which seem consistent with a galactic halo made of axion dark matter.

  12. Detachment of a single water drop

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2014-01-01

    The detachment process of a single water drop from a nozzle made of poorly wetted material is followed using high-speed video equipment. The formation and motion dynamics of various flow components are investigated. These are the drop itself; a liquid bridge (jumper), which connects the drop with the mother liquid; the primary satellite, which is formed from the jumper; and a microsatellite, which is thrown from the satellite and flies to the mother liquid. The strong influence of surface effects, under which the satellite initially moves upward and only at a certain time starts to fall along the ballistic trajectory, is established. Bounce of the microsatellite from the mother liquid, which precedes its absorption, is fixed. It is shown that a stable connection of the formation mechanism of satellites with the jumper dynamics opens the possibility of obtaining uniform-sized drops.

  13. Teen Birth Rates Drop, But Disparities Persist

    MedlinePlus

    ... Features Teen Birth Rates Drop, But Disparities Persist Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  14. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  15. Singular Jets and Bubbles in Drop Impact

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Josserand, Christophe; Bonn, Daniel

    2006-03-01

    We show that when water droplets gently impact on a hydrophobic surface, the droplet shoots out a violent jet, the velocity of which can be up to 40 times the drop impact speed. As a function of the impact velocity, two different hydrodynamic singularities are found that correspond to the collapse of the air cavity formed by the deformation of the drop at impact. It is the collapse that subsequently leads to the jet formation. We show that the divergence of the jet velocity can be understood using simple scaling arguments. In addition, we find that very large air bubbles can remain trapped in the drops. The surprising occurrence of the bubbles for low-speed impact is connected with the nature of the singularities, and can have important consequences for drop deposition, e.g., in ink-jet printing.

  16. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  17. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.

  18. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    PubMed

    Saad, Sameh M I; Neumann, A Wilhelm

    2014-02-01

    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.

  19. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    PubMed

    Saad, Sameh M I; Neumann, A Wilhelm

    2014-02-01

    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number. PMID:24373931

  20. Motion of Drops on Surfaces with Wettability Gradients

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying

    2002-01-01

    desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no

  1. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  2. La Gocciolina (The Little Drop of Water).

    ERIC Educational Resources Information Center

    Palandra, Maria

    This primary level reader in Italian intended for use in a bilingual education setting, is about the life cycle of a drop of water. The drop of water is personified and the story tells of its adventures as it travels from the top of the lake to the bottom, its meeting with the inhabitants of the lake, and its trip to the clouds. After deciding not…

  3. Misuse of xylometazoline nasal drops by inhalation.

    PubMed

    Anand, Jacek Sein; Salamon, Marek; Habrat, Boguslaw; Scinska, Anna; Bienkowski, Przemyslaw

    2008-12-01

    Six male prisoners who misused xylometazoline nasal drops by inhalation were interviewed by a prison physician in 2006. The prisoners received xylometazoline drops during regular visits in the prison ambulatory service. In order to get the medication, the subjects reported false symptoms of rhinosinusitis and allergic reactions. Psychoactive effects of inhaled xylometazoline were described as "stimulation," "excitation," and "feeling of strength." Although preliminary, our findings suggest that topical adrenergic decongestants can produce rewarding effects when administered by inhalation. PMID:19085441

  4. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. PMID:26988066

  5. Experimental Investigations on the Pressure Drop of a Two-cone Hydrocyclone for Separation Fine Particles from Waste Water

    NASA Astrophysics Data System (ADS)

    Zhao, Qingguo; Li, Weiqing; He, Wei; Xia, Guodong

    2010-03-01

    To separate fine particles from waste water, a novel hydrocyclone was designed which features two cone sections. It is expected that flowrate can be increased at high separation efficiency without additional demand of pressure drop. This paper presents experimental investigations on its pressure drop characteristics. In this paper, influences of flowrate, split ratio, protrudent length of vertex finder, inlet area, vortex finder diameter, and inlet type on pressure drop are comprehensively discussed. It is evidenced that proper operation range falls within q = 5˜10 m3/h, and that the flowrate of the novel two-cone hydrocyclone can be increased by 50˜60%. Pressure drop decreases with vortex finder diameter. Experimental data prove that pressure drop can be significantly affected by split ratio, which has not been explicitly pointed out in literatures on conventional single cone hydrocyclones. Especially, it has been found that protrudent length of vortex finder influences pressure drop in a complex way so that there is a maximum value in pressure drop-protrudent length curve. It is demonstrated that reduction of the inlet area by a half will make pressure drop increase by about 78%. In comparison, involute form of fluid flow channel of inlets makes pressure drop lower than cycloid form.

  6. Leidenfrost drops on liquid baths: theory

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  7. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%. PMID:23351154

  8. A spreading drop of shallow water

    NASA Astrophysics Data System (ADS)

    Jarecka, Dorota; Jaruga, Anna; Smolarkiewicz, Piotr K.

    2015-05-01

    The theoretical solutions and corresponding numerical simulations of Schär and Smolarkiewicz (1996) [3] are revisited. The original abstract problem of a parabolic, slab-symmetric drop of shallow water spreading under gravity is extended to three spatial dimensions, with the initial drop defined over an elliptical compact support. An axisymmetric drop is considered as a special case. The elliptical drop exhibits enticing dynamics, which may appear surprising at the first glance. In contrast, the evolution of the axisymmetric drop is qualitatively akin to the evolution of the slab-symmetric drop and intuitively obvious. Besides being interesting per se, the derived theoretical results provide a simple means for testing numerical schemes concerned with wetting-drying areas in shallow water flows. Reported calculations use the libmpdata++, a recently released free/libre and open-source software library of solvers for generalized transport equations. The numerical results closely match theoretical predictions, demonstrating strengths of the nonoscillatory forward-in-time integrators comprising the libmpdata++.

  9. Toroidal bubble entrapment under an impacting drop

    NASA Astrophysics Data System (ADS)

    Thoraval, Marie-Jean; Thoroddsen, Sigurdur T.; Takehara, Kohsei; Etoh, Takeharu Goji

    2012-11-01

    We use ultra-high-speed imaging and numerical simulations (GERRIS, http://gfs.sf.net) to observe and analyze the formation of up to 14 air tori when a water drop impacts on a thin liquid film of water or other miscible liquids. They form during the early contact between the drop and the pool by the vertical oscillations of the ejecta sheet. They then break in micro-bubble rings by the Rayleigh instability. Their formation is associated with the shedding of an axisymmetric vortex street into the liquid from the free surface. These vorticity structures and their dynamics are made apparent by the dynamics of the micro-bubbles, added seed particles and the difference of refractive index for different liquids in the drop and the pool. More robust entrapments are observed for a thin film of ethanol or methanol. We show that while the non-spherical drop shape is not responsible for the toroidal bubble entrapments, the number of rings is increasing for more oblate drops. Individual bubble entrapments are also observed from azimuthal destabilizations of the neck between the drop and the pool.

  10. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold. PMID:26809314

  11. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold.

  12. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling.

    PubMed

    Hughes, Adam P; Thiele, Uwe; Archer, Andrew J

    2015-02-21

    The contribution to the free energy for a film of liquid of thickness h on a solid surface due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h) and the associated wetting behaviour of the fluid.

  13. Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Nakagomi, Kei; Takahashi, Norifumi

    2011-10-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluid alone, there are high expectations for the use of slush fluids in various applications such as clean-energy fuels, spacecraft fuels for improved efficiency in transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental tests were performed using slush nitrogen to obtain the flow and heat-transfer characteristics in two different types of horizontal circular pipes with inner diameters of 10 and 15 mm. One of the primary objectives for the study was to investigate the effect of pipe diameter on the pressure-drop reduction and heat-transfer deterioration of slush nitrogen according to changes in the pipe flow velocity, solid fraction and heat flux. In the case of an inner diameter of 15 mm, pressure drop was reduced and heat-transfer characteristics deteriorated when the pipe flow velocity was higher than 3.6 m/s. On the other hand, in the case of an inner diameter of 10 mm, pressure drop was reduced and heat-transfer characteristics deteriorated when the pipe flow velocity was higher than 2.0 m/s. From these results, it can be seen that a larger pipe diameter produces a higher onset velocity for reducing pressure drop and deteriorating heat-transfer characteristics. Furthermore, based on observations using a high-speed video camera, it was confirmed that pressure drop was reduced and heat-transfer characteristics deteriorated when the solid particles migrated to the center of the pipe and the flow pattern of the solid particles inside the pipe was pseudo-homogeneous.

  14. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    NASA Astrophysics Data System (ADS)

    Lee, T.-W.; An, Keju

    2016-06-01

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  15. Ground-Based Studies of Thermocapillary Flows in Levitated Laser-Heated Drops

    NASA Technical Reports Server (NTRS)

    Sadhai, S. S.; Zhao, H.; Trinh, Eugene H.

    1999-01-01

    The fluid flow phenomena are studied together with the thermal effects on drops levitated in acoustic and/or electrostatic fields. While the study is concerned primarily with particles in strong acoustic fields to overcome gravity, some results for microgravity have also been obtained. The study also includes an analysis and an experimental investigation of the thermocapillary flow in a spot-heated drop. Results of a Glovebox experiment on the MSL-1 mission, one of whose objectives was to evaluate the acoustic stability criteria in microgravity, are also discussed.

  16. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers

    NASA Astrophysics Data System (ADS)

    Baldessari, Fabio; Leal, L. Gary

    2006-01-01

    Comparison of recent experimental results for flow-induced drop coalescence [H. Yang, C. C. Park, Y. T. Hu et al., "The coalescence of two equal-sized drops in a two-dimensional linear flow," Phys. Fluids13, 1087 (2001)] with existing theory provides the motivation for an examination of the theory. Specifically, for head-on collisions, the experiments show a plateau in the dependence of drainage time versus capillary number at low capillary number that could not be explained by either the existing scaling analysis or the existing thin-film theory of the film drainage process previously described in the pioneering work of Davis and co-workers [S. G. Yiantsios and R. H. Davis, "Close approach and deformation of two viscous drops due to gravity and van der Waals forces," J. Colloid Interface Sci. 144, 412 (1991); R. H. Davis, J. A. Schonberg, and J. M. Rallison, "The lubrication force between two viscous drops," Phys. Fluids A 1, 77 (1989); M. A. Rother, A. Z. Zinchenko, and R. H. Davis, "Buoyancy-driven coalescence of slightly deformable drops," J. Fluid Mech. 346, 117 (1997); S. G. Yiantsios and R. H. Davis, "On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface," J. Fluid Mech. 217, 547 (1990)]. Both of these results indicate that the existing theories, while fundamentally correct in concept, are incomplete in providing a framework for a comprehensive explanation of the experimental results. In the present paper, we reexamine the thin-film theory of Davis et al. in the low capillary number limit. We find that a quasistatic model in which deformation is localized within the thin film is in general not sufficient to describe the leading-order asymptotic approximation of the flow-induced collision and coalescence of two slightly deformable drops at low capillary number. Instead, the overall deformation induced in the drops by the external flow plays a key role in determining the initial film thickness needed for numerical simulation

  17. Lifetime of oil drops pressed by buoyancy against a planar interface: large drops.

    PubMed

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-11-01

    In a previous report [C. Rojas, G. Urbina-Villalba, and M. García-Sucre, Phys. Rev. E 81, 016302 (2010)] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (r(i)< 10 μm) stabilized with β -casein behave as nondeformable particles, moving with a combination of Stokes and Taylor tensors as they approach the interface. Here, a similar methodology is used to parametrize the potential of interaction of drops of soybean oil stabilized with bovine serum albumin. The potential obtained is then employed to study the lifetime of deformable drops in the range 10 ≤ r(i) ≤ 1000 μm . It is established that the average lifetime of these drops can be adequately replicated using the model of truncated spheres. However, the results depend sensibly on the expressions of the initial distance of deformation and the maximum film radius used in the calculations. The set of equations adequate for large drops is not satisfactory for medium-size drops (10 ≤ r(i) ≤ 100 μm) , and vice versa. In the case of large particles, the increase in the interfacial area as a consequence of the deformation of the drops generates a very large repulsive barrier which opposes coalescence. Nevertheless, the buoyancy force prevails. As a consequence, it is the hydrodynamic tensor of the drops which determine the characteristic behavior of the lifetime as a function of the particle size. While the average values of the coalescence time of the drops can be justified by the mechanism of film thinning, the scattering of the experimental data of large drops cannot be rationalized using the methodology previously described. A possible explanation of this phenomenon required elaborate simulations which combine deformable drops, capillary waves, repulsive interaction forces, and a time-dependent surfactant adsorption.

  18. Charge and Size Distributions of Electrospray Drops

    PubMed

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  19. Stress Drops for Potentially Induced Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Beroza, G. C.; Ellsworth, W. L.

    2015-12-01

    Stress drop, the difference between shear stress acting across a fault before and after an earthquake, is a fundamental parameter of the earthquake source process and the generation of strong ground motions. Higher stress drops usually lead to more high-frequency ground motions. Hough [2014 and 2015] observed low intensities in "Did You Feel It?" data for injection-induced earthquakes, and interpreted them to be a result of low stress drops. It is also possible that the low recorded intensities could be a result of propagation effects. Atkinson et al. [2015] show that the shallow depth of injection-induced earthquakes can lead to a lack of high-frequency ground motion as well. We apply the spectral ratio method of Imanishi and Ellsworth [2006] to analyze stress drops of injection-induced earthquakes, using smaller earthquakes with similar waveforms as empirical Green's functions (eGfs). Both the effects of path and linear site response should be cancelled out through the spectral ratio analysis. We apply this technique to the Guy-Greenbrier earthquake sequence in central Arkansas. The earthquakes migrated along the Guy-Greenbrier Fault while nearby injection wells were operating in 2010-2011. Huang and Beroza [GRL, 2015] improved the magnitude of completeness to about -1 using template matching and found that the earthquakes deviated from Gutenberg-Richter statistics during the operation of nearby injection wells. We identify 49 clusters of highly similar events in the Huang and Beroza [2015] catalog and calculate stress drops using the source model described in Imanishi and Ellsworth [2006]. Our results suggest that stress drops of the Guy-Greenbrier sequence are similar to tectonic earthquakes at Parkfield, California (the attached figure). We will also present stress drop analysis of other suspected induced earthquake sequences using the same method.

  20. Heat transfer and pressure drop characteristic of zinc-water nanofluid

    NASA Astrophysics Data System (ADS)

    Sonage, B. K.; Mohanan, P.

    2015-04-01

    Development of alternative working fluids with enhanced thermal properties is very much needed to replace conventional fluids. Colloidal solution of some base fluid with solid nanoparticles dispersed in it, which is called as nanofluid, is emerging as a promising alternative heat transfer fluid. Zinc, being ecofriendly material, is selected as dispersed phase in water to develop zinc-water (Zn-H2O) nanofluid. Zn-H2O nanofluid is synthesized by single step method and characterized. Thermophysical properties are estimated by available theoretical models. Estimated properties proved that nanofluid is having enhanced thermophysical properties compared to the base fluid due to which nanofluid can become potential working fluid for heat exchanging devices. Synthesized nanofluid is circulated through heat transfer loop to assess its performance in turbulent flow regime and at constant wall temperature condition. Heat transfer coefficient and pressure drop are estimated from experimental results and both are considered as performance evaluation criteria for heat transfer performance assessment. 83 % increase in Nusselt number with 9 % increase in pressure drop is observed for the nanofluid compared to water.

  1. Heat transfer and pressure drop characteristic of zinc-water nanofluid

    NASA Astrophysics Data System (ADS)

    Sonage, B. K.; Mohanan, P.

    2014-09-01

    Development of alternative working fluids with enhanced thermal properties is very much needed to replace conventional fluids. Colloidal solution of some base fluid with solid nanoparticles dispersed in it, which is called as nanofluid, is emerging as a promising alternative heat transfer fluid. Zinc, being ecofriendly material, is selected as dispersed phase in water to develop zinc-water (Zn-H2O) nanofluid. Zn-H2O nanofluid is synthesized by single step method and characterized. Thermophysical properties are estimated by available theoretical models. Estimated properties proved that nanofluid is having enhanced thermophysical properties compared to the base fluid due to which nanofluid can become potential working fluid for heat exchanging devices. Synthesized nanofluid is circulated through heat transfer loop to assess its performance in turbulent flow regime and at constant wall temperature condition. Heat transfer coefficient and pressure drop are estimated from experimental results and both are considered as performance evaluation criteria for heat transfer performance assessment. 83 % increase in Nusselt number with 9 % increase in pressure drop is observed for the nanofluid compared to water.

  2. A dramatic drop in blood pressure following prehospital GTN administration.

    PubMed

    Boyle, Malcolm J

    2007-03-01

    A male in his sixties with no history of cardiac chest pain awoke with chest pain following an afternoon sleep. The patient did not self medicate. The patient's observations were within normal limits, he was administered oxygen via a face mask and glyceryl trinitrate (GTN). Several minutes after the GTN the patient experienced a sudden drop in blood pressure and heart rate, this was rectified by atropine sulphate and a fluid challenge. There was no further deterioration in the patient's condition during transport to hospital. There are very few documented case like this in the prehospital scientific literature. The cause appears to be the Bezold-Jarish reflex, stimulation of the ventricular walls which in turn decreases sympathetic outflow from the vasomotor centre. Prehospital care providers who are managing any patient with a syncopal episode that fails to recover within a reasonable time frame should consider the Bezold-Jarisch reflex as the cause and manage the patient accordingly.

  3. Self-Diffusion of Drops in a Dilute Sheared Emulsion

    NASA Technical Reports Server (NTRS)

    Loewenberg, Michael; Hinch, E. J.

    1996-01-01

    Self-diffusion coefficients that describe cross-flow migration of non-Brownian drops in a dilute sheared emulsion were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise interactions between deformable drops; interactions between undeformed drops were described with mobility functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops in shear-flow do not appreciably promote drop breakup.

  4. Do Liquid Drops on Inclined Surfaces Slide or Roll?

    NASA Astrophysics Data System (ADS)

    Pt, Sumesh; Pagonabarraga, Ignacio; Adhikari, Ronojoy; Govindarajan, Rama

    2011-11-01

    A solid sphere is likely to roll, while a rectangular box is likely to slide, on an inclined surface. Instead, a liquid drop can exhibit a variety of shapes and complex but interesting dynamics. We obtain global minimum energy static shapes first, for two realistic bases of potential energy, front and back-pinned. We find that the free end always assumes Young's equilibrium angle. Using this clue, simple equations describing the angles and the maximum volume may be derived. Combining the lattice Boltzmann method for hydrodynamics and method of lines for a Cahn-Hilliard equation, a hybrid numerical scheme is developed to study the dynamics of binary fluids on an inclined plate. The contribution of pure translation, and the vorticities associated with rolling and shearing motion are distinguished, using which the motion of the drop can be split into roll and slip. Surprisingly, as gravity increases, the fraction of motion due to roll decreases significantly for certain contact angles. The rolling motion is strongly dependent on the slip length which is in contrast to predictions by the lubrication approximation, where all dependence on the slip length is generally logarithamic.

  5. The breakup of thin air films caught under impacting drops

    NASA Astrophysics Data System (ADS)

    Thoroddsen, Sigurdur; Thoraval, Marie-Jean; Takehara, Kohsei; Etoh, T. Goji

    2012-11-01

    When a drop impacts a pool at very low velocities V, an air layer cushions the impact and prevents immediate contact. This air layer is stretched into a hemispheric shape and thins to a submicron thickness. We use silicone oils, where these films are more stable than for water [Saylor & Bounds (2012), AIChE J., online: doi 10.1002/aic.13764 ]. We observe three main breakup mechanisms which are imprinted onto the micro-bubble morphology. First, for lowest V the film ruptures at isolated holes which grow rapidly, leaving bubble necklaces where their edges meet. Based on micro-bubble volumes, we show the film breaks by van der Waals, when its thickness ~ 100 nm. Secondly, for slightly larger V a ring of holes appearing a fixed depth, where the film is thinnest, producing bubble chandeliers. Finally, for larger V an air jet within the drop, ruptures it at the bottom tip, in an axisymmetric breakup. We measure the rupture speed and find that for very viscous liquids, the breakup moves faster than the capillary-viscous velocity, through the repeated ruptures. [Thoroddsen, Thoraval, Takehara & Etoh (2012), J. Fluid Mech. online: doi:10.1017/jfm.2012.319].

  6. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    NASA Astrophysics Data System (ADS)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  7. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric

  8. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors. PMID:26313964

  9. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  10. Drops with non-circular footprints

    NASA Astrophysics Data System (ADS)

    Ravazzoli, Pablo D.; González, Alejandro G.; Diez, Javier A.

    2016-04-01

    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier-Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

  11. Drop splash on a smooth, dry surface

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander

    2013-11-01

    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  12. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  13. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  14. Bubble and Drop Nonlinear Dynamics (BDND)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  15. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors.

  16. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory

    2015-11-01

    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  18. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  19. Settling of copper drops in molten slags

    NASA Astrophysics Data System (ADS)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  20. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch.

  1. Glaucoma eye drops adverse skin reactions.

    PubMed

    Cantisani, Carmen; Ambrifi, Marina; Frascani, Federica; Fazia, Gilda; Paolino, Giovanni; Lisi, Roberto; Calvieri, Stefano

    2014-01-01

    The term "Glaucoma" is used to describe a number of diseases of the eye characterized by a particular form of optic nerve damage that is often associated with high intraocular pressure (IOP). The open-angle glaucoma is the most common form that is also referred to as chronic glaucoma. This is described as an optic neuropathy with multifactorial nature in which there is a loss of characteristics of the optic nerve fibers. Therapeutic options for the treatment of this disease are different, you can take advantage of eye drops, laser therapy and conventional surgery or more combined treatments. Medicated eye drops are the most common way to treat glaucoma. Although eye drops are widely used, adverse reactions are not frequently observed and described. In particular, the adverse skin reactions are not frequently described in the literature, but often seen in dermatologic clinic, we reported their skin reactions and possible alternative treatments described in literature and their patent applications. PMID:25487259

  2. Nonreciprocal photonic crystal add-drop filter

    NASA Astrophysics Data System (ADS)

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-01

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  3. Profiles of electrified drops and bubbles

    NASA Technical Reports Server (NTRS)

    Basaran, O. A.; Scriven, L. E.

    1982-01-01

    Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.

  4. Thermocapillary Convection in Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balassubramaniam; Subramanian, R. Shankar

    2003-01-01

    When bubbles or drops are present in an immiscible liquid in reduced gravity and the temperature of the liquid is non-uniform, a thermocapillary stress is generated at the interface due to the variation of interfacial tension with temperature. The resulting flow propels the drop freely suspended in the liquid towards warmer regions, so as to minimize the interfacial energy. In this presentation, we will focus on the effect of convective transport of momentum and energy, that are characterized by the Reynolds number and the Marangoni number, respectively. The results of asymptotic analyses for the speed of the drop for low and large values of these parameters will be discussed. These predictions as well as those from numerical simulations will be compared with reduced gravity experimental results obtained from experiments performed aboard the space shuttle.

  5. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch. PMID:24054589

  6. Nonreciprocal photonic crystal add-drop filter

    SciTech Connect

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-24

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  7. A theory of wall-induced lateral migration of a drop in shear: effects of drop inclination and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik

    2012-11-01

    Recently, migration of suspended particles, drops, polymers and biological cells have assumed importance in microfluidic separation and filtration assays. A rigid sphere in shear does not move cross-stream due to the reversibility in a Stokes flow. Deformation, as well as inertia and viscoelasticity, breaks the reversibility and leads to lateral migration away from a nearby wall. There have been algebraically complex perturbative analyses of the moving boundary problem [e.g. Chan and Leal 1979, JFM 92,131] to determine the migration velocity. However, the underlying physics remains unclear. Here, we show that the migration is induced by the image stresslet field, as was also indicated earlier by Smart and Leighton [1991, Phys. Fluid A, 3, 21]. We relate the stresslet field to the Interface tensor, and investigate the effects of drop inclination. In contrast to a plausible notion asserted also in the literature, that reduced inclination (increased alignment with flow) decreases migration, it is shown here that reduced inclination increases the stresslet and thereby the migration velocity. A semi-analytical expression of migration velocity based on numerically computed stresslet will be compared against simulation and the results will be discussed. Partially supported by NSF.

  8. Computer simulations of nematic drops: Coupling between drop shape and nematic order

    NASA Astrophysics Data System (ADS)

    Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.

    2012-07-01

    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.

  9. Active control of static pressure drop caused by hydraulic servo-actuator engage

    SciTech Connect

    Janlovic, J.

    1994-12-31

    Pressure drop caused by propagation of expansion waves in the source pipeline of fast high cyclic hydraulic actuator produces possible anomalies in its function. To prevent pressure drop it is possible to minimize wave effects by active control of actuator servo-valve throttle leakage. In the paper is presented synthesis of possible discrete active control of hydraulic actuator and its servo-valve for prevention expansion wave pressure drop. Control synthesis is based on static pressure increasing with decreasing of fluid flow velocity, which can be realized by lower throttle leakage. Some of the effects of assumed control are shown on corresponding diagrams of control valve throttle motion, piston displacement and its corresponding linear velocity.

  10. Interactions Forces and the Flow-Induced Coalescence of Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Leal, L. Gary; Israelachvili, J.

    2004-01-01

    In order to accomplish the proposed macroscale experimental goals, we designed and built a pair of miniaturized computer-controlled four-roll mills, similar but much smaller than the 4-roll mill that had been develop earlier in Prof. Leal's group for studies of drop deformation and breakup. This unique experimental facility allows for controlled experiments on the breakup and coalescence of very small drops in the size range of 20-200 micrometers in diameter for a wide variety of flows and under a wide range of flow conditions including time-dependent flows, etc. The small size of this device is necessary for coalescence studies, since coalescence occurs in viscous fluids at capillary numbers that are large enough to be experimentally accessible only for drops that are smaller than approximately 100_m in diameter. Using these miniaturized 4-roll mills, we have obtained the first quantitative data (so far as we are aware) on the flow-induced coalescence process.

  11. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Hargens, Alan R.; Dulchavsky, Scott A.; Ebert, Douglas J.; Lee, Stuart M. C.; Laurie, Steven S.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Martin, David S.; Liu, John; Macias, Brandon R.; Arbeille, Philippe; Danielson, Richard; Chang, Douglas; Gunga, Hanns-Christian; Johnston, Smith L.; Westby, Christian M.; Ploutz-Snyder, Robert J.; Smith, Scott M.

    2016-01-01

    We hypothesize that microgravity-induced cephalad fluid shifts elevate intracranial pressure (ICP) and contribute to VIIP. We will test this hypothesis and a possible countermeasure in ISS astronauts.

  12. Amniotic fluid

    MedlinePlus

    ... baby is born), or gestational diabetes . Too little amniotic fluid is known as oligohydramnios. This condition may occur with late pregnancies, ruptured membranes, placental dysfunction , or fetal abnormalities. Abnormal amounts of ...

  13. Drilling fluids

    SciTech Connect

    Swanson, B.L.

    1984-01-10

    Polyethylene glycols in combination with at least one water-dispersible polymeric viscosifier comprising cellulose ethers, cellulose sulfate esters, polyacrylamides, guar gum, or heteropolysaccharides improve the water loss properties of water-based drilling fluids, particularly in hard brine environments.

  14. Amniotic Fluid

    PubMed Central

    Smith, Heather C.; Muglia, Louis J.; Morrow, Ardythe L.

    2014-01-01

    Our aim was to review the use of high-dimensional biology techniques, specifically transcriptomics, proteomics, and metabolomics, in amniotic fluid to elucidate the mechanisms behind preterm birth or assessment of fetal development. We performed a comprehensive MEDLINE literature search on the use of transcriptomic, proteomic, and metabolomic technologies for amniotic fluid analysis. All abstracts were reviewed for pertinence to preterm birth or fetal maturation in human subjects. Nineteen articles qualified for inclusion. Most articles described the discovery of biomarker candidates, but few larger, multicenter replication or validation studies have been done. We conclude that the use of high-dimensional systems biology techniques to analyze amniotic fluid has significant potential to elucidate the mechanisms of preterm birth and fetal maturation. However, further multicenter collaborative efforts are needed to replicate and validate candidate biomarkers before they can become useful tools for clinical practice. Ideally, amniotic fluid biomarkers should be translated to a noninvasive test performed in maternal serum or urine. PMID:23599373

  15. Monitoring of interfacial tensions by drop counting

    SciTech Connect

    Duerksen, W.K.; Boring, C.P.; McLaughlin, J.F.; Harless, D.P.

    1988-11-01

    A capillary tube device was shown to provide a rapid means of measuring the interfacial tension between water and Freon-113. The measurement technique is based on counting the number of drops that form when a fixed volume of water passes through the capillary tube into the bulk Freon. The interfacial tension is predicted to be proportional to the number of drops to the negative 2/3 power. Calibration curves were obtained for Freon-water samples containing known concentrations of a surfactant. A standard Gibbs adsorption curve was obtained. 5 refs., 3 figs., 2 tabs.

  16. Transformation of the bridge during drop separation

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2016-05-01

    The geometry of flows during separation of pendant drops of liquids with significantly different physical properties (alcohol, water, glycerin, oil) has been studied by high-speed video recording. The dynamics of the processes involving the formation of bridges of two characteristic shapes—slightly nonuniform in thickness and with thinning of the upper and lower ends—has been investigated. It has been shown that the shape change of the separated bridge has a number of stages determined by the properties of the liquid. As a result, the bridge is transformed into a small drop—a satellite drop.

  17. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  18. Corners, Cusps, and Pearls in Running Drops

    SciTech Connect

    Podgorski, T.; Flesselles, J.-M.; Limat, L.

    2001-07-16

    Small drops sliding down a partially wetting substrate bifurcate between different shapes depending on their capillary number Ca . At low Ca , they are delimited by a rounded, smooth contact line. At intermediate values they develop a corner at the trailing edge, the angle of which evolves from flat to 60{sup o} with increasing velocity. Further up, they exhibit a cusped tail that emits smaller drops (''pearls''). These bifurcations may be qualitatively and quantitatively recovered by considering the dynamic contact angle along the contact line.

  19. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  20. Cecal drop reflects the chickens' cecal microbiome, fecal drop does not.

    PubMed

    Pauwels, J; Taminiau, B; Janssens, G P J; De Beenhouwer, M; Delhalle, L; Daube, G; Coopman, F

    2015-10-01

    Microbiota in the gastro-intestinal tract are closely related to both the intestinal and overall health of the host. Experimental chickens have always been euthanized in order to identify and quantify the bacteria in cecal content. In this study, quantification and identification of the microbial populations in cecal drop, cecal content and fecal drop samples from chickens showed that cecal drop contains a bacterial community that is very similar (concerning bacterial diversity, richness and species composition) to cecal content, as opposed to the bacterial community found in fecal drop. Cecal drop analysis thus allows for longitudinal experiments on chickens' cecal bacteria. The varying results in the analysis of fecal samples question the method's reliability in reflecting the true cecal microbiota in chickens. PMID:26264624

  1. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  2. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  3. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  4. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  5. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  6. Fundamental Drop Dynamics and Mass Transfer Experiments to Support Solvent Extraction Modeling Efforts

    SciTech Connect

    Kristi Christensen; Veronica Rutledge; Troy Garn

    2011-09-01

    In support of the Nuclear Energy Advanced Modeling Simulation Safeguards and Separations (NEAMS SafeSep) program, the Idaho National Laboratory (INL) worked in collaboration with Los Alamos National Laboratory (LANL) to further a modeling effort designed to predict mass transfer behavior for selected metal species between individual dispersed drops and a continuous phase in a two phase liquid-liquid extraction (LLE) system. The purpose of the model is to understand the fundamental processes of mass transfer that occur at the drop interface. This fundamental understanding can be extended to support modeling of larger LLE equipment such as mixer settlers, pulse columns, and centrifugal contactors. The work performed at the INL involved gathering the necessary experimental data to support the modeling effort. A custom experimental apparatus was designed and built for performing drop contact experiments to measure mass transfer coefficients as a function of contact time. A high speed digital camera was used in conjunction with the apparatus to measure size, shape, and velocity of the drops. In addition to drop data, the physical properties of the experimental fluids were measured to be used as input data for the model. Physical properties measurements included density, viscosity, surface tension and interfacial tension. Additionally, self diffusion coefficients for the selected metal species in each experimental solution were measured, and the distribution coefficient for the metal partitioning between phases was determined. At the completion of this work, the INL has determined the mass transfer coefficient and a velocity profile for drops rising by buoyancy through a continuous medium under a specific set of experimental conditions. Additionally, a complete set of experimentally determined fluid properties has been obtained. All data will be provided to LANL to support the modeling effort.

  7. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid. PMID:26274283

  8. Chemically driven fluid transport in long microchannels

    NASA Astrophysics Data System (ADS)

    Shen, Mingren; Ye, Fangfu; Liu, Rui; Chen, Ke; Yang, Mingcheng; Ripoll, Marisol

    2016-09-01

    Chemical gradients maintained along surfaces can drive fluid flows by diffusio-osmosis, which become significant at micro- and nano-scales. Here, by means of mesoscopic simulations, we show that a concentration drop across microchannels with periodically inhomogeneous boundary walls can laterally transport fluids over arbitrarily long distances along the microchannel. The driving field is the secondary local chemical gradient parallel to the channel induced by the periodic inhomogeneity of the channel wall. The flow velocity depends on the concentration drop across the channel and the structure and composition of the channel walls, but it is independent of the overall channel length. Our work thus presents new insight into the fluid transport in long microchannels commonly found in nature and is useful for designing novel micro- or nano-fluidic pumps.

  9. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  10. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383

  11. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team

    2014-11-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.

  12. Note: A top-view optical approach for observing the coalescence of liquid drops

    NASA Astrophysics Data System (ADS)

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques.

  13. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  14. Best Measuring Time for a Millikan Oil Drop Experiment

    ERIC Educational Resources Information Center

    Kapusta, J. I.

    1975-01-01

    In a Millikan oil drop experiment, there is a best measuring time for observing the drop, due to Brownian motion of the drop and the experimenter's reaction time. Derives an equation for the relative error in the measurement of the drop's excess charge, and obtains a formula for the best measuring time. (Author/MLH)

  15. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  16. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  17. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  18. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  19. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  20. Acoustofluidics 16: acoustics streaming near liquid-gas interfaces: drops and bubbles.

    PubMed

    Sadhal, S S

    2012-08-21

    In this sixteenth part of the series on "Acoustofluidics-exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation," we continue our discussion on the analytical aspects of the streaming phenomenon. In particular, the use of the singular perturbation technique for this class of problems is delineated with a set of examples where fluid-fluid interaction takes place. In this category, we focus on drops and bubbles, and deal specifically with the effect of interfacial mobility on the streaming flow. PMID:22776990

  1. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  2. Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata

    NASA Astrophysics Data System (ADS)

    Bernsdorf, J.; Brenner, G.; Durst, F.

    2000-07-01

    The lattice Boltzmann (LB) method is used for a detailed study on the origins of the pressure drop in porous media flow. In agreement with the experimental results [Durst et al., J. Non-Newtonian Fluid Mech. 22 (1987) 169] it is shown, that the elongation and the contraction of fluid elements is an important factor for the pressure loss in porous media flow, and that a significant error is made, when only shear forces are taken into account. To obtain the geometry information of the porous media for our simulations, we used the 3D computer tomography technique.

  3. Predicting Students Drop Out: A Case Study

    ERIC Educational Resources Information Center

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  4. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  5. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  6. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  7. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  8. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  9. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  10. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  11. Reasons Students with Disabilities Drop Out.

    ERIC Educational Resources Information Center

    Bounds, M. Betsy; Gould, Albert

    2000-01-01

    Students with disabilities who dropped out of high school (n=60) cited more school factors (lack of academic success, suspension, peer problems) than personal factors (motivation, pregnancy, family problems) influencing dropout. Three-fourths suggested improved communication with teachers, flexible scheduling, and more relevance would decrease…

  12. Naphazoline nasal drops intoxication in children.

    PubMed

    Vitezić, D; Rozmanić, V; Franulović, J; Ahel, V; Matesić, D

    1994-03-01

    Naphazoline, a sympathomimetic and an imidazoline derivative, is used as 0.05-0.1% solution for local decongestion of the nasal and ocular mucosa. In excessive dosage, or if ingested by accident, may cause depression of the central nervous system (disturbances of consciousness progressing to coma), hypothermia, bradycardia and sweating. These naphazoline effects are particularly strongly pronounced in children. Anglo-Saxon pharmacotherapy excludes the application of naphazoline nasal drops in children younger than six years, whereas the Croatian pharmacotherapeutic literature (and practice) allows its use even in infancy. At the Kantrida Paediatric Clinic, Clinical Hospital Centre in Rijeka, 11 children with signs of intoxication with naphazoline nasal drops were hospitalized from 1990 to 1992. The symptoms pertaining to the central nervous system i.e. disturbances of consciousness in the form of somnolence were clearly marked in all children. Some children developed skin pallor, bradycardia, bradypnoea and hypothermia. Resolution occurred within 24 hours and the findings returned to normal values. Clinical picture followed by rapid resolution and normal findings, with a personal history of drug taking, is a safe indication for diagnosis. There are several reasons to account for intoxication (drops difficult to use with children, containers inadequate for proper dosage), but the major factor is the age of the patient--all hospitalized children were younger than six years. It is pointed out that administration of naphazoline drops at an early age is not advisable.

  13. Allergic Contact Dermatitis to Eye Drops

    PubMed Central

    Bhat, Yasmeen Jabeen; Zeerak, Sumaya; Hassan, Iffat

    2015-01-01

    Allergic contact dermatitis (ACD) occurs due to a milieu of allergens and involves different anatomical sites, including eyelids, and periorbital areas. Topically applied ophthalmic drugs are a potential cause of ACD of the periorbital region. Here we describe the report of a patient who developed ACD to eye drop preparations. PMID:26677304

  14. Understanding the Early Regime of Drop Spreading.

    PubMed

    Mitra, Surjyasish; Mitra, Sushanta K

    2016-09-01

    We present experimental data to characterize the spreading of a liquid drop on a substrate kept submerged in another liquid medium. They reveal that drop spreading always begins in a regime dominated by drop viscosity where the spreading radius scales as r ∼ t with a nonuniversal prefactor. This initial viscous regime either lasts in its entirety or switches to an intermediate inertial regime where the spreading radius grows with time following the well-established inertial scaling of r ∼ t(1/2). This latter case depends on the characteristic viscous length scale of the problem. In either case, the final stage of spreading, close to equilibrium, follows Tanner's law. Further experiments performed on the same substrate kept in ambient air reveal a similar trend, albeit with limited spatiotemporal resolution, showing the universal nature of the spreading behavior. It is also found that, for early times of spreading, the process is similar to coalescence of two freely suspended liquid drops, making the presence of the substrate and consequently the three-phase contact line insignificant. PMID:27513708

  15. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  16. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  17. Drop-Out Challenges: Pathways to Success

    ERIC Educational Resources Information Center

    Conner, Evguenia; McKee, Jan

    2008-01-01

    This article describes an action research at an alternative high school which explores drop-out prevention strategies with first-year students. Student retention is extremely challenging for alternative schools. Because their mission is to provide a second chance to students who could not succeed in a regular setting, those schools regularly must…

  18. Orion Parachute Drop Test, July 18

    NASA Video Gallery

    A C-17 plane dropped a test version of Orion from an altitude of 25,000 feet above the U.S. Army Yuma Proving Ground in southwestern Arizona on July 18, 2012. This test was the second to use an Ori...

  19. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  20. Inverted drop testing and neck injury potential.

    PubMed

    Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.

  1. Containerless undercooling and solidification in drop tubes

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Robinson, M. B.; Rathz, T. J.

    1981-01-01

    A containerless low-gravity environment, produced within a 32 m drop tube apparatus, has been used to undercool and solidify metals, alloys or glasses by eliminating crucible induced nucleation processes. Niobium droplets with diameters in the range of 2 to 5 mm have been undercooled by 525 K which corresponds to the maximum undercooling reported by Turnbull and others on fine dispersions of low melting point metals. Solidification at large undercooling resulted in single crystalline spheres with the formation of interdendritic shrinkage channels on the sample surface rather than interior shrinkage cavities. The grain refinement as observed for Ni samples undercooled and solidified in fused silica crucibles does not occur in free-falling drops of Nb. A calculated solidification speed of undercooled Nb is compared to Ni. A solidification speed of 320 m/s is found for the Nb drops. This solidification speed is greater than or comparable to the solidification speeds calculated in splat cooled samples. Thus, a drop tube apparatus can be useful in the preparation and study of high temperature metastable compounds or alloys in bulk form.

  2. A drop theorem without vector topology

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Wing

    2007-05-01

    Danes' drop theorem is extended to bornological vector spaces. An immediate application is to establish Ekeland-type variational principle and its equivalence, Caristi fixed point theorem, in bornological vector spaces. Meanwhile, since every locally convex space becomes a convex bornological vector space when equipped with the canonical von Neumann bornology, Qiu's generalization of Danes' work to locally convex spaces is recovered.

  3. Sessile drop deformations under an impinging jet

    NASA Astrophysics Data System (ADS)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  4. Utah Drop-Out Drug Use Questionnaire.

    ERIC Educational Resources Information Center

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  5. Fluid Mechanics Optimising Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Leivadarou, Evgenia; Dalziel, Stuart

    2015-11-01

    The Vortex Fluidic Device (VFD) is a new ``green'' approach in the synthesis of organic chemicals with many industrial applications in biodiesel generation, cosmetics, protein folding and pharmaceutical production. The VFD is a rapidly rotating tube that can operate with a jet feeding drops of liquid reactants to the base of the tube. The aim of this project is to explain the fluid mechanics of the VFD that influence the rate of reactions. The reaction rate is intimately related to the intense shearing that promotes collision between reactant molecules. In the VFD, the highest shears are found at the bottom of the tube in the Rayleigh and the Ekman layer and at the walls in the Stewardson layers. As a step towards optimising the performance of the VFD we present experiments conducted in order to establish the minimum drop volume and maximum rotation rate for maximum axisymmetric spreading without fingering instability. PhD candidate, Department of Applied Mathematics and Theoretical Physics.

  6. Instabilities of volatile films and drops

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa

    2008-12-01

    We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname "octopi" due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DIW)-IPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact line instabilities which appear. We find that the decrease of IPA concentration in mixtures leads to transition from "octopi" to mushroom-like instabilities. Through manipulation of our experimental set up, we also find that the mechanism responsible for these instabilities appears to be mostly insensitive to both the external application of convection to the gas phase, and the doping of the gas phase with vapor in order to create the saturated environment. In order to better understand the "octopi" instability, we develop a theoretical model for evaporation of a pure liquid drop on a thermally conductive solid substrate. This model includes all relevant physical effects, including evaporation, thermal conductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil, disjoining pressure, and gravity. The crucial ingredient in this problem is the evaporation model, since it influences both the motion of the drop contact line, and the temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two evaporation models: the equilibrium "lens" model and the non-equilibrium one-sided (NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface, the "lens" model also assumes that evaporation proceeds in a (vapor) diffusion-limited regime, therefore bringing

  7. Annual Occurrence of Meteorite-Dropping Fireballs

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  8. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  9. Investigation of Contact Angle Behavior and Stability of Drops to Airflow Forcing on Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Schmucker, Jason; White, Edward

    2011-11-01

    A method for measuring full-field, instantaneous drop interface profiles on rough surfaces has been implemented to study contact angles and stability to wind forcing on metallic surfaces with micron-scale roughness. Wind tunnel experiments are conducted to produce criteria for runback of drops and set these thresholds for measured water drops spanning a range of Bond numbers from Bo = 0 . 5 to 5 on roughness in the range of RA = 0 . 8 to 4 . 9 with drop based Reynolds numbers spanning an order of magnitude. More importantly, these stability limits are tested with particular care taken to observe their relation to the behavior of both the contact line and contact angle distribution as the drop adjusts its configuration to find a stable condition until it is no longer able to do so and is blown downstream. Results such as critical shear rates and contact angles are discussed and compared with previous numerical studies in the literature such as Dimitrakopoulos [J.Fluid.Mech. 580, 2007] and Ding and Spelt [J.Coll.Sci. 599, 2008] along with experimental results such as Milne [Langmuir 25:24, 2009].

  10. A computer-controlled apparatus for micrometric drop deposition at liquid surfaces.

    PubMed

    Peña-Polo, Franklin; Trujillo, Leonardo; Sigalotti, Leonardo Di G

    2010-05-01

    A low-cost, automated apparatus has been used to perform micrometric deposition of small pendant drops onto a quiet liquid surface. The approach of the drop to the surface is obtained by means of discrete, micron-scale translations in order to achieve deposition at adiabatically zero velocity. This process is not only widely used in scientific investigations in fluid mechanics and thermal sciences but also in engineering and biomedical applications. The apparatus has been designed to produce accurate deposition onto the surface and minimize the vibrations induced in the drop by the movement of the capillary tip. Calibration tests of the apparatus have shown that a descent of the drop by discrete translational steps of approximately 5.6 microm and duration of 150-200 ms is sufficient to minimize its penetration depth into the liquid when it touches the surface layer and reduce to a level of noise the vibrations transmitted to it by the translation of the dispenser. Different settings of the experimental setup can be easily implemented for use in a variety of other applications, including deposition onto solid surfaces, surface tension measurements of pendant drops, and wire bonding in microelectronics. PMID:20515172

  11. Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Jeong, Sangkwon; Hwang, Gyuwan

    2012-12-01

    Mixed Refrigerant-Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. The temperature glide effect is one of the major features of using mixed refrigerants since a recuperative heat exchanger in a MR-JT refrigerator is utilized for mostly two-phase flow. Although a pressure drop estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in MR-JT refrigerator heat exchanger designs, it has been rarely discussed so far. In this paper, macro heat exchangers and micro heat exchangers are compared in order to investigate the pressure drop characteristics in the experimental MR-JT refrigerator operation. The tube in tube heat exchanger (TTHE) is a well-known macro-channel heat exchanger in MR-JT refrigeration. Printed Circuit Heat Exchangers (PCHEs) have been developed as a compact heat exchanger with micro size channels. Several two-phase pressure drop correlations are examined to discuss the experimental pressure measurement results. The result of this paper shows that cryogenic mixed refrigerant pressure drop can be estimated with conventional two-phase pressure drop correlations if an appropriate flow pattern is identified.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. An experimental study of liquid drop - interface coalescence in the presence of surfactants

    NASA Astrophysics Data System (ADS)

    Angeli, Panagiota; Chinaud, Maxime; Li, Kai; Wang, Wei; University College London Team; Beijing Key Laboratory of Urban Oil; Gas Distribution Technology Team

    2014-11-01

    Drop-interface coalescence has been the subject of many studies both theoretical and experimental. It is of particular interest for the oil industries particularly during the transportation of multiphase mixtures where coalescence rates can affect the stability and separation of dispersions. It is well-known that the presence of surfactants can significantly affect the coalescence rates. In this work a silicon oil -water system has been studied in a rectangular coalescence cell. Both rising oil drops and falling water drops coalescing with the water-oil interface have been investigated. A water soluble surfactant, SPAN 80, was used. High speed imaging has been performed to study the coalescence phenomenon and obtain the coalescence time of the drops with the interface with and without the presence of the surfactant. The velocity fields in the bulk fluid and in the liquid film forming between the drop and the interface were studied with shadowgraphy (bright field Particle Image Velocimetry). To increase the spatial resolution particularly in the liquid film microscope lenses were implemented. Results have been compared against existing literature.

  14. Electrohydrodynamic manipulation of particles adsorbed on the surface of a drop.

    PubMed

    Amah, Edison; Shah, Kinnari; Fischer, Ian; Singh, Pushpendra

    2016-02-14

    In our previous studies we have shown that particles adsorbed on the surface of a drop can be concentrated at its poles or equator by applying a uniform electric field. This happens because even when the applied electric field is uniform the electric field on the surface of the drop is nonuniform, and so particles adsorbed on the surface are subjected to dielectrophoretic (DEP) forces. In this paper, we study the behavior of adsorbed particles at low electric field frequencies when the drop and ambient liquids are weakly conducting dielectric liquids, and model it using a leaky dielectric model. The electrohydrodynamic (EHD) flow which arises because of the accumulation of charge on the surface of the drop can be from pole-to-equator or equator-to-pole depending on the properties of the drop and ambient liquids. The flow however diminishes with increasing frequency and there is a critical frequency at which the drag force on a particle due to the EHD flow becomes equal to the DEP force, and above this critical frequency the DEP force dominates. When the fluid and particles properties are such that the EHD and DEP forces are in the opposite directions, particles can be collected at the poles or the equator, and also can be moved from the poles to the equator, or vice versa, by varying the frequency. Also, it is possible to separate the particles of a binary mixture when the critical frequencies of the two types of particles are different.

  15. Axisymmetric shapes and stability of charged drops in an external electric field

    NASA Astrophysics Data System (ADS)

    Basaran, O. A.; Scriven, L. E.

    1989-05-01

    A highly conducting charged drop that is surrounded by a fluid insulator of another density can be levitated by suitably applying a uniform electric field. Axisymmetric equilibrium shapes and stability of the levitated drop are found by solving simultaneously the augmented Young-Laplace equation for surface shape and the Laplace equation for the electric field, together with constraints of fixed drop volume, charge, and center of mass. The means are a method of subdomains, finite element basis functions, and Galerkin's method of weighted residuals, all facilitated by a large-scale computer. Shape families of fixed charge are treated systematically by first-order continuation. Previous analyses by Abbas et al. in 1967 and Abbas and Latham in 1969, in which the shapes of levitated drops are approximated as spheroids, are corrected. The new analysis shows that drops charged to less than the Rayleigh limit lose shape stability at turning points, with respect to external field strength, and that the instability seen in experiments of Doyle et al. in 1964 and others is not a bifurcation to a family of two-lobed shapes, but rather is a related imperfect bifurcation.

  16. Axisymmetric shapes and stability of charged drops in an external electric field

    NASA Astrophysics Data System (ADS)

    Basaran, O. A.; Scriven, L. E.

    1989-05-01

    A highly conducting charged drop that is surrounded by a fluid insulator of another density can be levitated by suitably applying a uniform electric field. Axisymmetric equilibrium shapes and stability of the levitated drop are found by solving simultaneously the augmented Young-Laplace equation for surface shape and the Laplace equation for the elecric field, together with constraints of fixed drop volume, charge, and center of mass. The means are a method of subdomains, finite element basis functions, and Galerkin's method of weighted residuals, all facilitated by a large-scale computer. Shape families of fixed charge are treated systematically by first-order continuation. Previous analyses by Abbas et al. in 1967 and Abbas and Latham in 1969, in which the shapes of levitated drops are approximated as spheroids, are corrected. The new analysis shows that drops charged to less than the Rayleigh limit lose shape stability at turning points, with respect to external field strength, and that the instability seen in experiments of Doyle et al. in 1964 and others is not a bifurcation to a family of two-lobed shapes, but rather is a related imperfect bifurcation.

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  18. A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries

    NASA Astrophysics Data System (ADS)

    Mahady, Kyle; Afkhami, Shahriar; Kondic, Lou

    2015-08-01

    In this paper, we present a novel approach to model the fluid/solid interaction forces in a direct solver of the Navier-Stokes equations based on the volume of fluid interface tracking method. The key ingredient of the model is the explicit inclusion of the fluid/solid interaction forces into the governing equations. We show that the interaction forces lead to a partial wetting condition and in particular to a natural definition of the equilibrium contact angle. We present two numerical methods to discretize the interaction forces that enter the model; these two approaches differ in complexity and convergence. To validate the computational framework, we consider the application of these models to simulate two-dimensional drops at equilibrium, as well as drop spreading. We demonstrate that the model, by including the underlying physics, captures contact line dynamics for arbitrary contact angles. More generally, the approach permits novel means to study contact lines, as well as a diverse range of phenomena that previously could not be addressed in direct simulations.

  19. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  20. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  1. Liquid drops on vertical and inclined surfaces; I. An experimental study of drop geometry.

    PubMed

    ElSherbini, A I; Jacobi, A M

    2004-05-15

    Experiments have been conducted to investigate the geometric parameters necessary to describe the shapes of liquid drops on vertical and inclined plane surfaces. Two liquids and eight surfaces have been used to study contact angles, contact lines, profiles, and volumes of drops of different sizes for a range of surface conditions. The results show the contact-angle variation along the circumference of a drop to be best fit by a third-degree polynomial in the azimuthal angle. This contact-angle function is expressed in terms of the maximum and minimum contact angles of the drop, which are determined for various conditions. The maximum contact angle, thetamax, is approximately equal to the advancing contact angle, thetaA, of the liquid on the surface. As the Bond number, Bo, increases from 0 to a maximum, the minimum contact angle, thetamin, decreases almost linearly from the advancing to the receding angle. A general relation is found between thetamin/thetaA and Bo for different liquid-surface combinations. The drop contour can be described by an ellipse, with the aspect ratio increasing with Bo. These experimental results are valuable in modeling drop shape, as presented in Part II of this work.

  2. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  3. DROP: Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; McKenzie, Clifford F.

    2012-01-01

    Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.

  4. Control of Drop Motion by Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Bestehorn, Michael

    2014-11-01

    Since the first experimental observations of Michael Faraday in 1831 it is known that a vibrating liquid may show an instability of its flat free surface with respect to oscillating regular surface patterns. We study thin liquid films on a horizontal substrate in the long wave approximation. The films are parametrically excited by mechanical horizontal or inclined oscillations. Inertia effects are taken into account and the standard thin film formulation is extended by a second equation for the vertically averaged mass flux. The films can be additionally unstable by Van der Waals forces on a partially wetting substrate, leading to the formation of drops. These drops can be manipulated by the vibrations to move in a desired direction. Linear results based on a damped complex valued Mathieu equation as well as fully nonlinear results using a reduced model will be presented, for more details see.

  5. Surface-controlled drop oscillations in space

    NASA Astrophysics Data System (ADS)

    Holt, R. Glynn

    2001-05-01

    A series of experiments probing the effects of surfactants was performed by Bob Apfel and his research group in the 1990s. Several laboratory experiments were carried out in uni-axial acoustic levitators. Two experiments were carried out in a triple-axis levitator called the Drop Physics Module, which was carried on Space Shuttle Columbia as part of the First and Second United States Microgravity Laboratory missions. Liquid drops containing aqueous solutions of soluble surfactants were acoustically positioned and deformed (and in some cases rotated) in order to excite shape mode oscillations. The results of these experiments allowed the inference of surface rheological properties (Gibb's elasticity, surface viscosity coefficients) as functions of surfactant type and concentration. The highlights of this effort will be presented in a semi-technical fashion. [Work supported by NASA.

  6. Impact of water drops on small targets

    NASA Astrophysics Data System (ADS)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  7. Tendon transfers for the drop foot.

    PubMed

    Schweitzer, Karl M; Jones, Carroll P

    2014-03-01

    The paralytic drop foot represents a challenging problem for even the most experienced orthopedic surgeon. Careful patient selection, thorough preoperative examination and planning, and application of tendon transfer biomechanical and physiologic principles outlined in this article can lead to successful results, either through a posterior tibialis tendon transfer, Bridle transfer, or variations on these procedures. Achilles lengthening or gastrocnemius recession may also be needed at the time of tendon transfer. PMID:24548510

  8. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  9. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  10. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  11. Weight Drop Models in Traumatic Brain Injury.

    PubMed

    Kalish, Brian T; Whalen, Michael J

    2016-01-01

    Weight drop models in rodents have been used for several decades to advance our understanding of the pathophysiology of traumatic brain injury. Weight drop models have been used to replicate focal cerebral contusion as well as diffuse brain injury characterized by axonal damage. More recently, closed head injury models with free head rotation have been developed to model sports concussions, which feature functional disturbances in the absence of overt brain damage assessed by conventional imaging techniques. Here, we describe the history of development of closed head injury models in the first part of the chapter. In the second part, we describe the development of our own weight drop closed head injury model that features impact plus rapid downward head rotation, no structural brain injury, and long-term cognitive deficits in the case of multiple injuries. This rodent model was developed to reproduce key aspects of sports concussion so that a mechanistic understanding of how long-term cognitive deficits might develop will eventually follow. Such knowledge is hoped to impact athletes and war fighters and others who suffer concussive head injuries by leading to targeted therapies aimed at preventing cognitive and other neurological sequelae in these high-risk groups. PMID:27604720

  12. Leaf drop affects herbivory in oaks.

    PubMed

    Pearse, Ian S; Karban, Richard

    2013-11-01

    Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.

  13. Drop floating on a granular raft

    NASA Astrophysics Data System (ADS)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie

    2015-11-01

    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  14. Cusp formation in drops inside Taylor cones

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2005-11-01

    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).

  15. Leaf drop affects herbivory in oaks.

    PubMed

    Pearse, Ian S; Karban, Richard

    2013-11-01

    Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores. PMID:23774946

  16. Bag breakup of low viscosity drops in the presence of a continuous air jet

    SciTech Connect

    Kulkarni, V. Sojka, P. E.

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  17. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  18. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.

    PubMed

    Hu, Ruiqing; Li, Fen; Lv, Jiaqi; He, Ying; Lu, Detang; Yamada, Takashi; Ono, Naoki

    2015-01-01

    The retinal arterial network is the only source of the highly nutrient-consumptive retina, thus any insult on the arteries can impair the retinal oxygen and nutrient supply and affect its normal function. The aim of this work is to study the influences of vascular structure variation on the flow and pressure characteristics via microfluidic devices. Two sets of micro-channel were designed to mimic the stenosed microvessels and dichotomous branching structure in the retinal arteries. Three working fluids including red blood cell (RBC) suspension were employed to investigate the pressure drop in the stenosed channel. The flow behaviors of RBC suspensions inside the micro channels were observed using high speed camera system. Pressure drop of different working fluids and RBC velocity profiles in the stenosed channel were obtained. Moreover, hematocrit levels of RBC suspensions inside the bifurcated channels were analyzed from the sequential images of RBC flow. The results of the flow in the stenosed channel show that RBCs drift from the center of the channels, and RBC velocity is influenced not only by the inlet flow rate but also the interaction between RBCs. The measured pressure drops in the stenosed channel increase notably with the increase of fluid viscosity. Furthermore, the dimensionless pressure drop due to the stenosis decreases with Reynolds number. On the other hand, the results of flow through the bifurcated channels show that as the ratio of the daughter-branch width to the mother-channel width increases, the ratio of hematocrit in two connected branches (Ht/Hd) decreases, which is in favorable agreement with the available analysis results. PMID:26004808

  19. Drop by drop scattering properties of a radar bin : a numerical experiment

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    This paper presents the development and initial results of a numerical simulation of pseudo-radar observations computed as the sum of the electric field backscattered by each drop. Simulations are carried out for three successive radar bins with a gate length of 30 m and beam width of 1°. The first step is the simulation of a 100 m x 100 m x 100 m volume with all its drops. The 3D raindrop generator relies on the findings on the rainfall field very small scales (mm to few tens of m) spatio-temporal structure, of the HYDROP experiment and a recent analysis of 2D video disdrometer data in a Multifractal framework. More precisely: (i) The Liquid Water Content (LWC) distribution is represented with the help a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. (ii) Within each 0.5 x 0.5 x 0.5 m3 patch, liquid water is distributed into drops according to a pre-defined Drop Size Distribution (DSD) and located randomly uniformly. (iii) Such configuration is compared with the one consisting of the same drops uniformly distributed over the 50 x 50 x 50 m3 volume. Then the backscattered field by the drops located within a radar bin are computed as the sum a individual contribution. Antenna beam weighing is taken into account Due to the fact that the radar wave length is much smaller than the "patches" size for rainfall, it appears that as theoretically expected we retrieved an exponential distribution for potential measure horizontal reflectivity. A much lower dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable to reproduce radar observations, and turbulence must be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  20. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in

  1. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in

  2. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  3. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  4. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  5. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  6. Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis.

    PubMed

    Chen, Fengming; Rang, Ying; Weng, Ying; Lin, Luyao; Zeng, Hulie; Nakajim, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2015-06-21

    In this paper, we report a novel sample introduction and chemical reaction strategy by drop-by-drop inkjet injection for an electrophoretically mediated microanalysis (EMMA). This method makes it possible to achieve an on-line introduction of reactant solutions by alternately ejecting small plugs, with an overlapping region of the plugs for mixing the reactants by electrophoresis, supporting chemical reactions, followed by electrophoretic separation of the final compounds. As a proof-of-concept of the method, the EMMA of an inkjetted mixture of 4-fluoro-7-nitrobenzofurazan (NBD-F) and amino acids was carried out as a model chemical reaction. The product NBD-amino acids were quantified by detection with laser induced fluorescence. The optimal conditions for the procedure were: inkjet driving voltage: +40-44 V; pulse width: 20-24 μs; drop-by-drop injection of reactant solutions: alternately 2 drops × 25 times for the amino acid solution and the NBD-F solution; zone overlapping voltage and time: 3 kV and 2 s; incubation time after overlapping: 5 min; separation voltage: 18 kV. Under the optimized conditions, a significant enhancement in sensitivity and a sensitive quantitative analysis were realized. The results obtained were comparable with those using the off-line labeling method. This method is rapid, cost-effective, and readily automated for EMMA. PMID:25728632

  7. Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis.

    PubMed

    Chen, Fengming; Rang, Ying; Weng, Ying; Lin, Luyao; Zeng, Hulie; Nakajim, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2015-06-21

    In this paper, we report a novel sample introduction and chemical reaction strategy by drop-by-drop inkjet injection for an electrophoretically mediated microanalysis (EMMA). This method makes it possible to achieve an on-line introduction of reactant solutions by alternately ejecting small plugs, with an overlapping region of the plugs for mixing the reactants by electrophoresis, supporting chemical reactions, followed by electrophoretic separation of the final compounds. As a proof-of-concept of the method, the EMMA of an inkjetted mixture of 4-fluoro-7-nitrobenzofurazan (NBD-F) and amino acids was carried out as a model chemical reaction. The product NBD-amino acids were quantified by detection with laser induced fluorescence. The optimal conditions for the procedure were: inkjet driving voltage: +40-44 V; pulse width: 20-24 μs; drop-by-drop injection of reactant solutions: alternately 2 drops × 25 times for the amino acid solution and the NBD-F solution; zone overlapping voltage and time: 3 kV and 2 s; incubation time after overlapping: 5 min; separation voltage: 18 kV. Under the optimized conditions, a significant enhancement in sensitivity and a sensitive quantitative analysis were realized. The results obtained were comparable with those using the off-line labeling method. This method is rapid, cost-effective, and readily automated for EMMA.

  8. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  9. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  10. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  11. Drop-in substitute for dichlorodifluoromethane refrigerant

    SciTech Connect

    Goble, G.H.

    1993-06-01

    A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.

  12. Naval Waste Package Drop With Emplacement Pallet

    SciTech Connect

    D.G. McLenzie

    2005-08-04

    The objective of this calculation was to determine the structural responses of the Emplacement Pallet and Naval Long Waste Package (WP) to drops from their highest possible lift heights. The scope of this document was limited to reporting the calculation results in terms of maximum stress intensities. The Naval Long WP is classified as Quality Level 1 (Ref 12, page 7, Table 1). The Emplacement Pallet is classified as Quality Level 2 (Ref. 19, page 7, Table 1). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 11). AP-3.12Q, Calculations, was used to perform the calculation and develop the document (Ref. 3).

  13. [Development of intranasal lactocin (oxytocin) drops technology].

    PubMed

    Klimas, Rimantas; Baranauskas, Algirdas; Gendrolis, Antanas

    2002-01-01

    Pure oxytocin substance was obtained from posterior part of cattle pituitary gland by high pressure liquid chromatography. Biological activity of the substance--450-500 IU/mg. Chromatographically pure Oxytocin substance was used in developing two different compositions of Lactocin intranasal drops (40 IU/ml). Stability evaluation was performed for 2 year period. The technical documentation was prepared on the basis of the research results. Lactocin is active preparation helping lactation and is indicated for lactostasis treatment and its prophylaxis after delivery. PMID:12474675

  14. Solid drop based liquid-phase microextraction.

    PubMed

    Ganjali, Mohammad Reza; Sobhi, Hamid Reza; Farahani, Hadi; Norouzi, Parviz; Dinarvand, Rassoul; Kashtiaray, Amir

    2010-04-16

    Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article. PMID:19962710

  15. Equilibrium of an elastically confined liquid drop

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Kim, Ho-Young; Puëll, Jérôme; Mahadevan, L.

    2008-05-01

    When a liquid drop is confined between an elastic plate and a rigid substrate, it spreads spontaneously due to the effects of interfacial forces, eventually reaching an equilibrium shape determined by the balance between elastic and capillary effects. We provide an analytical theory for the static shape of the sheet and the extent of liquid spreading and show that our experiments are quantitatively consistent with the theory. The theory is relevant for the first step of painting when a brush is brought down on to canvas. More mundanely, it allows us to understand the stiction of microcantilevers to wafer substrates occurring in microelectromechanical fabrication processes.

  16. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  17. A ballistic gravimeter with dropping holographic grating

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. L.; Kotova, E. I.; Nikushchenko, E. M.; Smirnova, A. L.; Prokopenko, V. T.

    2014-11-01

    The principle of operation of a ballistic laser gravimeter based on a dropping holographic diffraction grating is described. The free-fall acceleration of the grating is determined from a change in the frequency of beats that arise during the interference of light beams diffracted on the hologram in the zeroth and first orders of diffraction. An experiment demonstrating this principle of measurement is described. The main distinctive features of the proposed gravimeter are simple design, compact size, and the possibility of using this device for analysis of high-frequency fluctuations in the gravitational-field strength.

  18. Determination of Interfacial Rheological Properties through Microgravity Oscillations of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Nadim, Ali; Rush, Brian M.

    2000-01-01

    This report summarizes our derivations of analytical expressions for the frequencies and damping constants for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects from the surface advection and diffusion of surfactants, and the Gibbs elasticity are all considered and analyzed to determine the relative importance of each contribution. Supplementing the analytical treatment for small-amplitude oscillations, a numerical boundary integral equation formulation is developed for the study of large-amplittide axisymmetric oscillations of a drop in vacuum. The boundary integral formulation is an extension of classical potential flow theory and approximately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects resulting from an insoluble surfactant contaminating the interface. Theoretical and numerical results are presented for four distinct cases. These, range from the case when the effects of the surfactants are 'negligible' to 'large' when compared to the viscous effects in the bulk phases. The feasibility of the non-contact measurement of the surface parameters, using experimental observations for the oscillation frequencies and damping constants of drops and bubbles, is discussed.

  19. Effects of viscoelasticity on drop impact and spreading on a solid surface

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  20. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  1. Dropping out from School. Policy Brief Number 8

    ERIC Educational Resources Information Center

    Hunt, Frances

    2009-01-01

    While initial access to education is increasing in many countries, drop out rates continue to be high. This seriously affects MDG and EFA goals around educational access. This briefing paper looks at the issue of dropping out from school. It is based on the CREATE Pathways to Access Research Monograph, "Dropping out from school: a cross country…

  2. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    PubMed

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-01

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them. PMID:27054550

  3. Drop Testing of DOE Spent Nuclear Fuel Canisters

    SciTech Connect

    S. D. Snow; D. K. Morton; T. E. Rahl; R. K. Blandford; T. J. Hill

    2005-07-01

    The National Spent Nuclear Fuel Program (NSNFP) at the Idaho National Engineering and Environmental Laboratory INEEL) prepared four representative Department of Energy DOE) spent nuclear fuel (SNF) canisters for the purpose of drop testing. The first two canisters represented a modified 24- inch diameter standardized DOE SNF canister and the second two canisters represented the Hanford Multi-Canister Overpack MCO). The modified canisters and internals were constructed and assembled at the INEEL. The MCO internal weights were fabricated at the INEEL and assembled into two MCOs at Hanford and later shipped to the INEEL for drop test preparation. Drop testing of these four canisters was completed in August 2004 at Sandia National Laboratories. The modified canisters were dropped from 30 feet onto a flat, essentially unyielding surface, with the canisters oriented at 45 degrees and 70 degrees off-vertical at impact. One representative MCO was dropped from 23 feet onto the same flat surface, oriented vertically at impact. The second representative MCO was dropped onto the flat surface from 2 feet oriented at 60 degrees off-vertical. These drop heights and orientations were chosen to meet or exceed the Yucca Mountain repository drop criteria. This paper discusses the comparison of deformations between the actual dropped canisters and those predicted by pre-drop and limited post-drop finite element evaluations performed using ABAQUS/Explicit. Post-drop containment of all four canisters, demonstrated by way of helium leak testing, is also discussed.

  4. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    SciTech Connect

    CHENAULT, D.M.

    1999-11-16

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project.

  5. Variables Affecting Students' Decisions to Drop Out of School

    ERIC Educational Resources Information Center

    Dunn, Caroline; Chambers, Dalee; Rabren, Karen

    2004-01-01

    This study examined factors predictive of dropping out of high school for students with learning disabilities (LD) and mental retardation (MR). The sample was composed of 228 students with LD or MR who dropped out of school and 228 students with LD or MR who had not dropped out. Two sets of pre- dictor variables (student demographics and interview…

  6. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  7. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  8. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  9. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  10. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  11. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  12. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  13. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  14. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  15. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  16. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... their proper relation, from free drop heights not less than those determined by the following formula: h... must be dropped with an effective weight equal to EC28SE91.014 where— W e=the effective weight to be... the drop mass (inches); W=W M for main gear units (lbs), equal to the static weight on that unit...

  17. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... their proper relation, from free drop heights not less than those determined by the following formula: h... must be dropped with an effective weight equal to EC28SE91.014 where— W e=the effective weight to be... the drop mass (inches); W=W M for main gear units (lbs), equal to the static weight on that unit...

  18. Superconfinement tailors fluid flow at microscales

    PubMed Central

    Setu, Siti Aminah; Dullens, Roel P.A.; Hernández-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G.A.L.; Ledesma-Aguilar, Rodrigo

    2015-01-01

    Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems. PMID:26073752

  19. Mechanics of couple-stress fluid coatings

    NASA Technical Reports Server (NTRS)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  20. Microstructure development in viscoelastic fluid systems

    NASA Astrophysics Data System (ADS)

    Li, Huaping

    This thesis deals with the mechanisms of microstructure development in polymer blends. Much work has been performed on the breakup process of immiscible systems where the dispersed phase is suspended inside another matrix. The fluids used were polymer melts or model viscoelastic fluids, and the processing flows were model shear flow or processing flows seen in industry. It is found that in industrial extruders or batch mixers, the morphology of the dispersed polymer evolves from pellets to films, and subsequently to fibers and particles. In this thesis, it is demonstrated based on force analysis that the in-situ graft reactive compatibilization facilitates breakup of the dispersed phase by suppressing slip at the interface of the dispersed phase and matrix phase. The morphology development of polymer blends in industrial mixers was simulated by performing experiments of model viscoelastic drop deformation and breakup under shear flow. Two distinct modes of drop deformation and breakup were observed. Namely, viscoelastic drops can elongate and breakup either in (1) the flow direction or (2) the vorticity direction. The first normal stress difference N1 plays a decisive role in the conditions and modes of drop breakup. Drop size is an important factor which determines to a great extent the mode of drop breakup and the critical point when the drop breakup mechanism changes. Small drops break along the vorticity direction, whereas large drops break in the flow direction. A dramatic change in the critical shear rate was found when going from one breakup mode to another. Polymer melts processed under shear flow present different morphology development mechanisms: films, fibers, vorticity elongation and surface instability. The mechanisms depend greatly on the rheological properties of both the dispersed and matrix phases, namely the viscosity ratio and elasticity ratio. High viscosity ratio and high elasticity ratio result elongation of the dispersed phase in the