Science.gov

Sample records for all-sky monitor wam

  1. Monitoring All Sky for Variability

    NASA Astrophysics Data System (ADS)

    Paczynski, B.; Pojmanski, G.

    2000-05-01

    A few percent of all stars are variable, yet more than 90 percent of variables brighter than 12 magnitude have not been discovered yet. There is a need for an all sky search and for the early detection of any unexpected events: optical flashes from gamma-ray bursts, novae, dwarf novae, supernovae, killer asteroids, comets, etc. The ongoing projects like ROTSE, ASAS, TASS, and others, using instruments with just 4 inch aperture, have already discovered thousands of new variable stars, a flash from an explosion at a cosmological distance, and the first partial eclipse of a nearby star by its Jupiter like planet. About one million variable stars may be discovered with such small instruments, and many more with larger telescopes. The critical elements are software and full automation of the hardware. A complete census of the brightest eclipsing binaries is needed to select objects for a robust empirical calibration of the accurate distance determination to the Magellanic Clouds, the first step towards the Hubble constant. An archive to be generated by a large number of small instruments will be very valuable for data mining projects. The real time alerts will provide great targets of opportunity for the follow-up observations with the largest telescopes. The ASAS project is supported by a generous gift from Mr. William Golden, and we are grateful for his support and interest.

  2. Monitoring All Sky for Variability

    NASA Astrophysics Data System (ADS)

    Paczyński, Bohdan

    2000-10-01

    A few percent of all stars are variable, yet over 90% of variables brighter than 12 mag have not been discovered yet. There is a need for an all-sky search and for the early detection of any unexpected events: optical flashes from gamma-ray bursts, novae, dwarf novae, supernovae, ``killer asteroids.'' The ongoing projects like ROTSE, ASAS, TASS, and others, using instruments with just 4 inch aperture, have already discovered thousands of new variable stars, a flash from an explosion at a cosmological distance, and the first partial eclipse of a nearby star by its Jupiter-like planet. About one million variables may be discovered with such small instruments, and many more with larger telescopes. The critical elements are software and full automation of the hardware. A complete census of the brightest eclipsing binaries is needed to select objects for a robust empirical calibration of the accurate distance determination to the Magellanic Clouds, the first step toward the Hubble constant. An archive to be generated by a large number of small instruments will be very valuable for data-mining projects. The real-time alerts will provide great targets of opportunity for follow-up observations with the largest telescopes. This Essay is one of a series of invited contributions which will appear in the PASP throughout the year 2000 to mark the upcoming millennium. (Eds.)

  3. All Sky Cloud Coverage Monitoring for SONG-China Project

    NASA Astrophysics Data System (ADS)

    Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.

    2016-05-01

    In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.

  4. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James; Bhat, Narayana

    2011-01-01

    Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.

  5. Suzaku Wide-band All-sky Monitor measurements of duration distributions of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ohmori, Norisuke; Yamaoka, Kazutaka; Ohno, Masanori; Sugita, Satoshi; Kinoshita, Ryuuji; Nishioka, Yusuke; Hurley, Kevin; Hanabata, Yoshitaka; Tashiro, Makoto S.; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Iwakiri, Wataru; Kawano, Takafumi; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin E.; Nakaya, Souhei; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Urata, Yuji; Yabe, Seiya; Yasuda, Tetsuya; Yamauchi, Makoto

    2016-06-01

    We report on the T90 and T50 duration distributions and their relations with spectral hardness using 1464 gamma-ray bursts (GRBs), which were observed by the Suzaku Wide-band All-sky Monitor (WAM) from 2005 August 4 to 2010 December 29. The duration distribution is clearly bimodal in three energy ranges (50-120, 120-250, and 250-550 keV), but is unclear in the 550-5000 keV range, probably because of the limited sample size. The WAM durations decrease with energy according to a power-law index of -0.058(-0.034, +0.033). The hardness-duration relation reveals the presence of short-hard and long-soft GRBs. The short:long event ratio tends to be higher with increasing energy. We compared the WAM distribution with ones measured by eight other GRB instruments. The WAM T90 distribution is very similar to those of INTEGRAL/SPI-ACS and Granat/PHEBUS, and least likely to match the Swift/BAT distribution. The WAM short:long event ratio (0.25:0.75) is much different from Swift/BAT (0.08:0.92), but is almost the same as CGRO/BATSE (0.25:0.75). To explain this difference for BAT, we examined three effects: BAT trigger types, energy dependence of the duration, and detection sensitivity differences between BAT and WAM. As a result, we found that the ratio difference could be explained mainly by energy dependence including soft extended emissions for short GRBs and much better sensitivity for BAT which can detect weak/long GRBs. The reason for the same short:long event ratio for BATSE and WAM was confirmed by calculation using the trigger efficiency curve.

  6. The AARTFAAC All-Sky Monitor: System Design and Implementation

    NASA Astrophysics Data System (ADS)

    Prasad, Peeyush; Huizinga, Folkert; Kooistra, Eric; van der Schuur, Daniel; Gunst, Andre; Romein, John; Kuiack, Mark; Molenaar, Gijs; Rowlinson, Antonia; Swinbank, John D.; Wijers, Ralph A. M. J.

    The Amsterdam-ASTRON Radio Transients Facility and Analysis Center (AARTFAAC) all-sky monitor is a sensitive, real-time transient detector based on the Low Frequency Array (LOFAR). It generates images of the low frequency radio sky with spatial resolution of tens of arcmin, MHz bandwidths, and a time cadence of a few seconds, while simultaneously but independently observing with LOFAR. The image timeseries is then monitored for short and bright radio transients. On detection of a transient, a low latency trigger will be generated for LOFAR, which can interrupt its schedule to carry out follow-up observations of the trigger location at high sensitivity and resolutions. In this paper, we describe our heterogeneous, hierarchical design to manage the 259Gbps raw data rate and large scale computing to produce real-time images with minimum latency. We discuss the implementation of the instrumentation, its performance and scalability.

  7. Next generation x-ray all-sky monitor

    SciTech Connect

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-10

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10{sup -15} W/m{sup 2} (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars.

  8. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Murray, James; Jenet, Fredrick; Craig, Joseph; Creighton, Teviet David; Percy Dartez, Louis; Ford, Anthony J.; Hernandez, Andrés; Hicks, Brian; Hinojosa, Jesus; Jaramillo, Ricardo; Kassim, Namir E.; Lazio, Joseph; Lunsford, Grady; Miller, Rossina B.; Ray, Paul S.; Rivera, Jesus; Taylor, Gregory B.; Teitelbaum, Lawrence; CenterAdvanced Radio Astronomy, University of Texas at Brownsville, University of New Mexico, Naval Research Laboratory, Jet Propulsion Laborator

    2015-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 10-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array (LWA) project (cf. Hicks et al. PASP 124, 1090 (2012)). All four stations are currently operational and in the commissioning stage . Over the last 3 years, undergraduate and graduate students from the University of Texas at Brownsville's Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and the Goldstone Deep Space Communications Complex, California. In combination with the establishment of these sites was the development of the analog hardware, which consists of custom RF splitter/combiners and a custom amplifier and filter chain designed at Center for Advanced Radio Astronomy (CARA). This poster will expound on progress in site installation and the development of the analog signal chain, specifically the redesigned analog receiving system.

  9. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Ford, Anthony; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Murray, J.; Ray, P. S.; Rivera, J.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 5-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the last year, undergraduate students from the University of Texas at Brownsville’s Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these sites was the development of the analog hardware, which consists of commercial off-the-shelf RF splitter/combiners and a custom amplifier and filter chain designed by colleagues at the University of New Mexico. This poster will expound on progress in site installation and development of the analog signal chain.

  10. A Digital Backend for the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, L. P.

    2014-04-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. The primary science goals of LoFASM are the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council's decadal survey. LoFASM consists of antennas and front-end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of four stations, each consisting of 12 dual-polarization dipole antennas. In a single station, RF signals from each of the individual LoFASM dipoles are combined in phase in order to synthesize LoFASM's beam. The LoFASM RF signals are phased up so that the resulting beam is sensitive to radio emission that originates from the zenith and RF signals approaching from the horizon are attenuated. Digitally, this is achieved using a full Stokes 100MHz correlating spectrometer constructed using field programmable gate array (FPGA) technology. In this thesis I will describe the design and usage of the LoFASM Correlator.

  11. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; Beklen, Elif; Bhat, P. Narayana; Briggs, Michael S.; Gehrels, Neil; Greiner, Jochen; Jahoda, Keith; Kippen, R. Marc; Kouveliotou, Chryssa; Krimm, Hans A.; Kuulkers, Erik; Lund, Niels; Meegan, Charles A.; Natalucci, Lorenzo; Paciesas, William S.; Preece, Robert

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  12. Results from the Ariel-5 all-sky X-ray monitor

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.

  13. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  14. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  15. High sensitivity all sky X-ray monitor and survey with MAXI

    NASA Astrophysics Data System (ADS)

    Isobe, N.; Mihara, T.; Kohama, M.; Suzuki, M.; Matsuoka, M.; Ueno, S.; Tomida, H.; Kawai, N.; Kataoka, J.; Yoshida, A.; Yamaoka, K.; Tsunemi, H.; Miyata, E.; Negoro, H.; Nakajima, M.; Morii, M.

    2007-07-01

    MAXI is an all sky X-ray monitor to be mounted on the Japanese Experimental Module in the International Space Station (ISS). It scans almost all over the sky every 96 minutes, in the course of the orbital motion of the ISS. MAXI is designed to have a sensitivity, significantly higher than the previous X-ray monitors, and then, to detect X-ray sources as faint as 1 mCrab in a week observation. Therefore, MAXI is expected to create a novel catalogue of not only the stable X-ray sources but also the highly variable ones in the sky, especially active galactic nuclei for the first time. If MAXI detects X-ray phenomena, alerts will be quickly made through the Internet.

  16. A ROACH Based Data Acquisition System for the Low Frequency All Sky Monitor (LoFASM)

    NASA Astrophysics Data System (ADS)

    Dartez, Louis P.; Jenet, F.; Cohen, S.; Creighton, T. D.; Ford, A.; Garcia, A.; Hicks, B.; Hinojosa, J.; Kassim, N. E.; Longoria, C.; Lunsford, G.; Mata, A.; Miller, R. B.; Price, R. H.; Quintero, L.; Ray, P. S.; Reser, J.; Rivera, J.; Stovall, K.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 5 to 88 MHz. The primary science goals will be the detection and study of low-frequency radio transients. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual-polarization dipole antenna stands. The signals received by LoFASM are digitized and processed using Reconfigurable Open Architecture Computing Hardware (ROACH) boards. This poster will describe the LoFASM project with an emphasis on the ROACH data processing pipe-line.

  17. All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.

  18. Monitoring the Sky with the Prototype All-Sky Imager on the LWA1

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Taylor, G. B.; Hartman, J. M.; Clarke, T. E.; Dowell, J.; Dubois, A.; Dubois, D.; Henning, P. A.; Lazio, J.; Michalak, S.; Schinzel, F. K.

    2015-03-01

    We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real time. PASI has recorded over 13,000hr of all-sky images at frequencies between 10 and 88MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74MHz, for pulse widths of 5s. We limit transients at those frequencies with pulse energy densities of >2.7×10-23, >1.1×10-23, and >2.8×10-23Jm-2Hz-1 to have rate densities <1.2×10-4, <5.6×10-4, and <7.2×10-4 year-1deg-2.

  19. Monitoring the Low Frequency Sky with the LWA1 and the Prototype All-Sky Imager

    NASA Astrophysics Data System (ADS)

    Obenberger, Kenneth Steven; LWA Collaboration

    2015-01-01

    We present findings from the Prototype All-Sky Imager (PASI), a backend correlator of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of all 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 14,000 hours of all-sky images at frequencies between 10 and 88 MHz. These data have resulted in the discovery of radio emission from large meteors (Fireballs), and has been used to set improved limits on slow transients at 38, 52, and 74 MHz. PASI is also being used to characterize how the ionosphere affects low frequency transient astronomy. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  20. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  1. The Use of Weighting in Periodicity Searches in All-Sky Monitor Data: Applications to the GLAST LAT

    SciTech Connect

    Corbet, Robin; Dubois, Richard; /SLAC

    2009-06-25

    The light curves produced by all-sky monitors, such as the Rossi X-ray Timing Explorer All-Sky Monitor and the Swift Burst Alert Telescope (BAT), generally have non-uniform error bars. In searching for periodic modulation in this type of data using power spectra it can be important to use appropriate weighting of data points to achieve the best sensitivity. It was recently demonstrated that for Swift BAT data a simple weighting scheme can actually sometimes reduce the sensitivity of the power spectrum depending on source brightness. Instead, a modified weighting scheme, based on the Cochran semi-weighted mean, gives improved results independent of source brightness. We investigate the benefits of weighting power spectra in period searches using simulated GLAST LAT observations of {gamma}-ray binaries.

  2. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band.

  3. MOXE - An X-ray all-sky monitor for the Soviet Spectrum-X-Gamma mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to source as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  4. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Case, G.; Cherry, M.; Rodi, J.; Finger, M.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; Berklen, E.; Haynes, R. H.; Bhat, P. N.; Briggs, M.; Preece, R.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux by determining the change in count rate due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  5. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Haynes, R. H.; Preece, R.; Rodi, J.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  6. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Jenke, P.; Paciesas, W.; Preece, R.; Rodi, J.

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  7. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  8. Amsterdam-ASTRON radio transient facility and analysis centre: towards a 24 x 7, all-sky monitor for the low-frequency array (LOFAR).

    PubMed

    Prasad, Peeyush; Wijnholds, Stefan J

    2013-06-13

    The Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC) project aims to implement an all-sky monitor (ASM), using the low-frequency array (LOFAR) telescope. It will enable real-time, 24 × 7 monitoring for low-frequency radio transients over most of the sky locally visible to the LOFAR at time scales ranging from seconds to several days, and rapid triggering of follow-up observations with the full LOFAR on detection of potential transient candidates. These requirements pose several implementation challenges: imaging of an all-sky field of view, low latencies of processing, continuous availability and autonomous operation of the ASM. The first of these has already resulted in the correlator for the ASM being the largest in the world in terms of the number of input data streams. We have carried out test observations using existing LOFAR infrastructure, in order to quantify and constrain crucial instrumental design criteria for the ASM. In this study, we present an overview of the AARTFAAC data-processing pipeline and illustrate some of the aforementioned challenges by showing all-sky images obtained from one of the test observations. These results provide quantitative estimates of the capabilities of the instrument.

  9. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  10. Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.

    1977-01-01

    The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.

  11. THEMIS / All-Sky Imagers

    NASA Video Gallery

    A collection of ground-based All-Sky Imagers (ASI) make up another important component of the THEMIS mission. It is sometimes referred to as the sixth THEMIS satellite. Imagery from each camera is ...

  12. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    SciTech Connect

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J. E-mail: hale@space.mit.edu E-mail: robin.corbet@nasa.gov

    2011-09-01

    We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  13. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  14. All-sky Compton imager

    NASA Astrophysics Data System (ADS)

    von Ballmoos, Peter; Boggs, Steven E.; Jean, Pierre; Zoglauer, Andreas

    2014-07-01

    The All-Sky Compton Imager (ASCI) is a mission concept for MeV Gamma-Ray astronomy. It consists of a compact array of cross-strip germanium detectors, shielded only by a plastic anticoicidence, and weighting less than 100 kg. Situated on a deployable structure at a distance of 10 m from the spacecraft orbiting at L2 or in a HEO, the ASCI not only avoids albedo- and spacecraft-induced background, but it benefits from a continuous all-sky exposure. The modest effective area is more than compensated by the 4 π field-of-view. Despite its small size, ASCI's γ-ray line sensitivity after its nominal lifetime of 3 years is ~ 10-6 ph cm-2 s-1 at 1 MeV for every γ-ray source in the sky. With its high spectral and 3-D spatial resolution, the ASCI will perform sensitive γray spectroscopy and polarimetry in the energy band 100 keV-10 MeV. The All-Sky Compton Imager is particularly well suited to the task of measuring the Cosmic Gamma-Ray Background - and simultaneously covering the wide range of science topics in gamma-ray astronomy.

  15. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  16. The ADS All Sky Survey

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa

    We will create the first interactive sky map of astronomers' understanding of the Universe over time. We will accomplish this goal by turning the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource, into a data resource. GIS and GPS systems have made it commonplace to see and explore information about goings-on on Earth in the context of maps and timelines. Our proposal shows an example of a program that lets a user explore which countries have been mentioned in the New York Times, on what dates, and in what kinds of articles. By analogy, the goal of our project is to enable this kind of exploration-on the sky-for the full corpus of astrophysical literature available through ADS. Our group's expertise and collaborations uniquely position us to create this interactive sky map of the literature, which we call the "ADS All-Sky Survey." To create this survey, here are the principal steps we need to follow. First, by analogy to "geotagging," we will "astrotag," the ADS literature. Many "astrotags" effectively already exist, thanks to curation efforts at both CDS and NED. These efforts have created links to "source" positions on the sky associated with each of the millions of articles in the ADS. Our collaboration with ADS and CDS will let us automatically extract astrotags for all existing and future ADS holdings. The new ADS Labs, which our group helps to develop, includes the ability for researchers to filter article search results using a variety of "facets" (e.g. sources, keywords, authors, observatories, etc.). Using only extracted astrotags and facets, we can create functionality like what is described in the Times example above: we can offer a map of the density of positions' "mentions" on the sky, filterable by the properties of those mentions. Using this map, researchers will be able to interactively, visually, discover what regions have been studied for what reasons, at what times, and by whom. Second, where

  17. Testing the E(sub peak)-E(sub iso) Relation for GRBs Detected by Swift and Suzaku-WAM

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Yamaoka, K.; Sugita, S.; Ohno, M.; Sakamoto, T.; Barthelmy, S. D.; Gehrels, N.; Hara, R.; Onda, K.; Sato, G.; Tanaka, H.; Tashiro, M.; Yamauchi, M.; Norris, J. P.; Ohmori, N.

    2009-01-01

    One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E(sub peak)) of the nuF(nu) spectrum and the isotropic radiated energy, E(sub iso). Since most gamma-ray bursts (GRBs) have E(sub peak) above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E(sub peak) values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected ; one can accurately fit E(sub peak) and E(sub iso) and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of March 2009, there were 45 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 47 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine spectral parameters. For those bursts with spectroscopic redshifts.. we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 86 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift, bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.

  18. TESTING THE E {sub peak}-E {sub iso} RELATION FOR GRBs DETECTED BY SWIFT AND SUZAKU-WAM

    SciTech Connect

    Krimm, H. A.; Sakamoto, T.; Yamaoka, K.; Sugita, S.; Ohno, M.; Sato, G.; Hara, R.; Ohmori, N.; Tanaka, H.; Yamauchi, M.; Norris, J. P.; Onda, K.; Tashiro, M.

    2009-10-20

    One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E {sub peak}) of the nuF(nu) spectrum and the isotropic radiated energy, E {sub iso}. Since most GRBs have E {sub peak} above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E {sub peak} values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50 to 5000 keV, for bursts which are simultaneously detected, one can accurately fit E {sub peak} and E {sub iso} and test the relationship between them for the Swift sample. Between the launch of Suzaku in 2005 July and the end of 2009 April, there were 48 GRBs that triggered both Swift/BAT and WAM, and an additional 48 bursts that triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here, we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between E {sub peak} and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.

  19. The all-sky camera revitalized.

    PubMed

    Oznovich, I; Yee, R; Schiffler, A; McEwen, D J; Sofko, G J

    1994-10-20

    An all-sky camera, a ground imager used since the 1950's in the aeronomy and space physics studies, was refurbished with a modern control, digitization, and archiving system. Monochromatic and broadband digital images of airglow and aurora are continuously integrated and recorded by the low-cost unmanned system, which is located in northern Canada. Radiometric corrections applied to the data include noise subtraction, normalization to a flat-field response, and absolute calibration. The images are geometrically corrected with star positions and projected onto a geographic or geomagnetic coordinate system. An illustration of the application of corrected all-sky camera images to the study of auroral spirals is given.

  20. The ROSAT all-sky survey

    NASA Astrophysics Data System (ADS)

    Voges, W.

    1993-12-01

    The ROSAT (Roentgensatellit) X-ray astronomy satellite has completed the first all-sky X-ray and XUV survey with imaging telescopes. About 60,000 new X-ray and 400 new XUV sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source X-ray skymaps, the positional accuracy obtained for the X-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard X-rays as well as identifications from optical follow-up observations are presented.

  1. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-03

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms.

  2. Descriptive Model of Generic WAMS

    SciTech Connect

    Hauer, John F.; DeSteese, John G.

    2007-06-01

    The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

  3. The MAMBA Thermal Infrared All-Sky Camera

    NASA Astrophysics Data System (ADS)

    Pier, Edward Alan; Tinn Chee Jim, Kevin; Lewis, Peter

    2015-08-01

    We are developing a system to continually and simultaneously monitor infrared atmospheric extinction along all lines of sight. This system combines a next generation radiometrically calibrated thermal all-sky camera, a weather station, and a neural net trained on historic Radiosonde profiles. Oceanit Laboratories, Inc. will market this system as an off the shelf unit. Custom-built thermal all sky cameras have previously been used on Haleakala, Cerro Tololo, and elsewhere. Except for RASICAM on Cerro Tololo, they have not been radiometrically calibrated and have been used only for qualitative cloud monitoring. The new system will have improved sky coverage, resolution, and noise properties with respect to RASICAM, and simulations show it will be able to infer atmospheric transmittance to within a few percent. The all sky camera will combine an equiresolution optical design with an off-the-shelf thermal detector and in field blackbody calibration sources to provide uniform sensitivity and radiometric accuracy across the sky at relatively low cost. Our goal is to make such systems ubiqitous at observatories around the world.

  4. Astrophysics with All-Sky X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Mihara, T.; Kohama, M.; Suzuki, M.

    2009-03-01

    MAXI, an X-ray all-sky monitor mission on the Japanese Experiment Module of the International Space Station, scheduled to be launched in 2009 May, is currently in the final test phase. We will hold this workshop to inform the MAXI capability widely to the scientists in the world, to discuss the MAXI's science and to maximize its scientific output. We will invite several speakers and call for contributed short talks and posters. Due to the unprecedented sensitivity of a few milli-Crab in a day covering most of the sky, MAXI can monitor the variability of a large number of X-ray sources at much lower flux levels than is possible with the current all-sky or wide-field missions. Its science output will be greatly enhanced by the joint multi-wavelength observations with contemporary missions such as INTEGRAL, Swift, GLAST and ground-based optical/NIR/radio observatories, as well as deep follow-up observation in X-ray by Suzaku, XMM, and Chandra. Collaboration with future X-ray all-sky programs, such as eRosita will be also usefull.

  5. Cosmology with all-sky surveys

    NASA Astrophysics Data System (ADS)

    Bilicki, Maciej

    2016-06-01

    Various aspects of cosmology require comprehensive all-sky mapping of the cosmic web to considerable depths. In order to probe the whole extragalactic sky beyond 100 Mpc, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. Here I summarize our dedicated program that employs the largest photometric all-sky surveys - 2MASS, WISE and SuperCOSMOS - to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts - the 2MASS Photometric Redshift catalog (2MPZ) - was publicly released in 2013 and includes almost 1 million galaxies with a median redshift of z˜0.1. I discuss how this catalog was constructed and how it is being used for various cosmological tests. I also present how combining the WISE mid-infrared survey with SuperCOSMOS optical data allowed us to push to depths over 1 Gpc on unprecedented angular scales. These photometric redshift samples, with about 20 million sources in total, provide access to volumes large enough to study observationally the Copernican Principle of universal homogeneity and isotropy, as well as to probe various aspects of dark energy and dark matter through cross-correlations with other data such as the cosmic microwave or gamma-ray backgrounds. Last but not least, they constitute a test-bed for forthcoming wide-angle multi-million galaxy samples expected from such instruments as the SKA, Euclid, or LSST.

  6. SPHEREx: An All-Sky Spectral Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, in a single survey, with a single instrument. We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power. Finally, SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 - 4.8 um at R = 41.5 and 150) with high sensitivity using a cooled telescope with large mapping speed.SPHEREx will observe from a sun-synchronous low-earth orbit, covering the entire sky in a manner similar to IRAS, COBE and WISE. During its two-year mission, SPHEREx will produce four complete all-sky maps for constraining the physics of inflation. These same maps contain numerous high signal-to-noise absorption spectra to study water and biogenic ices. The orbit naturally covers two deep regions at the celestial poles, which we use for studying galaxy evolution. All aspects of the SPHEREx instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. The projected instrument sensitivity, based on conservative performance estimates, meets the driving point source sensitivity requirement with 300 % margin.SPHEREx is a partnership between Caltech and JPL, following the successful management structure of the NuSTAR and GALEX SMEX missions. The spacecraft

  7. The ATLAS All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Denneau, L.

    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a small project with an ambitious goal: early warning of asteroid impacts on Earth. We aim to provide one day warning for the smallest "town-killer" 30-kiloton asteroids up to three weeks for a 100-megaton impactor. ATLAS will execute a wide-field all-sky survey with four visits per footprint per night down to a sensitivity limit of V=20, suitable for detection dangerous asteroids and enabling other exciting time-domain astronomy. ATLAS is currently under construction and expects to be fully operational in late 2015. We provide an overview of the ATLAS system and discuss how ATLAS can participate in the emerging community of time-domain astronomy.

  8. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  9. The SPHEREx All-Sky Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. All Sky Camera for the CTA Atmospheric Calibration work package

    NASA Astrophysics Data System (ADS)

    Mandat, Dusan; Pech, Miroslav; Hrabovsky, Miroslav; Schovanek, Petr; Palatka, Miroslav; Prouza, Michael; Travnicek, Petr; Janecek, Petr; Ebr, Jan; Doro, Michele; Gaug, Markus

    2015-03-01

    The All Sky Camera (ASC) is a passive non-invasive imaging system for rapid night sky atmosphere monitoring. By design, the operation of the ASC will not affect the measurement procedure of the CTA observatory, for which we discuss its application in this report. The data collected should enable improved productivity and increased measurement time for the CTA observatory. The goal of ASC is to identify cloud position, atmosphere attenuation and time evolution of the sky condition, working within the CTA Central Calibration Facilities (CCF) group. Clouds and atmosphere monitoring may allow near-future prediction of the night-sky quality, helping scheduling. Also, in the case of partly cloudy night sky the cameras will identify the uncovered regions of the sky during the operation time, and define potential observable sources that can be measured. By doing so, a higher productivity of the CTA observatory measurements may be possible.

  11. ALLEGRO: ALl sky Low Energy Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Ulmer, M.; Dixon, D.; Pendleton, G.; Wheaton, W.; Matz, S.; Finley, J.; Purcell, W.; Nyquist, R.; Jonaitis, J.

    1999-04-01

    We present a novel concept for a Midex that allows all sky coverage for gamma-ray burst and hard X-ray transients. The novel Multiscale Alternating Shadow Collimator (MASC) alone allows for arc minute positioning of 1 second bursts. Our scientific objectives include: (a) The ability to detect and monitor thousands of GRBs and hard X-ray sources with sensitivity 3-10 times better than BATSE ; (b) to solve the gamma-ray burst mystery, to use gamma-ray bursts as probes of star formation and to measure cosmological parameters; (c) to understand the physics of the high energy radiation from AGNs and BLAZARs;(d) to study the physics of matter in the extreme around black holes and neutron stars; (e) to determine the pulsar birth rate characteristics. The mission concept, MASC concept and simulations will be presented.

  12. All Sky Imager Network for Science and Education

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.

    2012-12-01

    A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of

  13. The All-Sky Automated Survey for Supernovae CV Patrol

    NASA Astrophysics Data System (ADS)

    Davis, Alexandra Bianca; Shappee, Benjamin John; Archer Shappee, Bartlett; ASAS-SN

    2015-01-01

    Even in the modern era, only human eyes scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All Sky Automated Survey for Supernovae" (ASAS-SN or "Assassin") is changing this by monitoring the extra-galactic sky down to V~17 mag every 2-3 days using multiple telescopes, hosted by Las Cumbres Observatory Global Telescope Network, in the northern and southern hemispheres. By far the most common events observed by ASAS-SN are the Galactic transients. Since April 2013 ASAS-SN has identified over 180 new cataclysmic variable stars and announced over 260 new outbursts of known CVs. To make our data available to the CV community in 'real time', we have launched an automated 'CV Patrol' to monitor known CVs for outbursts as a useful tool for both professional and amateurs astronomers. It is a long term goal of ASAS-SN to make all our data public in real-time, and this patrol will serve as a framework for future ASAS-SN data releases.

  14. The Status of the NASA All Sky Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  15. All-sky Doppler interferometer for thermospheric dynamics studies

    NASA Astrophysics Data System (ADS)

    Biondi, Manfred A.; Zipf, Mark E.; Sipler, Dwight P.; Baumgardner, Jeffrey L.

    1995-04-01

    An efficient, all-sky input optical system has been mated to a 100-mm-aperture Fabry-Perot interferometer that employs a cooled (-150 deg C) CCD as a photon detector to create an all-sky Doppler interferom-eter. The instrument is capable of simultaneously measuring Doppler shifts and widths of nightglow emission lines from many different points in the sky, thereby providing determinations of upper-atmosphere neutral wind and temperature fields over a large region (to approximately equals 2000 km in extent). For OI 630-nm (thermosphere) and OH 799.6-nm (mesopause) nightglow emissions, exposure times of 5-15 min provide good-quality interferometric images. The capability of the all-sky Doppler interferometer is illustrated by examples of thermospheric wind and temperature fields measured over Millstone Hill, Massachusetts.

  16. The All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-12-01

    This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.

  17. The NASA Fireball Network All-Sky Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Rob M.

    2011-01-01

    The construction of small, inexpensive all-sky cameras designed specifically for the NASA Fireball Network is described. The use of off-the-shelf electronics, optics, and plumbing materials results in a robust and easy to duplicate design. Engineering challenges such as weather-proofing and thermal control and their mitigation are described. Field-of-view and gain adjustments to assure uniformity across the network will also be detailed.

  18. A signal detection strategy for the SETI All Sky Survey

    NASA Technical Reports Server (NTRS)

    Lawton, W.; Olsen, E. T.; Solomon, J.; Quirk, M. P.

    1985-01-01

    A source detection strategy for the SETI All Sky Survey is described. The method is designed to detect continuous wave (or very narrowband) sources transitting an antenna beam. The short-time spectra of the received signal are accumulated, and candidate extraterrestrial sources are recognized by the recognized by the presence of narrowband power exceeding a threshold function. The threshold function is derived using a Neyman-pearson hypothesis test.

  19. Explanatory Supplement to the WISE All-Sky Release Products

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) surveyed the entire sky at 3.4, 4.6, 12 and 22 microns in 2010, achieving 5-sigma point source sensitivities per band better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Data Release, conducted on March 14, 2012, incorporates all data taken during the full cryogenic mission phase, 7 January 2010 to 6 August 20l0,that were processed with improved calibrations and reduction algorithms. Release data products include: (1) an Atlas of 18,240 match-filtered, calibrated and coadded image sets; (2) a Source Catalog containing positions and four-band photometry for over 563 million objects, and (3) an Explanatory Supplement. Ancillary products include a Reject Table that contains 284 million detections that were not selected for the Source Catalog because they are low signal-to-noise ratio or spurious detections of image artifacts, an archive of over 1.5 million sets of calibrated WISE Single-exposure images, and a database of 9.4 billion source extractions from those single images, and moving object tracklets identified by the NEOWISE program (Mainzer et aI. 2011). The WISE All-Sky Data Release products supersede those from the WISE Preliminary Data Release (Cutri et al. 2011). The Explanatory Supplement to the WISE All-Sky Data Release Products is a general guide for users of the WISE data. The Supplement contains an overview of the WISE mission, facilities, and operations, a detailed description of WISE data processing algorithms, a guide to the content and formals of the image and tabular data products, and cautionary notes that describe known limitations of the All-Sky Release products. Instructions for accessing the WISE data products via the services of the NASA/IPAC Infrared Science Archive are provided. The Supplement also provides analyses of the achieved sky coverage, photometric and astrometric characteristics and completeness and reliability of the All-Sky

  20. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  1. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  2. Gemini all-sky camera for laser guide star operation

    NASA Astrophysics Data System (ADS)

    Bec, Matthieu; Rigaut, Francois J.; Trancho, Gelys; Boccas, Maxime; Collao, Fabian; Daruich, Felipe; d'Orgeville, Céline; Lazo, Manuel; Maltes, Diego; Perez, Gabriel; Vergara, Vicente; Vucina, Tomislav; Sheehan, Michael P.

    2008-07-01

    As part of its Safe Aircraft Localization and Satellite Acquisition System (SALSA), Gemini is building an All Sky Camera (ASCAM) system to detect aircrafts in order to prevent propagation of the laser that could be a safety hazard for pilots and passengers. ASCAM detections, including trajectory parameters, are made available to neighbor observatories so they may compute impact parameters given their location. We present in this paper an overview of the system architecture, a description of the software solution and detection algorithm, some performance and on-sky result.

  3. Gravity wave observations using an all-sky imager network

    NASA Astrophysics Data System (ADS)

    Wrasse, Cristiano Max; Almeida, Lazaro M.; Abalde Guede, Jose Ricardo; Fagundes, Paulo Roberto; Nicoli Candido, Claudia Maria; Alves Bolzan, Maurício José; Guarnieri, Fernando; Messias Almeida, Lazaro

    Gravity waves in the mesosphere were observed by airglow all-sky imager network of the UNI- VAP at São José dos Campos (23o S, 45o W), Braśpolis (22o S, 45o W) and Palmas (10o S, 48o W), a e o Brazil. Gravity wave characteristics like morphology, horizontal wavelength, period, phase speed and propagation direction will be analysed and discussed. The results will be compared with other observation sites in Brazil. Wave directionality will also be discussed in terms of wave sources and wind filtering.

  4. The All Sky Young Association (ASYA): a New Young Association

    NASA Astrophysics Data System (ADS)

    Torres, C. A. O.; Quast, G. R.; Montes, D.

    2016-01-01

    To analyze the SACY (Search for Associations Containing Young stars) survey we developed a method to find young associations and to define their high probability members. These bona fide members enable to obtain the kinematical and the physical properties of each association in a proper way. Recently we noted a concentration in the UV plane and we found a new association we are calling ASYA (All Sky Young Association) for its overall distribution in the sky with a total of 38 bonafide members and an estimated age of 110 Myr, the oldest young association found in the SACY survey. We present here its kinematical, space and Li distributions and its HR diagram.

  5. Results from BASS, the BANYAN All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Gagne, Jonathan; Lafreniere, David; Doyon, Rene; Faherty, Jacqueline K.; Malo, Lison; Artigau, Etienne

    2015-01-01

    We present results from the BANYAN All-Sky Survey (BASS), a systematic all-sky survey for brown dwarf candidates in young moving groups. We describe a cross-match of the 2MASS and ALLWISE catalogs that provides a list of 98 970 potential nearby dwarfs with spectral types later than M5 with measurements of proper motion at precisions typically better than 15 masyr, as well as the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II) which we use to build the BASS catalog from this 2MASS-ALLWISE cross-match, consisting of more than 300 candidate members of young moving groups. We present the first results of a spectroscopic follow-up of those candidates, which allowed us to identify several new low-mass stars and brown dwarfs displaying signs of low gravity. We use the BASS catalog to show tentative evidence for mass segregation in AB Doradus and Argus, and reveal a new ˜ 13 Mjup\\ co-moving companion to a young low-mass star in BASS. We obtain a moderate-resolution near-infrared spectrum for the companion, which reveals typical signs of youth and a spectral type L4γ.

  6. AKARI Mid-Infrared All-sky Survey

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Onaka, T.; Kataza, H.; Fujiwara, H.; Takita, S.; Alfageme, C.; Cohen, M.; Fujishiro, N.; Garcia-Lario, P.; Hasegawa, S.; Ita, Y.; Kim, W.; Nakagawa, T.; Matsuhara, H.; Matsumoto, T.; Murakami, H.; Ohyama, Y.; Oyabu, S.; Pyo, J.; Sakon, I.; Salama, A.; Stephenson, C.; Shibai, H.; Tanabe, T.; Uemizu, K.; Ueno, M.; Usui, F.; Wada, T.; Watarai, H.; Yamauchi, C.; Yamamura, I.

    2009-08-01

    AKARI All-sky Survey observations were carried out in the mid- to far-infrared spectral region with six photometric bands during the cryogenic mission phase of AKARI from May 8, 2006 to August 26, 2007. This paper reports the mid-infrared part of the AKARI all-sky survey. It was carried out with two mid-infrared broad bands centered at 9 and 18 μm. More than 90 percent of entire sky was observed by both bands during this period. The 5σ sensitivities for point sources are about 50 and 120 mJy, respectively. The spatial resolution is better than 10'' at both bands. The AKARI mid-infrared survey achieved a deeper sensitivity and a finer spatial resolution than the previous IRAS survey, the AKARI mid-infrared survey has the sensitivity to detect a debris disk of β Pic at a distance of 100 pc and several new debris disk candidates have already been discovered at 18 μm in a preliminary study, separately discussed by Fujiwara et al. (in this volume). More debris disk candidates are expected to be found in further investigations, which will make a significant impact on the statistical study of debris disks.

  7. The infrared all-sky survey mission AKARI

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    The AKARI, Japanese infrared astronomical satellite, was launched on 2006 February 21 and started the observation in May of the same year. It has performed the all-sky survey at 6 wavelength bands in the midand far-infrared, as well as more than 5,000 pointing observations, during the main mission period lasted until the liquid helium exhaustion on 2007 August 26. The all-sky survey covered more than 90 % of the entire sky with much higher spatial resolution than the IRAS catalogues. First version of AKARI infrared source catalogue will be released in 2009. In the pointing observation, a wide variety of objects, from the solar-system objects to the cosmologically distant galaxies, were observed systematically in near to far infrared. The early results of the pointing observations has been published recently. We are now preparing the post-helium mission where the pointing observations only in the near-infrared wavelength range are be performed with the cooling by the Stirling-cycle coolers. It has been confirmed that the sensitivity of the near-infrared array is kept high, although its operation temperature is higher than that in the liquid-helium cooling. Here we report the overview of the mission, and highlights of the scientific results as well as the observation plan of the post-helium mission planned to start from April 2008.

  8. The Sondrestrom Research Facility All-sky Imagers

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  9. A-STAR: The All-Sky Transient Astrophysics Reporter

    NASA Astrophysics Data System (ADS)

    Osborne, J. P.; O'Brien, P.; Evans, P.; Fraser, G. W.; Martindale, A.; Atteia, J.-L.; Cordier, B.; Mereghetti, S.

    2013-07-01

    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.

  10. Zernike analysis of all-sky night brightness maps.

    PubMed

    Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2014-04-20

    All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.

  11. All-sky reconstruction of the primordial scalar potential & implications

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    An essential quantity required to understand the physics of the early Universe is the primordial scalar potential and its statistics. We present an inexpensive all-sky reconstruction of the potential from CMB temperature data as well as an extension including polarization data. This has been achieved by applying a fully parallelized Bayesian inference method that separates the whole inverse problem into many, each of them solved by an optimal linear filter. Once explicitly having the potential, its statistics and underlying physics can be directly obtained avoiding expensive CMB analyses. This reconstruction, for instance, allows to infer the spatial structure of magnetic fields within the recombination epoch, the potential seeds of large-scale magnetic fields nowadays.

  12. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  13. Second ROSAT all-sky survey (2RXS) source catalogue

    NASA Astrophysics Data System (ADS)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  14. AN ALL-SKY CATALOG OF BRIGHT M DWARFS

    SciTech Connect

    Lepine, Sebastien; Gaidos, Eric

    2011-10-15

    We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J < 10. The 8889 stars are selected from the ongoing SUPERBLINK survey of stars with proper motion {mu} > 40 mas yr{sup -1}, supplemented on the bright end with the Tycho-2 catalog. Completeness tests which account for kinematic (proper motion) bias suggest that our catalog represents {approx}75% of the estimated {approx}11, 900 M dwarfs with J < 10 expected to populate the entire sky. Our catalog is, however, significantly more complete for the northern sky ({approx}90%) than it is for the south ({approx}60%). Stars are identified as cool, red M dwarfs from a combination of optical and infrared color cuts, and are distinguished from background M giants and highly reddened stars using either existing parallax measurements or, if such measurements are lacking, using their location in an optical-to-infrared reduced proper motion diagram. These bright M dwarfs are all prime targets for exoplanet surveys using the Doppler radial velocity or transit methods; the combination of low-mass and bright apparent magnitude should make possible the detection of Earth-size planets on short-period orbits using currently available techniques. Parallax measurements, when available, and photometric distance estimates are provided for all stars, and these place most systems within 60 pc of the Sun. Spectral type estimated from V - J color shows that most of the stars range from K7 to M4, with only a few late M dwarfs, all within 20 pc. Proximity to the Sun also makes these stars good targets for high-resolution exoplanet imaging searches, especially if younger objects can be identified on the basis of X-ray or UV excess. For that purpose, we include X-ray flux from ROSAT and FUV/NUV ultraviolet magnitudes from GALEX for all stars for which a counterpart can be identified in those catalogs. Additional photometric data include optical magnitudes from Digitized Sky Survey plates and infrared magnitudes from

  15. All-sky Interferometry with Spherical Harmonic Transit Telescopes

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Sigurdson, Kris; Pen, Ue-Li; Stebbins, Albert; Sitwell, Michael

    2014-02-01

    In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

  16. ROSAT all-sky survey on the Einstein EMSS sample

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tomasso

    1992-01-01

    The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.

  17. All-sky interferometry with spherical harmonic transit telescopes

    SciTech Connect

    Shaw, J. Richard; Pen, Ue-Li; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert

    2014-02-01

    In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

  18. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    SciTech Connect

    Shaw, J.Richard; Sigurdson, Kris; Pen, Ue-Li; Stebbins, Albert; Sitwell, Michael

    2013-02-01

    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  19. Dusty WDs in the WISE all sky survey ∩ SDSS

    SciTech Connect

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A.; Brown, Warren R.

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  20. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  1. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect

    Kilerci Eser, E.; Goto, T.; Doi, Y. E-mail: doi@ea.c.u-tokyo.ac.jp

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  2. A prototype for the PASS Permanent All Sky Survey

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  3. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-15

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  4. Gaia, an all-sky survey for standard photometry

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  5. C-BASS: The C-Band All Sky Survey

    NASA Astrophysics Data System (ADS)

    Pearson, Timothy J.; C-BASS Collaboration

    2016-06-01

    The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre

  6. IS THE TWO MICRON ALL SKY SURVEY CLUSTERING DIPOLE CONVERGENT?

    SciTech Connect

    Bilicki, Maciej; Chodorowski, Michal; Jarrett, Thomas; Mamon, Gary A.

    2011-11-01

    There is a long-standing controversy about the convergence of the dipole moment of the galaxy angular distribution (the so-called clustering dipole). Is the dipole convergent at all, and if so, what is the scale of the convergence? We study the growth of the clustering dipole of galaxies as a function of the limiting flux of the sample from the Two Micron All Sky Survey (2MASS). Contrary to some earlier claims, we find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e., up to 13.5 mag in the near-infrared K{sub s} band (equivalent to an effective distance of 300 Mpc h{sup -1}). We compare the observed growth of the dipole with the theoretically expected, conditional one (i.e., given the velocity of the Local Group relative to the cosmic microwave background), for the {Lambda}CDM power spectrum and cosmological parameters constrained by the Wilkinson Microwave Anisotropy Probe. The observed growth turns out to be within 1{sigma} confidence level of its theoretical counterpart once the proper observational window of the 2MASS flux-limited catalog is included. For a contrast, if the adopted window is a top hat, then the predicted dipole grows significantly faster and converges (within the errors) to its final value for a distance of about 300 Mpc h{sup -1}. By comparing the observational windows, we show that for a given flux limit and a corresponding distance limit, the 2MASS flux-weighted window passes less large-scale signal than the top-hat one. We conclude that the growth of the 2MASS dipole for effective distances greater than 200 Mpc h{sup -1} is only apparent. On the other hand, for a distance of 80 Mpc h{sup -1} (mean depth of the 2MASS Redshift Survey) and the {Lambda}CDM power spectrum, the true dipole is expected to reach only {approx}80% of its final value. Eventually, since for the window function of 2MASS the predicted growth is consistent with the observed one, we can compare the two to evaluate

  7. Maximizing the Performance of Automated Low Cost All-sky Cameras

    NASA Technical Reports Server (NTRS)

    Bettonvil, F.

    2011-01-01

    Thanks to the wide spread of digital camera technology in the consumer market, a steady increase in the number of active All-sky camera has be noticed European wide. In this paper I look into the details of such All-sky systems and try to optimize the performance in terms of accuracy of the astrometry, the velocity determination and photometry. Having autonomous operation in mind, suggestions are done for the optimal low cost All-sky camera.

  8. Novel design for an all-sky low-energy gamma-ray observatory (ALLEGRO)

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.; Dixon, David D.; Pendleton, Geoffrey N.; Wheaton, William A.; Matz, Steven M.; Finley, John P.; Purcell, William R.; Nyquist, Rich; Jonaitis, John

    1999-10-01

    We present a novel concept for a MIDEX satellite mission that allows all sky coverage for gamma-ray bursts and hard x-ray transients. The multiscale alternating shadow collimator (MASC) alone allows for arc minute positioning of 1 second bursts 3 times weaker than the BATSE sensitivity. Our scientific objectives include the ability: (a) to detect and monitor thousands of gamma-ray bursts (GRBs) and hard x- ray sources with sensitivity 3-10 times better than BATSE; (b) to solve the gamma-ray burst mystery; (c) to use gamma- ray bursts as probes of cosmological star formation and to measure cosmological parameters; (d) to understand the physics of the high energy radiation from AGNs and BLAZARs; (e) to study the physics of matter in the extreme around black holes and neutron stars; (f) to determine the pulsar birth rate and physical characteristics. The mission concept, MASC concept, and simulations are presented.

  9. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  10. Multifrequency observations of KAZ 102 during ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Treves, A.; Fink, H. H.; Malkan, M.; Maraschi, L.; Ulrich, M. H.; Brinkmann, W.; de Martino, D.; Elvis, M.; Heidt, J.; McDowell, J.

    1992-03-01

    Results of X-ray observations, ultraviolet observations with the IUE camera, and optical photometry observations carried out with a 70 cm telescope, of Kaz 102, a close by radio quiet quasar, are presented. Optical and UV observations indicated that during the X-ray monitoring the source exhibited variability of 10 percent. Comments on the X-ray variability were not made due to systematic errors. It was hoped to be able to correlate the UV and optical photometry when all the optical data of the collaboration would be analyzed, the perspective of a cross correlation with X-rays are not good, because optical data indicated a modest variability. If the X-ray variability is similar, it is doubted that systematic errors could be reduced in such a way that the variability can show up. The X-ray spectrum indicates some soft excess, which is not unexpected in the PSPC (Position Sensitive Proportional Counter) energy range. Results are compared with the Einstein 1979 data.

  11. Determination of meteoroid fluxes by using a high-res all-sky camera

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Castro-Tirado, A. J.; Gural, P. S.; Jelinek, M.; Vitek, S.; Llorca, J.; Fabregat, J.; Troughton, B.; Galvez, F.

    For several decades there was a large gap between the typical masses of the meteoroids detectable by ground-based photographic camera networks that typically reach -4 magnitude (Spurný and Boroviˇ ka, 2002) and those observed visually (mag. +6). Consequently, visual observations and medium-field photographic exposures have played an important role in determining meteoric fluxes during periods of moderate or high meteoric activity (Jenniskens, 1994, 1995; Trigo-Rodríguez et al., 2001, 2004a). However, the gap for recorded meteors from all-sky systems can be narrowed by using charge coupled devices (CCD) cameras to the detection of meteors until +2/+3 magnitude as was pointed out recently (Trigo-Rodríguez et al. 2004b). A full description of the system and its application to different research fields appears in Castro-Tirado et al. (2005). Continuous meteor and fireball observations have been carried out by the SPanish Meteor Network (SPMN) all sky cameras located in Barcelona, Huelva and Malaga provinces (Spain) during 2005-2006. As a result of the continuous monitoring of the night sky bright bolides have been recorded, but also tens of meteors from different streams or sporadics. On the basis of counting the recorded meteors emanating from different meteor streams in the all-sky exposures, we are able to estimate the meteoroid fluxes for different streams. Determination of these fluxes was made by using a meteor simulation tool (MeteorSim) in order to convert the count rates obtained from the all-sky camera observations to meteoroid spatial number densities. The tool employed was a Monte Carlo based simulation first detailed in an International Meteor Conference proceeding paper by Gural (2002). The same tool had been applied in Gural and Jenniskens (2000) to estimate both the mass ratio and flux for the Leonids, as well as in Molau, Gural, and Okamura (2002) to correct for variable detection efficiencies between multiple sensors and changing radiant

  12. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  13. Transients Discovered by the All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan; Warren-Son Holoien, Thomas; ASAS-SN Team

    2017-01-01

    Even in the modern era, only human eyes are able to scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All Sky Automated Survey for Supernovae" (ASAS-SN or "Assassin") is changing this by monitoring the night sky down to V~17 mag every 2-3 days using multiple telescopes, hosted by Las Cumbres Observatory Global Telescope Network, in the northern and southern hemispheres. The primary goal of ASAS-SN is to discover bright, nearby supernovae (SNe); we currently discover more than 50% of SNe with V<17. Since June 2013 our SNe discovery rate has averaged one every three days, resulting in approximately 400 discoveries in total. ASAS-SN has also discovered many other interesting transients, including tidal disruption events, superluminous SNe, and Galactic novae. The nearby nature of ASASSN discoveries allows detailed follow-up across a wide wavelength coverage; here we present some of these data on recent ASAS-SN transients.

  14. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Kornoš, Leonard; Zigo, Pavol; Gajdoš, Štefan; Kalmančok, Dušan; Világi, Jozef; Šimon, Jaroslav; Vereš, Peter; Šilha, Jiří; Buček, Marek; Galád, Adrián; Rusňák, Patrik; Hrábek, Peter; Ďuriš, František; Rudawska, Regina

    2015-12-01

    All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras - the SVMN database - as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ɛ Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

  15. Extragalactic Transients Discovered by the All-Sky Automated Survey for SuperNovae

    NASA Astrophysics Data System (ADS)

    Warren-Son Holoien, Thomas; ASAS-SN Team

    2015-01-01

    Even in the modern era, only human eyes scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All Sky Automated Survey for SuperNovae" (ASAS-SN or "Assassin") is changing this by monitoring the extra-galactic sky down to V~17 mag every 2-3 days using multiple telescopes in the northern and southern hemispheres, hosted by Las Cumbres Observatory Global Telescope Network. The primary goal of ASAS-SN is a complete survey of bright, nearby supernovae (SNe), and since April 2013 ASAS-SN has discovered over 40 new Type-Ia SNe and over 15 new core collapse SNe, including roughly half of all the SNe currently visible with V<17 mag. ASAS-SN also discovers many other interesting extragalactic transients, the most exciting of which was the recent tidal disruption event (TDE) ASASSN-14ae at ~200 Mpc, the closest TDE ever discovered at optical wavelengths. The brightness of these nearby events allows detailed follow-up at many wavelengths. Here we present some of these data on recent ASAS-SN extragalactic transients.

  16. Extragalactic Transients Discovered by the All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan; Warren-Son Holoien, Thomas; ASAS-SN

    2016-01-01

    Even in the modern era, only human eyes can scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All-Sky Automated Survey for Supernovae" (ASAS-SN or "Assassin") is changing this by monitoring the extra-galactic sky down to V~17 mag every 2-3 days using multiple telescopes, hosted by Las Cumbres Observatory Global Telescope Network, in the northern and southern hemispheres. The primary goal of ASAS-SN is to discover bright, nearby supernovae (SNe), we are discovering more than 60% of supernovae with V<17. Since June 2013, we have discovered 224 supernovae, 133 in 2015 alone (as of September 30, 2015). ASAS-SN has also discovered many other interesting extragalactic transients, including the three closest tidal disruption events (TDEs) ever discovered at optical wavelengths. The nearby nature of ASASSN discoveries allows detailed follow-up across a wide wavelength coverage; here we present some of these data on recent ASAS-SN extragalactic transients.

  17. AKARI mid-infrared all-sky survey: development of the new inter-planetary dust (IPD) map and the world-first all-sky PAH map

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Kaneda, H.; Kondo, T.; Amatsutsu, T.; Nakamichi, K.; Yamagishi, M.; Oyabu, S.; Ootsubo, T.; Onaka, T.

    We are constructing accurately calibrated 9 µm and 18 µm all-sky diffuse maps from the AKARI mid-infrared all-sky survey data. These maps are heavily affected by the foreground emission of the zodiacal light, which has an intensity peak at around these wavelengths. We carefully separate the zodiacal emission component from the maps using Kelsall’s model. Through improvement of the parameters in the zodiacal light emission model, we obtained new insight on the structure and composition of the interplanetary dust in our solar system. The zodiacal light removed AKARI 9 µm map is the world’s first all-sky PAH map, that traces the emission features of Galactic polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, and 11.3 µm. On a global scale, PAHs show good spatial correlation with tracers of general ISM such as CO, HI, and far-IR dust emissions. On a local scale, we recognize the variation of physical state and compositions of hydrocarbons reflecting the variation of the local physical environment. This PAH map will be effectively used in diagnoses of various interstellar phenomena.

  18. Retrieval of the optical depth using an all-sky CCD camera.

    PubMed

    Olmo, Francisco J; Cazorla, Alberto; Alados-Arboledas, Lucas; López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier

    2008-12-01

    A new method is presented for retrieval of the aerosol and cloud optical depth using a CCD camera equipped with a fish-eye lens (all-sky imager system). In a first step, the proposed method retrieves the spectral radiance from sky images acquired by the all-sky imager system using a linear pseudoinverse algorithm. Then, the aerosol or cloud optical depth at 500 nm is obtained as that which minimizes the residuals between the zenith spectral radiance retrieved from the sky images and that estimated by the radiative transfer code. The method is tested under extreme situations including the presence of nonspherical aerosol particles. The comparison of optical depths derived from the all-sky imager with those retrieved with a sunphotometer operated side by side shows differences similar to the nominal error claimed in the aerosol optical depth retrievals from sunphotometer networks.

  19. Time Domain X-ray Astronomy with "All-Sky" Focusing Telescopes

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2016-04-01

    The largest and most diverse types of temporal variations in all of astronomy occur in the soft, i.e. 0.5 to 10 keV, X-ray band. They range from millisecond QPO’s in compact binaries to year long flares from AGNs due to the absorption of a star by a SMBH, and the appearance of transient sources at decadal intervals. Models predict that at least some gravitational waves will be accompanied by an X-ray flare. A typical GRB produces more photons/sq. cm. in the soft band than it does in the Swift BAT 15 to 150 keV band. In addition the GRB X-ray fluence and knowledge of the details of the onset of the X-ray afterglow is obtained by observing the seamless transition from the active burst phase that has been attributed to internal shocks to the afterglow phases that has been attributed to external shocks. Detecting orphan X-ray afterglows will augment the event rate. With high sensitivity detectors some GRB identifications are likely to be with the youngest, most distant galaxies in the universe. Previous all-sky X-ray monitors have been non focusing limited field of view scanning instruments. An “All-Sky” (actually several ster FOV), focusing lobster-eye X-ray telescope will have much more grasp than the previous instruments and will allow a wide range of topics to be studied simultaneously. Two types of lobster-eye telescopes have been proposed. One type focuses in one dimension and uses a coded mask for resolution in the second. The other type focuses in two dimensions but has less effective area and less bandwidth. Both types are compatible with a Probe mission.

  20. Estimation of shortwave radiation using MODIS products under all sky conditions

    NASA Astrophysics Data System (ADS)

    Jang, K.; Kang, S.

    2010-12-01

    (RMSE) at GDK site, and with +10.58 (134.49) W m-2 of bias (RMSE) at HFK site. The validation using observational data from flux towers and NWSs proves that the estimation methods for Rs presented in this study enable the retrievals of Rs using MODIS products under cloudy sky condition. Our results indicate that MODIS products provide a good opportunity for better understanding of the land surface energy balance, and also offer the potential to estimate the evapotranspiration and gross primary production under all sky conditions. Acknowledgements: This research was supported by the Agenda Project of the National Academy of Agricultural Science of RDA, KOREA.

  1. The second ROSAT All-Sky Survey source catalogue: the deepest X-ray All-Sky Survey before eROSITA

    NASA Astrophysics Data System (ADS)

    Boller, T.; Freyberg, M.; Truemper, J.

    2014-07-01

    We present the second ROSAT all-sky survey source catalogue (RASS2, (Boller, Freyberg, Truemper 2014, submitted)). The RASS2 is an extension of the ROSAT Bright Source Catalogue (BSC) and the ROSAT Faint Source Catalogue (FSC). The total number of sources in the second RASS catalogue is 124489. The extensions include (i) the supply of new user data products, i.e., X-ray images, X-ray spectra, and X-ray light curves, (ii) a visual screening of each individual detection, (iii) an improved detection algorithm compared to the SASS II processing. This results into an as most as reliable and as most as complete catalogue of point sources detected during the ROSAT Survey observations. We discuss for the first time the intra-day timing and spectral properties of the second RASS catalogue. We find new highly variable sources and we discuss their timing properties. Power law fits have been applied which allows to determine X-ray fluxes, X-ray absorbing columns, and X-ray photon indices. We give access to the second RASS catalogue and the associated data products via a web-interface to allow the community to perform further scientific exploration. The RASS2 catalogue provides the deepest X-ray All-Sky Survey before eROSITA data will become available.

  2. The eROSITA All-Sky Survey and its spectroscopic follow-up

    NASA Astrophysics Data System (ADS)

    Salvato, Mara

    2015-08-01

    eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is current scheduled for launch in 2016. In the soft band (0.5-2 keV), the deep All-sky survey will be 30 times more sensitive than the previous ROSAT All-sky survey, while the first ever true all-sky survey will be mapped in the hard band (2-8 keV).The design driving science is the detection of large samples of galaxy clusters to redshifts z > 1, in order to study the large scale structure in the Universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of around 3 million active galactic nuclei, which is bound to revolutionize our view of the evolution of supermassive black holes and their impact on the process of structure formation in the Universe.I will review the main characteristics of eROSITA All-sky survey, with an eye also on the planned spectroscopic follow-up of the sources with SDSS-IV/SPIDERS and ESO/4MOST.

  3. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Goetz, E.; Riles, K.

    2016-04-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors.

  4. Remote and automatic small-scale observatories: experience with an all-sky fireball patrol camera

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C. M.

    2014-07-01

    This paper describes the design of a remote, automatic all-sky camera for capturing bright meteor trails based on a DSLR camera combined with Liquid Crystal shutter technology for angular velocity measurement. Design, performance and first results are discussed, as well the up scaling towards a large autonomous network for accurate fireball orbit determination and meteorite recovery.

  5. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  6. MASCARA: the multi-site all-sky CAameRA: concept and first results

    NASA Astrophysics Data System (ADS)

    Lesage, A.-L.; Spronck, J. F. P.; Stuik, R.; Bettonvil, F.; Pollaco, D.; Snellen, I. A. G.

    2014-07-01

    MASCARA, the Multi-site All-Sky CAmeRA, will consist of several fully-automated stations distributed across the globe. Its goal is to find exoplanets transiting the brightest stars, in the mV = 4 to 8 magnitude range, currently probed neither by space- nor by ground-based surveys. The nearby transiting planet systems that MASCARA is expected to discover will be key targets for future detailed planet atmosphere observations. The target population for MASCARA consists mostly of hot Jupiters. The main requirement set on MASCARA to detect these planets around stars down to magnitude 8 is to reach a minimum Signal-to-Noise Ratio of 100 within one hour of observation. Each MASCARA station consists of five low-noise off-the-shelf full-frame CCD cameras, fitted with standard Canon 24 mm , f/1.4 lenses, monitoring the near-entire sky down to magnitude 8 at that location. Measurements have demonstrated that the required Signal-to-Noise Ratio of 100, can be achieved in less than thirty minutes. MASCARA aims at deploying several stations world-wide to provide a nearly continuous coverage of the dark sky, at sub-minute cadence. While at the faint end MASCARA is limited mainly by photon noise, at the bright end scintillation and red noise become the limiting factors. Instrumental noise sources are reduced by placing the cameras in a fixed orientation and in a temperature controlled environment. By defocusing and allowing stars to drift over the detector, the impact of pixel-to-pixel variations on the photometry are minimized, while taking exposures at fixed sidereal times allows accurate cross-calibration of consecutive nights. The exposure time of 6.4 seconds gives rise to a high data acquisition rate of a MASCARA station, around 500GB per night. In order to minimize data transport and data storage requirements, the raw images are reduced to produce accurate light curves in nearly real time. The first MASCARA station will be integrated on La Palma during the summer of 2014

  7. Midnight Temperature Maximum (MTM) in Whole Atmosphere Model (WAM) Simulations

    DTIC Science & Technology

    2016-04-14

    C. G. (1996), Simulations of the low -latitude midnight temperature maximum, J. Geophys. Res., 101, 26,863–26,874. Forbes, J. M., S. L. Bruinsma, Y...Midnight temperature maximum (MTM) in Whole Atmosphere Model (WAM) simulations R. A. Akmaev,1 F. Wu,2 T. J. Fuller-Rowell,2 and H. Wang2 Received 13...February 2009; accepted 18 March 2009; published 14 April 2009. [1] Discovered almost four decades ago, the midnight temperature maximum (MTM) with

  8. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-01-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a Hemispherical Sky Imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated by spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelength 380 nm to 760 nm between both instruments at various directions deviate by less then 20% for all sky conditions.

  9. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-07-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a hemispherical sky imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images, non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated using spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelengths 380-760 nm between both instruments at various directions deviate by less than 20% for all sky conditions.

  10. Lidar and All-Sky IR Camera Cloud Measurements for LSST Scheduling

    NASA Astrophysics Data System (ADS)

    Sebag, Jacques; Zimmer, P.; Klebe, D.; Mcgraw, J.; Krabbendam, V.

    2011-03-01

    LSST has acquired an all-sky thermal IR imager to evaluate its cloud detection performances to inform the automatic scheduling process during night operations. Observations in the 10micron window have long been used at observatories to detect the presence of thick clouds and recent progresses in IR detector performances should enable the detection of thin cirrus at high altitudes. Lidar is quite effective at measuring the altitude and the optical depth of thin cirrus clouds well below 1% transmission losses and is therefore a perfectly suited instrument to help evaluating the detection performance of the all-sky IR imager. For that purpose, the IR imager has been deployed at the UNM Campus Observatory in Albuquerque NM the location of the Astronomical Lidar for Extinction (ALE) and the two instruments were operated together under varying amounts of cloud coverage. The poster will present the results obtained so far from this set of simultaneous observations.

  11. An All-Sky Search for Wide Binaries in the SUPERBLINK Proper Motion Catalog

    NASA Astrophysics Data System (ADS)

    Hartman, Zachary; Lepine, Sebastien

    2017-01-01

    We present initial results from an all-sky search for Common Proper Motion (CPM) binaries in the SUPERBLINK all-sky proper motion catalog of 2.8 million stars with proper motions greater than 40 mas/yr, which has been recently enhanced with data from the GAIA mission. We initially search the SUPERBLINK catalog for pairs of stars with angular separations up to 1 degree and proper motion difference less than 40 mas/yr. In order to determine which of these pairs are real binaries, we develop a Bayesian analysis to calculate probabilities of true companionship based on a combination of proper motion magnitude, angular separation, and proper motion differences. The analysis reveals that the SUPERBLINK catalog most likely contains ~40,000 genuine common proper motion binaries. We provide initial estimates of the distances and projected physical separations of these wide binaries.

  12. Derivation of sky quality indicators from photometrically calibrated all-sky image mosaics

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Moore, Chadwick A.; Luginbuhl, Christian B.

    2015-08-01

    A large database of high resolution all-sky measurements of V-band night sky brightness at sites in U.S. National Parks and astronomical observatories is utilized to describe sky quality over a wide geographic area. Mosaics of photometrically calibrated V-band imagery are processed with a semi-automated procedure to reveal the effects of artificial sky glow through graphical presentation and numeric indicators of artificial sky brightness. Comparison with simpler methods such as the use of the Unihedron SQM and naked eye limiting magnitude reveal that areas near the horizon, which are not typically captured with single-channel measurements, contribute significantly to the indicators maximum vertical illuminance, maximum sky luminance, and average all-sky luminance. Distant sources of sky glow may represent future threats to areas of the sky nearer the zenith. Timely identification and quantification of these threats may allow mitigating strategies to be implemented.

  13. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  14. Hierarchical follow-up of outliers in all-sky searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Walsh, Sinead; Einstein@Home Team

    2017-01-01

    Rapidly rotating neutron stars are promising sources of continuous gravitational waves for the LIGO and Virgo interferometers. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from neutron stars which have not been observed electromagnetically. These all-sky searches cover a broad parameter space in frequency and spindown, requiring a huge number of templates in parameter space to avoid having too much distance between a potential signal and the nearest template. The large trials factors result in many outliers due to random noise, and additional outliers are produced by detector artifacts. In this talk, I present a hierarchical approach to processing the results of an all-sky search. This approach is designed so that at each hierarchical stage, the significance of a cell harbouring a real signal will increase, while the significance of a cell that does not contain a signal will not increase. Thus we are sensitive to signals that would otherwise be hidden by the noise background.

  15. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  16. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    SciTech Connect

    Edelson, R.; Malkan, M.

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  17. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    NASA Technical Reports Server (NTRS)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  18. An All-Sky Search for Intermediate-Scale Structure Using Milagro

    NASA Astrophysics Data System (ADS)

    Walker, G. P.

    Milagro is a TeV gamma-ray observatory with a ~2 sr field of view and a >90% duty factor. The large field of view and long observation time make Milagro ideal for surveying large regions of the Northern Hemisphere sky. A previous all-sky survey searched for point sources (Atkins, R, et al., 2004, ApJ, 608, 680-685), but the analysis is easily adaptable to look for intermediate-scale (~10 degrees) as well. A search on intermediate size scales has been conducted, and a map of the Northern Hemisphere will be presented.

  19. The all-sky search for short-duration gravitational-wave bursts with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Lynch, Ryan; LIGO-Virgo Collaboration Collaboration

    2017-01-01

    Sources of gravitational-wave transients include some of the most energetic events in the universe. In addition to the merger of compact stellar remnants, sources may include the core-collapse of massive stars, neutron star glitches, and cosmic string cusps. Searches for this latter category of transients often make minimal assumptions regarding their exact waveform morphologies, and are thus referred to as unmodeled searches. A network of the Advanced LIGO gravitational-wave detectors recently completed its first scientific data collection run. In this talk, we describe the all-time, all-sky search for unmodeled gravitational-wave transients in Advanced LIGO data.

  20. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    DTIC Science & Technology

    2015-09-02

    Emission (STARGATE) project, a public-private partnership between UTB’s Center for Advanced Radio Astronomy and SpaceX , focused on RF technology...Corporation ( SpaceX ) to build a commercial orbital launch facility in South Texas. As a result of interactions between SpaceX engineers and LoFASM students...and faculty, SpaceX and CARA have joined forces to create the Spacecraft Tracking and Astronomical Research into Gigahertz Astrophysical

  1. All-Sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. S.; Araya, M. C.; Aston, S. M.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2011-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(exp -9) Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data. collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(sub 0) is 1 x 10(exp -24), while at the high end of our frequency ra.nge we achieve a worst-case upper limit of 3.8 x 10(exp -24) for all polarizations and sky locations. These results constitute a factor of two improvement upop. previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long.period binary companion.

  2. Observation of the Coma cluster of galaxies with ROSAT during the all-sky survey

    NASA Technical Reports Server (NTRS)

    Briel, U. G.; Henry, J. P.; Boehringer, H.

    1992-01-01

    The Coma cluster of galaxies was observed with the position sensitive proportional counter (PSPC) during the ROSAT all sky survey. We find evidence for substructure in this cluster. Diffuse X-ray emission is detected from the regions of the NGC 4839 and 4911 subgroups at 6 percent and 1 percent of the total cluster emission respectively. There may be emission associated with the NGC 4874 and 4889 subgroups as well. The NGC 4839 group appears to be in the process of merging with the cluster. These X-ray data show that at least some of the groups previously found in projection are in fact physical objects possessing potential wells deep enough to trap their own X-ray gas. Because of the unlimited field of view of the all sky survey and the low background of the PSPC, we were able to measure the azimuthally averaged surface brightness of Coma out to approximately 100 arcmin, twice as far as was previously possible. Given the validity of our mass models, these new X-ray data imply that within 5/h(50) Mpc the binding mass of the Coma cluster is 1.8 +/- 0.6 x 10 exp 15/h(50) solar mass, and the fraction of cluster mass contained in hot gas is 0.30 +/- 0.14h(50) exp -3/2. Furthermore, the binding mass is more centrally concentrated than is the X-ray gas.

  3. The C-Band All-Sky Survey: Northern Survey Progress and Southern Survey Instrument

    NASA Astrophysics Data System (ADS)

    King, Oliver G.; C-BASS Team

    2012-01-01

    The C-Band All-Sky Survey (C-BASS) is a project that aims to produce sensitive, all-sky maps of Galactic synchrotron emission at 5 GHz in total intensity and linear polarization. These measurements will be used primarily in the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. Secondary scientific goals include studying the nature of the Galactic magnetic field, constraining the Galactic cosmic ray energy spectrum, and constraining low frequency foregrounds including anomalous microwave emission. Measurements will be performed using a 6 m dish at the Owens Valley Radio Observatory (OVRO) in California, and a 7 m dish in the new Radio Astronomy Park near Carnarvon, South Africa. The Northern hemisphere observations are underway, the Southern instrument is complete, and deployment of the Southern receiver is planned for early 2012. We discuss the progress of the survey observations, present a preview of the Northern hemisphere data, and discuss the performance of the instrument. The C-BASS project is a collaboration between Caltech/JPL in the US, Oxford and Manchester Universities in the UK, KACST in Saudi Arabia, and Rhodes University and the Hartebeesthoek Radio Astronomy Observatory in South Africa. It is funded by the NSF (AST-0607857) and the participating institutions. http://www.astro.caltech.edu/cbass/

  4. The first long-term all-sky imager observation of lunar sodium tail

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Shiokawa, Kazuo; Otsuka, Yuichi

    2016-12-01

    The Moon possesses a long tail of neutral sodium atoms that are emitted from the lunar surface and transported anti-sunward by the solar radiation pressure. Since the earth crosses the lunar sodium tail for a few days around the new moon, the resonant light emission from sodium atoms can be detected from the ground. Here we show the first long-term (16 years) observation of the lunar sodium tail, using an all-sky imager at Shigaraki Observatory (35°N, 136°E), Japan. We have surveyed our database of all-sky sodium images at a wavelength of 589.3 nm to find more than 20 events in which a bright spot emerges around the anti-lunar point during the new moon periods. We could not find any clear correlation between the sodium brightness and solar wind parameters (density, speed, dynamic pressure, and F10.7 index). In particular, no enhancement of the sodium spot brightness is detected even under very high density solar wind conditions (70 cm-3; an order-of-magnitude higher than usual), which means that solar wind sputtering is not a principal mechanism of the formation of the lunar sodium tail.

  5. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-08-01

    We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18 ,+1.00 ] ×1 0-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 ×1 0-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5 ×1 0-24 . Both cases refer to all sky locations and entire range of frequency derivative values.

  6. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  7. Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Kovács, András; Szapudi, István

    2015-04-01

    We combine photometric information of the Wide-Field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey (2MASS) all-sky infrared data bases, and demonstrate how to produce clean and complete galaxy catalogues for future analyses. Adding 2MASS colours to WISE photometry improves star-galaxy separation efficiency substantially at the expense of losing a small fraction of the galaxies. We find that 93 per cent of the WISE objects within W1 < 15.2 mag have a 2MASS match, and that a class of supervised machine learning algorithms, support vector machines (SVM), are efficient classifiers of objects in our multicolour data set. We constructed a training set from the Sloan Digital Sky Survey PhotoObj table with known star-galaxy separation, and determined redshift distribution of our sample from the Galaxy and Mass Assembly spectroscopic survey. Varying the combination of photometric parameters input into our algorithm we show that W1WISE - J2MASS is a simple and effective star-galaxy separator, capable of producing results comparable to the multidimensional SVM classification. We present a detailed description of our star-galaxy separation methods, and characterize the robustness of our tools in terms of contamination, completeness, and accuracy. We explore systematics of the full sky WISE-2MASS galaxy map, such as contamination from moon glow. We show that the homogeneity of the full sky galaxy map is improved by an additional J2MASS < 16.5 mag flux limit. The all-sky galaxy catalogue we present in this paper covers 21 200 deg2 with dusty regions masked out, and has an estimated stellar contamination of 1.2 per cent and completeness of 70.1 per cent among 2.4 million galaxies with zmed ≈ 0.14. WISE-2MASS galaxy maps with well controlled stellar contamination will be useful for spatial statistical analyses, including cross-correlations with other cosmological random fields, such as the cosmic microwave background. The same techniques also yield a

  8. RXTE all-sky slew survey. Catalog of X-ray sources at |b|>10o

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-05-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (|b|>10o) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4σ limiting flux of ≈ 1.8 (2.5) × 10-11 erg s-1 cm-2 in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7× 103 sq deg area of the sky is sampled to flux levels below 10-11 erg s-1 cm-2 (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (NH>1023 cm-2). For the first time we present a log N-log S diagram for extragalactic sources above 4× 10-12 erg s-1 cm-2 at 8-20 keV. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/927

  9. First low frequency all-sky search for continuous gravitational wave signals

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

  10. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    SciTech Connect

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  11. Imaging science at Amazon rainforest, Brazil, using an all-sky imager

    NASA Astrophysics Data System (ADS)

    Calderaro, G. L.; Pimenta, A. A.; Manzi, A. O.

    2015-12-01

    Near-simultaneous all-sky (160 degrees field of view) observations of the OI 630.0 nm, OI777.4 nm, OI557.7 nm and 589 nm nightglow emissions are being carried out on a routine basis at ZF-2 Cuireiras Biological Reserve (2.59 degrees S, 60.22 degrees W, altitude 87 m), Amazonas state, Brazil, since July 2015. In the thermosphere-ionosphere, three types of phenomena are studied using 630.0 nm and 777.4 nm observations: (1) brightness waves (BW) associated with the midnight temperature maximum (MTM), (2) electron density enhancement associated with plasma blobs and MSTID with characteristics matching a Perkins-instability. In the mesosphere we study gravity waves events, probably generated by lower atmospheric due to treetops of the Amazon rainforest.

  12. All-sky, narrowband, gravitational-wave radiometry with folded data

    NASA Astrophysics Data System (ADS)

    Thrane, Eric; Mitra, Sanjit; Christensen, Nelson; Mandic, Vuk; Ain, Anirban

    2015-06-01

    Gravitational-wave radiometry is a powerful tool by which weak signals with unknown signal morphologies are recovered through a process of cross correlation. Radiometry has been used, e.g., to search for persistent signals from known neutron stars such as Scorpius X-1. In this paper, we demonstrate how a more ambitious search—for persistent signals from unknown neutron stars—can be efficiently carried out using folded data, in which an entire ˜year-long observing run is represented as a single sidereal day. The all-sky, narrowband radiometer search described here will provide a computationally tractable means to uncover gravitational-wave signals from unknown, nearby neutron stars in binary systems, which can have modulation depths of ≈0.1 - 2 Hz . It will simultaneously provide a sensitive search algorithm for other persistent, narrowband signals from unexpected sources.

  13. Matching of the Continuous Gravitational Wave in an All Sky Search

    NASA Astrophysics Data System (ADS)

    Sahay, S. K.

    We investigate the matching of continuous gravitational wave (CGW) signals in an all sky search with reference to Earth based laser interferometric detectors. We consider the source location as the parameters of the signal manifold and templates corresponding to different source locations. It has been found that the matching of signals from locations in the sky that differ in their co-latitude and longitude by π radians decreases with source frequency. We have also made an analysis with the other parameters affecting the symmetries. We observe that it may not be relevant to take care of the symmetries in the sky locations for the search of CGW from the output of LIGO-I, GEO600 and TAMA detectors.

  14. Seedless clustering in all-sky searches for gravitational-wave transients

    NASA Astrophysics Data System (ADS)

    Thrane, Eric; Coughlin, Michael

    2014-03-01

    The problem of searching for unmodeled gravitational-wave bursts can be thought of as a pattern recognition problem: how to find statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In a previous publication, we showed how "seedless clustering" can be used to dramatically improve the sensitivity of searches for long-lived (˜10-1000 s) gravitational-wave transients. To manage the computational costs, this initial analysis focused on externally triggered searches where the source location and emission time are both known to some degree of precision. In this paper, we show how the principle of seedless clustering can be extended to facilitate computationally feasible, all-sky searches where the direction and emission time of the source are entirely unknown. We further demonstrate that it is possible to achieve a considerable reduction in computation time by using graphical processor units, thereby facilitating more sensitive searches.

  15. PROPERTIES OF LARGE-AMPLITUDE VARIABLE STARS DETECTED WITH TWO MICRON ALL SKY SURVEY PUBLIC IMAGES

    SciTech Connect

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2009-11-15

    We present a catalog of variable stars in the near-infrared wavelength detected with overlapping regions of the Two Micron All Sky Survey public images, and discuss their properties. The investigated region is in the direction of the Galactic center (-30 deg. {approx}< l {approx}< 20 deg., |b| {approx}< 20 deg.), which covers the entire bulge. We have detected 136 variable stars, of which six are already known and 118 are distributed in the |b| {<=} 5 deg. region. Additionally, 84 variable stars have optical counterparts in Digitized Sky Survey images. The three diagrams (color-magnitude, light variance, and color-color diagrams) indicate that most of the detected variable stars should be large-amplitude and long-period variables such as Mira variables or OH/IR stars. The number density distribution of the detected variable stars implies that they trace the bar structure of the Galactic bulge.

  16. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation

    SciTech Connect

    Xie, Yu; Sengupta, Manajit; Dudhia, Jimy

    2016-10-01

    Radiative transfer (RT) models simulating broadband solar radiation have been widely used by atmospheric scientists to model solar resources for various energy applications such as operational forecasting. Due to the complexity of solving the RT equation, the computation under cloudy conditions can be extremely time-consuming, though many approximations (e.g., two-stream approach and delta-M truncation scheme) have been utilized. Thus, a more efficient RT model is crucial for model developers as a new option for approximating solar radiation at the land surface with minimal loss of accuracy. In this study, we developed a fast all-sky radiation model for solar applications (FARMS) using the simplified clear-sky RT model, REST2, and simulated cloud transmittances and reflectances from the Rapid Radiation Transfer Model (RRTM) with a 16-stream Discrete Ordinates Radiative Transfer (DISORT). Simulated lookup tables (LUTs) of cloud transmittances and reflectances are created by varying cloud optical thicknesses, cloud particle sizes, and solar zenith angles. Equations with optimized parameters are fitted to the cloud transmittances and reflectances to develop the model. The all-sky solar irradiance at the land surface can then be computed rapidly by combining REST2 with the cloud transmittances and reflectances. This new RT model is more than 1,000 times faster than those currently utilized in solar resource assessment and forecasting because it does not explicitly solve the RT equation for each individual cloud condition. Our results indicate that the accuracy of the fast radiative transfer model is comparable to or better than two-stream approximation in term of computing cloud transmittance and solar radiation.

  17. Simultaneous Lidar and All-Sky IR Camera Observations to Measure Cloud Transmission

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; Sebag, J.; McGraw, J. T.; Zirzow, D. C.; Vorobiev, D. V.; UNM Measurement Astrophysics MAP Research Group

    2011-01-01

    We present initial results of combined lidar and all-sky thermal infrared camera measurements of transmission losses through clouds. Thermal IR observations in the 10 micron window have long been used at observatories to detect the presence of clouds by measuring the contrast in downwelling thermal radiation between clear and cloudy sky. The ability of these techniques to measure thin cirrus at high altitudes, the sort of clouds that typically ruin otherwise photometric conditions, has always been limited due to their low temperature and low emissivity. Lidar, on the other hand, is quite effective at measuring both the presence and optical depth of thin cirrus clouds, well below 1% transmission losses. A lidar can only operate in one direction at a time and thus is limited in its ability to measure transmission over wide fields of view. The combination of wide field thermal IR imaging plus lidar measurements of transmission hold significant promise for helping solve the time and field dependence of atmospheric transmission caused by clouds, especially sub-visual cirrus. To test this instrumental combination, the LSST all-sky infrared camera was deployed for several weeks at the UNM Campus Observatory in Albuquerque, NM, the location of the Astronomical Lidar for Extinction (ALE). The two instruments were operated together under various cloud cover conditions and when conditions permitted, narrowband photometry of bright stars was simultaneously obtained to verify the temporal and spatial variation of extinction. MAP atmospheric transmission research is supported by NIST Award 60NANB9D9121 and NSF Grant AST-1009878.

  18. An all sky map of the CO emission extracted from Planck

    NASA Astrophysics Data System (ADS)

    Aumont, Jonathan

    2012-07-01

    The High Frequency Instrument (HFI) on board of the Planck satellite, observing the sky in the 100 to 857 GHz frequency range, is sensitive to the light emitted by the CO molecule through its rotational transition lines. We present here the first all sky map of the CO emission ever compiled, taking advantage of the Planck HFI high sensitivity and sky coverage. The processing of this map is first presented, from calibration of the response of the HFI bolometers to the CO lines, to the component separation method that was applied to separate the CO signal from other Galactic components and from the CMB radiation. After having quantified the characteristics of the map, in terms of noise statistics and level, large scale systematics and zero level assessment, we test its reliability by confronting it with ground measurements of the integrated intensity of the ^{12}CO (J=1-0) line. First, we show a very good agreement to the Dame et al. 2001 data, in and around the bright molecular cloud regions, always within the combined uncertainties in the absolute calibration of ground based data and the varying ^{13}CO/^{12}CO line ratio. We additionally use the Hartmann et al. 1998 and Magnani et al. 2000 measurements, sampling the high Galactic latitudes sky with a grid of more than 15,000 degree-spaced positions, and find compatibility both for where they do measure CO and where they don't. As being an all sky map, it can be used to find CO clouds that were never observed by dedicated ground measurements and we illustrate this ability in the Pegasus region around previous observations by Dame et al. 2001 and Yamamoto et al. 2003.

  19. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect

    Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Beardmore, A.; Evans, P.; Godet, O.; Chincarini, G.; Campana, S.

    2010-02-01

    We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8{sigma} level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of {approx}30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z {approx} 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8{sigma}) of 2.2 x 10{sup -11} erg cm{sup -2} s{sup -1} (1 mCrab) over most of the sky in the 14-195 keV band.

  20. An all-sky catalogue of solar-type dwarfs for exoplanetary transit surveys

    NASA Astrophysics Data System (ADS)

    Nascimbeni, V.; Piotto, G.; Ortolani, S.; Giuffrida, G.; Marrese, P. M.; Magrin, D.; Ragazzoni, R.; Pagano, I.; Rauer, H.; Cabrera, J.; Pollacco, D.; Heras, A. M.; Deleuil, M.; Gizon, L.; Granata, V.

    2016-12-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V ≲ 13) and nearby solar-type stars having a spectral type later than F5. In order to enhance the probability of identifying transits, these surveys must cover a very large area on the sky, because of the intrinsically low areal density of bright targets. Unfortunately, no existing catalogue of stellar parameters is both deep and wide enough to provide a homogeneous input list. As the first Gaia data release exploitable for this purpose is expected to be released not earlier than late 2017, we have devised an improved reduced-proper-motion (RPM) method to discriminate late field dwarfs and giants by combining the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions with AAVSO Photometric All-Sky Survey DR6 photometry, and relying on Radial Velocity Experiment DR4 as an external calibrator. The output, named UCAC4-RPM, is a publicly available, complete all-sky catalogue of solar-type dwarfs down to V ≃ 13.5, plus an extension to log g > 3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; <30 per cent) also makes UCAC4-RPM a useful tool for the past and ongoing ground-based transit surveys, which need to discard candidate signals originating from early-type or giant stars. As an application, we show how UCAC4-RPM may support the preparation of the TESS (that will map almost the entire sky) input catalogue and the input catalogue of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  1. An all-sky sample of intermediate-mass star-forming regions

    SciTech Connect

    Lundquist, Michael J.; Kobulnicky, Henry A.; Alexander, Michael J.; Kerton, Charles R.; Arvidsson, Kim

    2014-04-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions that are color selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5° using optical spectroscopy from the Wyoming Infrared Observatory, along with near-infrared photometry from the Two-Micron All Sky Survey, to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 M {sub ☉} of stars. These low-mass diffuse star clusters contain ∼65-250 stars for a typical initial mass function, including one or more mid-B stars as their most massive constituents. Using infrared spectral energy distributions we identify young stellar objects near each region and assign probable masses and evolutionary stages to the protostars. The total infrared luminosity lies in the range 190-960 L {sub ☉}, consistent with the sum of the luminosities of the individually identified young stellar objects.

  2. A systematic study of X-ray variability in the ROSAT all-sky survey

    NASA Astrophysics Data System (ADS)

    Fuhrmeister, B.; Schmitt, J. H. M. M.

    2003-05-01

    We present a systematic search for variability among the ROSAT All-Sky Survey (RASS) X-ray sources. We generated lightcurves for about 30 000 X-ray point sources detected sufficiently high above background. For our variability study different search algorithms were developed in order to recognize flares, periods and trends, respectively. The variable X-ray sources were optically identified with counterparts in the SIMBAD, the USNO-A2.0 and NED data bases, but a significant part of the X-ray sources remains without cataloged optical counterparts. Out of the 1207 sources classified as variable 767 (63.5%) were identified with stars, 118 (9.8%) are of extragalactic origin, 10 (0.8%) are identified with other sources and 312 (25.8%) could not uniquely be identified with entries in optical catalogs. We give a statistical analysis of the variable X-ray population and present some outstanding examples of X-ray variability detected in the ROSAT all-sky survey. Most prominent among these sources are white dwarfs, apparently single, yet nevertheless showing periodic variability. Many flares from hitherto unrecognised flare stars have been detected as well as long term variability in the BL Lac 1E1757.7+7034. The complete version of Table 7 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/247

  3. All Sky Camera, LIDAR and Electric Field Meter: Auxiliary instruments for the ASTRI SST-2M prototype

    NASA Astrophysics Data System (ADS)

    Leto, Giuseppe; Zanmar Sanchez, Ricardo; Bellassai, Giancarlo; Bruno, Pietro; Maccarone, Maria Concetta; Martinetti, Eugenio

    2015-03-01

    ASTRI SST-2M is the end-to-end prototype telescope of the Italian National Institute of Astrophysics, INAF, designed to investigate the 10-100 TeV band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M telescope has been installed in Italy in September 2014, at the INAF observing station located at Serra La Nave on Mount Etna. The telescope is foreseen to be completed and fully operative in spring 2015 including auxiliary instrumentation needed to support both operations and data analysis. In this contribution we present the current status of a sub-set of the auxiliary instruments that are being used at the Serra La Nave site, namely an All Sky Camera, an Electric Field Meter and a Raman Lidar devoted, together with further instrumentation, to the monitoring of the atmospheric and environmental conditions. The data analysis techniques under development for these instruments could be applied at the CTA sites, where similar auxiliary instrumentation will be installed.

  4. New active galactic nuclei detected in ROSAT All Sky Survey galaxies. II. The complete dataset

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Kotulla, R.; Pietsch, W.; Bischoff, K.; Zetzl, M.

    2008-06-01

    Aims: The ROSAT ALL Sky Survey Bright Source Catalogue (RASS-BSC) has been correlated with the Catalogue of Principal Galaxies (PGC) to identify new extragalactic counterparts. 550 reliable optical counterparts have been detected. However there existed no optical spectra for about 200 Active Galactic Nuclei (AGN) candidates before the ROSAT ALL Sky Survey (RASS) was completed. Methods: We took optical spectra of 176 X-ray candidates and companions at ESO, Calar Alto observatory and McDonald observatory. When necessary we used a line profile decomposition to measure line fluxes, widths and centers to classify their type of activity. Results: We discuss the redshift-, linewidth-, as well as optical and X-ray luminosity distribution of our ROSAT selected sample. 139 galaxies of our 166 X-ray counterparts have been identified as AGN with 93 being Seyfert 1 galaxies (61%). Eighteen of them (20%) are Narrow Line Seyfert 1 galaxies. 34 X-ray candidates (21%) are LINERs and only eight candidates (5%) are Seyfert 2. The ratio of the number of Seyfert 1 galaxies to Seyfert 2 galaxies is about 11/1. Optical surveys result in ratios of 1/1.4. The high fraction of detected Seyfert 1 galaxies is explained by the sensitivity of the ROSAT to soft X-rays which are heavily absorbed in type 2 AGN. Two X-ray candidates are HII-galaxies and 25 candidates (15%) show no signs of spectral activity. The AGN in our RASS selected sample exhibit slightly higher optical luminosities (MB = (-20.71 ± 1.75) mag) and similar X-ray luminosities (log(LX [ erg s-1] ) = 42.9 ± 1.7) compared to other AGN surveys. The Hα line width distribution (FWHM) of our newly identified ROSAT AGN sample is similar to the line widths distribution based on SDSS AGN. However, our newly identified RASS AGN have rather reddish colors explaining why they have not been detected before in ultraviolet or blue excess surveys.

  5. INFORMATION ON THE MILKY WAY FROM THE 2MASS ALL SKY STAR COUNT: BIMODAL COLOR DISTRIBUTIONS

    SciTech Connect

    Chang, Chan-Kao; Lai, Shao-Yu; Peng, Ting-Hung; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2012-11-10

    The J - K{sub s} color distributions (CDs) with a bin size of 0.05 mag has been carried out for the entire Milky Way using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, with a red peak at 0.8 < J - K{sub s} < 0.85 and a blue peak at 0.3 < J - K{sub s} < 0.4. The colors of the red peak are more or less the same for the whole sky, but those of the blue peak depend on Galactic latitude (J - K{sub s} {approx} 0.35 at low Galactic latitudes and 0.35 < J - K{sub s} < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all-sky 2MASS CDs, we assemble an empirical Hertzsprung-Russell (H-R) diagram, which is composed of observational-based near-infrared H-R diagrams and color-magnitude diagrams, and incorporate a Milky Way model. In the empirical H-R diagram, the main-sequence turn-off for stars in the thin disk is relatively bluer, (J - K{sub s} ){sub 0} = 0.31, compared with that of the thick disk which is (J - K{sub s} ){sub 0} = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main-sequence turn-off. In general, the 2MASS CDs can be treated as a tool to measure the age of the stellar population of the Milky Way in a statistical manner and to our knowledge it is the first attempt to do so.

  6. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density ΣMd, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction AV for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 105 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL AV estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit AV, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL AV estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the AV estimates towards QSOs, also brings into agreement the DL AV estimates with those derived for

  7. A fast all-sky radiative transfer model and its implications for solar energy research

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  8. An all-sky support vector machine selection of WISE YSO candidates

    NASA Astrophysics Data System (ADS)

    Marton, G.; Tóth, L. V.; Paladini, R.; Kun, M.; Zahorecz, S.; McGehee, P.; Kiss, Cs.

    2016-06-01

    We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer (WISE) mission and identified Young Stellar Object (YSO) candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our data set and to find the best classification scheme. A sophisticated statistical method, the support vector machine (SVM) is used to analyse the multidimensional data space and to remove source types identified as contaminants (extragalactic sources, main-sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD data base are used to identify the already known sources and to train our method. A new all-sky selection of 133 980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1 per cent based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90 per cent of the Class I/II YSOs based on comparison with photometric and spectroscopic YSO catalogues. Our conclusion is that by using the SVM, our classification is able to identify more known YSOs of the training sample than other methods based on colour-colour and magnitude-colour selection. The distribution of the YSO candidates well correlates with that of the Planck Galactic Cold Clumps in the Taurus-Auriga-Perseus-California region.

  9. ROSAT all-sky survey observations of X-ray variability in cool giant stars

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Schmitt, J. H. M. M.

    1994-01-01

    We have identified 24 active late-type giant stars, including 11 RS CVn systems, with soft X-ray count rates high enough to allow the detection of statistically significant variability on a Roentgen Satellite (ROSAT) orbital timescale (96 minutes) as observed by the Position Sensitive Proportional Counter (PSPC) during the all-sky survey. Our sensitivity typically lies in the range of 10% - 25%, depending on the source count rate. Comparison is made to the daily, nonflare solar soft X-ray variability as observed by the Solrad satellites during solar minimum in 1969 and solar maximum in 1975. Seven of the 24 stars show significant variability; in two of these cases (HR 3922 and HR 8448) major flares were observed in which the peak count rate is enhanced by at least a factor of 3 above quiescent. While HR 3922 (G5 III) is not (yet) classified as an RS CVn star, its flare is more energetic (3 x 10(exp 31) ergs/s) than previously observed RS CVn flares. The apparently single giant HR 8167 (G8 III) also shows two flares. While one might expect to find an anticorrelation between saturated coronae and variability, we find no evidence of this: the two stars in our sample with the highest ratio of f(sub x)/f(sub v) both show variability. We also point out that Capella (G6 III + F9 III) is one of the stars manifesting variability.

  10. Brightness Map of the Zodiacal Emission from the AKARI IRC All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Pyo, Jeonghyun; Ueno, Munetaka; Minn Kwon, Suk; Hong, Seung Soo; Ishihara, Daisuke; Ishiguro, Masateru; Usui, Fumihiko; Ootsubo, Takafumi; Mukai, Tadashi

    The Japanese infrared space mission AKARI successfully scanned the whole sky with its two main instruments, Infrared Camera (IRC) and Far-Infrared Surveyor (FIS). The AKARI All-Sky Survey provides us with an invaluable opportunity to examine the zodiacal emission (ZE) over the entire sky in both leading and trailing directions of the Earth's motion. We describe our efforts to reduce the ZE brightness map from AKARI's survey in the 9 µm waveband. The map is compared with the interplanetary dust (IPD) cloud model of Kelsall et al. (1998). From the comparison, we derived the emissivity modification factors at 9 µm for the smooth cloud, the dust bands, and the resonance ring components. The result requires to increase the contribution of the ring component to the ZE brightness by about 20%. The map of residual brightness after subtracting the model from the observation reveals three dust bands and the leading resonance blob, which are not implemented in the model. We paid special attention to the north and south ecliptic pole brightnesses. The symmetry plane's inclination and longitude of ascending node for the smooth cloud are modified from those in Kelsall et al. (1998) to make the best fit to the observed pole brightness difference. The analysis result indicates possible warping of the symmetry plane. We found that the average of the two pole brightnesses does not become the maximum at the Earth's perihelion, which is a probable evidence of the cloud's off-centering.

  11. The coronal dividing line in the ROSAT X-ray All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C.

    1991-12-01

    Rosat All-Sky Survey soft X-ray observations of nearly 1000 bright single evolved stars of spectral types G, K, and M in the vicinity of the dividing line proposed by Linsky and Haisch (1979) are reported. Most observations consist of upper limits in the 0.1-2.0-keV band distributed between 604 stellar targes of spectral type K3 or earlier and 264 stellar targets of spectral type K4 or later. Of the 65 Rosat detections, only one involves an apparently single star of spectral type later than K3: HR 4289 (K5 III). A clear dichotomy exists between coronal and noncoronal stars of luminosity classes II, III, and IV at approximately spectral type Ke. The extremely low upper limit for the archetypal 'noncoronal' red giant, Arcturus, less than 3 x 24 exp 25 ergs/s achieved by Rosat during an 18.6-ks targeted observations by Ayres et al. (1991) indicates a very steep decline at the coronal dividing line.

  12. The coronal dividing line in the Rosat X-ray All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C.

    1991-01-01

    Rosat All-Sky Survey soft X-ray observations of nearly 1000 bright single evolved stars of spectral types G, K, and M in the vicinity of the dividing line proposed by Linsky and Haisch (1979) are reported. Most observations consist of upper limits in the 0.1-2.0-keV band distributed between 604 stellar targes of spectral type K3 or earlier and 264 stellar targets of spectral type K4 or later. Of the 65 Rosat detections, only one involves an apparently single star of spectral type later than K3: HR 4289 (K5 III). A clear dichotomy exists between coronal and noncoronal stars of luminosity classes II, III, and IV at approximately spectral type Ke. The extremely low upper limit for the archetypal 'noncoronal' red giant, Arcturus, less than 3 x 24 exp 25 ergs/s achieved by Rosat during an 18.6-ks targeted observations by Ayres et al. (1991) indicates a very steep decline at the coronal dividing line.

  13. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Evans, P. A.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  14. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-02-01

    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-binary-black-hole transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper limits are stricter than those previously published by an order of magnitude.

  15. Mapping the Cosmic Web with the largest all-sky surveys

    NASA Astrophysics Data System (ADS)

    Bilicki, Maciej; Peacock, John A.; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise

    2016-10-01

    Our view of the low-redshift Cosmic Web has been revolutionized by galaxy redshift surveys such as 6dFGS, SDSS and 2MRS. However, the trade-off between depth and angular coverage limits a systematic three-dimensional account of the entire sky beyond the Local Volume (z < 0.05). In order to reliably map the Universe to cosmologically significant depths over the full celestial sphere, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. We have undertaken a dedicated program of cross-matching the largest photometric all-sky surveys - 2MASS, WISE and SuperCOSMOS - to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts - the 2MASS Photometric Redshift catalog (2MPZ, Bilicki et al. 2014a) - has been publicly released and includes almost 1 million galaxies with a mean redshift of z=0.08. Here we summarize how this catalog was constructed and how using the WISE mid-infrared sample together with SuperCOSMOS optical data allows us to push to redshift shells of z~ 0.2 -0.3 on unprecedented angular scales. Our catalogs, with ~ 20 million sources in total, provide access to cosmological volumes crucial for studies of local galaxy flows (clustering dipole, bulk flow) and cross-correlations with the cosmic microwave background such as the integrated Sachs-Wolfe effect or lensing studies.

  16. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

    NASA Astrophysics Data System (ADS)

    Wayth, R. B.; Lenc, E.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; Franzen, T. M. O.; For, B.-Q.; Gaensler, B.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Jackson, C. A.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.; Trott, C. M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-06-01

    GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination + 25° at frequencies between 72 and 231 MHz, made with the MWA using a drift scan method that makes efficient use of the MWA's very large field-of-view. We present the observation details, imaging strategies, and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40-kHz frequency resolution and 0.5-s time resolution; the second year using 10-kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing, and image weighting scheme. At 154 MHz, the image resolution is approximately 2.5 × 2.2/cos (δ + 26.7°) arcmin with sensitivity to structures up to ~ 10° in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA's primary beam.

  17. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-09-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  18. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources

    SciTech Connect

    Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N.; /MIT

    2007-02-20

    We have assembled an 8.4 GHz survey of bright, flat-spectrum ({alpha} > -0.5) radio sources with nearly uniform extragalactic (|b| > 10{sup o}) coverage for sources brighter than S{sub 4.8 GHz} = 65 mJy. The catalog is assembled from existing observations (especially CLASS and the Wright et al. PMN-CA survey), augmented by reprocessing of archival VLA and ATCA data and by new observations to fill in coverage gaps. We refer to this program as CRATES, the Combined Radio All-sky Targeted Eight GHz Survey. The resulting catalog provides precise positions, sub-arcsecond structures, and spectral indices for some 11,000 sources. We describe the morphology and spectral index distribution of the sample and comment on the survey's power to select several classes of interesting sources, especially high energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power radio sources.

  19. All-sky search for long-duration gravitational wave transients with initial LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 ×1 0-5 and 9.4 ×1 0-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

  20. All-sky reconstruction of the primordial scalar potential from WMAP temperature data

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Greiner, Maksim; Enßlin, Torsten A.

    2015-02-01

    An essential quantity required to understand the physics of the early Universe, in particular the inflationary epoch, is the primordial scalar potential Φ and its statistics. We present for the first time an all-sky reconstruction of Φ with corresponding 1σ-uncertainty from WMAP's cosmic microwave background (CMB) temperature data—a map of the very early Universe right after the inflationary epoch. This has been achieved by applying a Bayesian inference method that separates the whole inverse problem of the reconstruction into many independent ones, each of them solved by an optimal linear filter (Wiener filter). In this way, the three-dimensional potential Φ gets reconstructed slice by slice resulting in a thick shell of nested spheres around the comoving distance to the last scattering surface. Each slice represents the primordial scalar potential Φ projected onto a sphere with corresponding distance. Furthermore, we present an advanced method for inferring Φ and its power spectrum simultaneously from data, but argue that applying it requires polarization data with high signal-to-noise levels not available yet. Future CMB data should improve results significantly, as polarization data will fill the present l-blind gaps of the reconstruction.

  1. VizieR Online Data Catalog: AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016)

    NASA Astrophysics Data System (ADS)

    Henden, A. A.; Templeton, M.; Terrell, D.; Smith, T. C.; Levine, S.; Welch, D.

    2016-01-01

    The AAVSO Photometric All Sky Survey (APASS) project is designed to bridge the gap between the shallow Tycho2 two-bandpass photometric catalog that is complete to V=11 and the deeper, but less spatially-complete catalogs like SDSS or PanSTARRS. It can be used for calibration of a specific field; for obtaining spectral information about single sources, determining reddening in a small area of the sky; or even obtaining current-epoch astrometry for rapidly moving objects. The survey is being performed at two locations: near Weed, New Mexico in the Northern Hemisphere; and at CTIO in the Southern Hemisphere. Each site consists of dual bore-sighted 20cm telescopes on a single mount, designed to obtain two bandpasses of information simultaneously. Each telescope covers 9 square degrees of sky with 2.5arcsec pixels, with the main survey taken with B,V,g',r',i' filters and covering the magnitude range 10

  2. Comparison of COBE DMR and ROSAT All-Sky Survey data.

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    Stastistical comparisons of microwave maps in the GHz range and X-ray maps at around 1 keV are an interesting probe to constrain different astrophysical phenomena. Possible correlations on various angular scales and with different frequency (energy) dependences, although not expected at present day experimental sensitivity, could in principle be due to galactic emission/absorption, the Sunyaev-Zel'dovich effect, the Integrated Sachs-Wolfe effect in cosmological models with a cosmological constant or low density, or X-ray luminous radio sources such as radio-loud AGNs. The author reports on work cross-correlating the COBE DMR and ROSAT All-Sky Survey in a selected area of the sky. This area (+40° < b, 70° < l < 250°) is the best presently available data set probing the medium-hard extragalactic X-ray background around 1 keV. No significant correlation on astrophysically relevant scales has been found in this analysis, but it will be possible to infer constraints from the limits.

  3. All-sky census of Galactic high-latitude molecular intermediate-velocity clouds

    NASA Astrophysics Data System (ADS)

    Röhser, T.; Kerp, J.; Lenz, D.; Winkel, B.

    2016-12-01

    Context. The H i halo clouds of the Milky Way, and in particular the intermediate-velocity clouds (IVCs), are thought to be connected to Galactic fountain processes. Observations of fountain clouds are important for understanding the role of matter recycling and accretion onto the Galactic disk and subsequent star formation. Aims: Here, we quantify the amount of molecular gas in the Galactic halo. We focus on the rare class of molecular IVCs (MIVCs) and search for new objects. Methods: The H i-FIR correlation was studied across the entire northern and southern Galactic hemispheres at Galactic latitudes | b | > 20° to determine the amount and distribution of molecular gas in IVCs. We used the most recent large-scale H i and FIR data, the Effelsberg Bonn-H i Survey, the Parkes Galactic All-Sky Survey, and the Planck FIR surveys. Results: We present a catalogue of 239 MIVC candidates on the northern and southern Galactic hemispheres. Among these candidates, all previously known MIVCs are recovered except for one single source. The frequency of candidates differs significantly between the northern and southern Galactic hemispheres and between negative and positive LSR velocities as well. Conclusions: In our approach we analyse the local Galactic environment. Extrapolating our results to the entire Galaxy, the global inflow of atomic and molecular IVC gas onto the Milky Way may account for the major fraction of the gaseous mass that is required to sustain the current Galactic star formation rate.

  4. New Methods for Identifying Nearby Gravitational Lenses in All-Sky Surveys

    NASA Astrophysics Data System (ADS)

    McCandlish, Samuel; Di Stefano, R.

    2011-01-01

    All-sky catalogs provide a wealth of information about gravitational lensing events that has not yet been utilized. We present a method for matching lensing events to catalogs and finding the probability that the association is genuine. Given a likely candidate for the lens object associated with an event, it is possible to break the inherent degeneracy in microlensing and estimate the mass of the lens, depending on its distance. Eight percent of microlensing events have matches in the 2MASS catalog, and there are many more matches in catalogs that cover other wave bands. In addition to detecting the associated lens or source, it is possible that the cataloged object is a companion or host to the actual lens. This opens up the possibility of finding dark nearby lenses, such as stellar remnants or planets that are associated with cataloged objects. We propose various methods for determining which events are most likely to be caused by nearby lenses, and apply them to our matches. We present some interesting matched objects and the results of observations of those objects. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  5. Coordinated analysis of data. [all sky photography observations of the ATS 5 satellite of auroras

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1974-01-01

    All Sky Cameras (ASCA) observations were made at the field line conjugate of the ATS-5 Satellite. The field of view of these cameras covered the region of the magnetosphere from L=5 to L=ll at the approximate longitude of the ATS field line conjugate. Definite statements are made concerning the correlation of the auroras observed by the ASCA's and the magnetospheric trapped fluxes. No auroras are observed at the field line conjugate, on quiet days when the hot plasma does not penetrate into the magnetosphere far enough to reach the ATS-5 orbit. On more disturbed days, when the ATS-5 enters the plasma sheet containing plasma clouds, an equatorward motion of the lowest latitude auroral arc is observed. Significant qualitative correlation between the ASCA data and the trapped fluxes is observed when a local plasma injection event occurs near ATS-5. The clearest signature of the injection event is magnetic and is most pronounced as a recovery of a negative bay at the ATS-5 magnetometer. The most significant correlations are observed with the intensification of the diffuse uniform glow which intensifies during the injection event.

  6. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    SciTech Connect

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.; Murphy, T.; Pisano, D. J.; Curran, J. R.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup –1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ∼19 km s{sup –1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.

  7. Finding the most variable stars in the Orion Belt with the All Sky Automated Survey

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Cornide, M.; de Castro, E.

    2010-03-01

    We look for high-amplitude variable young stars in the open clusters and associations of the Orion Belt. We use public data from the ASAS-3 Photometric V-band Catalogue of the All Sky Automated Survey, infrared photometry from the 2MASS and IRAS catalogues, proper motions, and the Aladin sky atlas to obtain a list of the most variable stars in a survey area of side 5° centred on the bright star Alnilam (ɛ Ori) in the centre of the Orion Belt. We identify 32 highly variable stars, of which 16 had not been reported to vary before. They are mostly variable young stars and candidates (16) and background giants (8), but there are also field cataclysmic variables, contact binaries, and eclipsing binary candidates. Of the young stars, which typically are active Herbig Ae/Be and T Tauri stars with Hα emission and infrared flux excess, we discover four new variables and confirm the variability status of another two. Some of them belong to the well known σ Orionis cluster. Besides, six of the eight giants are new variables, and three are new periodic variables.

  8. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}ȯ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}ȯ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ∼100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  9. AKARI-CAS—Online Service for AKARI All-Sky Catalogues

    NASA Astrophysics Data System (ADS)

    Yamauchi, C.; Fujishima, S.; Ikeda, N.; Inada, K.; Katano, M.; Kataza, H.; Makiuti, S.; Matsuzaki, K.; Takita, S.; Yamamoto, Y.; Yamamura, I.; Ishihara, D.; Oyabu, S.

    2011-07-01

    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers’ requirements. As a result of our discussion, we concluded that supporting users’ SQL submissions is the best solution for the requirements. Therefore, we implemented an RDBMS layer so that it covered important facilities, including the whole processing of tables. We found that PostgreSQL is the best open-source RDBMS products for such purpose, and we wrote codes for both simple and advanced searches into the SQL stored functions. To implement such stored functions for fast radial search and cross-identification with minimum cost, we applied a simple technique that is not based on HTM or HEALPix. In contrast, the online application layer became compact and was written in simple procedural PHP codes. In total, our system realizes cost-effective maintenance and enhancements.

  10. Studies of gravitational lens systems discovered in the Cosmic Lens All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Rusin, David Joseph

    2001-11-01

    This thesis describes research conducted on and inspired by the Cosmic Lens All-Sky Survey (CLASS), which searches for new cases of gravitational lensing among compact radio sources. CLASS aims to provide the largest and best-studied sample of lens systems for use in constraining the properties of galaxy mass distributions, determining the Hubble parameter and placing limits on the cosmological constant. The goal of this thesis was to complete observations of the CLASS sample, discover and thoroughly investigate new lenses, and apply them to interesting astrophysical problems. We begin with a detailed overview of the CLASS project, including scientific goals, the radio source sample, survey observations, candidate selection and follow-ups. Results are then presented from the third phase of the CLASS survey (CLASS-3), which yielded three new gravitational lens systems. 130850+054 and 131152+199 both consist of a pair of lensed images. 131359+154 features six images of a single source, and is the first arcsecond-scale system in which a source is lensed into more than four images. We also present observations and modeling of the CLASS-2 gravitational lens B2319+051. We use the absence of detectable central images in deep radio maps of CLASS lens systems to place powerful constraints on the inner mass profiles of leasing galaxies. These analyses imply that the profile slopes cannot be much shallower than isothermal. Finally, we consider the relative frequency of two and four-image lens systems, and demonstrate that there is a statistically significant overdensity of quads in the CLASS sample. We investigate a range of factors that may be increasing the frequency of radio quads, including external shear fields, mass distributions flatter than the light, shallow leasing mass profiles, finite core radii, satellite galaxies, and alterations to the luminosity function for faint flat-spectrum radio sources. Surprisingly, none of these mechanisms provide a particularly

  11. A New All-Sky Catalogue of Candidate Protoplanetary Disks from Aggregated Optical and Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Horenstein, Daniel; Lepine, Sebastien

    2017-01-01

    We present a catalogue of 199,460 sources with optical and infrared colors that are consistent with protoplanetary disks. First, a list of known protoplanetary disks is compiled from the literature, and lists of field stars are selected from regions presumed to have little ongoing star formation. Optical and infrared magnitudes from multiple photometric surveys, covering up to 14 different bands, are then combined for these sources and used to define color-color cuts that reliably distinguish stars with known disks from other field objects. These cuts are applied in an all-sky search of the AllWISE catalogue. Of the sources returned by this query, 11.4% are listed in SIMBAD; their classifications and aggregated magnitudes are used to define additional color-color cuts that efficiently distinguish known young stellar objects from sources of various other types. These further cuts are applied to all targets either not listed in SIMBAD or with inconclusive SIMBAD types to form the new catalogue of 199,460 stars with likely warm circumstellar disks. An estimated false positive rate of 36.1% implies the detection of approximately 127,000 heretofore unidentified protoplanetary disks. The positions of these candidates on the sky are largely consistent with a spatial distribution in the young Galactic disk, showing a high density of sources in the Galactic plane and a low density in the Galactic bulge and at high Galactic latitudes. In addition, a number of nearby star-forming regions are successfully recovered through this process, and they include many sources not previously reported to be young stellar objects.

  12. On how to extend the NIR Tully-Fisher relation to be truly all-sky

    NASA Astrophysics Data System (ADS)

    Said, K.; Kraan-Korteweg, R. C.; Jarrett, T. H.

    2015-02-01

    Dust extinction and stellar confusion by the Milky Way reduce the efficiency of detecting galaxies at low Galactic latitudes, creating the so-called Zone of Avoidance (ZoA). This stands as a stumbling block in charting the distribution of galaxies and cosmic flow fields, and therewith our understanding of the local dynamics in the Universe (cosmic microwave background dipole, convergence radius of bulk flows). For instance, ZoA galaxies are generally excluded from the whole-sky Tully-Fisher (TF) surveys (|b| ≤ 5°) even if catalogued. We show here that by fine-tuning the near-infrared (NIR) TF relation, there is no reason not to extend peculiar velocity surveys deeper into the ZoA. Accurate axial ratios (b/a) are crucial to both the TF sample selection and the resulting TF distances. We simulate the effect of dust extinction on the geometrical properties of galaxies. As expected, galaxies appear rounder with increasing obscuration level, even affecting existing TF samples. We derive correction models and demonstrate that we can reliably reproduce the intrinsic axial ratio from the observed value up to extinction level of about AJ ≃ 3 mag (AV ˜ 11 mag); we also recover a fair fraction of galaxies that otherwise would fall out of an uncorrected inclination limited galaxy sample. We present a re-calibration of the 2MTF (The Two Micron All Sky Survey Tully-Fisher Survey) relation in the NIR J, H, and Ks bands for isophotal rather than total magnitudes, using their same calibration sample. Both TF relations exhibit similar scatter at high Galactic latitudes. However, the isophotal TF relation results in a significant improvement in the scatter for galaxies in the ZoA, and low surface brightness galaxies in general, because isophotal apertures are more robust in the face of significant stellar confusion.

  13. C-Band All-Sky Survey: a first look at the Galaxy

    NASA Astrophysics Data System (ADS)

    Irfan, M. O.; Dickinson, C.; Davies, R. D.; Copley, C.; Davis, R. J.; Ferreira, P. G.; Holler, C. M.; Jonas, J. L.; Jones, Michael E.; King, O. G.; Leahy, J. P.; Leech, J.; Leitch, E. M.; Muchovej, S. J. C.; Pearson, T. J.; Peel, M. W.; Readhead, A. C. S.; Stevenson, M. A.; Sutton, D.; Taylor, Angela C.; Zuntz, J.

    2015-04-01

    We present an analysis of the diffuse emission at 5 GHz in the first quadrant of the Galactic plane using two months of preliminary intensity data taken with the C-Band All-Sky Survey (C-BASS) northern instrument at the Owens Valley Radio Observatory, California. Combining C-BASS maps with ancillary data to make temperature-temperature plots, we find synchrotron spectral indices of β = -2.65 ± 0.05 between 0.408 and 5 GHz and β = -2.72 ± 0.09 between 1.420 and 5 GHz for -10° < |b| < -4°, 20° < l < 40°. Through the subtraction of a radio recombination line free-free template, we determine the synchrotron spectral index in the Galactic plane (|b| < 4°) to be β = -2.56 ± 0.07 between 0.408 and 5 GHz, with a contribution of 53 ± 8 per cent from free-free emission at 5 GHz. These results are consistent with previous low-frequency measurements in the Galactic plane. By including C-BASS data in spectral fits, we demonstrate the presence of anomalous microwave emission (AME) associated with the H II complexes W43, W44 and W47 near 30 GHz, at 4.4σ, 3.1σ and 2.5σ, respectively. The CORNISH (Co-Ordinated Radio `N' Infrared Survey for High mass star formation) VLA 5-GHz source catalogue rules out the possibility that the excess emission detected around 30 GHz may be due to ultracompact H II regions. Diffuse AME was also identified at a 4σ level within 30° < l < 40°, -2° < b < 2° between 5 and 22.8 GHz.

  14. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  15. All Sky Search for Gravitational-Wave Bursts in the Second Joint LIGO-Virgo Run

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Ceron, E. Amador; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aylott, B. E.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2012-01-01

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration approx. < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal wa.veform, polarization, direction or occurrence time. All identified events are c.onsistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGOVirgo search on the data collected "between November 2005 and October 2007. The upper limit on the rate of strong gravita.tional-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per yea.r and Mpc3 for sample popula.tions of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range approx 5 x 10(exp -22 Hz(exp-1/2) approx 1 X 10(exp -20) Hz(exp -1/2) . The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.

  16. Study of the Nortern polar ionosphere by all-sky imager, riometer and magnetometer data

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Trondsen, Espen; Marple, Steve; Dahle, Kolbjorn; Stauning, Peter

    The variety of the auroral forms and their behaviour, as a result of the complexity of the processes in the upper atmosphere at high latitudes and the connection between them as well as the large number of influencing factors give a lot of possibilities for new investigations. The opportunity for simultaneous multi-instrument observations by different instruments, as well by sets of instruments of the same kind, nowadays is a precondition for an extensive research of the polar ionosphere phenomena. For this study, simultaneous observations' data of the OI 5577 ´˚ and 6300 ´˚ emissions, the electron precipitation flux and the terrestrial magnetic A A field have been used from the following instruments: the All-Sky Imager (ASI), ALOMAR Imaging Riometer for Ionospheric Studies (AIRIS) and the magnetometer, positioned at Andøya Rocket Range (ARR), Andenes (69.3° N, 16.03° E); ASI, 64-beam Imaging Riometer and the magnetometer at the Auroral Observatory, Longyearbyen, Svalbard (78.20° N, 15.83° E); IRIS at Kilpisj¨rvi, Finland (69.05° N, 20.79° E). The fields of view of the instruments cover a large a area of the auroral oval and the polar cap. The distribution and the behaviour of the optical emissions and the absorption features have been analysed. A good correlation between the spatial and temporal evolutions of the optical emissions, the precipitating electron fluxes and the terrestrial magnetic field has been observed. The response of the ionosphere to the solar and geomagnetic activity changes has been studied. Data access has been provided under the Project "ALOMAR eARI" (RITA-CT-2003-506208), Andenes, Norway. This Project received research funding from the European Community's 6th Framework Program.

  17. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  18. Near infrared imaging and {o I} spectroscopy of IC 443 using two micron all sky survey and infrared space observatory

    NASA Technical Reports Server (NTRS)

    Rho, J.; Jarrett, T. H.; Cutri, C. M.; Reach, W. T.

    2001-01-01

    We present near-infrared J (1.25 mum), H (1.65 mum), and K-s (2.17 mum) imaging of the entire supernova remnant IC 443 from the Two Micron All Sky Survey (2MASS), and Infrared Space Observatory (ISO) LWS observations of [O I] for 11 positions in the northeast.

  19. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    NASA Astrophysics Data System (ADS)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive

  20. Search for correlations between COBE DMR and ROSAT PSPC all-sky survey data.

    NASA Astrophysics Data System (ADS)

    Kneissl, R.; Egger, R.; Hasinger, G.; Soltan, A. M.; Truemper, J.

    1997-04-01

    Results from a cross-correlation analysis between the COBE DMR 4 year, and ROSAT PSPC All-Sky Survey data are presented. Statistical comparisons between microwave and X-ray maps can probe interesting astrophysical environments and processes, such as the warm interstellar medium, the Sunyaev-Zel'dovich effect in clusters of galaxies or gaseous group halos, X-ray luminous radio sources and the Integrated Sachs-Wolfe or the Rees-Sciama effect. In order to test the diffuse, extragalactic X-ray background as probed by ROSAT, against the COBE DMR large-scale CMB structure, our analysis was performed in most detail in a ROSAT selected region of the sky (+40°95% confidence level detection against COBE noise and CMB cosmic variance, including the high quadrupole value resulting from the power spectrum fit. The spectral dependences are consistent with Galactic thermal X-ray emission, and Galactic synchrotron radiation or free-free (Bremsstrahlung) emission by the warm interstellar medium in the microwave regime. Removing the quadrupole term on a sky map with a Galactic cutout or related gradients in the selected regions leaves no correlations above a 1-σ level on smaller angular scales. We conclude that there is no significant extragalactic correlation on scales for which the combined data are sensitive (7°-40°) and that Galactic correlation is significant only on large angular scales, of the order of the quadrupole. In the context of removing large angular scale gradients we give results on best fit X-ray dipoles from various ROSAT data and discuss

  1. Anisotropy in the all-sky distribution of galaxy morphological types

    NASA Astrophysics Data System (ADS)

    Javanmardi, Behnam; Kroupa, Pavel

    2017-01-01

    We present the first study of the isotropy of the all-sky distribution of morphological types of galaxies in the Local Universe out to around 200 Mpc using more than 60 000 galaxies from the HyperLeda database. We use a hemispherical comparison method where the sky is divided into two opposite hemispheres and the abundance distribution of the morphological types, T, are compared using the Kolmogorov-Smirnov (KS) test. By pointing the axis of symmetry of the hemisphere pairs to different directions in the sky, the KS statistic as a function of sky coordinates is obtained. For three samples of galaxies within around 100, 150, and 200 Mpc, we find a significant hemispherical asymmetry with a vanishingly small chance of occurring in an isotropic distribution. Astonishingly, regardless of this extreme significance, the observed hemispherical asymmetry for the three distance ranges is aligned with the celestial equator at the 97.1-99.8% confidence level and with the ecliptic at 94.6-97.6%, estimated using a Monte Carlo analysis. Shifting T values randomly within their uncertainties has a negligible effect on this result. When a magnitude limit of B ≤ 15 mag is applied to these samples, the galaxies within 100 Mpc show no significant anisotropy after randomization of T. However, the direction of the asymmetry in the samples within 150 and 200 Mpc and the same magnitude limit is found to be within an angular separation of 32 degrees from (l,b) = (123.7,24.6) with a 97.2% and 99.9% confidence level, respectively. This direction is only 2.6 degrees away from the celestial north pole. Unless the Local Universe has a significant anisotropic distribution of galaxy morphologies aligned with the orientation or the orbit of the Earth (which would be a challenge for the Cosmological Principle), our results show that there seems to be a systematic bias in the classification of galaxy morphological types between the data from the northern and the southern equatorial sky. Further

  2. EUVE All-Sky Survey Observations of the Dwarf Nova VW Hydri

    NASA Astrophysics Data System (ADS)

    Mauche, C. W.; Warren, J. K.; Vallerga, J. V.; Mukai, K.; Mattei, J. A.

    1993-05-01

    The dwarf nova VW Hyi was observed from 1992 November 1 to 18 and from November 20 to 23 by the Extreme Ultraviolet Explorer (EUVE) satellite during its all-sky survey. The total time on source was 22 kiloseconds. During the first part of the scan, VW Hyi was in quiescence following a superoutburst and was not detected by EUVE above background. However, the source went into a narrow outburst on November 13.8 U.T., peaked at V ~ 10 on November 14.8 U.T., started to fade on November 15.9 U.T., and returned to quiescence on November 17.8 U.T. In contrast, the source did not turn on in the EUV until November 15.0 U.T., did not peak until November 15.3 U.T., and had returned to quiescence by November 16.3 U.T. Accounting for the different sensitivities in the two wavebands, we conclude that the EUV outburst was delayed relative to the optical outburst by ~ 0.5 day and that the EUV outburst was narrower than the optical outburst by ~ 1 day. During the peak of the EUV outburst, the source was detected at the 3sigma level in the Lex/B (50--180 Angstroms ) scanner with a count rate of ~ 0.03 s(-1) and at the 4sigma level in the Al/Ti/C (160--240 Angstroms ) scanner with a count rate of ~ 0.09 s(-1) . That the Al/Ti/C count rate is significantly higher than the Lex/B count rate, whereas the effective area of the Al/Ti/C filter is smaller than that of the Lex/B filter, strongly indicates that the source was very soft when it was on. We use the count rates in these two filters to constrain the temperature and luminosity of the source of the shortest wavelength radiation in VW Hyi: the inner disk and the boundary layer between the disk and the surface of the white dwarf.

  3. Progress On A New Catalog Of Intermediate Velocity Clouds Using The Leiden-Argentina-Bonn HI All-sky Survey

    NASA Astrophysics Data System (ADS)

    Witt, Christopher M.; Wakker, B.; Engel, T. D.; Gostisha, M. C.; Thomson, E.; Stratman, L.; Benjamin, R. A.

    2011-01-01

    We present progress towards the creation of a new all-sky catalog of intermediate velocity clouds using the Leiden/Argentina/Bonn (LAB) Galactic HI survey. We have developed a Gaussian fitting program to fit individual spectra. Each spectra is initially fit automatically with a set of Gaussians, and then reviewed and adjusted, if necessary, by hand by our undergraduate team. When a satisfactory fit is found, it is submitted for review and adjustment by the senior team member. Intermediate clouds and complexes are formed by grouping Gaussian components by velocity and section of the sky. When complete, this will be the first all-sky catalog of intermediate velocity clouds, which can be compared to dynamical models of the Galactic fountain flows. We present preliminary results for the catalog in the sky with Galactic latitude greater than 45 degrees. This research was supported by NASA ATP grant NNX10AI70G to the University of Wisconsin-Whitewater.

  4. Global All-sky Shortwave Direct Radiative Forcing of Anthropogenic Aerosols from Combined Satellite Observations and GOCART Simulations

    NASA Astrophysics Data System (ADS)

    Su, W.; Loeb, N. G.; Schuster, G. L.; Chin, M.; Rose, F. G.

    2013-05-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon MODIS and MATCH assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the GOCART model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF), by assuming that the anthropogenic fractions from GOCART are representative. The global (60oN ˜60oS) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the TOA, 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo, and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF

  5. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.; Chin, Mian; Rose, Fred G.

    2013-01-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60°N~60°S) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the top of the atmosphere (TOA), 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are

  6. Project ARGUS and the challenge of real-time all-sky SETI

    NASA Astrophysics Data System (ADS)

    Shuch, H. P.

    1997-01-01

    Project Argus, a global effort of the non-profit SETI League, Inc., seeks to achieve continuous microwave monitoring of all four pi steradians of space, in real time. This project will ultimately involve 5000 small radiotelescopes worldwide, built, maintained, and operated by private individuals (primarily radio amateurs and microwave experimenters), coordinated so as to miss no likely candidate signals, and providing independent verification of any interesting signals detected. Prototype stations went into operation in 1996; full sky coverage is planned for 2001. Sensitivity and range are assessed by comparison of current capabilities to those in place at the Ohio State Radio Observatory 19 years ago, when the so-called Wow signal was detected. The Wow signal serves as a convenient benchmark, even though its exact nature remains unknown. Should a similar candidate signal appear during the fully deployed phase of Project Argus, it will not evade detection. Though utilizing just a small satellite TV dish as its antenna, each station achieves range and sensitivity on a par with the Ohio State Big Ear radio telescope, circa 1977. This paper explores the technological breakthroughs which have made this level of performance possible.

  7. HAWC: A Next-generation All-sky Gamma Ray Telescope

    NASA Astrophysics Data System (ADS)

    Westerhoff, Stefan

    2012-07-01

    The High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) is currently under construction 4,100 m above sea level on the slope of Pico de Orizaba, Mexico. HAWC is a high-duty cycle, large field-of-view instrument capable of monitoring the gamma ray sky between roughly 50 GeV and 100 TeV. The detector will be used to record both steady and transient gamma-ray sources and to provide an unbiased survey of the northern sky (2 π sr daily coverage). Upon completion, HAWC will comprise 300 large light-tight water tanks covering an area of 20,000 square meters. Each tank will be instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays. With 15 times the sensitivity of its predecessor experiment Milagro, the HAWC Observatory will enable significant detections of Crab-like fluxes each day at a median energy of 1 TeV. In this talk, we present the scientific case for HAWC, describe its design and sensitivity, and report on early results from VAMOS, the 7-tank prototype which has been operational since 2011.

  8. HAWC: A next-generation all-sky gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Westerhoff, Stefan

    2014-05-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is currently under construction 4100 m above sea level on the slope of Pico de Orizaba in Mexico. HAWC is a high-duty cycle, large field-of-view instrument capable of monitoring the gamma-ray sky between roughly 50 GeV and 100 TeV. The detector will be used to record both steady and transient gamma-ray sources and to provide an unbiased survey of the northern sky with 2π sr daily coverage. Upon completion in 2014, HAWC will comprise 300 large light-tight water tanks arrayed over an area of 20,000 m2. Each tank will be instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays. With 15 times the sensitivity of its predecessor experiment Milagro, the HAWC Observatory will enable significant detection of Crab-like fluxes each day at a median energy of 1 TeV. We present the scientific case for HAWC and describe its design and sensitivity.

  9. Sharp Chandra View of ROSAT All-Sky Survey Bright Sources — I. Improvement of Positional Accuracy

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Wang, Song; Liu, Ji-Feng

    2016-12-01

    The ROSAT All-Sky Survey (RASS) represents one of the most complete and sensitive soft X-ray all-sky surveys to date. However, the deficient positional accuracy of the RASS Bright Source Catalog (BSC) and subsequent lack of firm optical identifications affect multi-wavelength studies of X-ray sources. The widely used positional errors σpos based on the Tycho Reference Catalog (Tycho-1) have previously been applied for identifying objects in the optical band. The considerably sharper Chandra view covers a fraction of RASS sources, whose σpos could be improved by utilizing the sub-arcsec positional accuracy of Chandra observations. We cross-match X-ray objects between the BSC and Chandra sources extracted from the Advanced CCD Imaging Spectrometer (ACIS) archival observations. A combined list of counterparts (BSCxACIS) with Chandra spatial positions weighted by the X-ray flux of multiple counterparts is employed to evaluate and improve the former identifications of BSC when used with other surveys. Based on these identification evaluations, we suggest that the point-source likeness of BSC sources and INS (isolated neutron star) candidates should be carefully reconsidered.

  10. MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS

    SciTech Connect

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi E-mail: ishihara@u.phys.nagoya-u.ac.jp

    2016-03-15

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  11. Modeling of the Zodiacal Emission for the AKARI/IRC Mid-infrared All-sky Diffuse Maps

    NASA Astrophysics Data System (ADS)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi

    2016-03-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  12. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  13. RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg

    NASA Technical Reports Server (NTRS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-01-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general

  14. All-sky radiative transfer calculations for IASI and IASI-NG: The σ-IASI-as code

    NASA Astrophysics Data System (ADS)

    Liuzzi, G.; Blasi, M. G.; Masiello, G.; Serio, C.; Venafra, S.

    2017-02-01

    In the context of the development by EUMETSAT of a new generation of meteorological satellites, we have built the new σ-IASI-as (where "as" stands for "all sky") radiative transfer code. Unlike its predecessor σ-IASI, the code is able to calculate both clear and cloudy sky radiances, as well as their Jacobians with respect to any desired geophysical parameter. In addition, σ-IASI-as can perform calculations to simulate the extinction effect of the most common types of atmospheric aerosols and of clouds via ab-initio Mie calculations. We briefly describe the analytical scheme on which the model is based, and have a glance to its potentialities illustrating some sample calculations. Overall, the new model is a complete and fast radiative transfer tool for IASI, and already available for IASI-NG and MTG-IRS.

  15. DISCOVERY OF A HALO AROUND THE HELIX NEBULA NGC 7293 IN THE WISE ALL-SKY SURVEY

    SciTech Connect

    Zhang Yong; Hsia, Chih-Hao; Kwok, Sun E-mail: xiazh@hku.hk

    2012-08-10

    We report the discovery of an extended halo ({approx}40' in diameter) around the planetary nebula NGC 7293 (the Helix Nebula) observed in the 12 {mu}m band from the Wide-field Infrared Survey Explorer all-sky survey. The mid-infrared halo has an axisymmetric structure with a sharp boundary to the northeast and a more diffuse boundary to the southwest, suggesting an interaction between the stellar wind and the interstellar medium (ISM). The symmetry axis of the halo is well aligned with that of a northeast arc, suggesting that the two structures are physically associated. We have attempted to fit the observed geometry with a model of a moving steady-state stellar wind interacting with the ISM. Possible combinations of the ISM density and the stellar velocity are derived from these fittings. The discrepancies between the model and the observations suggest that the stellar mass loss has a more complicated history, including possible time and angle dependences.

  16. A statistical study of the motion of pulsating aurora patches: using the THEMIS All-Sky Imager

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Donovan, Eric; Liang, Jun; Spanswick, Emma

    2017-02-01

    Previous studies of the motion of patches that comprise patchy pulsating aurora (PPA) have been based on a limited number of events. In this study, we use a large database of PPA patches obtained from the THEMIS all-sky imager at Gillam (66.18° magnetic latitude, 332.78° magnetic longitude) between May 2006 and July 2013 to explore the velocity of the PPA patches. Our results show that PPA patches mainly drift eastward after midnight and westward before midnight. In addition, we found that patch velocities are in the expected range of convection given the magnetic latitude and that the velocities do not seem to depend on auroral electrojet (AE) index. The results suggest that the drifts of auroral patches could be a proxy for the ionospheric convection, and possibly provide a convenient and accurate method to remotely sense the magnetospheric convection.

  17. The MICE Grand Challenge light-cone simulation - III. Galaxy lensing mocks from all-sky lensing maps

    NASA Astrophysics Data System (ADS)

    Fosalba, P.; Gaztañaga, E.; Castander, F. J.; Crocce, M.

    2015-02-01

    In Paper I of this series, we presented a new N-body light-cone simulation from the MICE Collaboration, the MICE Grand Challenge (MICE-GC), containing about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume, from which we built halo and galaxy catalogues using a Halo Occupation Distribution and Halo Abundance Matching technique, as presented in the companion Paper II. Given its large volume and fine mass resolution, the MICE-GC simulation also allows an accurate modelling of the lensing observables from upcoming wide and deep galaxy surveys. In the last paper of this series (Paper III), we describe the construction of all-sky lensing maps, following the `Onion Universe' approach, and discuss their properties in the light-cone up to z = 1.4 with sub-arcminute spatial resolution. By comparing the convergence power spectrum in the MICE-GC to lower mass-resolution (i.e. particle mass ˜1011 h-1 M⊙) simulations, we find that resolution effects are at the 5 per cent level for multipoles ℓ ˜ 103 and 20 per cent for ℓ ˜ 104. Resolution effects have a much lower impact on our simulation, as shown by comparing the MICE-GC to recent numerical fits by Takahashi. We use the all-sky lensing maps to model galaxy lensing properties, such as the convergence, shear, and lensed magnitudes and positions, and validate them thoroughly using galaxy shear auto and cross-correlations in harmonic and configuration space. Our results show that the galaxy lensing mocks here presented can be used to accurately model lensing observables down to arcminute scales. Accompanying this series of papers, we make a first public data release of the MICE-GC galaxy mock, the MICECAT v1.0, through a dedicated web-portal for the MICE simulations, http://cosmohub.pic.es, to help developing and exploiting the new generation of astronomical surveys.

  18. Wide-range solar resource forecasting by combining radiation measurements, all-sky camera imagery and high-resolution large-eddy simulations on a GPU

    NASA Astrophysics Data System (ADS)

    Los, Alexander; Jonker, Harmen; Schalkwijk, Jerome; De Roode, Stephan; Zinner, Tobias

    2014-05-01

    With the current tendency to larger photovoltaic power plants the demand for accurate forecasts of solar radiation increases steadily. In contrast to the traditional, controllable power generation that can handle the power grid variability, renewables must cope with natural power resource fluctuations. To maintain grid stability with an increasing penetration of renewables, the variability of natural power sources has to be accounted for in the operation of the renewables by accurate minutes ahead to days ahead forecasts of natural energy resources. We present two forecasting methods based on novel techniques. For short-time scale predictions up to 15-30 minutes we use atmospheric observations including an all-sky camera and for longer time scales we use a high-resolution Large-Eddy Simulation (LES) model. These methods allow to cover forecasting time horizons from one minute to several days ahead. First we discuss results of solar radiation forecasts based on observational techniques. Clouds are observed with an all-sky camera and their effects on the solar radiation are monitored by means of ground-based pyranometers. We use a sophisticated cloud tracking algorithm to derive cloud motion vector fields. In turn, these results are used to predict solar radiative fluxes at the surface every minute up to 15 minutes ahead. Our integrated cloud classification algorithm differentiates between advective and convective cloud fields so that we are able to choose the suitable forecasting method. In the convective cloud case we apply a so-called morphing method which analyses the optical flow of cloudy pixels on several spatial scales. In the advective case the cloud displacement is based on the mean motion vector. In both cases the motion vector field is then applied to the latest cloud mask allowing cloud position and radiation forecasts up to 15 minutes. The second forecasting technique fully relies on intensive numerical calculations with the Graphics Processing Unit

  19. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA

    NASA Astrophysics Data System (ADS)

    Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf

    2012-09-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.

  20. All-sky radiance simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; George, John P.; Rajagopal, E. N.

    2017-03-01

    Incorporation of cloud- and precipitation-affected radiances from microwave satellite sensors in data assimilation system has a great potential in improving the accuracy of numerical model forecasts over the regions of high impact weather. By employing the multiple scattering radiative transfer model RTTOV-SCATT, all-sky radiance (clear sky and cloudy sky) simulation has been performed for six channel microwave SAPHIR (Sounder for Atmospheric Profiling of Humidity in the Inter-tropics by Radiometry) sensors of Megha-Tropiques (MT) satellite. To investigate the importance of cloud-affected radiance data in severe weather conditions, all-sky radiance simulation is carried out for the severe cyclonic storm `Hudhud' formed over Bay of Bengal. Hydrometeors from NCMRWF unified model (NCUM) forecasts are used as input to the RTTOV model to simulate cloud-affected SAPHIR radiances. Horizontal and vertical distribution of all-sky simulated radiances agrees reasonably well with the SAPHIR observed radiances over cloudy regions during different stages of cyclone development. Simulated brightness temperatures of six SAPHIR channels indicate that the three dimensional humidity structure of tropical cyclone is well represented in all-sky computations. Improved correlation and reduced bias and root mean square error against SAPHIR observations are apparent. Probability distribution functions reveal that all-sky simulations are able to produce the cloud-affected lower brightness temperatures associated with cloudy regions. The density scatter plots infer that all-sky radiances are more consistent with observed radiances. Correlation between different types of hydrometeors and simulated brightness temperatures at respective atmospheric levels highlights the significance of inclusion of scattering effects from different hydrometeors in simulating the cloud-affected radiances in all-sky simulations. The results are promising and suggest that the inclusion of multiple scattering

  1. Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

    NASA Astrophysics Data System (ADS)

    Krakowski, T.; Małek, K.; Bilicki, M.; Pollo, A.; Kurcz, A.; Krupa, M.

    2016-11-01

    Context. The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, have been recently cross-matched to construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were separated from stars and quasars through colour cuts, which may leave imperfections because different source types may overlap in colour space. Aims: The aim of the present work is to identify galaxies in the WISE × SuperCOSMOS catalogue through an alternative approach of machine learning. This allows us to define more complex separations in the multi-colour space than is possible with simple colour cuts, and should provide a more reliable source classification. Methods: For the automatised classification we used the support vector machines (SVM) learning algorithm and employed SDSS spectroscopic sources that we cross-matched with WISE × SuperCOSMOS to construct the training and verification set. We performed a number of tests to examine the behaviour of the classifier (completeness, purity, and accuracy) as a function of source apparent magnitude and Galactic latitude. We then applied the classifier to the full-sky data and analysed the resulting catalogue of candidate galaxies. We also compared the resulting dataset with the one obtained through colour cuts. Results: The tests indicate very high accuracy, completeness, and purity (>95%) of the classifier at the bright end; this deteriorates for the faintest sources, but still retains acceptable levels of 85%. No significant variation in the classification quality with Galactic latitude is observed. When we applied the classifier to all-sky WISE × SuperCOSMOS data, we found 15 million galaxies after masking problematic areas. The resulting sample is purer than the one produced by applying colour cuts, at the price of a lower completeness across the sky. Conclusions: The automatic classification is a successful alternative approach to colour cuts for defining a reliable galaxy sample. The identifications we

  2. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  3. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-04-15

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L{sub X} . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f{sub X} /f{sub g} ) and the equivalent width of the H{beta} emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs

  4. The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter

    SciTech Connect

    Zandanel, Fabio; Weniger, Christoph; Ando, Shin'ichiro E-mail: c.weniger@uva.nl

    2015-09-01

    We investigate for the first time the potential of angular auto- and cross-correlation power spectra in identifying sterile neutrino dark matter in the cosmic X-ray background. We take as reference the performance of the soon-to-be-launched eROSITA satellite. The main astrophysical background sources against sterile neutrino decays are active galactic nuclei, galaxies powered by X-ray binaries, and clusters of galaxies. While sterile neutrino decays are always subdominant in the auto-correlation power spectra, they can be efficiently enhanced when cross-correlating with tracers of the dark matter distribution such as galaxies in the 2MASS catalogues. We show that the planned four-years eROSITA all-sky survey will provide a large enough photon statistics to potentially yield very stringent constraints on the decay lifetime, enabling to firmly test the recently claimed 3.56-keV X-ray line found towards several clusters and galaxies and its decaying dark matter interpretation. However, we also show that in order to fully exploit the potential of eROSITA for dark matter searches, it is vital to overcome the shot-noise limitations inherent to galaxy catalogues as tracers for the dark matter distribution.

  5. All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data.

    PubMed

    Abbott, B P; Abbott, R; Adhikari, R; Ajith, P; Allen, B; Allen, G; Amin, R S; Anderson, S B; Anderson, W G; Arain, M A; Araya, M; Armandula, H; Armor, P; Aso, Y; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barsotti, L; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Behnke, B; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Bodiya, T P; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A F; Brown, D A; Brunet, G; Bullington, A; Buonanno, A; Burmeister, O; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K C; Cao, J; Cardenas, L; Cardoso, V; Caride, S; Casebolt, T; Castaldi, G; Caudill, S; Cavaglià, M; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Clark, D; Clark, J; Clayton, J H; Cokelaer, T; Conte, R; Cook, D; Corbitt, T R C; Cornish, N; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cutler, R M; Danzmann, K; Daudert, B; Davies, G; Debra, D; Degallaix, J; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drever, R W P; Duke, I; Dumas, J-C; Dwyer, J; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Franzen, A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fyffe, M; Garofoli, J A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Gouaty, R; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harstad, E D; Haughian, E; Hayama, K; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Holt, K; Hosken, D; Hough, J; Huttner, S H; Ingram, D; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kamat, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Ya; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kocsis, B; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Kozhevatov, I; Krishnan, B; Kwee, P; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Lormand, M; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mageswaran, M; Mailand, K; Mandel, I; Mandic, V; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Martin, I W; Martin, R M; Marx, J N; Mason, K; Matichard, F; Matone, L; Matzner, R; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D; McKenzie, K; Mehmet, M; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C J; Meyers, D; Miller, A; Miller, J; Minelli, J; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohanty, S D; Moreno, G; Mors, K; Mossavi, K; Mowlowry, C; Mueller, G; Muhammad, D; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Newton, G; Nishizawa, A; Numata, K; Ochsner, E; O'Dell, J; Ogin, G; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pan, Y; Pankow, C; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Perraca, A; Petrie, T; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Postiglione, F; Principe, M; Prix, R; Quetschke, V; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Rainer, N; Rakhmanov, M; Ramsunder, M; Reed, T; Rehbein, H; Reid, S; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rogan, A M; Rollins, J; Romano, J D; Romie, J H; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Santamaria, L; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schediwy, S W; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, L C; Strain, K A; Stuver, A; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Ugolini, D; Urbanek, K; Vahlbruch, H; Van Den Broeck, C; van der Sluys, M V; van Veggel, A A; Vass, S; Vaulin, R; Vecchio, A; Veitch, J D; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zur Mühlen, H; Zweizig, J

    2009-03-20

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency's time derivative in the range -5 x 10{-9}-0 Hz s{-1}. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10{-24} are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10{-6}, the search is sensitive to distances as great as 500 pc.

  6. Searching for Variability in the Gamma-ray Sky using the Fermi All-sky Variability Analysis (FAVA)

    NASA Astrophysics Data System (ADS)

    Kocevski, Daniel; Buehler, Rolf; Ajello, Marco; Giomi, Matteo; Fermi LAT Collaboration

    2016-01-01

    We present the results of the second Fermi All-sky Variability Analysis (FAVA) catalog, consisting of a search for week long variability above 100 MeV using the new Pass 8 data selection. The catalog includes over 2000 flares, spanning 6 years of the Fermi mission, with hundreds of flares that are not associated with any known catalog source. FAVA was designed to efficiently search for variable sources over a wide range of energies and timescales. Unlike a traditional likelihood analysis, the analysis performed by FAVA uses the mission averaged emission as a background, and is as such independent of any model for the diffuse gamma-ray emission. This makes the FAVA analysis especially sensitive to variable sources in the Galactic plane. This analysis is also computationally inexpensive, allowing for blind searches for flux variations over the entire sky. We will present some of the interesting flares identified through this analysis, and highlight those that are typically missed through traditional analysis methods. We will also present the new public FAVA webpage, which is designed to alert the community of new gamma-ray flares in real time and allow users to create relative flux light curves for any position on the sky; a task that is currently computationally intensive to perform over long intervals using traditional analysis tools.

  7. Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties

    NASA Astrophysics Data System (ADS)

    Klebe, D. I.; Blatherwick, R. D.; Morris, V. R.

    2013-08-01

    This paper describes the All Sky Infrared Visible Analyzer (ASIVA), a multi-purpose visible and infrared sky imaging and analysis instrument whose primary function is to provide radiometrically calibrated imagery in the mid-infrared (mid-IR) atmospheric window. This functionality enables the determination of diurnal hemispherical cloud fraction (HCF) and estimates of sky/cloud temperature from which one can derive estimates of cloud emissivity and cloud height. This paper describes the calibration methods and performance of the ASIVA instrument with particular emphasis on data products being developed for the meteorological community. Data presented here were collected during a field campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility from 21 May to 27 July 2009. The purpose of this campaign was to determine the efficacy of IR technology in providing reliable nighttime HCF data. Significant progress has been made in the analysis of the campaign data over the past several years and the ASIVA has proven to be an excellent instrument for determining HCF as well as several other important cloud properties.

  8. GALACTIC ALL-SKY SURVEY HIGH-VELOCITY CLOUDS IN THE REGION OF THE MAGELLANIC LEADING ARM

    SciTech Connect

    For, Bi-Qing; Staveley-Smith, Lister; McClure-Griffiths, N. M.

    2013-02-10

    We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (H I) observations from the Parkes Galactic All-Sky Survey. Excellent spectral resolution allows clouds with narrow-line components to be resolved. The total number of detected clouds is 419. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is discussed in the context of Magellanic System simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. We also discuss a newly identified population of clouds that forms the LA IV and a new diffuse bridge-like feature connecting the LA II and III complexes.

  9. Planck all-sky thermal dust polarization: Witnessing how the magnetic field shapes the Milky Way ISM

    NASA Astrophysics Data System (ADS)

    Bernard, Jean-Philippe

    2015-08-01

    I will summarize the findings of the analysis of the Planck polarization results, which have been published recently. These include all sky polarization maps at wavelengths above 850 microns, dominated at the shortest wavelengths by polarized emission from thermal dust. These maps reveal the large-scale organization of the magnetic field as projected on the plane of the sky. Unlike previous synchrotron maps of the Milky Way, they trace for the first time the magnetic field geometry in the thin molecular disk of our Galaxy, where most star formation occurs. Even at the modest angular resolution of Planck (5’), the magnetic field preferentially aligns with the filamentary structure of the ISM and it can be followed down to the scale of star forming molecular complexes. The large-scale polarized emission allows a detailed investigation of the magnetic field geometry in the solar neighborhood, which reveals unexpected and intricate filamentary structures, where the magnetic field changes orientation abruptly, tracing discontinuities at edges of magnetic domains with more homogeneous properties. The data also reveals regions with an unexpectedly large dust polarization fraction, providing strong constraints on current dust models. I will discuss future prospects for studying the impact of the magnetic field in nearby galaxies such as the Magellanic Clouds using this data and ground-based follow-up surveys, in particular in the framework of future polarization observations with ALMA in external galaxies.

  10. Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin

    2012-09-01

    MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.

  11. Depicting the Gamma-ray Realm with the All-sky Medium Energy Gamma-Ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Buson, Sara; ComPair Team

    2017-01-01

    The energy band from a few hundred keV to a few hundred GeV offers a unique window for studying both thermal and the non-thermal astrophysical processes. Important science can be gleaned fom investigations of emission mechanisms and environments of the most extreme objects that populate this mostly unexplored energy range. The All-sky Medium Energy Gamma-Ray Observatory (AMEGO) is a next-generation mission concept builing on the pioneering observations by COMPEL, on the Compton Gamma-Ray Observatory, and the heritage of recent successful missions, such as Fermi-LAT, AGILE, AMS and PAMELA. With its capability of detecting both Compton-scattering events at lower energy and pair-production events at higher energy, AMEGO can explore the energy regime from 300 keV to > 10 GeV with unprecedented sensitivity. We describe the concept of this wide-aperture instrument and discuss its power to address fundamental questions from a broad variety of astrophysical topics. NPP Fellow at NASA/GSFC.

  12. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Borkowski, K.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J. P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J. D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C. J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y. M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Lowry, C. M. Mow; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; vanden Brand, J. F. J.; VanDen Broeck, C.; vander Putten, S.; vander Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Finley, R. Vincent; Vinet, J. Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L. W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J. P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2014-08-01

    We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f0 range from 100 Hz to 1 kHz and the frequency dependent spindown f1 range from -1.6({{f}_{0}}/100\\;Hz)\\times {{10}^{-9}} Hz s-1 to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the ℱ-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5\\times {{10}^{-24}}.

  13. Ground-based All-sky Mid-infrared and Visible Imagery for Purposes of Characterizing Cloud Properties

    SciTech Connect

    Klebe, Dimitri; Blatherwick, R. D.; Morris, Victor R.

    2014-02-24

    This paper describes the All Sky Infrared Visible Analyzer (ASIVA), a multi-purpose visible and infrared sky imaging and analysis instrument whose primary functionality is to provide radiometrically calibrated imagery in the mid-infrared (mid-IR) atmospheric window. This functionality enables the determination of diurnal hemispherical cloud fraction (HCF) and estimates of sky/cloud temperature from which one can derive estimates of cloud emissivity and cloud height. This paper describes the calibration methods and performance of the ASIVA instrument with particular emphasis on data products being developed for the meteorological community. Data presented here were collected during a field campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility from May 21 to July 27, 2009. The purpose of this campaign was to determine the efficacy of IR technology in providing reliable nighttime HCF data. Significant progress has been made in the analysis of the campaign data over the past several years and the ASIVA has proven to be an excellent instrument for determining HCF as well as several other important cloud properties.

  14. A galaxy model from two micron all sky survey star counts in the whole sky, including the plane

    SciTech Connect

    Polido, P.; Jablonski, F.; Lépine, J. R. D.

    2013-11-20

    We use the star count model of Ortiz and Lépine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and K{sub S} bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070{sub −800}{sup +2000} pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.

  15. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  16. DISCOVERIES FROM A NEAR-INFRARED PROPER MOTION SURVEY USING MULTI-EPOCH TWO MICRON ALL-SKY SURVEY DATA

    SciTech Connect

    Kirkpatrick, J. Davy; Cutri, Roc M.; Looper, Dagny L.; Burgasser, Adam J.; Schurr, Steven D.; Cushing, Michael C.; Cruz, Kelle L.; Sweet, Anne C.; Knapp, Gillian R.; Barman, Travis S.; Bochanski, John J.; Roellig, Thomas L.; McLean, Ian S.; McGovern, Mark R.; Rice, Emily L.

    2010-09-15

    We have conducted a 4030 deg{sup 2} near-infrared proper motion survey using multi-epoch data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to Digitized Sky Survey images, we find that 107 of our proper motion candidates lack counterparts at B, R, and I bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five 'red L' dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight 'blue L' dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and find that both the 'blue L' and 'red L' dwarfs appear to be drawn from a relatively old population. This survey provides a glimpse of the kinds of research that will be possible through time-domain infrared projects such as the UKIDSS Large Area Survey, various VISTA surveys, and WISE, and also through z- or y-band enabled, multi-epoch surveys such as Pan-STARRS and LSST.

  17. Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform

    NASA Astrophysics Data System (ADS)

    Astone, Pia; Colla, Alberto; D'Antonio, Sabrina; Frasca, Sergio; Palomba, Cristiano

    2014-08-01

    In this paper we present a hierarchical data analysis pipeline for all-sky searches of continuous gravitational wave signals, like those emitted by spinning neutron stars asymmetric with respect to the rotation axis, with unknown position, rotational frequency, and spin-down. The core of the pipeline is an incoherent step based on a particularly efficient implementation of the Hough transform, which we call frequency-Hough, that maps the data time-frequency plane to the source frequency and spin-down plane for each fixed direction in the sky. Theoretical ROCs and sensitivity curves are computed and the dependency on various thresholds is discussed. A comparison of the sensitivity loss with respect to an "optimal" method is also presented. Several other novelties, with respect to other wide-parameter analysis pipelines, are also outlined. They concern, in particular, the construction of the grid in the parameter space, with over-resolution in frequency and parameter refinement, candidate selection, and various data cleaning steps that are introduced to improve search sensitivity and rejection of false candidates.

  18. Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    SciTech Connect

    Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Pietka, Maciej; Krolak, Andrzej

    2010-07-15

    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform in calculation of the F-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F-statistic into Fourier transforms so that the fast Fourier transform algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.

  19. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  20. VizieR Online Data Catalog: All-Sky Compiled Catalogue of 2.5 million stars (Kharchenko+ 2009)

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Roeser, S.

    2009-09-01

    The All-Sky Compiled Catalogue of 2501313 stars (ASCC-2.5) with the limiting magnitude V=12-14 is a result of a merging of star lists from present day large high-precision catalogues from space (Hipparcos- Tycho family catalogues: Hipparcos main catalogue including Multiple System Annex [I/239], Tycho-1 [I/239], Tycho-2 [I/259], ACT-RC [I/246], TRC [I/250]) and ground-based (PPM-N [I/146], PPM-S [I/193], PPM-add [I/208], CMC11 [I/256]) observations and reduction to standard systems of corresponding stellar data. The data from the Tycho-2 Spectral Type Catalog [III/231], and the 2MASS All-Sky Catalog of Point Sources [II/246] are added. The basic stellar data presented in the ASCC-2.5 are the equatorial coordinates (J2000, epoch 1991.25), proper motions in the Hipparcos system, B and/or V stellar magnitudes in the Johnson system. Additionally, for some stars we give trigonometric parallaxes, spectral classes in the MK or HD system, multiplicity and variability flags, Hipparcos, Tycho-2, HD, DM designations. Equatorial coordinates and their standard errors were taken from the source catalogues in accordance with the priority: Hipparcos [I/239/hipmain], Tycho-2 [I/259], Tycho-1 [I/239/tycmain], CMC11 [I/256], PPM [I/146,I/193,I/208]. Proper motions from the source catalogues were compared with Hipparcos data.The compiled proper motions in the Hipparcos system and their standard errors were computed as the weighted means. The weights were set in accordance with the proper motion errors listed for individual stars in the source catalogues. Trigonometric parallaxes are taken from the Hipparcos and Tycho-1 catalogues. Stellar B, V magnitudes were determined on the basis of the ground- based photometric data taken from CMC11, Hipparcos, as well as space BT, VT from Tycho-1, Tycho-2. Magnitudes from the PPM catalogue were used if no other photometric data were available. Tycho data were transformed to the Johnson system via: V = VT - 0.09 (B-V)T + dV, (B-V) = 0.850 (B

  1. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    SciTech Connect

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTM runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy

  2. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  3. INFRARED SPECTRA AND PHOTOMETRY OF COMPLETE SAMPLES OF PALOMAR-GREEN AND TWO MICRON ALL SKY SURVEY QUASARS

    SciTech Connect

    Shi, Yong; Rieke, G. H.; Su, K. Y. L.; Ogle, P. M.; Balog, Z.

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of ≲0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  4. INTEGRAL SPI All-Sky View in Soft Gamma Rays: A Study of Point-Source and Galactic Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Jourdain, E.; Roques, J.-P.; Strong, A.; Diehl, R.; Lebrun, F.; Terrier, R.

    2008-06-01

    We have processed the data accumulated with the INTEGRAL SPI instrument over 4 years (~51 Ms) to study the morphology of the Galactic "diffuse" emission in the 20 keV to 8 MeV energy range. To achieve this, we simultaneously derived an all-sky census of emitting sources and images of the Galactic ridge (GR) emission. In the central radian, the resolved point-source emission amounts to 88%, 91%, and 68% of the total in the 25-50, 50-100, and 100-300 keV domains, respectively. We compare the spatial distribution of the GR emission with the distributions obtained from CO and near-IR maps and quantify our results through latitude and longitude profiles. Below 50 keV, the SPI data are better traced by the latter, supporting a stellar origin for this emission. Furthermore, we find that the GR emission spectrum follows a power law with a photon index ~1.55 above 50 keV, while an additional component is required below that energy. This component shows a cutoff around 30 keV, reinforcing a stellar origin, as proposed by Krivonos et al. The component of the diffuse emission due to e± annihilations is extracted simultaneously, leading to the determination of the related parameters (positronium flux and fraction). Specific discussion is devoted to the annihilation-line distribution, since significant emission is detected over a region as large as ~80° × ~10°, potentially associated with the disk or halo surrounding the central regions of our Galaxy. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic, and Poland, and with the participation of Russia and the US.

  5. GMOSS: All-sky Model of Spectral Radio Brightness Based on Physical Components and Associated Radiative Processes

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2017-01-01

    We present the Global Model for the Radio Sky Spectrum (GMOSS), a novel, physically motivated model of the low-frequency radio sky from 22 MHz to 23 GHz. GMOSS invokes different physical components and associated radiative processes to describe the sky spectrum over 3072 pixels of 5° resolution. The spectra are allowed to be convex, concave, or of more complex form with contributions from synchrotron emission, thermal emission, and free–free absorption included. Physical parameters that describe the model are optimized to best fit four all-sky maps at 150 MHz, 408 MHz, 1420 MHz, and 23 GHz and two maps at 22 and 45 MHz generated using the Global Sky Model of de Oliveira-Costa et al. The fractional deviation of the model from data has a median value of 6% and is less than 17% for 99% of the pixels. Though aimed at the modeling of foregrounds for the global signal arising from the redshifted 21 cm line of hydrogen during the Cosmic Dawn and the Epoch of Reionization (EoR), over redshifts 150≲ z≲ 6, GMOSS is well suited for any application that requires simulating spectra of the low-frequency radio sky as would be observed by the beam of any instrument. The complexity in spectral structure that naturally arises from the underlying physics of the model provides a useful expectation for departures from smoothness in EoR foreground spectra and hence may guide the development of algorithms for EoR signal detection. This aspect is further explored in a subsequent paper.

  6. The MEarth project: an all-sky survey for transiting Earth-like exoplanets orbiting nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Irwin, Jonathan; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason; Newton, Elisabeth R.

    2015-01-01

    The MEarth project is an operational all-sky survey searching for transiting Earth-like exoplanets around 3,000 of the closest mid-to-late M-dwarfs. These will be among the best planets in their size class for atmospheric characterization using present day and near-future instruments such as HST, JWST and ground-based Extremely Large Telescopes (ELTs), by virtue of the large observational signal sizes afforded by their small and bright host stars. We present an update on the status and recent scientific results of the survey from our two observing stations: MEarth-North at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, and MEarth-South at Cerro Tololo Inter-American Observatory, Chile. MEarth-North discovered the transiting mini-Neptune exoplanet GJ 1214b, which currently has the best-studied atmosphere of any exoplanet in its size class. In addition to searching for planets, we actively pursue stellar astrophysics topics and characterization of the target star sample using MEarth data and supplementary spectroscopic follow-up. This has included measuring astrometric parallaxes for more than 1500 nearby stars, the discovery of 6 new low-mass eclipsing binaries amenable to direct measurement of the masses and radii of their components, and rotation periods, spectral classifications, metallicities and activity indices for hundreds of stars. The MEarth light curves themselves also provide a detailed record of the photometric behavior of the target stars, which include the most favorable and interesting targets to search for small and potentially habitable planets. This will be a valuable resource for all future surveys searching for planets around these stars. All light curves gathered during the survey are made publicly available after one year.The MEarth project gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grants AST-0807690, AST-1109468, and AST-1004488

  7. BRIGHT 22 μm EXCESS CANDIDATES FROM THE WISE ALL-SKY CATALOG AND THE HIPPARCOS MAIN CATALOG

    SciTech Connect

    Wu, Chao-Jian; Wu, Hong; Lam, Man-I; Yang, Ming; Gao, Liang; Wen, Xiao-Qing; Li, Shuo; Zhang, Tong-Jie

    2013-10-01

    In this paper, we present a catalog that includes 141 bright candidates (≤10.27 mag, V band) showing an excess of infrared (IR) at 22 μm. Of these 141 candidates, 38 stars are known IR-excess stars or disks, 23 stars are double or multiple stars, and 4 are Be stars while the remaining more than 70 stars are identified as 22 μm excess candidates in our work. The criterion for selecting candidates is K{sub s} – [22]{sub μm}. All these candidates are selected from the Wide-field Infrared Survey Explorer all-sky data cross-correlated with the Hipparcos main catalog and the likelihood-ratio technique is employed. Considering the effect of background, we introduce the IRAS 100 μm level to exclude the high background. We also estimate the coincidence probability of these sources. In addition, we present the optical to mid-IR spectral energy distributions and optical images for all the candidates, and give the observed optical spectra of six stars with the National Astronomical Observatories, Chinese Academy of Sciences' 2.16 m telescope. To measure for the amount of dust around each star, the fractional luminosity is also provided. We also test whether our method of selecting IR-excess stars can be used to search for extra-solar planets; we cross-match our catalog with known IR-excess stars with planets but found no matches. Finally, we give the fraction of stars showing excess IR for different spectral types of main-sequence stars.

  8. CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY

    SciTech Connect

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Brink, Henrik; Crellin-Quick, Arien; Butler, Nathaniel R.

    2012-12-15

    With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.

  9. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Callingham, J. R.; Hancock, P. J.; Franzen, T. M. O.; Hindson, L.; Kapińska, A. D.; Morgan, J.; Offringa, A. R.; Wayth, R. B.; Wu, C.; Zheng, Q.; Murphy, T.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Johnston-Hollitt, M.; Lenc, E.; Procopio, P.; Staveley-Smith, L.; Ekers, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L.; Hazelton, B. J.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-01-01

    Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72-231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy, and 50 per cent complete at 55 mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date, and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online.1 This is the first in a series of publications describing the GLEAM survey results.

  10. GASS: The Parkes Galactic All-Sky Survey. Update: improved correction for instrumental effects and new data release

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; Haud, U.

    2015-06-01

    Context. The Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS II) focused on stray radiation and instrumental corrections. Aims: We seek to remove the remaining instrumental effects and present a third data release. Methods: We use the HEALPix tessellation concept to grid the data on the sphere. Individual telescope records are compared with averages on the nearest grid position for significant deviations. All averages are also decomposed into Gaussian components with the aim of segregating unacceptable solutions. Improved priors are used for an iterative baseline fitting and cleaning. In the last step we generate 3D FITS data cubes and examine them for remaining problems. Results: We have removed weak, but systematic baseline offsets with an improved baseline fitting algorithm. We have unraveled correlator failures that cause time dependent oscillations; errors cause stripes in the scanning direction. The remaining problems from radio frequency interference (RFI) are spotted. Classifying the severeness of instrumental errors for each individual telescope record (dump) allows us to exclude bad data from averages. We derive parameters that allow us to discard dumps without compromising the noise of the resulting data products too much. All steps are reiterated several times: in each case, we check the Gaussian parameters for remaining problems and inspect 3D FITS data cubes visually. We find that in total ~1.5% of the telescope dumps need to be discarded in addition to ~0.5% of the spectral channels that were excluded in GASS II. Conclusions: The new data release (GASS III) facilitates data products with improved quality. A new web interface, compatible with the previous version, is available for download of GASS III FITS cubes and spectra.

  11. The SRG/eROSITA All-Sky Survey: A new era of large-scale structure studies with AGN

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2015-08-01

    The four-year X-ray All-Sky Survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma (SRG) satellite will detect about 3 million active galactic nuclei (AGN) with a median redshift of z~1 and typical luminosity of L0.5-2.0keV ~ 1044 erg/s. We demonstrate that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure (LSS) studies.We show that with this sample of X-ray selected AGN, it will become possible for the first time to perform detailed redshift- and luminosity-resolved studies of the AGN clustering. This enable us to put strong constraints on different AGN triggering/fueling models as a function of AGN environment, which will dramatically improve our understanding of super-massive black hole growth and its correlation with the co-evolving LSS.Further, the eRASS AGN sample will become a powerful cosmological probe. We demonstrate for the first time that, given the breadth and depth of eRASS, it will become possible to convincingly detect baryonic acoustic oscillations (BAOs) with ~8σ confidence in the 0.8 < z < 2.0 range, currently uncovered by any existing BAO survey.Finally, we discuss the requirements for follow-up missions and demonstrate that in order to fully exploit the potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.

  12. Observation of the distribution of heavy neutral atoms in the IBEX-Lo all-sky maps

    NASA Astrophysics Data System (ADS)

    Park, J.; Kucharek, H.; Moebius, E.

    2014-12-01

    We investigate the spatial distribution of heavy energetic neutral atoms, mostly oxygen and neon, in the sky maps taken with the Interstellar Boundary Explorer (IBEX) in 2009 - 2011. The IBEX-Lo sensor, one of two highly sensitive single-pixel cameras on the IBEX spacecraft, measures neutral particles within an energy range from 0.01 to 2 keV. In the time-of-flight detector of IBEX-Lo these neutral atoms can be identified as hydrogen or heavier atoms, such as oxygen. These measurements have provided all-sky maps of neutral hydrogen and oxygen. The dominant feature in these maps is the interstellar oxygen and neon gas flow. Its peak location is approximately consistent with the interstellar helium gas flow (Möbius et al., 2009, Science, 326, 969). The flow distribution is distributed over 210° - 240° ecliptic longitude and -6° - 12° ecliptic latitude. Another prominent feature in the oxygen sky maps at 0.2 to 0.8 keV is an extended tail of the oxygen signal toward lower longitude and higher positive latitude (180° - 210° ecliptic longitude and 0° - 24° ecliptic latitude). The measured peak rates in the extended tail is 3 - 5% of the maximum count rate in the primary oxygen and neon gas flow, but is four times higher than any other surrounding oxygen signals. The extended tail may indicate the secondary component of the interstellar oxygen, which is likely generated by charge exchange between local O+ ions and interstellar neutral H in the outer heliosheath. In this poster, we will discuss these two most prominent features in the oxygen sky maps and their implications for the source and the mechanism generating an extended tail in the oxygen signal.

  13. Infrared Spectra and Photometry Of Complete Samples of Palomar-Green and Two Micron All Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Rieke, G. H.; Ogle, P. M.; Su, K. Y. L.; Balog, Z.

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of lsim0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  14. Opportunities for Increased Physical Activity in the Workplace: the Walking Meeting (WaM) Pilot Study, Miami, 2015

    PubMed Central

    Kling, Hannah E.; Yang, Xuan; Messiah, Sarah E.; Arheart, Kristopher L.; Brannan, Debi

    2016-01-01

    Introduction Despite the positive impact walking has on human health, few opportunities exist for workers with largely sedentary jobs to increase physical activity while at work. The objective of this pilot study was to examine the implementation, feasibility, and acceptability of using a Walking Meeting (WaM) protocol to increase the level of work-related physical activity among a group of sedentary white-collar workers. Methods White-collar workers at a large university were invited to participate in a newly developed WaM protocol. Workers who conducted weekly meetings in groups of 2 or 3 individuals were recruited for the pilot study (n = 18) that took place from January 2015 to August 2015. Seventeen participants wore an accelerometer to measure physical activity levels during 3 consecutive weeks (first week baseline, followed by 2 weeks of organized WaMs) and participated in focus groups conducted during week 3 to document experiences with the WaM protocol. Results The WaM protocol met study criteria on feasibility, implementation, and acceptability among study participants. The average number of minutes (standard deviation) participants engaged in combined work-related moderate/vigorous physical activity per week during the 3 weeks increased from an average of 107 (55) minutes during the baseline week to 114 (67) minutes at week 2 and to 117 (65) minutes at week 3. Conclusion White- collar workers were supportive of transforming regular seated meetings into walking meetings and increased their work-related physical activity levels. PMID:27337560

  15. A Southern-Sky Total Intensity Source Catalogue at 2.3 GHz from S-Band Polarisation All-Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Meyers, B. W.; Hurley-Walker, N.; Hancock, P. J.; Franzen, T. M. O.; Carretti, E.; Staveley-Smith, L.; Gaensler, B. M.; Haverkorn, M.; Poppi, S.

    2017-03-01

    The S-band Polarisation All-Sky Survey has observed the entire southern sky using the 64-m Parkes radio telescope at 2.3 GHz with an effective bandwidth of 184 MHz. The surveyed sky area covers all declinations δ ⩽ 0°. To analyse compact sources, the survey data have been re-processed to produce a set of 107 Stokes I maps with 10.75 arcmin resolution and the large scale emission contribution filtered out. In this paper, we use these Stokes I images to create a total intensity southern-sky extragalactic source catalogue at 2.3 GHz. The source catalogue contains 23 389 sources and covers a sky area of 16 600 deg2, excluding the Galactic plane for latitudes |b| < 10°. Approximately, 8% of catalogued sources are resolved. S-band Polarisation All-Sky Survey source positions are typically accurate to within 35 arcsec. At a flux density of 225 mJy, the S-band Polarisation All-Sky Survey source catalogue is more than 95% complete, and 94% of S-band Polarisation All-Sky Survey sources brighter than 500 mJy beam-1 have a counterpart at lower frequencies.

  16. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    SciTech Connect

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo; Kasuga, Toshihiro; Ishiguro, Masateru; Kuroda, Daisuke; Mueller, Thomas G.; Ootsubo, Takafumi

    2013-01-01

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the

  17. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  18. Vertical winds and momentum fluxes due to equatorial planetary scale waves using all-sky meteor radar over Brazilian region

    NASA Astrophysics Data System (ADS)

    Egito, F.; Andrioli, V. F.; Batista, P. P.

    2016-11-01

    In the equatorial region planetary scale waves play an important role transporting significant amount of energy and momentum through atmosphere. Quantifying the momentum transported by these waves and its effects on the mean flow is rather important. Direct estimates of the momentum flux transported by waves require horizontal and vertical wind measurements. Ground-based meteor radars have provided continuous and reliable measurements of the horizontal wind components in the Mesosphere and Lower Thermosphere (MLT) region and have contributed to improve our knowledge of the dynamics of this region. However, instrumental limitations hinder its use for measuring vertical winds and momentum fluxes. On the other hand, according to Babu et al (2012), all- sky meteor radars are able to infer tridimensional winds when using a large number of meteor echoes centered at the meteor ablation peak. Following this approach, we have used measurements performed by a Meteor Radar installed at São João do Cariri, Brazil (7.4°S; 36.5°W) in order to measure vertical winds and calculate the momentum flux transported by equatorial planetary scale waves. In order to evaluate the accuracy of vertical wind values we have performed several tests based on a simple model considering real meteor distributions and theoretical equations for the MLT winds motion. From our tests, we inferred that Brazilian meteor radar data can be used for this purpose with an accuracy of 1.8 m/s. The results show that the vertical wind presents magnitudes of a few meters per second and occasionally reaches magnitudes around 10 m/s. Below 92 km the vertical wind is predominantly upward during the whole year and above exhibits a semi-annual oscillation with downward phase during the equinoxes. Variations associated to planetary scale waves in the vertical wind are also observed and some of them appear simultaneously in the zonal and meridional wind as well. Largest wave induced amplitudes in the vertical wind

  19. All-sky and clear-sky downward surface solar radiation trends for Italy from homogenized instrumental time series (1959-2013)

    NASA Astrophysics Data System (ADS)

    Manara, Veronica; Brunetti, Michele; Maugeri, Maurizio; Sanchez-Lorenzo, Arturo; Wild, Martin

    2016-04-01

    A dataset of 54 daily Italian downward surface solar radiation records (SSR) has been set up collecting data from different sources. The records have been quality checked and the dataset has been homogenized and completed by means of the neighboring records. Specifically, SSR records required an extensive homogenization procedure which led to adjust most of them, especially during the early period, in order to eliminate non climatic signals caused by changes either in the conditions of the corresponding meteorological station or by changes in the environment surrounding the station. The records were interpolated onto a regular grid and subjected to Principal Component Analysis that allowed identifying two regions: northern and southern Italy. The records of these areas were averaged in order to get all-sky regional SSR records for the 1959-2013 period. In addition, starting from the daily homogenized records, SSR series under clear-sky conditions were established for the 1959-2013 period with the same procedure used for the all-sky series, by considering only the days with a daily total cloud cover mean of 0 okta from corresponding ground-based cloudiness observations. All-sky SSR annual records show a decreasing tendency until the mid-1980s (i.e., dimming) followed by an increasing tendency (i.e. brightening) both for north and south Italy. The strength and the persistence of the tendencies are not the same in all seasons, however the overall picture of Italian SSR trends turns out in reasonable agreement with the dimming/brightening phases observed in many areas of the world. The clear-sky SSR records present stronger tendencies than all-sky SSR records, especially during the dimming period in all seasons and during the brightening period in winter and autumn. This could suggest that the variation of all-sky SSR caused by the increase/decrease in aerosol content has been partially masked by cloud cover variations, especially during the dimming period.

  20. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959-2013)

    NASA Astrophysics Data System (ADS)

    Manara, Veronica; Brunetti, Michele; Celozzi, Angela; Maugeri, Maurizio; Sanchez-Lorenzo, Arturo; Wild, Martin

    2016-09-01

    A dataset of 54 daily Italian downward surface solar radiation (SSR) records has been set up collecting data for the 1959-2013 period. Special emphasis is given to the quality control and the homogenization of the records in order to ensure the reliability of the resulting trends. This step has been shown as necessary due to the large differences obtained between the raw and homogenized dataset, especially during the first decades of the study period. In addition, SSR series under clear-sky conditions were obtained considering only the cloudless days from corresponding ground-based cloudiness observations. Subsequently, records were interpolated onto a regular grid and clustered into two regions, northern and southern Italy, which were averaged in order to get all-sky and clear-sky regional SSR records. Their temporal evolution is presented, and possible reasons for differences between all-sky and clear-sky conditions and between the two regions are discussed in order to determine to what extent SSR variability depends on aerosols or clouds. Specifically, the all-sky SSR records show a decrease until the mid-1980s (dimming period), and a following increase until the end of the series (brightening period) even though strength and persistence of tendencies are not the same in all seasons. Clear-sky records present stronger tendencies than all-sky records during the dimming period in all seasons and during the brightening period in winter and autumn. This suggests that, under all-sky conditions, the variations caused by the increase/decrease in the aerosol content have been partially masked by cloud cover variations, especially during the dimming period. Under clear sky the observed dimming is stronger in the south than in the north. This peculiarity could be a consequence of a significant contribution of mineral dust variations to the SSR variability.

  1. RELEVANT ASPECTS OF MEDIUM-SCALE TIDs RELATED WITH MIDLATITUDES SPREAD- F OBSERVED BY ALL-SKY IMAGING SYSTEM IN THE SOUTHERN HEMISPHERE OVER TWO FULL SOLAR CYCLES

    NASA Astrophysics Data System (ADS)

    Pimenta, A. A.

    2009-12-01

    Using ground-based measurements we investigate the occurrence of medium-scale TIDs (MSTIDs) in the OI 630 nm nightglow emission all-sky images in the Brazilian low latitudes region related with midlatitude Spread F, during over two full solar cycles. The OI 630 nm images obtained during these periods show thermospheric dark band structures (MSTIDs) in low latitudes region propagating from southeast to northwest. These dark patches moved with average speed of about 50-200 m/s. Only during low solar activity period (LSA), ascending solar activity period (ASA) and descending solar activity period the DBS occurrences were observed in the OI630 nm nightglow emission all-sky images. However, during high solar activity (HAS) we didn’t observe the DBS in the all-sky images. In addition, ionospheric data over two stations in Brazil, one at the magnetic equator (São Luís) and the other close to the southern crest of the equatorial ionization anomaly (Cachoeira Paulista) were used to study this kind of structures during high and low solar activity periods. It should be pointed out that these thermospheric/ionospheric events are not related to geomagnetic disturbed conditions. In this work, we present and discuss this phenomenon in the Brazilian sector over two full solar cycles under different solar activity conditions. A possible mechanism for generation of these dark band structures is presented.

  2. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  3. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    SciTech Connect

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  4. BANYAN. V. A Systematic All-sky Survey for New Very Late-type Low-mass Stars and Brown Dwarfs in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-01

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ~13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential >=M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr-1. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by >=M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  5. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  6. The All Sky Automated Survey. The Catalog of Variable Stars. II. 6^h-12^h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.

    2003-12-01

    This paper describes the second part of the photometric data from the 9 arcdeg times 9 arcdeg ASAS camera monitoring the whole southern hemisphere in the V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 2800000 stars brighter than V=15 mag on 18000 frames were analyzed and 11357 were found to be variable (2685 eclipsing, 907 regularly pulsating, 521 Mira and 7244 other, mostly SR, IRR and LPV stars). Periodic light curves have been classified using the automated algorithm, which now takes into account IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas.

  7. The All Sky Automated Survey. Catalog of Variable Stars. III. 12h-18h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.; Maciejewski, G.

    2004-06-01

    This paper describes the third part of the photometric data from the 9 arcdeg x 9arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 3200000 stars brighter than V=15 mag on 18000 frames were analyzed and 10453 were found to be variable (1718 eclipsing, 731 regularly pulsating, 849 Mira and 7155 other stars). Light curves have been classified using the improved automated algorithm, which now takes into account 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/\\gp/asas/asas.html or http://archive.princeton.edu/\\asas.

  8. Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data

    NASA Astrophysics Data System (ADS)

    Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad; Di Palma, Irene; Allen, Bruce; Astone, Pia; Bock, Oliver; Creighton, Teviet D.; Keitel, David; Machenschalk, Bernd; Prix, Reinhard; Siemens, Xavier; Singh, Avneet; Zhu, Sylvia J.; Schutz, Bernard F.

    2016-12-01

    We report results of an all-sky search for periodic gravitational waves with frequency between 50 and 510 Hz from isolated compact objects, e.g., neutron stars. A new hierarchical multistage approach is taken, supported by the computing power of the Einstein@Home project, allowing us to probe more deeply than ever before. 16 million subthreshold candidates from the initial search [LIGO Scientific and Virgo Collaborations, Phys. Rev. D 94, 102002 (2016)] are followed up in four stages. None of those candidates is consistent with an isolated gravitational wave emitter, and 90% confidence level upper limits are placed on the amplitudes of continuous waves from the target population. Between 170.5 and 171 Hz, we set the most constraining 90% confidence upper limit on the strain amplitude h0 at 4.3 ×10-25 , while at the high end of our frequency range, we achieve an upper limit of 7.6 ×10-25 . These are the most constraining all-sky upper limits to date and constrain the ellipticity of rotating compact objects emitting at 300 Hz at a distance D to less than 6 ×10-7 [D/100 pc ] .

  9. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Haywood, Misha; Mosser, Benoit; García, Rafael A.; Babusiaux, Carine; Ballot, Jérôme; Samadi, Reza; Katz, David; Belkacem, Kevin; Bernardi, Pernelle; Buey, Tristan

    2015-09-01

    CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants), in our galactic neighborhood and allowing unprecedented stellar population studies.

  10. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Scargle, J. D; Thompson, D. J.; Troja, E.

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  11. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Antolini, E.; Bonamente, E.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P. E-mail: allafort@stanford.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS and others

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  12. PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT

    SciTech Connect

    Voytek, Tabitha C.; Natarajan, Aravind; Peterson, Jeffrey B.; Jáuregui García, José Miguel; López-Cruz, Omar

    2014-02-10

    We present first results from the SCI-HI experiment, which we used to measure the all-sky-averaged 21 cm brightness temperature in the redshift range 14.8 < z < 22.7. The instrument consists of a single broadband sub-wavelength size antenna and a sampling system for real-time data processing and recording. Preliminary observations were completed in 2013 June at Isla Guadalupe, a Mexican biosphere reserve located in the Pacific Ocean. The data was cleaned to excise channels contaminated by radio frequency interference, and the system response was calibrated by comparing the measured brightness temperature to the Global Sky Model of the Galaxy and by independent measurement of Johnson noise from a calibration terminator. We present our results, discuss the cosmological implications, and describe plans for future work.

  13. Empirically extending the range of validity of parameter-space metrics for all-sky searches for gravitational-wave pulsars

    NASA Astrophysics Data System (ADS)

    Wette, Karl

    2016-12-01

    All-sky searches for gravitational-wave pulsars are generally limited in sensitivity by the finite availability of computing resources. Semicoherent searches are a common method of maximizing search sensitivity given a fixed computing budget. The work of Wette and Prix [Phys. Rev. D 88, 123005 (2013)] and Wette [Phys. Rev. D 92, 082003 (2015)] developed a semicoherent search method which uses metrics to construct the banks of pulsar signal templates needed to search the parameter space of interest. In this work we extend the range of validity of the parameter-space metrics using an empirically derived relationship between the resolution (or mismatch) of the template banks and the mismatch of the overall search. This work has important consequences for the optimization of metric-based semicoherent searches at fixed computing cost.

  14. Coordinated airglow observations between IMAP/VISI and a ground-based all-sky imager on concentric gravity wave in the mesopause

    NASA Astrophysics Data System (ADS)

    Perwitasari, S.; Sakanoi, T.; Yamazaki, A.; Otsuka, Y.; Hozumi, Y.; Akiya, Y.; Saito, A.; Shiokawa, K.; Kawamura, S.

    2015-11-01

    We present a study of concentric gravity waves (CGWs) event from the coordinated observation between Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping (IMAP)/Visible and near-Infrared Spectral Imager (VISI), all-sky camera at Rikubetsu, Multi-functional Transport Satellite (MTSAT), Tropical Rainfall Measuring Mission, and MF radar at Wakkanai combined with Modern-Era Retrospective Analysis for Research and Application data. IMAP/VISI is the first space-based imager that capable of imaging the airglow in the mesosphere and lower thermosphere region in the nadir-looking direction. Therefore, it has a unique ability to observe a great extend of CGWs propagation. Arc-like shaped, part of CGWs pattern was observed around the mesopause (~95 km) in the O2 762 nm airglow emission obtained by IMAP/VISI at 1204 UT on 18 October 2012. Similar patterns were also observed by the all-sky imager at Rikubetsu (43.5°N, 143.8°E) in OI 557.7 nm and OH band airglow emissions from ~1100 to 1200 UT. Horizontal wavelengths of the observed small-scale gravity waves are ~50 km (OH band and OI 557.7 nm) and ~67 km (O2 762 nm). The source is suggested to be a deep convective activity over Honshu Island which likely was an enhanced convective activity related to a typhoon in the south of Japan. The data showed that the CGWs could propagate up to ~1400-1500 km horizontally from the source to the mesopause but not farther away. Using atmospheric temperature profiles obtained by Thermospheric Ionosphere Mesosphere Energetics Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry, we conclude that this long-distance propagation of the waves could be caused by thermal duct in the middle atmosphere. The arc-like shaped instead of full circle pattern points out that the wind filtering effect is significant for the particular direction of wave propagation.

  15. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of

  16. ASPIRE: A Data Reduction Project for the Japanese Astro-F Far-Infrared All-Sky Survey; its value to SIRTF, SOFIA, FIRST and other missions

    NASA Astrophysics Data System (ADS)

    Freund, M. M.; Moseley, S. H.; Nakagawa, T.; Matsumoto, T.; Shibai, H.; ASPIRE Collaboration

    1999-12-01

    The ASPIRE mission will provide the international astronomical community with data from an unbiased all-sky survey by the Far Infrared Surveyer (FIS) onboard the Japanese Astro-F (IRIS) satellite. An all-sky survey is very efficient in producing scientific results. It allows to detect intrinsically rare objects that would be missed by limited sky surveys. ASPIRE will provide target lists in time for efficient follow-up pointed observations with narrow field-of-view telescopes like SIRTF, SOFIA and FIRST at a low cost to the US community. The Astro-F satellite contains a 70 cm telescope cooled to 6 K with super-fluid liquid helium and Stirling-cycle coolers. The FIS instrument uses state-of-the-art 2D stressed and unstressed Ge:Ge detector arrays and cold readout electronics. Astro-F is scheduled to be launched in August 2003 by an ISAS M-V rocket into a sun-synchronous polar orbit at an altitude of 750 km. The FIS operates between 50-200μm at a diffraction limited spatial resolution of 30-50 " in four bands at sensitivities of approximately 18, 25, 110, and 90 mJy between 50-70, 50-110, 150-200, and 110-200 μm . These sensitivities are up to 20x higher than IRAS. The final data products will consist of point source catalogs, images and small scale maps. We expect to detect in excess of 10 million far-IR sources, from solar system objects to ultra-luminous galaxies at cosmological distances. The science objectives include important astrophysical topics, like large scale structure, evolution of galaxies, systematic investigation of the star formation process, and the evolution of planets and brown dwarfs.

  17. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    NASA Astrophysics Data System (ADS)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  18. Exploración del catálogo de objetos en emisión H de Henize y All Sky Automated Survey: nuevas variables y tipos espectrales

    NASA Astrophysics Data System (ADS)

    Jaque Arancibia, M.; Barbá, R. H.; Collado, A.; Gamen, R.; Arias, J. I.

    2016-08-01

    Large astronomical surveys allow us to do systematic studies of stellar populations with significant statistical weight. In this study, we have cross-correlated the Henize's (1976) catalog of stellar sources with H emission-line with “The All Sky Automated Survey'' database. After the positional cross-matching we have found that 1402 of 1926 H sources have ASAS light-curves. From that number, more than 50 (723 sources) are periodic variables with amplitude larger than 0.05 magnitudes, while 276 sources show photometric variations without a clear periodicity. Variable stars that we have found are of many different types, among them Miras, eclipsing binaries, bursting stars, etc. Also, only 133 stars are known previously as variable sources in ASAS catalogue, and 93 of them were studied previously in detail. In order to characterize the nature of the sources, we have started a medium-resolution spectroscopic survey of the unstudied variable emission-line objects using the 2.15-m Jorge Sahade Telescope at Complejo Astronómico El Leoncito (Argentina). At the moment, we have observed a set of 67 blue stars selected using 2MASS colors, being almost all of them Be-type stars. This set of bright new variable Be-type stars is ideal for follow-up monitoring for the study of the Be-phenomenon.

  19. Beyond MACS: An All-Sky Search for the Most X-ray Luminous Clusters of Galaxies Out to z~1

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    Galaxy clusters are seeing a dramatic renaissance as cosmological tools and astrophysical laboratories. In the local Universe (z<0.3), extensive statistical and in-depth studies of the most extreme clusters have greatly advanced our understanding of the interplay of gas, galaxies, and dark matter in these largest building blocks of the Universe. The high- redshift counterparts and predecessors of the most famous and best studied local systems have, however, remained elusive until recently. In 2009, the completion of the Massive Cluster Survey (MACS) yielded the definitive sample of very X-ray luminous clusters at 0.3 < z < 0.6. Thanks to its huge sky coverage of almost 23,000 square degrees, MACS was able to increase the number of such systems known by a factor of 30 over previous surveys, thereby dramatically extending the redshift baseline for studies of cluster and galaxy evolution, and establishing massive clusters as independent cosmological probes. MACS clusters have been used extensively by the extragalactic community in many high-profile investigations, demonstrating the legacy character and broad applicability of MACS for astrophysical and cosmological research. The importance and value of this sample was underlined again very recently by the award of an HST Multi-Cycle Treasury program which will use 524 orbits to observe 25 massive galaxy clusters, 16 of which are MACS discoveries. We here propose a new all-sky X-ray cluster survey, eMACS, to take the process to its logical and ultimate conclusion. Using again data from the ROSAT All-Sky Survey and lowering the flux limit to half that used for MACS, we will extend MACS in a quest to discover extremely X-ray luminous clusters at 0.5 < z < 1, a nearly unexplored mass/redshift range. Expected to find more than 80 of these extremely rare systems at z>0.5, an increase of nearly an order of magnitude over the number of such systems presently known, eMACS will create a sample of unprecedented power for

  20. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5 ×10-25 , while at the high end of our frequency range, around 505 Hz, we achieve upper limits ≃10-24 . At 230 Hz we can exclude sources with ellipticities greater than 10-6 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 . If we assume a higher (lower) gravitational wave spin-down we constrain farther (closer) objects to higher (lower) ellipticities.

  1. Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run

    NASA Astrophysics Data System (ADS)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier

    2016-09-01

    We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.

  2. Candidate isolated neutron stars and other optically blank x-ray fields identified from the rosat all-sky and sloan digital sky surveys

    SciTech Connect

    Agueros, Marcel A.; Anderson, Scott F.; Margon, Bruce; Haberl, Frank; Voges, Wolfgang; Annis, James; Schneider, Donald P.; Brinkmann, Jonathan; /Apache Point Observ.

    2005-11-01

    Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays are known, a sample that has yet to definitively address such fundamental issues as the equation of state of degenerate neutron matter. We describe a selection algorithm based on a cross-correlation of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error circles devoid of plausible optical counterparts to the SDSS g {approx} 22 magnitudes limit. We quantitatively characterize these error circles as optically blank; they may host INSs or other similarly exotic X-ray sources such as radio-quiet BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective than previous searches for optically blank RASS error circles, and excludes the 99.9% of error circles that contain more common X-ray-emitting subclasses. We find 11 candidates, nine of which are new. While our search is designed to find the best INS candidates and not to produce a complete list of INSs in the RASS, it is reassuring that our number of candidates is consistent with predictions from INS population models. Further X-ray observations will obtain pinpoint positions and determine whether these sources are entirely optically blank at g {approx} 22, supporting the presence of likely isolated neutron stars and perhaps enabling detailed follow-up studies of neutron star physics.

  3. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; Torres, O.; Remer, L.

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  4. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Torres, O.; Remer, L.; Stier, P.; Schutgens, N.

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  5. The Spatial Clustering of ROSAT All-Sky Survey Active Galactic Nuclei. IV. More Massive Black Holes Reside in More Massive Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Husemann, Bernd; Fanidakis, Nikos; Coil, Alison L.; Aceves, Hector

    2015-12-01

    This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGNs at 0.16\\lt z\\lt 0.36. We fit the Hα line profile in the SDSS spectra for all X-ray and optically selected broad-line AGNs, determine the mass of the supermassive black hole (SMBH), {M}{BH}, and infer the accretion rate relative to Eddington (L/{L}{EDD}). Since {M}{BH} and L/{L}{EDD} are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically selected AGN samples, we detect a weak clustering dependence with {M}{BH} and no statistically significant dependence on L/{L}{EDD}. We find a difference of up to 2.7σ when comparing the objects that belong to the 30% least and 30% most massive {M}{BH} subsamples, in that luminous broad-line AGNs with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGNs do not necessarily require dense galaxy environments, in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semianalytic models that predict a positive {M}{DMH} dependence on {M}{BH}, which is most prominent at {M}{BH}˜ {10}8-9 {M}⊙ .

  6. Distortion of thermospheric air masses by horizontal neutral winds over Poker Flat Alaska measured using an all-sky scanning Doppler imager

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.

    2016-01-01

    An air mass transported by a wind field will become distorted over time by any gradients present in the wind field. To study this effect in Earth's thermosphere, we examine the behavior of a simple parameter that we describe here as the "distortion gradient." It incorporates all of the wind field's departures from uniformity and is thus capable of representing all contributions to the distortion or mixing of air masses. The distortion gradient is defined such that it is always positive, so averaging over time and/or space does not suppress small-scale features. Conventional gradients, by contrast, are signed quantities that would often average to zero. To analyze the climatological behavior of this distortion gradient, we used three years (2010, 2011, and 2012) of thermospheric F region wind observations from a high-latitude ground-based all-sky wavelength scanning Doppler Fabry-Perot interferometer located at Poker Flat Alaska. Climatological averaging of the distortion gradient allowed us to investigate its diurnal and seasonal (annual) behaviors at our observing location. Distortion was observed to be higher before local magnetic midnight and to be seasonally dependent. While maximum distortion occurred before local magnetic midnight under all geomagnetic conditions, the peak distortion occurred earlier under moderate geomagnetic conditions as compared to the quiet geomagnetic conditions and even earlier still when geomagnetic conditions were active. Peak distortion was stronger and appeared earlier when interplanetary magnetic field (IMF) was southward compared to northward. By contrast, we could not resolve any time-shift effect due to the IMF component tangential to Earth's orbit.

  7. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. III. EXPANDED SAMPLE AND COMPARISON WITH OPTICAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Krumpe, Mirko; Coil, Alison L.; Miyaji, Takamitsu; Aceves, Hector

    2012-02-10

    This is the third paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07 < z < 0.50 and measure the clustering amplitudes of both X-ray-selected and optically selected SDSS broad-line AGNs with and without radio detections as well as for X-ray-selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray-selected and optically selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low-redshift optically selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio detection. The typical dark matter halo masses of our broad-line AGNs are log (M{sub DMH}/[h{sup -1} M{sub Sun }]) {approx} 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray-selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a {approx}2{sigma} level. Finally, we summarize the current picture of AGN clustering to z {approx} 1.5 based on three-dimensional clustering measurements.

  8. Southern hemisphere all-sky imaging investigations into the latitude extent of the 6300 Å emission feature associated with the midnight temperature maximum

    NASA Astrophysics Data System (ADS)

    Colerico, M. J.; Mendillo, M.

    2001-05-01

    An all-sky imaging system has been in operation in Arequipa, Peru, (16.2\\symbol{23}S, 71.35\\symbol{23}W) from October 1993 - October 2000 conducting routine observations of 6300 Å airglow emissions. Using this imaging system, Colerico et al. [1996] reported on the persistent occurrence of an enhanced 6300 Å emission feature with an apparent north-south propagation through the field of view past 24\\symbol{23}S near local midnight. This enhanced airglow feature was referred to as the midnight brightness wave (MBW). The authors concluded that MBW was the airglow signature of the thermospheric midnight temperature maximum (MTM), a highly variable, large scale neutral temperature anomaly which occurs at low latitudes. The MTM is accompanied by a pressure increase and a signature reversal/abatement in the meridional winds from equatorward to poleward. Poleward winds serve to move plasma down magnetic field lines to altitudes where it can dissociatively recombine and produce 6300 Å emissions. Additional imaging systems in operation south of Arequipa in Tucuman, Argentina, (26.5\\symbol{23}S, 65.15\\symbol{23}W) and El Leoncito, Argentina, (31.8\\symbol{23}S, 69.0\\symbol{23}W) extend the latitude range over which MBW events can be observed to 39\\symbol{23}S. In this paper, we use the combined latitude range of the three imaging systems to investigate the latitudinal extent of the MTM's influence on upper atmospheric parameters. Observations of MBW propagation past 39\\symbol{23}S suggest that the MTM's influence may be felt at mid-latitudes in the southern hemisphere.

  9. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY AGNs. II. HALO OCCUPATION DISTRIBUTION MODELING OF THE CROSS-CORRELATION FUNCTION

    SciTech Connect

    Miyaji, Takamitsu; Aceves, Hector; Krumpe, Mirko; Coil, Alison L.

    2011-01-10

    This is the second paper of a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS broad-line AGNs with SDSS luminous red galaxies (LRGs) in the redshift range 0.16 < z < 0.36 that was calculated in Paper I. In our HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a 'typical' AGN host halo mass, M{sub h}, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M{sub h} more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper limit to the slope ({alpha}) of the AGN HOD that is far below unity. The other two models have a central component, which has a step function form, where the HOD is constant above a minimum mass, without (Model B) or with (Model C) an upper mass cutoff, in addition to the truncated power-law satellite component, similar to the HOD that is found for galaxies. In these two models we find that the upper limits on {alpha} are still below unity, with {alpha} {approx}< 0.95 and {alpha} {approx}< 0.84 for Models B and C, respectively. Our analysis suggests that the satellite AGN occupation increases slower than, or may even decrease with, M{sub h}, in contrast to the satellite HODs of luminosity-threshold samples of galaxies, which, in contrast, grow approximately as (N{sub s}) {proportional_to} M{sup {alpha}}{sub h} with {alpha} {approx} 1. These results are consistent with observations that the AGN fraction in groups and clusters

  10. Erratum: "Meeting the Cool Neighbors. X. Ultracool Dwarfs from the 2MASS All-Sky Data Release" (2008, AJ, 136, 1290)

    NASA Astrophysics Data System (ADS)

    Reid, I. Neill; Cruz, Kelle L.; Kirkpatrick, J. Davy; Allen, Peter R.; Mungall, F.; Liebert, James; Lowrance, Patrick; Sweet, Anne

    2008-11-01

    IOP Publishing sincerely regrets that an error was made in the acknowledgements section of this article. This has been amended in the online journal and the corrected text is reproduced below. The NStars research described in this paper was partially supported by a grant awarded as part of the NASA Space Interferometry Mission Science Program, administered by the Jet Propulsion Laboratory, Pasadena. Support for K.L.C. is provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. P.R.A. acknowledges support from grant NAG5-11627 to Kevin Luhman from the NASA Long-Term Space Astrophysics program. This publication makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. We acknowledge use of the NASA/IPAC Infrared Source Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We also acknowledge making extensive use of the SIMBAD database, maintained by Strasbourg Observatory, and of the ADS bibliographic service. This research has made extensive use of the M-, L-, and T-dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser. This program has also profited from extensive allocations of telescope time at both Kitt Peak Observatory and Cerro Tololo Inter-American Observatory (CTIO). We thank the National Optical Astronomy Observatory (NOAO) Telescope Allocation Committees for their support of this project and acknowledge the courteous and efficient assistance of the technical support staff: John Glaspey, Darryl Willmarth, Diane Harmer, Bill Gillespie, Hillary Mathis, and Hal Halbedel at KPNO, and

  11. Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    An all sky map of the apparent temperature and optical depth of thermal dust emission is constructed using the Planck-HFI (350μm to 2 mm) andIRAS(100μm) data. The optical depth maps are correlated with tracers of the atomic (Hi) and molecular gas traced by CO. The correlation with the column density of observed gas is linear in the lowest column density regions at high Galactic latitudes. At high NH, the correlation is consistent with that of the lowest NH, for a given choice of the CO-to-H2 conversion factor. In the intermediate NH range, a departure from linearity is observed, with the dust optical depth in excess of the correlation. This excess emission is attributed to thermal emission by dust associated with a dark gas phase, undetected in the available Hi and CO surveys. The 2D spatial distribution of the dark gas in the solar neighbourhood (|bII| > 10°) is shown to extend around known molecular regions traced by CO. The average dust emissivity in the Hi phase in the solar neighbourhood is found to be τD/NHtot = 5.2×10-26 cm2 at 857 GHz. It follows roughly a power law distribution with a spectral index β = 1.8 all the way down to 3 mm, although the SED flattens slightly in the millimetre. Taking into account the spectral shape of the dust optical depth, the emissivity is consistent with previous values derived fromFIRAS measurements at high latitudes within 10%. The threshold for the existence of the dark gas is found at NHtot = (8.0±0.58)×1020 H cm-2 (AV = 0.4mag). Assuming the same high frequency emissivity for the dust in the atomic and the molecular phases leads to an average XCO = (2.54 ± 0.13) × 1020 H2 cm-2/(K km s-1). The mass of dark gas is found to be 28% of the atomic gas and 118% of the CO emitting gas in the solar neighbourhood. The Galactic latitude distribution shows that its mass fraction is relatively constant down to a few degrees from the Galactic plane. A possible explanation for the dark gas lies in a dark molecular phase, where

  12. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  13. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  14. Sky monitoring with LOBSTER

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Tichy, V.

    2014-12-01

    The X--ray sky monitoring represents valuable energy spectral extension to optical sky monitoring. Lobster--Eye all--sky monitors are able to provide relatively high sensitivity and good time resolution in the soft X--ray energy range up to 10 keV. The fine time resolution can be used to alert optical robotic telescopes for follow--up and multispectral analyzes in the visible light.

  15. Online design of an echo state network based wide area monitor for a multimachine power system.

    PubMed

    Venayagamoorthy, Ganesh K

    2007-04-01

    With deregulation and growth of the power industry, many power system elements such as generators, transmission lines, are driven to operate near their maximum capacity, especially those serving heavy load centres. Wide Area Controllers (WACs) using wide area or global signals can provide remote auxiliary control signals to local controllers such as automatic voltage regulators, power system stabilizers, etc. to damp out system oscillations. However, since the power system is highly nonlinear with fast changing dynamics, it is a challenging problem to design an online system monitor/estimator, which can provide dynamic intra-area and inter-area information such speed deviations of generators to an adaptive WAC continuously. This paper presents a new kind of recurrent neural networks, called the Echo State Network (ESN), for the online design of a Wide Area Monitor (WAM) for a multimachine power system. A single ESN is used to predict the speed deviations of four generators in two different areas. The performance of this ESN WAM is evaluated for small and large disturbances on the power system. Results for an ESN based WAM and a Time-Delayed Neural Network (TDNN)-based WAM are presented and compared. The advantages of the ESN WAM are that it learns the dynamics of the power system in a shorter training time with a higher accuracy and with considerably fewer weights to be adapted compared to the design-based on a TDNN.

  16. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  17. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  18. All sky pointing attitude control system

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Murphy, J. P. (Inventor)

    1977-01-01

    In a strapped-down gyroscope space vehicle attitude control system, a method and apparatus are provided for gyro drift and input axis misalignment error compensation employing a sun and a star tracker and preselected vehicle calibration maneuvers. The outputs of two-axis strapped-down gyroscopes nominally aligned with the optical axis of the sun and star trackers are measured to provide gyro drift calibration, roll, pitch and yaw axis scale factors and values corresponding to the degree of nonorthogonality between the roll axis and the pitch and yaw gyro input axes and the nonorthogonality of the roll and pitch axes relative to the yaw axis. The vehicle is then rolled and yawed through precomputed angles as modified by the calibrated data stored in a digital computer, and acquires a target without recourse to external references.

  19. The SUPERBLINK all-sky catalog of 2.8 million stars with proper motions larger than 40 mas/yr, enhanced with data from the first GAIA release

    NASA Astrophysics Data System (ADS)

    Lepine, Sebastien

    2017-01-01

    An updated version of the SUPERBLINK all-sky catalog of 2.8 million stars with proper motions larger than 40 mas/yr is presented. This version incorporates data from the GAIA first release (DR1), and identifies the photometric counterparts of the stars in variety of other catalogs including ROSAT, GALEX, APASS, SDSS, 2MASS and WISE. All bright stars (0

  20. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement.

    PubMed

    del Rosario, Michael B; Redmond, Stephen J; Lovell, Nigel H

    2015-07-31

    Advances in mobile technology have led to the emergence of the "smartphone", a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms initially developed for WAMs that "count" steps (i.e., pedometers); gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to "close the loop" by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions.

  1. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement

    PubMed Central

    del Rosario, Michael B.; Redmond, Stephen J.; Lovell, Nigel H.

    2015-01-01

    Advances in mobile technology have led to the emergence of the “smartphone”, a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms initially developed for WAMs that “count” steps (i.e., pedometers); gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to “close the loop” by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions. PMID:26263998

  2. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  3. SPACE: the SPectroscopic, All-Sky Cosmic Explorer

    NASA Technical Reports Server (NTRS)

    Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. W. V.; Content, R.; Daddi, E.; deLucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.; Lehnert, M.; Maccagni, D.; Martinez-Sansigre, A.; Pasian, F.; Reid, I. N.; Rosati, P.; Salvaterra, R.; Stiavelli, M.; Wang, Y.; ZapateroOsorio, M.; Balcells, M.; Bersanelli, M.; Gardner, J.P.; Kimble, R.; Clampin, M.

    2007-01-01

    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 < z < 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 < z < l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.

  4. Data indexing techniques for the EUVE all-sky survey

    NASA Technical Reports Server (NTRS)

    Lewis, J.; Saba, V.; Dobson, C.

    1992-01-01

    This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.

  5. (abstract) An All Sky Cirrus Confusion Noise Map for WIRE

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1996-01-01

    The Wide Field Infrared Explorer (WIRE) is a Small Explorer (SMEX) satellite scheduled for launch in 1998 which will carry out a sky survey of at least 100 square degrees in the wavelength regions of 9-15(micro)m and 21-27(micro)m with spatial resolution of approximately 20 arcsec and sensitivity exceeding 0.6mJy. At this sensitivity level WIRE observations can be seriously affected by the confusion noise contribution from the infrared cirrus emission, so the WIRE survey must be planned with some knowledge of the expected level of cirrus confusion. Production of a cirrus confusion noise map with 0.5 degree resolution based on the spatial power spectral density of the cirrus emission in the IRAS ISSA data is in progess using the method described by Gauthier, et al. Spectrally resolved power spectra density data is obtained from the ISSA maps with a wavelet transform technique.

  6. What is All-Sky and Clear-Sky?

    Atmospheric Science Data Center

    2014-12-08

    ... Footprint TOA/Surface Fluxes and Clouds (SSF) , or Energy Balanced and Filled (EBAF) . ERBE-like clear-sky scene is ... identified as clear using the ERBE scene id algorithm which uses climatological, zonal LW thresholds and appropriate SW thresholds based on ...

  7. All-sky observations with HAWC: latest results

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; HAWC Collaboration

    2015-08-01

    The High Altitude Water Cherenkov (HAWC) observatory is a ground-based air- shower detector designed to study cosmic rays and gamma rays with energies from 100 GeV up to 100 TeV. HAWC simultaneously surveys 2sr of the northern sky with a high duty cycle > 90% in search for photons from point and extended sources, diffuse emission, transient events and other astrophysical phenomena at multi-TeV scales against the background of cosmic rays. In fact, the study of this background will open also the possibility of doing cosmic ray physics in the GeV — TeV regime and even to perform solar studies at HAWC. The observatory will consist of a densely packed array of 300 water Cherenkov tanks (4.5 m tall and 7.3 m diameter with 4 photomultipliers each) distributed on a 22 000 m2 surface. Deployment started in March 2012 on a plateau situated on the Sierra Negra Volcano in the state of Puebla, Mexico, at an altitude of 4100 m. Construction is expected to be finished by the first months of 2015. In the mean time, HAWC has been taking data with a partial array and preliminary results have been already obtained. In this contribution, the results from the latest HAWC observations will be presented.

  8. Measuring Overcast Colors with All-Sky Imaging

    DTIC Science & Technology

    2008-04-01

    are vestigial (29 No- vember 2006 curve). A few overcasts are bluest near the horizon, and this causes particularly large colori- metric excursions... structure is a re- markably consistent set of three distinct chromati- city regimes: (a) bluing from the zenith down to h∼ 30°–40°, then (b) reddening

  9. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner.

  10. SPACE: the spectroscopic all-sky cosmic explorer

    NASA Astrophysics Data System (ADS)

    Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. V. W.; Content, R.; Daddi, E.; De Lucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.; Lehnert, M.; Maccagni, D.; Martínez-Sansigre, A.; Pasian, F.; Reid, I. N.; Rosati, P.; Salvaterra, R.; Stiavelli, M.; Wang, Y.; Zapatero Osorio, M.; Balcells, M.; Bersanelli, M.; Bertoldi, F.; Blaizot, J.; Bottini, D.; Bower, R.; Bulgarelli, A.; Burgasser, A.; Burigana, C.; Butler, R. C.; Casertano, S.; Ciardi, B.; Cirasuolo, M.; Clampin, M.; Cole, S.; Comastri, A.; Cristiani, S.; Cuby, J.-G.; Cuttaia, F.; de Rosa, A.; Sanchez, A. Diaz; di Capua, M.; Dunlop, J.; Fan, X.; Ferrara, A.; Finelli, F.; Franceschini, A.; Franx, M.; Franzetti, P.; Frenk, C.; Gardner, Jonathan P.; Gianotti, F.; Grange, R.; Gruppioni, C.; Gruppuso, A.; Hammer, F.; Hillenbrand, L.; Jacobsen, A.; Jarvis, M.; Kennicutt, R.; Kimble, R.; Kriek, M.; Kurk, J.; Kneib, J.-P.; Le Fevre, O.; Macchetto, D.; MacKenty, J.; Madau, P.; Magliocchetti, M.; Maino, D.; Mandolesi, N.; Masetti, N.; McLure, R.; Mennella, A.; Meyer, M.; Mignoli, M.; Mobasher, B.; Molinari, E.; Morgante, G.; Morris, S.; Nicastro, L.; Oliva, E.; Padovani, P.; Palazzi, E.; Paresce, F.; Perez Garrido, A.; Pian, E.; Popa, L.; Postman, M.; Pozzetti, L.; Rayner, J.; Rebolo, R.; Renzini, A.; Röttgering, H.; Schinnerer, E.; Scodeggio, M.; Saisse, M.; Shanks, T.; Shapley, A.; Sharples, R.; Shea, H.; Silk, J.; Smail, I.; Spanó, P.; Steinacker, J.; Stringhetti, L.; Szalay, A.; Tresse, L.; Trifoglio, M.; Urry, M.; Valenziano, L.; Villa, F.; Villo Perez, I.; Walter, F.; Ward, M.; White, R.; White, S.; Wright, E.; Wyse, R.; Zamorani, G.; Zacchei, A.; Zeilinger, W. W.; Zerbi, F.

    2009-03-01

    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 < z < 2 down to AB~23 over 3 π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB~26 and at 2 < z < 10 +. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey-Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high- z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come.

  11. High Speed Computing, LANs, and WAMs

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Monacos, Steve

    1994-01-01

    Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.

  12. X-Ray Monitoring of GRBs with Lobster Eye Telescopes

    SciTech Connect

    Sveda, L.; Pina, L.; Hudec, R.; Inneman, A.; Pizzichini, G.

    2004-09-28

    We present here the soft X-ray All-Sky Monitor (ASM). It is based on the current technological capabilities, sensitive in the {approx} 0.1 - 10.0 keV range with angular resolution of {approx} 3 - 4 arcmin, and has a limiting detectable flux {approx} 10-12 erg/s/cm2 for daily scans in the mentioned energy range. The ASM will play a key role in studying transient X-ray sources like XRBs, GRBs, XRFs, X-ray novae, as well as in the study of the long term variability of X-ray sources like XRBs, AGN, or stellar X-ray flares.

  13. Monitoring the Galaxy - Highlights from the MAXI mission

    NASA Astrophysics Data System (ADS)

    Mihara, Tatehiro

    Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor on the International Space Station. It is equipped with Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). Since it was mounted to the Japanese experimental module in 2009, it has been scanning the whole sky in every 92 minutes with ISS rotation. The data are processed automatically and distributed through http://maxi.riken.jp homepage. MAXI issued 136 to Astronomers Telegram and 47 to Gamma-ray burst Coordinated Network so far. There are many transient X-ray sources in our galaxy. The most remarkable one is a new source. MAXI discovered 12 MAXI sources, 6 of which are blackhole binaries. MAXI J0158-744 was a source in a new category (Morii et al. 2013). It was a very bright (10(40) erg s(-1) ) and very rapid (< 1 hour) nova consisting of a unusual pair of binary, which was a Ne-white dwarf and a Be star. The monitoring results are published as the 37-month catalog (Hiroi et al. 2012) which contains 500 sources above 0.6 mCrab in 4-10 keV in high Galactic-latitude (|b| > 10 deg). SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble (Kimura et al. 2013) and north polar spur, as well as it found Ne line from the rapid soft X-ray nova MAXI J0158-744. Be X-ray binary pulsars (BeXBP) are also transients. They have outbursts at the periastron passage. However, the outburst does not occur in every orbit. Some sources stay in quiescence for tens of years, then suddenly start outbursts repeating for several years. All-sky monitor is then essential to study such kinds of sources. For example, cyclotron feature is often seen in the high energy X-ray band of BeXBP, from which magnetic fields of the poles are measured. MAXI detection of outburst and following SUZAKU pointing observation are very effective. We observed two BeXBP, GX 304-1 in 2010 and GRO J1008-57 in 2012 in MAXI-Suzaku collaboration and succeeded to catch them at the outburst peaks (600mCrab and 450

  14. Probing cosmology with weak lensing selected clusters - I. Halo approach and all-sky simulations

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki

    2015-11-01

    We explore a variety of statistics of clusters selected with cosmic shear measurement by utilizing both analytic models and large numerical simulations. We first develop a halo model to predict the abundance and the clustering of weak lensing selected clusters. Observational effects such as galaxy shape noise are included in our model. We then generate realistic mock weak lensing catalogues to test the accuracy of our analytic model. To this end, we perform full-sky ray-tracing simulations that allow us to have multiple realizations of a large continuous area. We model the masked regions on the sky using the actual positions of bright stars, and generate 200 mock weak lensing catalogues with sky coverage of ˜1000 deg2. We show that our theoretical model agrees well with the ensemble average of statistics and their covariances calculated directly from the mock catalogues. With a typical selection threshold, ignoring shape noise correction causes overestimation of the clustering of weak lensing selected clusters with a level of about 10 per cent, and shape noise correction boosts the cluster abundance by a factor of a few. We calculate the cross-covariances using the halo model with accounting for the effective reduction of the survey area due to masks. The covariance of the cosmic shear auto power spectrum is affected by the mode-coupling effect that originates from sky masking. Our model and the results can be readily used for cosmological analysis with ongoing and future weak lensing surveys.

  15. Searching for M Dwarf Flares in Raptor-Q All-sky Photometric Data

    NASA Astrophysics Data System (ADS)

    Wolfe, Tristan; Wozniak, P. R.; Vestrand, Tom

    2012-10-01

    Stellar flares are releases of magnetic energy that cause emissions of a wide range across the electromagnetic spectrum. Flares of M dwarf stars are characterized by a large increase in blue and near-UV emissions, causing an increase in several magnitudes within minutes (Hilton et al, AJ, 2010). Exoplanets of several Earth masses have been discovered orbiting M dwarfs, so the search for M dwarf flares is very important, as the planets' atmospheres and habitability may be affected by these bursts in energy. Using data from Los Alamos National Labs' Raptor-Q telescope at Fenton Hill, NM, we are developing an automated method of detecting M dwarf flares. Raptor-Q operates robotically and, with five cameras, collects over 10,000 images of 90% of the sky above 12 degrees elevation in a given night, with a sensitivity up to magnitude R=10 (Wren et al, Proc SPIE, 2010), and automatically provides photometric and astrometric reductions of its images. A prototype pipeline has been developed using Python that looks for transient light curves (quick changes in magnitude over time) in Raptor-Q's data. These light curves will then be analyzed for characteristics of stellar flares, and cross-correlated with published catalogs to determine stellar type and any previous observations of flares.

  16. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  17. The 2π charged particles analyzer: All-sky camera concept and development for space missions

    NASA Astrophysics Data System (ADS)

    Vaisberg, O.; Berthellier, J.-J.; Moore, T.; Avanov, L.; Leblanc, F.; Leblanc, F.; Moiseev, P.; Moiseenko, D.; Becker, J.; Collier, M.; Laky, G.; Keller, J.; Koynash, G.; Lichtenneger, H.; Leibov, A.; Zhuravlev, R.; Shestakov, A.; Burch, J.; McComas, D.; Shuvalov, S.; Chornay, D.; Torkar, K.

    2016-12-01

    Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2π electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.

  18. The Lunar Occultation Observer (LOCO) - A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Harmon, B. A.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2008-07-01

    The Lunar Occultation Observer (LOCO) is a new lunar-based concept to probe the nuclear astrophysics regime. It will be a pioneering mission in high-energy astrophysics: the first to employ occultation as the principle detection and imaging method.

  19. The Lunar Occultation Observer (LOCO) -- A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2009-03-01

    The Lunar Occultation Observer (LOCO) is a new γ-ray astrophysics mission concept expected to have unprecedented sensitivity in the nuclear regime. Operating in lunar orbit, LOCO will utilize lunar occultation imaging to survey and probe the cosmos.

  20. CAL_LID_L3_APro_AllSky-Standard-V3-10

    Atmospheric Science Data Center

    2017-04-04

    ... Platform:  CALIPSO Instrument:  Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) Spatial ... Parameters:  532nm Extinction Coefficient Column Aerosol Optical Depth Aerosol Layer Properties Order Data:  ...

  1. Spectral selectivity of electrochromic windows with color state for all-sky conditions

    SciTech Connect

    Soule, D E; Zhang, J G; Benson, D K

    1995-07-01

    The optical performance of an electrochromic window is studied for the visible, ultraviolet, and near infrared spectral regions. The performance is found to deviate strongly with window color state and for clear or cloudy skies. A new spectral cloud model is applied to an electrochromic window recently developed at NREL. A spectral comparison is made between the electrochromic window and spectrally selective standard windows. Two series of double-glazed window sections, including the electrochromic window with color state and a series of low-E windows, were measured for transmittance and reflectance (300-2500nm), With these spectral data, a new near-infrared blocking (reflection + absorption) factor is developed for window application in warm climates for cooling load reduction. A chromaticity analysis is presented for both the daylight spectra and the transmitted electrochromic window spectra with color state, Computed daylight correlated color temperatures show a wide range, with values of 5660K for clear global irradiation, 6210K for clouds, and 13,250K for a zenith blue sky. Chromatic trajectories with color state for transmitted radiation extend further toward the blue to 8180K for the global and 28,990K for zenith sky irradiation.

  2. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1

    NASA Astrophysics Data System (ADS)

    Intema, H. T.; Jagannathan, P.; Mooley, K. P.; Frail, D. A.

    2017-02-01

    We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope (GMRT) between April 2010 and March 2012 as part of the TIFR GMRT Sky Survey (TGSS) project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 h of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36 900 deg2 (or 3.6 π steradians) of the sky between -53° and +90° declination (Dec), which is 90 percent of the total sky. The majority of pointing images have a noise level below 5 mJy beam-1 with an approximate resolution of 25''×25'' (or 25''×25''/ cos(Dec-19°) for pointings south of 19° declination). We have produced a catalog of 0.62 Million radio sources derived from an initial, high reliability source extraction at the seven sigma level. For the bulk of the survey, the measured overall astrometric accuracy is better than two arcseconds in right ascension and declination, while the flux density accuracy is estimated at approximately ten percent. Within the scope of the TGSS alternative data release (TGSS ADR) project, the source catalog, as well as 5336 mosaic images (5°×5°) and an image cutout service, are made publicly available at the CDS as a service to the astronomical community. Next to enabling a wide range of different scientific investigations, we anticipate that these survey products will provide a solid reference for various new low-frequency radio aperture array telescopes (LOFAR, LWA, MWA, SKA-low), and can play an important role in characterizing the epoch-of-reionisation (EoR) foreground. The TGSS ADR project aims at continuously improving the quality of the survey data products. Near-future improvements include replacement of bright source snapshot images with archival targeted observations, using new observations to fill the holes in sky coverage and replace very poor quality observational data, and an improved flux calibration strategy for less severely affected observational data. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A78

  3. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    SciTech Connect

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Blain, Andrew W.; Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Smith, Daniel J. B.; Bonfield, David; Baes, Maarten; Bridge, Carrie; Buttiglione, Sara; De Zotti, Gianfranco; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  4. Machine learning in infrared object classification - an all-sky selection of YSO candidates

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Zahorecz, Sarolta; Toth, L. Viktor; Magnus McGehee, Peregrine; Kun, Maria

    2015-08-01

    Object classification is a fundamental and challenging problem in the era of big data. I will discuss up-to-date methods and their application to classify infrared point sources.We analysed the ALLWISE catalogue, the most recent public source catalogue of the Wide-field Infrared Survey Explorer (WISE) to compile a reliable list of Young Stellar Object (YSO) candidates. We tested and compared classical and up-to-date statistical methods as well, to discriminate source types like extragalactic objects, evolved stars, main sequence stars, objects related to the interstellar medium and YSO candidates by using their mid-IR WISE properties and associated near-IR 2MASS data.In the particular classification problem the Support Vector Machines (SVM), a class of supervised learning algorithm turned out to be the best tool. As a result we classify Class I and II YSOs with >90% accuracy while the fraction of contaminating extragalactic objects remains well below 1%, based on the number of known objects listed in the SIMBAD and VizieR databases. We compare our results to other classification schemes from the literature and show that the SVM outperforms methods that apply linear cuts on the colour-colour and colour-magnitude space. Our homogenous YSO candidate catalog can serve as an excellent pathfinder for future detailed observations of individual objects and a starting point of statistical studies that aim to add pieces to the big picture of star formation theory.

  5. The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.; Maddox, Steve J.; Hoyos, Carlos; Dye, Simon; Baes, Maarten; Bonfield, David; Bourne, Nathan; Bridge,Carrie

    2012-01-01

    We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  6. The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos; Auld, Robbie; Bales, Maarten; Bonfield, David; Bourne, Nathan; Bridge, Carrie; Buttiglione, Sara; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; deZotti, Gianfranco; Driver, Simon; Tsai, Chao-Wei; Wright, Edward L.; Yan, Lin

    2012-01-01

    We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample

  7. The BANYAN All-Sky Survey for Brown Dwarf Members of Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Faherty, Jacqueline K.; Malo, Lison; Cruz, Kelle L.; Artigau, Étienne; Burgasser, Adam J.; Naud, Marie-Eve; Bouchard, Sandie; Gizis, John E.; Albert, Loïc

    2016-01-01

    We describe in this work the BASS survey for brown dwarfs in young moving groups of the solar neighborhood, and summarize the results that it generated. These include the discovery of the 2MASS J01033563-5515561 (AB)b and 2MASS J02192210-3925225 B young companions near the deuterium-burning limit as well as 44 new low-mass stars and 69 new brown dwarfs with a spectroscopically confirmed low gravity. Among those, ~20 have estimated masses within the planetary regime, one is a new L4 γ bona fide member of AB Doradus, three are TW Hydrae candidates with later spectral types (L1-L4) than all of its previously known members and six are among the first contenders for low-gravity >= L5 β/γ brown dwarfs, reminiscent of WISEP J004701.06+680352.1, PSO J318.5338-22.8603 and VHS J125601.92-125723.9 b. Finally, we describe a future version of this survey, BASS-Ultracool, that will specifically target >= L5 candidate members of young moving groups. First experimentations in designing the survey have already led to the discovery of a new T dwarf bona fide member of AB Doradus, as well as the serendipitous discoveries of an L9 subdwarf and an L5 + T5 brown dwarf binary.

  8. A serendipitous all sky survey for bright objects in the outer solar system

    SciTech Connect

    Brown, M. E.; Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Bannister, M. T.; Schmidt, B. P.; McNaught, R.; Larson, S.; Christensen, E.; Beshore, E.

    2015-02-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having V=19.8±0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V≲19.1 (V≲18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.

  9. AMS fireball program, community website, mobile app, and all-sky camera

    NASA Astrophysics Data System (ADS)

    Hankey, Mike; Perlerin, Vincent

    2014-01-01

    This short paper describes the content of a video produced by Mike Hankey for the American Meteor Society (AMS) about the technology platform of the organization. This video can be watched on the web.

  10. All sky Northern Hemisphere 10(15) EV gamma-ray survey

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.

    1985-01-01

    Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations.

  11. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    NASA Astrophysics Data System (ADS)

    Vidal Navarro, M. A.

    2014-07-01

    In this Thesis, we present work on the diffuse Galactic emission in the 23-43 GHz frequency range. We studied the polarised emission, which is dominated by synchrotron radiation at these frequencies. We also present work on the anomalous microwave emission (AME), both in total intensity and polarisation. These observations are useful to quantify the CMB foreground contribution and give us information about the ISM of our Galaxy. Polarisation observations are affected by a positive bias, particularly important in regions with low signal-to-noise ratio. We present a method to correct the bias in the case where the uncertainties in the Q, U Stokes parameters are not symmetric. We show that this method successfully corrects the polarisation maps, with a residual bias smaller than the random uncertainties on the maps, outperforming the methods that are previously described in the literature. We use the de-biasing method to set upper limits for the polarisation of AME in the ρ Ophiuchi and Perseus molecular clouds. In both clouds the AME polarisation fraction is found to be less than 2% at 23 GHz and33 GHz.We use data from the WMAP satellite at 23, 33 and 41 GHz to study the diffuse polarised emission over the entire sky. This emission is due to synchrotron radiation and it originates mostly from filamentary structures with well-ordered magnetic fields.We identify new filaments and studied their observational properties, such as polarisation spectral indices, polarisation fraction and Faraday rotation. We explore the link between the large scale filaments and the local ISM, using the model of an expanding shell in the vicinity of the Sun. We also quantify the level of contamination added by the diffuse filaments to the CMB E- and B-mode power spectra.The Q/U Imaging ExperimenT (QUIET) observed the polarised sky at 43 and 95 GHz, in order to measure the CMB spectra. We describe the instrument, the observations and data processing, focusing on two regions of the Galactic plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET.Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.

  12. North-South America Network of Magnetically Conjugate All-Sky Imagers

    DTIC Science & Technology

    2015-01-02

    sites selected are taking data (in Massachusetts, Columbia, Peru, Argentina and Antarctica), and two remain to be installed (North Carolina and South...for Space Physics at Boston University. Five of the sites selected are taking data (in Massachusetts, Columbia, Peru, Argentina and Antarctica), and...number of instruments had to be deployed in other countries, all of the US Export Control rules and documentation had to be addressed. BU provided

  13. All-Sky Image Fusion for a Synoptic Survey Telescope in Arctic and Antarctic Domains

    NASA Astrophysics Data System (ADS)

    Grøtte, M.; Virani, S.; Holzinger, M.; Register, A.; Perez, C.; Tapia, J.

    2016-09-01

    Near-Earth object (NEO) detection, transient astronomical event detection, and Space Situational Awareness (SSA) support are all provided by wide-field, high cadence synoptic telescope surveys. Many such exquisite and monolithic synoptic surveys achieve impressive performance and are certainly changing these application areas. In the past 15 years Raven-class telescopes have made a clear case for the utility of commercial-off-the-shelf systems in SSA. This paper documents the initial efforts and next steps for the Omnidirectional Space Situational Awareness (OmniSSA) array, a wide-field-of-view synoptic survey system that leverages the Raven-class telescope paradigm. The approach utilizes multiple overlapping wide field-of-view sensors with post-processing super resolution and image stacking techniques to generate synthetic images equivalent to larger wide field-of-view systems. The synthetic array offers potential to utilize a plurality of components that are individually low cost and commercial off-the-shelf. A brief survey of synoptic survey systems is presented, followed by a description of the current hardware implementation of the OmniSSA array and preliminary out-of-the-box results for baseline OmniSSA camera SR and image stacking routines.

  14. Retrieval of Garstang's emission function from all-sky camera images

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio; Kundracik, František

    2015-10-01

    The emission function from ground-based light sources predetermines the skyglow features to a large extent, while most mathematical models that are used to predict the night sky brightness require the information on this function. The radiant intensity distribution on a clear sky is experimentally determined as a function of zenith angle using the theoretical approach published only recently in MNRAS, 439, 3405-3413. We have made the experiments in two localities in Slovakia and Mexico by means of two digital single lens reflex professional cameras operating with different lenses that limit the system's field-of-view to either 180º or 167º. The purpose of using two cameras was to identify variances between two different apertures. Images are taken at different distances from an artificial light source (a city) with intention to determine the ratio of zenith radiance relative to horizontal irradiance. Subsequently, the information on the fraction of the light radiated directly into the upward hemisphere (F) is extracted. The results show that inexpensive devices can properly identify the upward emissions with adequate reliability as long as the clear sky radiance distribution is dominated by a largest ground-based light source. Highly unstable turbidity conditions can also make the parameter F difficult to find or even impossible to retrieve. The measurements at low elevation angles should be avoided due to a potentially parasitic effect of direct light emissions from luminaires surrounding the measuring site.

  15. The All Sky Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Astrophysics Data System (ADS)

    Horiuchi, S.; Clark, J. E.; García-Miró, C.; Goodhart, C. E.; Jacobs, Christopher S.; Maddè, R.; Mercolino, M.; Snedeker, L. G.; Sotuela, I.; White, L. A.

    2014-08-01

    We have constructed an X/Ka-band (8.4/32 GHz) celestial reference frame using over seventy ~24-hour sessions with the Deep Space Network. We detected 646 sources covering the full 24 hours of right ascension and the full range of declinations. Comparison of 520 X/Ka sources in common with the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 167 micro-arcsec μas in RA cos(dec) and 219 μas in Dec. There is evidence for systematic errors at the 100 μas level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling. We recently began a collaboration with ESA using their Malargüe, Argentina antenna. This site greatly improves our geometry in the south. Compared to X-band, Ka-band allows access to more compact source morphology and reduced core shift. Existing X/Ka data and simulated Gaia data predict a frame tie precision of 7 μas (1-sigma, per 3-D rotation component) with anticipated improvements reducing that to ~5 μas per component.

  16. COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    NASA Astrophysics Data System (ADS)

    Watson, Alan M.; Cuevas Cardona, Salvador; Alvarez Nuñez, Luis C.; Ángeles, Fernando; Becerra-Godínez, Rosa L.; Chapa, Oscar; Farah, Alejandro S.; Fuentes-Fernández, Jorge; Figueroa, Liliana; Langarica Lebre, Rosalía.; Quiróz, Fernando; Román-Zúñiga, Carlos G.; Ruíz-Diáz-Soto, Jaime; Tejada, Carlos; Tinoco, Silvio J.

    2016-08-01

    COATLI will provide 0.3 arcsec FWHM images from 550 to 900 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited fast-guiding imager. Since the telescope is small, fast guiding will provide diffraction-limited image quality over a field of at least 1 arcmin and with coverage of a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, México, during 2016 and the diffraction-limited imager will follow in 2017.

  17. Known Pulsars Identified in the GMRT 150 MHz All-sky Survey

    NASA Astrophysics Data System (ADS)

    Frail, D. A.; Jagannathan, P.; Mooley, K. P.; Intema, H. T.

    2016-10-01

    We have used the 150 MHz radio continuum survey (TGSS ADR) from the Giant Metrewave Radio Telescope (GMRT) to search for phase-averaged emission toward all well-localized radio pulsars north of -53° decl. We detect emission toward 200 pulsars with high confidence (≥slant 5σ ) and another 88 pulsars at fainter levels. We show that most of our identifications are likely from pulsars, except for a small number where the measured flux density is confused by an associated supernova or pulsar-wind nebula, or a globular cluster. We investigate the radio properties of the 150 MHz sample and find an unusually high number of gamma-ray binary millisecond pulsars with very steep spectral indices. We also note a discrepancy in the measured flux densities between GMRT and LOFAR pulsar samples, suggesting that the flux density scale for the LOFAR pulsar sample may be in error by approximately a factor of two. We carry out a separate search of 30 well-localized gamma-ray, radio-quiet pulsars in an effort to detect a widening of the radio beam into the line of sight at lower frequencies. No steep-spectrum emission was detected either toward individual pulsars or in a weighted stack of all 30 images.

  18. Integrated Use Of MERIS And Other EO Data For Water Quality And Red Tide Monitoring Along United Arab Emirates Coasts

    NASA Astrophysics Data System (ADS)

    Ceriola, G.; Avgikou, V.; Manunta, P.

    2013-12-01

    Coastal zones host a large percentage of global population and economical and productive activities and are in need of a constant monitoring. The C-wams project is focused at implementing a suite EO services targeting two growing sectors: Waste Water Treatment and Desalination plants. The coast of the United Arab Emirates (UAE) hosts some of the largest desalination plants in the world and their operation can affect and be affected by the status of the WQ near the coast: the local phenomenon known as Red Tide caused increasing damages in the last 4 years. Some actors are involved in this respect in the Persian gulf, among them the Environment Agency of Abu Dhabi (EAD). In UAE an historical study-case is being performed aimed at identifying Red Tide events using MERIS images, integrating them with other medium and higher resolution data. The present work describes its scenario and the preliminary results obtained.

  19. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  20. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  1. Earth Occultation Monitoring of the Hard X-ray/Low-Energy Gamma Ray Sky with GBM

    NASA Astrophysics Data System (ADS)

    Cherry, Michael L.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Finger, M. H.; Jenke, P. A.; Rodi, J. C.; Wilson-Hodge, C. A.; GBM Earth Occultation Team

    2012-01-01

    By utilizing the Earth occultation technique (EOT), the Gamma-Ray Burst Monitor (GBM) instrument aboard Fermi has been used to make nearly continuous full-sky observations in the 8-1000 keV energy range. The GBM EOT analysis program currently monitors an input catalog containing 235 sources. We will present the GBM catalog of sources observed in the first 3 years of the EOT monitoring program, with special emphasis on the high energy (>100 keV) and time-variable sources, in particular the Crab, Cyg X-1, and A0535+26. We will also describe the initial results of an all-sky imaging analysis of the EOT data, with comparisons to the Swift, INTEGRAL, and Fermi LAT catalogs. This work is supported by the NASA Fermi Guest Investigator program, NASA/Louisiana Board of Regents, and Spanish Ministerio de Ciencia de Innovacion.

  2. Monitoring All the Sky All the Time with the Owens Valley Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Hallinan, Gregg; Bourke, Stephen; Anderson, Marin; Eastwood, Michael; Monroe, Ryan; Greenhill, Lincoln J.; Taylor, Gregory B.; Lazio, Joseph; Weinreb, Sander

    2015-01-01

    The Owens Valley LWA is a new array of 256 dual polarization antennas at Caltech's Owens Valley Radio Observatory that instantaneously images the entire viewable sky every second. It hosts the LEDA correlator, which enables 60 MHz instantaneous bandwidth, allowing us to correlate the 25-85 MHz band instantaneously. An upgrade to the array is currently underway, involving 32 additional antennas powered by solar panels and serviced by optical fiber, that will improve the resolution by a factor of 10, giving instantaneous all-sky images with ~10 arcminute resolution. The primary science goals are i) searching for low frequency radio transients, particularly the low frequency auroral radio emission from extrasolar planets, ii) probing the Cosmic Dawn era by constraining the sky-averaged HI signature at z~20 and iii) dynamic imaging spectroscopy of the Sun. I will present the first images and movies produced by this new array and discuss the science motivation for its construction, with particular focus on our efforts to continuously monitor the low frequency radio transient sky to search for radio emission from exoplanets. Finally, I will discuss plans to build a much larger array at or near the Owens Valley Radio Observatory, involving all-sky imaging with 2,000 antennas.

  3. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  4. Extinction, seeing and sky transparency monitoring at the Observatorio Astrofísico de Javalambre for J-PAS and J-PLUS calibration and scheduling

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Díaz-Martín, M. C.; Varela, J.; Ederoclite, A.; Maícas, N. Lamadrid, J. L.; Abril, J.; Iglesias-Marzoa, R.; Rodríguez, S.; Tilve, V.; Cenarro, A. J.; Antón Bravo, J. L.; Bello Ferrer, R.; Cristóbal-Hornillos, D.; Guillén Civera, L.; Hernández-Fuertes, J.; Jiménez Mejías, D.; Lasso-Cabrera, N. M.; López Alegre, G.; López Sainz, A.; Luis-Simoes, R. M.; Marín-Franch, A.; Moles, M.; Rueda-Teruel, F.; Rueda-Teruel, S.; Suárez López, O.; Yanes-Díaz, A.

    2015-05-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS; see Benítez et al. 2014) and the Javalambre-Photometric Local Universe Survey (J-PLUS) will be conducted at the brand-new Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. J-PLUS is planned to start by the first half of 2015 while J-PAS first light is expected to happen along 2015. Besides the two main telescopes (with 2.5 m and 80 cm apertures), several smaller-sized facilities are present at the OAJ devoted to site characterization and supporting measurements to be used to calibrate the J-PAS and J-PLUS photometry and to feed up the OAJ's Sequencer with the integrated seeing and the sky transparency. These instruments are: i) an extinction monitor, an 11 " telescope estimating the atmospheric extinction to finally obtain the OAJ extinction curve, which is the initial step to J-PAS overall photometric calibration procedure; ii) an 8 " telescope implementing the Differential Image Motion Monitor (DIMM) technique to obtain the integrated seeing; and iii) an All-Sky Transmission MONitor (ASTMON), a roughly all-sky instrument providing the sky transparency as well as sky brightness and the atmospheric extinction too.

  5. Monitoring materials

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  6. All-Sky Camera’s Mysterious ‘Night Visitor’

    NASA Video Gallery

    An owl takes a moment to bask in the moonlight from atop the all-skycamera at NASA’s Marshall Space Flight Center in Huntsville, Ala. Thefeathered night hunter has been a frequent guest on seve...

  7. THE ALL-SKY GEOS RR Lyr SURVEY WITH THE TAROT TELESCOPES: ANALYSIS OF THE BLAZHKO EFFECT

    SciTech Connect

    Le Borgne, J.-F.; Klotz, A.; Poretti, E.; Boeer, M.; Butterworth, N.; Dvorak, S.; Dumont, M.; Hambsch, F.-J.; Vandenbroere, J.; Hund, F.; Kugel, F.; Vilalta, J. M.

    2012-08-15

    We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of the Blazhko period is observed at different values of the pulsation periods and different values of the Blazhko periods are observed at the same value of the pulsation period. There are clues suggesting that the Blazhko effect is changing from one cycle to the next. The secular changes in the pulsation and Blazhko periods of Z CVn are anticorrelated. The diagrams of magnitudes against phases of the maxima clearly show that the light curves of Blazhko variables can be explained as modulated signals, both in amplitude and in frequency. The closed curves describing the Blazhko cycles in such diagrams have different shapes, reflecting the phase shifts between the epochs of the brightest maximum and the maximum O - C. Our sample shows that both clockwise and counterclockwise directions are possible for similar shapes. The improved observational knowledge of the Blazhko effect, in addition to some peculiarities of the light curves, has yet to be explained by a satisfactory physical mechanism.

  8. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  9. Shared Skies Partnership: A Dual-Site All-Sky Live Remote Observing Initiative for Research and Education

    NASA Astrophysics Data System (ADS)

    Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.

    2014-01-01

    The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.

  10. THE WISE BLAZAR-LIKE RADIO-LOUD SOURCES: AN ALL-SKY CATALOG OF CANDIDATE γ-RAY BLAZARS

    SciTech Connect

    D'Abrusco, R.; Paggi, A.; Smith, H. A.; Massaro, F.; Masetti, N.

    2014-11-01

    We present a catalog of radio-loud candidate γ-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed γ-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors compatible with the three-dimensional locus of the WISE γ-ray emitting blazars, and which can be spatially cross-matched with radio sources from one of the three radio surveys: NVSS, FIRST, and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q {sub 22} parameter, which is analogous to the q {sub 24} parameter known in the literature but which instead uses the WISE band-four flux at 22 μm. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs, or mixed candidate blazars; 1295 of these sources can be spatially re-associated as confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate γ-ray emitting blazars represents a new and useful resource to address the problem of finding low-energy counterparts to currently unidentified high-energy sources.

  11. Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Lin, Chih-Lung

    2017-01-01

    Cloud detection is important for providing necessary information such as cloud cover in many applications. Existing cloud detection methods include red-to-blue ratio thresholding and other classification-based techniques. In this paper, we propose to perform cloud detection using supervised learning techniques with multi-resolution features. One of the major contributions of this work is that the features are extracted from local image patches with different sizes to include local structure and multi-resolution information. The cloud models are learned through the training process. We consider classifiers including random forest, support vector machine, and Bayesian classifier. To take advantage of the clues provided by multiple classifiers and various levels of patch sizes, we employ a voting scheme to combine the results to further increase the detection accuracy. In the experiments, we have shown that the proposed method can distinguish cloud and non-cloud pixels more accurately compared with existing works.

  12. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    NASA Astrophysics Data System (ADS)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that place the strongest constraints thus far on models of neutrino and UHECR production in GRB fireballs.

  13. Optical design of COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, Jorge; Cuevas, Salvador; Watson, Alan M.; Chapa, Oscar

    2016-08-01

    COATLI is a new instrument and telescope that will provide 0.3 arcsec FWHM images from 550 to 920 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited imager. The imager has a steering mirror for fast guiding, a blue channel using a EMCCD from 400 to 550 nm to measure image motion, a red channel using a standard CCD from 550 to 920 nm, and an active optics system based on a deformable mirror to compensate static aberrations in the red channel. Since the telescope is small, fast guiding will provide diffraction-limited image quality in the red channel over a large fraction of the sky, even in relatively poor seeing. COATLI will be installed at the Observatorio Astronomico Nacional in Baja California, Mexico, in September 2016 and will operate initially with a simple interim imager. The definitive COATLI instrument will be installed in 2017. In this paper, we present some of the details of the optical design of the instrument.

  14. Systems design of COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    NASA Astrophysics Data System (ADS)

    Cuevas, Salvador; Langarica, Rosalia; Watson, Alan M.; Fuentes-Fernández, Jorge; Ángeles, Fernando; Farah, Alejandro S.; Figueroa, Liliana; Becerra-Godínez, Rosa L.; Chapa, Oscar; Román-Zúñiga, Carlos G.; Quiróz, Fernando; Tejada, Carlos; Álvarez-Núñez, Luis C.; Ruz, Jaime; Tinoco, Silvio J.

    2016-08-01

    COATLI is a new instrument and telescope that will provide 0.3 arcsec FWHM images from 550 to 920 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited imager. The imager has a steering mirror for fast guiding, a blue channel using an EMCCD from 400 to 550 nm to measure image motion, a red channel using a standard CCD from 550 to 920 nm, and an active optics system based on a deformable mirror to compensate static aberrations in the red channel. Since the telescope is small, fast guiding will provide diffraction-limited image quality in the red channel over a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, México, in 2016 and will initially operate with a simple interim imager. The definitive COATLI instrument will be installed in 2017. In this work we present the general optomechanical and control electronics design of COATLI.

  15. GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.

    2017-01-01

    This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into SKA_Low calibration strategies. In addition the proposal is designed to be commensally used for transients science, and will also create a more accurate, higher-resolution foreground model for the EoR2 field, allowing better foreground subtraction and therefore increased sensitivity to the EoR signal.

  16. VizieR Online Data Catalog: GaLactic and Extragalactic All-sky MWA survey (Hurley-Walker+, 2016)

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Callingham, J. R.; Hancock, P. J.; Franzen, T. M. O.; Hindson, L.; Kapinska, A. D.; Morgan, J.; Offringa, A. R.; Wayth, R. B.; Wu, C.; Zheng, Q.; Murphy, T.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Johnston-Hollitt, M.; Lenc, E.; Procopio, P.; Staveley-Smith, L.; Ekers, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Greenhill, L.; Hazelton, B. J.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Webster, R. L.; Williams, A.; Williams, C. L.

    2016-10-01

    This paper concerns only data collected in the first year, i.e. four weeks between June 2013 and July 2014. We also do not image every observation, since the survey is redundant across approximately 50% of the observed RA ranges, and some parts are adversely acted by the Galactic plane and Centaurus A. Table 1 lists the observations which have been used to create this first GLEAM catalogue. (4 data files).

  17. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  18. VizieR Online Data Catalog: The GMRT 150MHz all-sky radio survey (Intema+, 2017)

    NASA Astrophysics Data System (ADS)

    Intema, H. T.; Jagannathan, P.; Mooley, K.; Frail, D. A.

    2016-11-01

    We provide the first full public release of the 150 MHz continuum survey (TGSS) from the Giant Metrewave Radio Telescope. The resulting images cover the full sky north of DEC -53 degrees (or 36,900 square degrees) with a median RMS background noise of 3.5mJy per beam and a typical resolution of 25". Our final radio source catalog contains 0.62 million sources with flux densities ranging from 11.1mJy to 9.22kJy. (1 data file).

  19. Constraining a Galactic Origin of the IceCube Neutrinos with HAWC All-Sky Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Pretz, John; HAWC Collaboration

    2017-01-01

    The origin of the TeV-PeV high-energy astrophysical neutrino events seen in IceCube data is hotly debated. If the events are not due to dark matter, the relative isotropy of the signal points to a dominant extra-Galactic population. Nevertheless sub-dominant Galactic scenarios have not been ruled out. We expect the production of Galactic TeV-PeV neutrinos (via charged pion decay) to be accompanied by high-energy gamma rays (from neutral pion decay). Data from the High Altitude Water Cherenkov Observatory (HAWC) reveal a strong detection of emission from the plane of the galaxy, providing a constraint on the fraction of the IceCube flux that can be of Galactic origin. A search for large-scale isotropic photon emission has the potential to provide analogous constraints. I will present HAWC's measurement of the total TeV emission in the Northern half of the Galactic plane along with current limits on isotropic diffuse gamma-ray emission and discuss the implications for the origin of the IceCube neutrinos. National Science Foundation.

  20. Advances in Modeling Eclipsing Binary Stars in the Era of Large All-Sky Surveys with EBAI and PHOEBE

    NASA Astrophysics Data System (ADS)

    Prša, A.; Guinan, E. F.; Devinney, E. J.; Degroote, P.; Bloemen, S.; Matijevič, G.

    2012-04-01

    With the launch of NASA's Kepler mission, stellar astrophysics in general, and the eclipsing binary star field in particular, has witnessed a surge in data quality, interpretation possibilities, and the ability to confront theoretical predictions with observations. The unprecedented data accuracy and an essentially uninterrupted observing mode of over 2000 eclipsing binaries is revolutionizing the field. Amidst all this excitement, we came to realize that our best models to describe the physical and geometric properties of binaries are not good enough. Systematic errors are evident in a large range of binary light curves, and the residuals are anything but Gaussian. This is crucial because it limits us in the precision of the attained parameters. Since eclipsing binary stars are prime targets for determining the fundamental properties of stars, including their ages and distances, the penalty for this loss of accuracy affects other areas of astrophysics as well. Here, we propose to substantially revamp our current models by applying the lessons learned while reducing, modeling, and analyzing Kepler data.

  1. All-Sky Search for Gravitational-Wave Bursts in the First Joint LIGO-GEO-Virgo Run

    NASA Technical Reports Server (NTRS)

    Camp, J. B.; Camizzo, J.

    2012-01-01

    We present results from an aU-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed. by three different analysis algorithms over the frequency band 50 - 6000 Hz. Data are analyzed for times with at least two of the four LIGO-Virgo detectors in coincident operation, with a total live time of 266 days, No events produced by the search algorithms survive the selection cuts. We set a frequentist upper limit on the rate of gravitational-wave bursts impinging on our network of detectors. When combined with the previous LIGO search of the data collected between November 2005 and November 2006, the upper limit on the rate of detectable gra.vitational. wave bursts in the 64-2048 Hz band is 2,0 events per year at 90% confidence. We also present event rate versus strength exclusion plots for several types of plausible burst waveforms. The sensitivity of the combined search is expressed in terms of the root-sum-squared strain amplitude for a variety of simulated waveforms and lies in the range 6 X 10(exp -22) Hz(exp - 1/2) to 2 X 10(exp -20) Hz(exp -l/2). This is the first untriggered burst search to use data from the LIGO and Virgo detectors together, and the most sensitive untriggered burst search performed so far.

  2. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    SciTech Connect

    Deneva, J. S.; Stovall, K.; Martinez, J. G.; Jenet, F.; McLaughlin, M. A.; Bates, S. D.; Bagchi, M.; Freire, P. C. C.

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.

  3. The All-sky GEOS RR Lyr Survey with the TAROT Telescopes: Analysis of the Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Le Borgne, J.-F.; Klotz, A.; Poretti, E.; Boër, M.; Butterworth, N.; Dumont, M.; Dvorak, S.; Hambsch, F.-J.; Hund, F.; Kugel, F.; Vandenbroere, J.; Vilalta, J. M.

    2012-08-01

    We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of the Blazhko period is observed at different values of the pulsation periods and different values of the Blazhko periods are observed at the same value of the pulsation period. There are clues suggesting that the Blazhko effect is changing from one cycle to the next. The secular changes in the pulsation and Blazhko periods of Z CVn are anticorrelated. The diagrams of magnitudes against phases of the maxima clearly show that the light curves of Blazhko variables can be explained as modulated signals, both in amplitude and in frequency. The closed curves describing the Blazhko cycles in such diagrams have different shapes, reflecting the phase shifts between the epochs of the brightest maximum and the maximum O - C. Our sample shows that both clockwise and counterclockwise directions are possible for similar shapes. The improved observational knowledge of the Blazhko effect, in addition to some peculiarities of the light curves, has yet to be explained by a satisfactory physical mechanism.

  4. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China

    NASA Astrophysics Data System (ADS)

    Sun, Longchang; Xu, Jiyao; Wang, Wenbin; Yuan, Wei; Li, Qinzeng; Jiang, Chaowei

    2016-11-01

    This paper investigates the statistical features of equatorial plasma bubbles (EPBs) using airglow images from 2012 to 2014 from a ground-based network of four imagers in the equatorial region of China. It is found that (1) EPBs mainly occur during 21:00-00:00 local time (LT) in equinoxes. There is an asymmetry in occurrence rates between March (June) and September equinoxes (December solstices). (2) Most EPBs occur in groups of two to six depletions. The distance between adjacent EPB depletions is 100-700 km, and the average is 200-300 km. The zonal extension of an EPB group is usually less than 1500 km but can reach 3000 km. (3) EPBs usually have a maximum drift velocity near 100 m/s at 21:00-22:00 LT in 9.5° ± 1.5° geomagnetic latitude and then decrease to 50-70 m/s toward sunrise. (4) The averaged westward tilt angle of most EPBs (with respect to the geographic north-south) increased from 5°-10° to 23°-30° with LT between 20:00 and 03:00 LT, then decreasing to 10°-20° toward sunrise. (5) When 90 < F10.7 < 140, the maximum magnetic latitudinal extension (PMLE) is usually lower than 15.0° (apex height 725 km), but it can reach 23.0° (apex height 1330 km) when F10.7 > 140. The maximum PMLE increases by 3.4°-5.5° when F10.7 changes from 90 to 190. (6) The EPB occurrence patterns and zonal drift velocities are significantly different from those at Kolhapur, India, which locates west to our stations by 20.0°-32.0° in longitude.

  5. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  6. Simultaneous DMSP, All-Sky Camera, and IMAGE FUV Observations of the Brightening Arc at a Substorm Pseudo-Breakup

    DTIC Science & Technology

    2007-03-01

    Hoffman et al., 1985: Timofeev and Galperin, 1991; (2005) have shown a similar correspondence of brighten- Fukunishi et al., 1993). ing arcs to the region I...2000. by the Russian Foundation for Basic Research, project no. 06-05- Timofeev , E. and Y. Galperin, Convection and currents in stable auroral 96118, and

  7. Determination of Pulsation Periods and Other Parameters of 2875 Stars Classified as MIRA in the All Sky Automated Survey (ASAS)

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Contreras-Quijada, A.; Fuentes-Morales, I.; Vogt-Geisse, S.; Arcos, C.; Abarca, C.; Agurto-Gangas, C.; Caviedes, M.; DaSilva, H.; Flores, J.; Gotta, V.; Peñaloza, F.; Rojas, K.; Villaseñor, J. I.

    2016-11-01

    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as “Mira” in the ASAS database, referring to pulsation periods, mean maximum magnitudes, and whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the International Variable Star Index (VSX) of the American Association of Variable Star Observers, as well as those determined with the machine learning automatic procedure of Richards et al. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al., the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes still require more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275, and 330 days, apparently of universal validity; their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however, 1/3 of the targets have rather small amplitudes (A < 2.5 m ) and could refer to semiregular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars that seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagrams.

  8. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  9. Monitoring your baby before labor

    MedlinePlus

    Prenatal care - monitoring; Pregnancy care - monitoring; Non-stress test - monitoring; NST- monitoring; Contraction stress test - monitoring; CST- monitoring; Biophysical profile - monitoring; BPP - monitoring

  10. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  11. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  12. Biological monitoring

    SciTech Connect

    Ho, M.H.; Dillon, H.K.

    1986-02-01

    Biological monitoring is defined as the measurement and assessment of workplace agents or their metabolites in tissues, secreta, excreta, expired air, or any combination of these to evaluate exposure and health risk compared to an appropriate reference. Biological monitoring offers several advantages: it takes into account individual variability in biological activity resulting from a chemical insult. It takes into account the effects of personal physical activity and individual life styles. It is a valuable adjunct to ambient monitoring and health surveillance. The importance of chemical speciation in the toxicity of pollutants is discussed. Basic protocols for lead, aluminum, cadmium, mercury, selenium, and nickel are presented. Basic criteria for biological monitoring methods are presented. 11 references, 1 table.

  13. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  14. Recreation monitoring

    SciTech Connect

    DiGennaro, B.; Merklein, G.H.

    1995-12-31

    Recreational use and recreational facilities are common features at hydropower projects. In fact, the hydropower industry is a major supplier of recreational opportunities contributing to tourism and rural economic growth in many communities across the country, As demands for public recreation have grown, pressure on the hydropower industry to provide more public access and more facilities has increased. This paper looks at recent developments in the FERC licensing and compliance arenas with regard to planning for and monitoring recreation at hydropower facilities. The paper highlights the increased occurrence of recreation monitoring requirements in license articles and discusses methods for complying with such requirements. The paper also looks at how monitoring data can be used to avoid unnecessary developments and to better plan for future recreation use.

  15. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1989-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  16. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1992-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  17. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  18. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    SciTech Connect

    Wilson-Hodge, Colleen A.; Jenke, Peter; Case, Gary L.; Cherry, Michael L.; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert; Beklen, Elif; Finger, Mark; Paciesas, William S.; Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas; Kippen, R. Marc

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  19. Parental Monitoring

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Lehman, Stephanie; Clapp, John; Hovell, Melbourne; Sipan, Carol; Blumberg, Elaine

    2005-01-01

    Adolescence is a developmental period during which many youth experiment with risk practices. This paper examined the association of parental monitoring with a range of alcohol and other drug (AOD) use behaviors among high-risk youth, while controlling for other demographic and environmental variables previously found to be associated with AOD…

  20. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  1. Sewage Monitors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Every U.S. municipality must determine how much waste water it is processing and more importantly, how much is going unprocessed into lakes and streams either because of leaks in the sewer system or because the city's sewage facilities were getting more sewer flow than they were designed to handle. ADS Environmental Services, Inc.'s development of the Quadrascan Flow Monitoring System met the need for an accurate method of data collection. The system consists of a series of monitoring sensors and microcomputers that continually measure water depth at particular sewer locations and report their findings to a central computer. This provides precise information to city managers on overall flow, flow in any section of the city, location and severity of leaks and warnings of potential overload. The core technology has been expanded upon in terms of both technical improvements, and functionality for new applications, including event alarming and control for critical collection system management problems.

  2. Tritium monitor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  3. Tritium monitor

    DOEpatents

    Chastagner, P.

    1994-06-14

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  4. Patient Monitoring

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.

  5. Machine Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    When a printing press jams, damage is extensive, repairs are costly, and time and production loss can be expensive. James River Corporation requested G.W. Shelton, a design engineer with Logical Control Systems to solve this problem. Shelton found the solution in a NASA Tech Brief article describing a system of pulley and belt drives. This led to the design of a system that monitors drive components for changes in relative speed that would indicate belt slippage and jam probability. When a combination of variables is not met, an emergency "stop" signal is sent to the press and an alarm is triggered.

  6. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  7. Monitoring microcirculation.

    PubMed

    Ocak, Işık; Kara, Atila; Ince, Can

    2016-12-01

    The clinical relevance of microcirculation and its bedside observation started gaining importance in the 1990s since the introduction of hand-held video microscopes. From then, this technology has been continuously developed, and its clinical relevance has been established in more than 400 studies. In this paper, we review the different types of video microscopes, their application techniques, the microcirculation of different organ systems, the analysis methods, and the software and scoring systems. The main focus of this review will be on the state-of-art technique, CytoCam-incident dark-field imaging, and the most recent technological and technical updates concerning microcirculation monitoring.

  8. Monitoring Period and Amplitude Changes in Classical Cepheids

    NASA Astrophysics Data System (ADS)

    Erickson, Mary; Engle, Scott G.; Mark Wells (Penn State University)

    2017-01-01

    Cepheid Variable Stars, which are located on the Instability Strip of the Hertzsprung-Russel Diagram, can be used as “standard candle” distance markers (Fiorentino 2007). This came about after the discovery of the Period-Luminosity Relationship (the Leavitt Law), and they have since become a cornerstone of the Cosmic Distance Scale and are helping to further refine the Hubble Constant. Cepheids will cross the Instability Strip, either in a “redward” (cooler) or “blueward” (hotter) direction depending on the stage in which the Cepheid is evolving (Neilson 2012). While Cepheids were originally believed to have regular periods, many are now known to have varying periods, dating back to Eddington (1919). Therefore, Cepheids must be closely monitored in order to deduce where these period variations are coming from - either from inside the star itself or from some outside source. Determining period changes in Cepheids can reveal important information (e.g. evolutionary states, potential companions, etc.).Photometric data were taken for two Cepheids from two different sources and analyzed. The Cepheids in question are AA Gem and BB Gem, both located in the Gemini constellation. Data for these two stars were taken from the All Sky Automated Survey (ASAS) and from the Robotically Controlled Telescope (RCT) at Kitt Peak National Observatory, on which Villanova has guaranteed access. ASAS observes automatically each clear night, and has done so for several years, making it an excellent source for obtaining Cepheid data. The RCT telescope also operates automatically, observing from a preset target list, and achieves a much higher precision than ASAS can. Multi-aperture photometry was performed on the AA Gem and BB Gem RCT images, in Astroimagej. The data were then separated into different seasons, and Fourier fits were applied to the light curves in Kephem (written by Andrej Prša and collaborators). These results were then analyzed via the Hertzsprung Method to

  9. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  10. Document Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.

  11. Blowout Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed software shell for developing expert systems, has been embedded in a PC-based expert system for training oil rig personnel in monitoring oil drilling. Oil drilling rigs if not properly maintained for possible blowouts pose hazards to human life, property and the environment may be destroyed. CLIPS is designed to permit the delivery of artificial intelligence on computer. A collection of rules is set up and, as facts become known, these rules are applied. In the Well Site Advisor, CLIPS provides the capability to accurately process, predict and interpret well data in a real time mode. CLIPS was provided to INTEQ by COSMIC.

  12. Multi-Messenger Time-Domain Astronomy with the Fermi Gamma-ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam; Fermi GBM Team

    2017-01-01

    With exciting new detections of gravitational waves by LIGO and astrophysical neutrinos by IceCube and ANTARES, the era of multi-messenger time-domain astronomy has arrived. The Fermi Gamma-ray Burst Monitor (GBM) continuously observes the entire sky that is not occulted by the Earth in gamma-rays from 8 keV - 40 MeV with 2 microsecond temporal resolution, and that continuous data is downlinked every few hours. This wealth of near-real-time all-sky data has lead to the development of continuous data searches for gamma-ray events, such as Gamma-Ray Bursts (GRBs), in coincidence with astrophysical neutrinos and gravitational wave events. Additionally, GBM has the ability to localize triggered and un-triggered transient events to a few-degree accuracy, rapidly disseminate the alerts and localization sky maps, and there have been several successful follow-up attempts by wide-field optical telescopes, such as the Palomar Transient Factory, to catch the fading optical afterglow of GBM-triggered GRBs. We discuss the current applications and importance of Fermi GBM in leading multi-messenger time-domain astronomy in the gamma-ray regime.

  13. Multi-Messenger Time-Domain Astronomy with the Fermi Gamma-ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Connaughton, Valerie; Goldstein, Adam; Fermi GBM - LIGO Group

    2017-01-01

    With exciting new detections of gravitational waves by LIGO and astrophysical neutrinos by IceCube and ANTARES, the era of multi-messenger time-domain astronomy has arrived. The Fermi Gamma-ray Burst Monitor (GBM) continuously observes the entire sky that is not occulted by the Earth in gamma-rays from 8 keV - 40 MeV with 2 microsecond temporal resolution, with regular data downlinks every few hours. This wealth of near-realtime all-sky data has lead to the development of continuous data searches for gamma-ray events, such as Gamma-Ray Bursts (GRBs), in coincidence with astrophysical neutrinos and gravitational wave events. Additionally, GBM has the ability to localize triggered and untriggered transient events to a few-degree accuracy, rapidly disseminate the alerts and localization sky maps within tens of seconds, and there have been several successful follow-up attempts by wide-field optical telescopes, such as the Palomar Transient Factory, to catch the fading optical afterglow of GBM-triggered GRBs. We discuss the current applications and importance of Fermi GBM in leading multi-messenger time-domain astronomy in the gamma-ray regime.

  14. QF monitoring. [Qualifying Facilities

    SciTech Connect

    Greenwald, S. ); Hoffman, B. )

    1991-10-01

    This article examines the effects on project financing of independent power projects of the California Public Utilities Commission decision to grant authority to California utilities to monitor and enforce compliance with the Federal Energy Regulatory Commission Qualifying Facility standards. The topics of the article include monitoring proposals, monitoring guidelines, the effects of monitoring, minimizing status loss and monitoring requirements.

  15. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  16. Compton-thick AGN in the 70-month Swift-BAT All-Sky Hard X-ray Survey: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Akylas, A.; Georgantopoulos, I.; Ranalli, P.; Gkiokas, E.; Corral, A.; Lanzuisi, G.

    2016-10-01

    The 70-month Swift-BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies (>10 keV) containing about 800 active galactic nuclei (AGN). We explore its content in heavily obscured, Compton-thick AGN by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density for each source. We find 53 possible Compton-thick sources (probability range 3-100%) translating to a ~7% fraction of the AGN in our sample. We derive the first parametric luminosity function of Compton-thick AGN. The unabsorbed luminosity function can be represented by a double power law with a break at L⋆ ~ 2 × 1042erg s-1 in the 20-40 keV band. The Compton-thick AGN contribute ~17% of the total AGN emissivity. We derive an accurate Compton-thick number count distribution taking into account the exact probability of a source being Compton-thick and the flux uncertainties. This number count distribution is critical for the calibration of the X-ray background synthesis models, i.e. for constraining the intrinsic fraction of Compton-thick AGN. We find that the number counts distribution in the 14-195 keV band agrees well with our models which adopt a low intrinsic fraction of Compton-thick AGN (~ 12%) among the total AGN population and a reflected emission of ~ 5%. In the extreme case of zero reflection, the number counts can be modelled with a fraction of at most 30% Compton-thick AGN of the total AGN population and no reflection. Moreover, we compare our X-ray background synthesis models with the number counts in the softer 2-10 keV band. This band is more sensitive to the reflected component and thus helps us to break the degeneracy between the fraction of Compton-thick AGN and the reflection emission. The number counts in the 2-10 keV band are well above the models which assume a 30% Compton-thick AGN fraction and zero reflection, while they are in better agreement with models assuming 12% Compton-thick fraction and 5% reflection. The only viable alternative for models invoking a high number of Compton-thick AGN is to assume evolution in their number with redshift. For example, in the zero reflection model the intrinsic fraction of Compton-thick AGN should rise from 30% at redshift z ~ 0 to about 50% at a redshift of z = 1.1.

  17. An All-sky Search for Three Flavors of Neutrinos from Gamma-ray Bursts with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-06-01

    We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.

  18. All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2017-02-01

    Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below {E}ν 2dφ /{{dE}}ν = 10‑12 TeV cm‑2 s‑1, on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.

  19. A 2MASS ALL-SKY VIEW OF THE SAGITTARIUS DWARF GALAXY. VII. KINEMATICS OF THE MAIN BODY OF THE SAGITTARIUS dSph

    SciTech Connect

    Frinchaboy, Peter M.; Majewski, Steven R.; Patterson, Richard J.; Munoz, Ricardo R.; Law, David R.; Lokas, Ewa L.; Kunkel, William E.; Johnston, Kathryn V. E-mail: srm4n@vigrinia.edu E-mail: rmunoz@das.uchile.cl E-mail: lokas@camk.edu.pl E-mail: kvj@astro.columbia.edu

    2012-09-01

    We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R {approx} 15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 Degree-Sign from the galaxy's center (3.7 core radii or 0.4 times the King limiting radius). From these high-quality spectra we identify 1310 Sgr members out of 2296 stars surveyed, distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large-area sample shows no evidence for significant rotation, a result at odds with the {approx}20 km s{sup -1} rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small ({<=}4 km s{sup -1}) velocity trend primarily along the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.

  20. Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Ranalli, P.; Corral, A.; Lanzuisi, G.

    2016-08-01

    The 70 month Swift/BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies 14-195 keV containing about 800 Active Galactic Nuclei. We explore its content in heavily obscured Compton-thick AGN by combining the BAT (14-195 keV) with the XRT data (0.3-10 keV) at lower energies. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density. We find 54 possible Compton-thick sources (from 3 to 100 % probability) translating to a 7% fraction of the total AGN population. We derive an accurate Compton-thick number count distribution taking into account the exact probability of a source being Compton-thick as well as the flux errors. The number density of Compton-thick AGN is critical for the calibration of X-ray background synthesis models. We find that the number count distribution agrees with models that adopt a low intrinsic fraction of Compton-thick AGN (15%) among the total AGN population and a reflected emission of (~5%). Finally, we derive the first parametric luminosity function of Compton-thick AGN in the local universe. The unabsorbed luminosity function can be represented by a double power-law with a break at L* ~2 x 10^42 ergs in the 20-40 keV band. The Compton-thick AGN constitute a substantial fraction of the AGN density at low luminosities (<10^42 erg/s).

  1. A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. VI. s-PROCESS AND TITANIUM ABUNDANCE VARIATIONS ALONG THE SAGITTARIUS STREAM

    SciTech Connect

    Chou, Mei-Yin; Majewski, Steven R.; Patterson, Richard J.; Cunha, Katia; Smith, Verne V.; Martinez-Delgado, David; Geisler, Doug E-mail: srm4n@virginia.ed E-mail: cunha@noao.ed E-mail: ddelgado@iac.e

    2010-01-10

    We present high-resolution spectroscopic measurements of the abundances of the alpha element titanium (Ti) and s-process elements yttrium (Y) and lanthanum (La) for 59 candidate M giant members of the Sagittarius (Sgr) dwarf spheroidal (dSph) + tidal tail system pre-selected on the basis of position and radial velocity (RV). As expected, the majority of these stars show peculiar abundance patterns compared to those of nominal Milky Way (MW) stars, but as a group, the stars form a coherent picture of chemical enrichment of the Sgr dSph from [Fe/H] = -1.4 to solar abundance. This sample of spectra provides the largest number of Ti, La, and Y abundances yet measured for a dSph, and spans metallicities not typically probed by studies of the other, generally more metal-poor MW satellites. On the other hand, the overall [Ti/Fe], [Y/Fe], [La/Fe], and [La/Y] patterns with [Fe/H] of the Sgr stream plus Sgr core do, for the most part, resemble those seen in the Large Magellanic Cloud (LMC) and other dSphs, only shifted by DELTA[Fe/H] approx +0.4 from the LMC and by approx+1 dex from the other dSphs; these relative shifts reflect the faster and/or more efficient chemical evolution of Sgr compared to the other satellites, and show that Sgr has had an enrichment history more like the LMC than the other dSphs. By tracking the evolution of the abundance patterns along the Sgr stream we can follow the time variation of the chemical make-up of dSph stars donated to the Galactic halo by Sgr. This evolution demonstrates that while the bulk of the stars currently in the Sgr dSph is quite unlike those of the Galactic halo, an increasing number of stars farther along the Sgr stream have abundances like MW halo stars, a trend that shows clearly how the Galactic halo could have been contributed by present-day satellite galaxies even if the present chemistry of those satellites is now different from typical halo field stars. Finally, we analyze the chemical abundances of a moving group of M giants among the Sgr leading arm stars at the North Galactic Cap, but having RVs unlike the infalling Sgr leading arm debris there. Through use of 'chemical fingerprinting', we conclude that these mostly receding northern hemisphere M giants also are Sgr stars, likely trailing arm debris overlapping the Sgr leading arm in the north.

  2. Reviewing E(sub peak) Relations with Swift and Suzaku Data

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.; Yamaoka, Kazutaka; Ohno, Masanori; Sakamoto, Takanori; Sato, Goro; Sugita, Satoshi; Tashiro, Makoto; Hara, R.; Tanaka, H.; Ohmori, M.; Yamauchi, M.

    2008-01-01

    In recent years several authors have derived correlations between gamma-ray burst (GRB) spectral peak energy (E(sub peak)) and either isotropic-equivalent radiated energy (E(sub iso)) or peak luminosity (L(sub iso)). Since these relationships are controversial, but could provide redshift estimators, it is important to determine whether bursts detected by Swift exhibit the same correlations. Swift has greatly added to the number of GRBs for which redshifts are known and hence E(sub iso) and L(sub iso) could be calculated. However, for most bursts it is not possible to adequately constrain E(sub peak) with Swift data alone since most GRBs have E(sub peak) above the energy range (15-50 keV) of the Swift Burst Alert Telescope (BAT). Therefore we have analyzed the spectra of 78 bursts (31 with redshift) which were detected by both Swift/BAT and the Suzaku Wide-band All-sky Monitor (WAM), which covers the energy range 50-5000 keV. For most bursts in this sample we can precisely determine E(sub peak) and for bursts with known redshift we can compare how the E(sub peak) relations for the Swift/Suzaku sample compare to earlier published results. Keywords: gamma rays: bursts

  3. DEdicated MONitor of EXotransits and Transients (DEMONEXT): Low-Cost Robotic and Automated Telescope for Followup of Exoplanetary Transits and Transients

    NASA Astrophysics Data System (ADS)

    Villanueva, Steven; Eastman, Jason D.; Gaudi, B. Scott; Pogge, Richard W.; Stassun, Keivan G.; Trueblood, Mark; Trueblood, Patricia

    2017-01-01

    We present the design, development, and early science from the DEdicated MONitor of EXotransits and Transients (DEMONEXT), an automated and robotic 20 inch telescope jointly funded by The Ohio State University and Vanderbilt University. The telescope is a PlaneWave CDK20 f/6.8 Corrected Dall-Kirkham Astrograph telescope on a Mathis Instruments MI-750/1000 Fork Mount located at Winer Observatory in Sonoita, AZ. DEMONEXT has a Hedrick electronic focuser, Finger Lakes Instrumentation (FLI) CFW-3-10 filter wheel, and a 2048 x 2048 pixel FLI Proline CCD3041 camera with a pixel scale of 0.90 arc-seconds per pixel and a 30.7 x 30.7 arc-minute field-of-view. The telescope's automation, controls, and scheduling are implemented in Python, including a facility to add new targets in real time for rapid follow-up of time-critical targets. DEMONEXT will be used for the confirmation and detailed investigation of newly discovered planet candidates from the Kilodegree Extremely Little Telescope (KELT) survey, exploration of the atmospheres of Hot Jupiters via transmission spectroscopy and thermal emission measurements, and monitoring of select eclipsing binary star systems as benchmarks for models of stellar evolution. DEMONEXT will enable rapid confirmation imaging of supernovae, flare stars, tidal disruption events, and other transients discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN).

  4. Holter monitor (24h)

    MedlinePlus

    ... the machine gets an accurate recording of the heart's activity. While wearing the device, avoid: Electric blankets High- ... Holter monitoring is used to determine how the heart responds to normal activity. The monitor may also be used: After a ...

  5. Fugitive emissions monitoring trends

    SciTech Connect

    Brown, K.H.

    1997-02-01

    New Clean Air Act requirements are pushing facilities to reevaluate their monitoring programs. A description of the fugitive emission guidelines is included in this article, along with ideas about monitoring.

  6. MONITORING FLORIDA'S WATERS

    EPA Science Inventory

    GIS plays an important role as a management tool for the multi-dimensional Status Monitoring Network (SMN) program to monitor Florida's freshwater resources. By pulling together basin assessments, statistical analysis, surface water and groundwater analytical data, background is...

  7. Historical Radiological Event Monitoring

    EPA Pesticide Factsheets

    During and after radiological events EPA's RadNet monitors the environment for radiation. EPA monitored environmental radiation levels during and after Chernobyl, Fukushima and other international and domestic radiological incidents.

  8. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  9. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  10. Intracranial pressure monitoring

    MedlinePlus

    ... head. The monitor senses the pressure inside the skull and sends measurements to a recording device. ... are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is ...

  11. Integrated Exposure Assessment Monitoring.

    ERIC Educational Resources Information Center

    Behar, Joseph V.; And Others

    1979-01-01

    Integrated Exposure Assessment Monitoring is the coordination of environmental (air, water, land, and crops) monitoring networks to collect systematically pollutant exposure data for a specific receptor, usually man. (Author/BB)

  12. Noninvasive respiratory monitoring

    SciTech Connect

    Nochomovitz, M.L.; Cherniack, N.S.

    1986-01-01

    This book contains 10 selections. Some of the titles are: Transcutaneous Monitoring of Respiratory Gases; Computed Tomography of the Chest; Measurement and Monitoring of Exhaled Carbon Dioxide; Oximetry; and Ultrasonic Evaluation of the Chest Wall and Pleura.

  13. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  14. National environmental monitoring

    SciTech Connect

    Not Available

    1984-01-01

    Findings of the Council of Environmental Quality's interagency task force on environmental data and monitoring are summarized and the degree of followup on its recommendations is assessed. The quality of the data, coordination of environmental monitoring and data activities, and major issues that need to be addressed regarding monitoring of air and water quality are examined. Participation of the private sector in toxic monitoring is considered.

  15. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  16. Monitoring Local Comprehension Monitoring in Sentence Reading

    ERIC Educational Resources Information Center

    Vorstius, Christian; Radach, Ralph; Mayer, Michael B.; Lonigan, Christopher J.

    2013-01-01

    on ways to improve children's reading comprehension. However, processes and mechanisms underlying this skill are currently not well understood. This article describes one of the first attempts to study comprehension monitoring using eye-tracking methodology. Students in fifth…

  17. Seismic Imaging and Monitoring

    SciTech Connect

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  18. Dopant Cylinder Lifetime Monitor

    NASA Astrophysics Data System (ADS)

    Bishop, Steve; Wodjenski, Michael; Kaim, Robert; Lurcott, Steve; McManus, Jim; Smith, Gordon

    2006-11-01

    The cost of consumable materials is a significant component in the cost of implanter operation. With the higher cost of sub-atmospheric gas alternatives it is increasingly important to accurately monitor its usage. The ATMI® SDS® GasGauge™ monitoring system accurately monitors gas level in four cylinders simultaneously, throughout their lifetime, in order to optimize usage of gas and related implanter productivity. This paper displays how the GasGauge monitoring system accurately monitors the cylinder contents in SDS®, VAC® and high pressure gas cylinders. Internal and customer test data is also presented to verify these claims.

  19. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  20. Environmental Monitoring Plan

    SciTech Connect

    Holland, R.C.

    1993-07-01

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  1. X-RAY and Radio Monitoring of GX 339-4 and CYG X-1

    NASA Astrophysics Data System (ADS)

    Nowak, Michael

    2005-11-01

    Previous work by Motch et al. [1985, Space Sci. Rev. 40, 219] suggested that in the low/hard state of GX, the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel and Fender [2002, ApJ 573, L35 L39] later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX. This has been cited as further evidence that jet synchrotron radiation might make a significant contribution to the observed X-rays in the hard state. We explore this hypothesis with a series of simultaneous radio/X-ray hard state observations of GX. We fit these spectra with a simple, but remarkably successful, doubly broken power-law model that indeed requires a spectral break in the IR. For most of these observations, the break position as a function of X-ray flux agrees with the jet model predictions. We then examine the radio flux/X-ray flux correlation in CYG through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We find evidence of ‘parallel tracks’ in the radio/X-ray correlation which are associated with ‘failed transitions’ to, or the beginning of a transition to, the soft state. We also find that for CYG the radio flux is more fundamentally correlated with the hard, rather than the soft, X-ray flux.

  2. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  3. Monitoring Exhaled Carbon Dioxide.

    PubMed

    Siobal, Mark S

    2016-10-01

    In the past few decades, assessment of exhaled CO2 in both intubated and non-intubated patients has evolved into an essential component in many aspects of patient monitoring. Besides the basic assessment of ventilation, exhaled CO2 monitoring can provide valuable patient safety information and critical physiologic data in regard to the ventilation and perfusion matching in the lungs, cardiac output, and metabolic rate. Despite these important clinical monitoring benefits and widespread availability, exhaled CO2 monitoring is often underutilized. The purpose of this paper is to review the importance and present the extensive body of knowledge to support the use of exhaled CO2 monitoring in various areas of clinical practice. Advanced application concepts and the future development of exhaled CO2 monitoring will also be discussed.

  4. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  5. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  6. Power consumption monitoring using additional monitoring device

    SciTech Connect

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  7. Monitoring equine anesthesia.

    PubMed

    Riebold, T W

    1990-12-01

    In conclusion, monitoring the depth of anesthesia plays an integral role in the anesthetic regimen. Although the use of sophisticated monitoring equipment has replaced some of the art of anesthesia and made assessment of depth of anesthesia more precise, a vigilant clinician still needs to serve as the animal's advocate. He or she must gather the data that are generated by machines, acquire data that monitoring equipment cannot obtain, assimilate all the facts, and make appropriate changes in anesthetic management.

  8. Nonpoint Source: Monitoring

    EPA Pesticide Factsheets

    Water quality monitoring for nonpoint sources of pollution includes the important element of relating the physical, chemical, and biological characteristics of receiving waters to land use characteristics.

  9. Loran-C monitoring

    NASA Technical Reports Server (NTRS)

    Edwards, Jamie

    1987-01-01

    The Loran-C monitor developed by Ohio University will collect Loran signal data for storage on magnetic tape. Stationed at the Ohio University Airport, Athens, Ohio, the monitor will provide valuable information concerning the daily and seasonal variation of the Loran-C signals for use in non-precision approach studies. With the aid of a second monitor, located in Gallion, Ohio, it can be determined if the errors found at a particular geographic location correlate with those found at another location. This will give some indication as to how far apart monitors can be positioned to obtain accurate non-precision approach data for various airports.

  10. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  11. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  12. Environmental monitoring plan

    SciTech Connect

    Holland, R.C.

    1997-02-01

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 52 refs., 10 figs., 12 tabs.

  13. HABs Monitoring and Prediction

    EPA Science Inventory

    Monitoring techniques for harmful algal blooms (HABs) vary across temporal and spatial domains. Remote satellite imagery provides information on water quality at relatively broad spatial and lengthy temporal scales. At the other end of the spectrum, local in-situ monitoring tec...

  14. Transmission Line Security Monitor

    ScienceCinema

    None

    2016-07-12

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. MONITORING GRAZING LANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important step in developing a ranch or allotment management plan for grazing lands is defining a rangeland monitoring program to evaluate progress toward achieving management objectives. A monitoring program can: 1) help determine the benefits gained from changes in grazing management or invest...

  16. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  17. Monitoring Process Effectiveness

    EPA Science Inventory

    Treatment of municipal sludges to produce biosolids which meet federal and/or state requirements for land application requires process monitoring. The goal of process monitoring is to produce biosolids of consistent and reliable quality. In its simplest form, for Class B treatme...

  18. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  19. Pasture monitoring with Landsat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Landsat data has been used to monitor primary production in range and pasture areas, such monitoring has generally been intended to track broad changes across multiple years. With an 8-day return time and 30m resolution, Landsat data can be used to assess intra-annual changes, even within rota...

  20. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  1. Monitoring for conservation

    USGS Publications Warehouse

    Nichols, J.D.; Williams, B.K.

    2006-01-01

    Human-mediated environmental changes have resulted in appropriate concern for the conservation of ecological systems and have led to the development of many ecological monitoring programs worldwide. Many programs that are identified with the purpose of `surveillance? represent an inefficient use of conservation funds and effort. Here, we revisit the 1964 paper by Platt and argue that his recommendations about the conduct of science are equally relevant to the conduct of ecological monitoring programs. In particular, we argue that monitoring should not be viewed as a stand-alone activity, but instead as a component of a larger process of either conservation-oriented science or management. Corresponding changes in monitoring focus and design would lead to substantial increases in the efficiency and usefulness of monitoring results in conservation.

  2. Monitoring Cray Cooling Systems

    SciTech Connect

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff; Donovan, Matthew J; Layton, Christopher C

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  3. Monitoring on the Move

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The MyoMonitor EMG system was developed by Delsys, Inc. under SBIR funding from Johnson Space Center. It is a wearable four-channel device that can monitor muscle performance. Presently, its application include rehabilitative therapy, injury prevention, sports medicine, exercise training, and various other muscle monitoring activities. The MyoMonitor uses a two-bar single differential electrode. Due to the electrode-skin interface in traditional EMG equipment, during rigorous muscular activity, the movement of the skin causes the electrode detection surfaces to become compromised. The MyoMonitor eliminates this problem, enabling a wide array of applications and experiments during intense muscular activity. The ability to make such recordings, for example, enables novel experiments aboard the International Space Station for investigating the effect of microgravity on muscle performance. Product still commercially available as of March 2002.

  4. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  5. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  6. Safety system status monitoring

    SciTech Connect

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  7. Functional hemodynamic monitoring

    PubMed Central

    Pinsky, Michael R; Payen, Didier

    2005-01-01

    Hemodynamic monitoring is a central component of intensive care. Patterns of hemodynamic variables often suggest cardiogenic, hypovolemic, obstructive, or distributive (septic) etiologies to cardiovascular insufficiency, thus defining the specific treatments required. Monitoring increases in invasiveness, as required, as the risk for cardiovascular instability-induced morbidity increases because of the need to define more accurately the diagnosis and monitor the response to therapy. Monitoring is also context specific: requirements during cardiac surgery will be different from those in the intensive care unit or emergency department. Solitary hemodynamic values are useful as threshold monitors (e.g. hypotension is always pathological, central venous pressure is only elevated in disease). Some hemodynamic values can only be interpreted relative to metabolic demand, whereas others have multiple meanings. Functional hemodynamic monitoring implies a therapeutic application, independent of diagnosis such as a therapeutic trial of fluid challenge to assess preload responsiveness. Newer methods for assessing preload responsiveness include monitoring changes in central venous pressure during spontaneous inspiration, and variations in arterial pulse pressure, systolic pressure, and aortic flow variation in response to vena caval collapse during positive pressure ventilation or passive leg raising. Defining preload responsiveness using these functional measures, coupled to treatment protocols, can improve outcome from critical illness. Potentially, as these and newer, less invasive hemodynamic measures are validated, they could be incorporated into such protocolized care in a cost-effective manner. PMID:16356240

  8. Monitoring that matters

    USGS Publications Warehouse

    Johnson, Douglas H.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    Monitoring is a critically important activity for assessing the status of a system, such as the health of an individual, the balance in one's checking account, profits and losses of a business, the economic activity of a nation, or the size of an animal population. Monitoring is especially vital for evaluating changes in the system associated with specific known impacts occurring to the system. It is also valuable for detecting unanticipated changes in the system and identifying plausible causes of such changes, all in time to take corrective action. Before proceeding, we should define "monitoring." One definition of "monitor" (Microsoft Corporation 2009) is "to check something at regular intervals in order to find out how it is progressing or developing." The key point here is "at regular intervals," suggesting a continuing process. Some definitions do not indicate the repetitive nature of monitoring and are basically synonymous with "observing." Most monitoring, in the strict sense of the word, is intended to persist for long periods of time, perhaps indefinitely or permanently. Similarly, Thompson et al. (1998: 3) referred to the "repeated assessment of status" of something, but noted that the term "monitor" is sometimes used for analogous activities such as collecting baseline information or evaluating projects for either implementation or effectiveness. For their purposes, they restricted the term to involve repeated measurements collected at a specified frequency of time units. Let us adopt that definition, recognizing that repeated measurements imply collecting comparable information on each occasion.

  9. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  10. Environmental Monitoring Plan

    SciTech Connect

    Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

    2005-11-23

    The purpose of the environmental monitoring plan (EMP) is to promote the early identification of, and response to, potential adverse environmental impacts associated with DOE operations. Environmental monitoring supports the Integrated Safety Management System (ISMS) to detect, characterize, and respond to releases from DOE activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of the DOE activity. In addition, the EMP addresses the analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of radionuclide samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. Until recently, environmental monitoring at Lawrence Livermore National Laboratory (LLNL) was required by DOE Order 5400.1, which was canceled in January 2003. LLNL is in the process of adopting the ISO 14001 Environmental Management Systems standard, which contains requirements to perform and document environmental monitoring. The ISO 14001 standard is not as prescriptive as DOE Order 5400.1, which expressly required an EMP. LLNL will continue to prepare the EMP because it provides an organizational framework for ensuring that the work is conducted appropriately. The environmental monitoring addressed by the plan includes preoperational characterization and assessment, and effluent and surveillance monitoring. Additional environmental monitoring is conducted at LLNL as part of the compliance with the

  11. Source Monitoring in Alzheimer's Disease

    ERIC Educational Resources Information Center

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-01-01

    Source monitoring is the process of making judgments about the origin of memories. There are three categories of source monitoring: reality monitoring (discrimination between self- versus other-generated sources), external monitoring (discrimination between several external sources), and internal monitoring (discrimination between two types of…

  12. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence

  13. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  14. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  15. Noninvasive vital signal monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Zenan; Chee, Jonny; Chua, Kok Poo; Chen, ZhouDe

    2010-05-01

    Vital signals of patients, such as heart rate, temperature and movement are crucial to monitor patients in hospital. Current heart rate measurement is obtained by using Electrocardiograph, which normally applies electrodes to the patient's body. As electrodes are extremely uncomfortable to ware and hinder patient's movement, a non-invasive vital signal-monitoring device will be a better solution. Similar to Electrocardiograph, the device detects the voltage difference across the heart by using concept of capacitance, which can be obtained by two conductive fiber sewing on the bed sheet. Simultaneous temperature reading can also be detected by using surface mounted temperature sensor. This paper will mainly focus on the heart rate monitoring.

  16. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  17. Improve emissions monitoring

    SciTech Connect

    Vining, S.K.

    1998-01-01

    Marathon`s Texas City refinery was subject to five separate EPA regulations in addition to a state program for monitoring and repairing fugitive leaks. In this case history, the refinery sought an organizational solution that reduced monitoring costs and kept the facility fully compliant with current state and federal regulations. Equally important, the new monitoring program incorporated flexibility for future emission-reduction requirements. The paper describes the solution, regulatory background, the previous system, leak-threshold consolidation, operator ownership, and projects benefits.

  18. Monitoring in microvascular surgery.

    PubMed

    Furnas, H; Rosen, J M

    1991-03-01

    The importance of monitoring in microvascular surgery is underscored by the high reported salvage rates of failing free flaps and replants. In this overview, we begin by defining the physiology of ischemic tissue with emphasis given to the no-reflow phenomenon and the secondary critical ischemia times. Based on the physiological changes accompanying ischemia, several variables are defined that can be monitored to reflect the vascular state of a free flap or replant. Multifarious monitoring systems are then reviewed, including clinical observation, temperature, isotope clearance, ultrasonic Doppler, laser Doppler, transcutaneous oxygen tension, reflection plethysmography, dermofluorometry, pH, electromagnetic flowmetry, serial hematocrits, interstitial fluid pressure, and magnetic resonance imaging.

  19. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect

    Wilt, G.C.; Tate, P.J.; Brigdon, S.L.

    1994-11-01

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  20. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  1. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  2. Monitoring by Control Technique

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page links to different control techniques used to reduce pollutant emissions.

  3. Compliance Assurance Monitoring

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  4. Holter and Event Monitors

    MedlinePlus

    ... Monitors What Are... Related Topics Arrhythmia Electrocardiogram Heart Failure Heart Palpitations Sudden Cardiac Arrest Send a link to ... Angina Arrhythmia Atrial Fibrillation Clinical Trials Electrocardiogram Heart Failure Heart Palpitations Stroke Sudden Cardiac Arrest Rate This Content: ...

  5. Siting Air Monitoring Stations

    ERIC Educational Resources Information Center

    Ludwig, F. L.

    1978-01-01

    Describes guidelines for consideration in selecting sites for air monitoring systems. Careful selection for spatial scale and specific sources assures that the collected data are accurately representing the situation. (Author/MA)

  6. Lunar Health Monitor (LHM)

    NASA Technical Reports Server (NTRS)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  7. Electrical-ground monitor

    NASA Technical Reports Server (NTRS)

    Lyons, T. D.

    1979-01-01

    Instrument for detecting short circuits monitors ground connections and sounds alarm if out-of-limits condition occurs. Circuit includes electronics that prevent false triggering by high-resistance or capacitive paths and other noise.

  8. Good neighbor monitoring

    SciTech Connect

    Schukraft, D.F.

    1995-11-01

    Since 1896, when a Unocal 76 products oil refinery was sited overlooking San Pablo bay, urban sprawl has crept up and neighbors now include housing projects, shopping centers and schools. To ensure that the area is a safe and enjoyable place for all to live and work, Unocal is working with local community groups to monitor air quality. The refinery has recently installed a sophisticated air quality and meterological monitoring system designed to provide an early warning should sulfur compounds or hydrocarbons begin to reach unhealthful levels. Siting of the monitoring station was a joint effort by school administrators from the nearby Hillcrest Elementary School and the Bay Area Air Quality Management District. By strategically locating the station adjacent to the school, emission levels coming from the refinery or other local sources can be effectively monitored. A unique part of this program is how closely Unocal, Hillcrest School and BAAQMD work together. All three groups have access to the data.

  9. Landsat Earth Monitor.

    ERIC Educational Resources Information Center

    Haggerty, James J.

    1979-01-01

    The uses of NASA's Landsat in the areas of cartography, flood control, agricultural inventory, land use mapping, water runoff, urban planning, erosion, geology, and water quality monitoring are illustrated. (BB)

  10. Birth defects monitoring

    SciTech Connect

    Klingberg, M.A.; Papier, C.M.; Hart, J.

    1983-01-01

    Population monitoring of birth defects provides a means for detecting relative changes in their frequency. Many varied systems have been developed throughout the world since the thalidomide tragedy of the early 1960s. Although it is difficult to pinpoint specific teratogenic agents based on rises in rates of a particular defect or a constellation of defects, monitoring systems can provide clues for hypothesis testing in epidemiological investigations. International coordination of efforts in this area resulted in the founding of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) in 1974. In this paper we will describe the functions and basic requirements of monitoring systems in general, and look at the development and activities of the ICBDMS. A review of known and suspected environmental teratogenic agents (eg, chemical, habitual, biological, physical, and nutritional) is also presented.

  11. Ocean Disposal Site Monitoring

    EPA Pesticide Factsheets

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  12. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  13. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  14. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  15. IR Linearity Monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2012-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.

  16. IR linearity monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2013-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.

  17. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  18. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  19. Nitinol Temperature Monitoring Devices

    DTIC Science & Technology

    1976-01-09

    AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol

  20. Trend Monitoring and Forecasting

    DTIC Science & Technology

    2015-03-11

    marketing , politics, and economics. In this three-year project, we monitor and analyze the trending topics in different online communities and provide a... marketing , politics, and economics. In this three-year project, we monitor and analyze the trending topics in different online communities and provide a...Awareness and utilization of trending topics plays a crucial role in various fields, including marketing , politics, and economics. In this three-year

  1. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  2. Meteorological Monitoring Program

    SciTech Connect

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  3. Monitoring Evolution at CERN

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Fiorini, B.; Murphy, S.; Pigueiras, L.; Santos, M.

    2015-12-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous toolset by new open source technologies with large adoption and community support. This contribution describes how these improvements were delivered, present the architecture and technologies of the new monitoring tools, and review the experience of its production deployment.

  4. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  5. VME system monitor board

    SciTech Connect

    1996-02-01

    Much of the machinery throughout the APS will be controlled by VME based computers. In order to increase the reliability of the system, it is necessary to be able to monitor the status of each VME crate. In order to do this, a VME System Monitor was created. In addition to being able to monitor and report the status (watchdog timer, temperature, CPU (Motorola MVME 167) state (status, run, fail), and the power supply), it includes provisions to remotely reset the CPU and VME crate, digital I/O, and parts of the transition module (serial port and ethernet connector) so that the Motorla MVME 712 is not needed. The standard VME interface was modified on the System Monitor so that in conjunction with the Motorola MVME 167 a message based VXI interrupt handler could is implemented. The System Monitor is a single VME card (6U). It utilizes both the front panel and the P2 connector for I/O. The front panel contains a temperature monitor, watchdog status LED, 4 general status LEDs, input for a TTL interrupt, 8 binary inputs (24 volt, 5 volt, and dry contact sense), 4 binary outputs (dry contact, TTL, and 100 mA), serial port (electrical RS-232 or fiber optic), ethernet transceiver (10 BASE-FO or AUI), and a status link to neighbor crates. The P2 connector is used to provide the serial port and ethernet to the processor. In order to abort and read the status of the CPU, a jumper cable must be connected between the CPU and the System Monitor.

  6. Monitoring: The missing piece

    SciTech Connect

    Bjorkland, Ronald

    2013-11-15

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: • NEPA statutes created profound environmental protection legislative framework. • Contrary to intent, NEPA does not provide for definitive project monitoring. • Robust project monitoring is essential for enhanced

  7. Basic Information about Air Emissions Monitoring

    EPA Pesticide Factsheets

    This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.

  8. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  9. Monitoring neonatal seizures.

    PubMed

    Boylan, Geraldine B; Stevenson, Nathan J; Vanhatalo, Sampsa

    2013-08-01

    Neonatal seizures are a neurological emergency and prompt treatment is required. Seizure burden in neonates can be very high, status epilepticus a frequent occurrence, and the majority of seizures do not have any clinical correlate. Detection of neonatal seizures is only possible with continuous electroencephalogram (EEG) monitoring. EEG interpretation requires special expertise that is not available in most neonatal intensive care units (NICUs). As a result, a simplified method of EEG recording incorporating an easy-to-interpret compressed trend of the EEG output (amplitude integrated EEG) from one of the EEG output from one or two channels has emerged as a popular way to monitor neurological function in the NICU. This is not without limitations; short duration and low amplitude seizures can be missed, artefacts are problematic and may mimic seizure-like activity and only a restricted area of the brain is monitored. Continuous multichannel EEG is the gold standard for detecting seizures and monitoring response to therapy but expert interpretation of the EEG output is generally not available. Some centres have set up remote access for neurophysiologists to the cot-side EEG, but reliable interpretation is wholly dependent on the 24 h availability of experts, an expensive solution. A more practical solution for the NICU without such expertise is an automated seizure detection system. This review outlines the current state of the art regarding cot-side monitoring of neonatal seizures in the NICU.

  10. Monitoring pesticides in wildlife

    USGS Publications Warehouse

    Dustman, E.H.; Martin, W.E.; Heath, R.G.; Reichel, W.L.

    1971-01-01

    Early in the development of the wildlife monitoring program, certain criteria were recognized as being important in the selection of species of wild animals suitable for pesticide monitoring purposes. Ideally, the forms selected should be geographically well distributed, and they should be reasonably abundant and readily available for sampling. In addition, animals occurring near the top of food chains have the capacity to reflect residues in organisms occurring at lower levels in the same food chains. Based on these criteria, species chosen for monitoring include the starling (Sturnus vulgaris), mallard (Anas platyrhynchos) and black ducks (Anas rubripes), and the bald eagle (Haliaeetus leucocephalus). The black duck is substituted for the mallard in States where suitable numbers of mallards cannot be obtained. The Bureau of Sport Fisheries and Wildlife is held responsible for the execution of the wildlife portion of the National Pesticide Monitoring Program. The primary objective is to ascertain on a nationwide basis and independent of specific treatments the levels and trends of certain pesticidal chemicals and other pollutants in the bodies of selected forms of wildlife. The program was first described by Johnson et al. (4) in 1967. The purpose of this report is to update and redescribe the wildlife monitoring program and briefly review accomplishments.

  11. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  12. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  13. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  14. Enhanced Raman Monitor Project

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne

    1996-01-01

    Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.

  15. CMS Space Monitoring

    NASA Astrophysics Data System (ADS)

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-06-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  16. Orion Entry Monitor

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    NASA is scheduled to launch the Orion spacecraft atop the Space Launch System on Exploration Mission 1 in late 2018. When Orion returns from its lunar sortie, it will encounter Earth's atmosphere with speeds in excess of 11 kilometers per second, and Orion will attempt its first precision-guided skip entry. A suite of flight software algorithms collectively called the Entry Monitor has been developed in order to enhance crew situational awareness and enable high levels of onboard autonomy. The Entry Monitor determines the vehicle capability footprint in real-time, provides manual piloting cues, evaluates landing target feasibility, predicts the ballistic instantaneous impact point, and provides intelligent recommendations for alternative landing sites if the primary landing site is not achievable. The primary engineering challenges of the Entry Monitor is in the algorithmic implementation in making a highly reliable, efficient set of algorithms suitable for onboard applications.

  17. Urine Monitoring System

    NASA Technical Reports Server (NTRS)

    Feedback, Daniel L.; Cibuzar, Branelle R.

    2009-01-01

    The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.

  18. Wildlife monitoring program plan

    NASA Technical Reports Server (NTRS)

    Sebesta, P.; Arno, R.

    1979-01-01

    A plan for integrating the various requirements for wildlife monitoring with modern aerospace technology is presented. This plan is responsive to user needs, recognizes legal requirements, and is based on an evolutionary growth from domestic animals and larger animals to smaller, more scarce and remote species. The basis for animal study selection was made from the 1973 Santa Cruz Summer Study on Wildlife Monitoring. As techniques are developed the monitoring and management tasks will be interfaced with and eventually operated by the user agencies. Field efforts, aircraft and satellites, will be supplemented by laboratory investigations. Sixty percent of the effort will be in hardware research and development (satellite technology, microminiaturization) and the rest for gathering and interpreting data.

  19. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  20. Wearable Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  1. CMS Space Monitoring

    SciTech Connect

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-01-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  2. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  3. Vital signs monitoring system

    NASA Technical Reports Server (NTRS)

    Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)

    1981-01-01

    A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.

  4. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  5. Environmental Monitoring without Borders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.

    2014-12-01

    Continuous monitoring of environmental variables is essential in most environmental projects. However, due to economic constraints, many students from underrepresented groups and developing countries often have limited access to "standardized" data logging and monitoring techniques. We assessed the student's learning in rural settings and worked with student without strong science background to utilize various environmental sensors to conduct innovative projects. We worked with students in Namibia and a minority high school student in Indianapolis to conduct relative humidity monitoring in creative ways. This high school student is from Indianapolis Project Seed program (sponsored by American Chemical Society, http://www.indyprojectseed.org) and worked in Wang's lab for two months in summer 2014. The experience showed us the potential of working with people with minimum exposure to modern scientific instrumentation to carry out innovative projects.

  6. Automatic vehicle monitoring

    NASA Technical Reports Server (NTRS)

    Bravman, J. S.; Durrani, S. H.

    1976-01-01

    Automatic vehicle monitoring systems are discussed. In a baseline system for highway applications, each vehicle obtains position information through a Loran-C receiver in rural areas and through a 'signpost' or 'proximity' type sensor in urban areas; the vehicle transmits this information to a central station via a communication link. In an advance system, the vehicle carries a receiver for signals emitted by satellites in the Global Positioning System and uses a satellite-aided communication link to the central station. An advanced railroad car monitoring system uses car-mounted labels and sensors for car identification and cargo status; the information is collected by electronic interrogators mounted along the track and transmitted to a central station. It is concluded that automatic vehicle monitoring systems are technically feasible but not economically feasible unless a large market develops.

  7. High concentration dust monitor

    NASA Astrophysics Data System (ADS)

    Lilienfeld, P.

    1981-06-01

    The development, design, fabrication, and testing of a portable, self-contained prototype monitoring instrument capable of detecting and measuring airborne coal dust levels as concentrations in the range of 20 to 500 g/cu m is described. The output of the high concentration dust monitor is essentially independent of particle size and composition, with a response time of 10 seconds. Direct concentration readout as well as internal memory or recording capabilities are incorporated in the device. The operation of the instrument is based on direct sensing of the mass concentration of airborne dust by air-path beta radiation attenuation. The monitor is battery operated and incorporates a microprocessor that controls periodic automatic zero referencing, executes the mass computations, records the data for subsequent playback, and performs internal diagnostic checks.

  8. HyperCard Monitor System.

    ERIC Educational Resources Information Center

    Harris, Julian; Maurer, Hermann

    An investigation into high level event monitoring within the scope of a well-known multimedia application, HyperCard--a program on the Macintosh computer, is carried out. A monitoring system is defined as a system which automatically monitors usage of some activity and gathers statistics based on what is has observed. Monitor systems can give the…

  9. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  10. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  11. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  12. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  13. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  14. Interstitial Monitoring Technologies.

    SciTech Connect

    Berg, Michael; Torgerson, Mark D.

    2005-12-01

    When developing new hardware for a computer system, bus monitors are invaluable for testing compliance and troubleshooting problems. Bus monitors can be purchased for other common system busses such as the Peripheral Component Interconnect (PCI) bus and the Universal Serial Bus (USB). However, the project team did not find any commercial bus analyzers for the Low Pin Count (LPC) bus. This report will provide a short overview of the LPC interface. Page 3 of 11 This page intentionally left blank.Page 4 of 11

  15. Real time obscuration monitoring

    NASA Astrophysics Data System (ADS)

    Agricola, Koos

    2016-09-01

    Recently a real time particle deposition monitoring system is developed. After discussions with optical system engineers a new feature has been added. This enables the real time monitoring of obscuration of exposed optical components by counting the deposited particles and sizing the obscuration area of each particle. This way the Particle Obscuration Rate (POR) can be determined. The POR can be used to determine the risk of product contamination during exposure. The particle size distribution gives information on the type of potential particle sources. The deposition moments will indicate when these sources were present.

  16. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  17. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  18. DEdicated MONitor of EXotransits and Transients (DEMONEXT): a low-cost robotic and automated telescope for followup of exoplanetary transits and other transient events

    NASA Astrophysics Data System (ADS)

    Villanueva, S.; Eastman, J. D.; Gaudi, B. S.; Pogge, R. W.; Stassun, K. G.; Trueblood, M.; Trueblood, P.

    2016-07-01

    We present the design and development of the DEdicatedMONitor of EXotransits and Transients (DEMONEXT), an automated and robotic 20 inch telescope jointly funded by The Ohio State University and Vanderbilt University. The telescope is a PlaneWave CDK20 f/6.8 Corrected Dall-Kirkham Astrograph telescope on a Mathis Instruments MI-750/1000 Fork Mount located atWiner Observatory in Sonoita, AZ. DEMONEXT has a Hedrick electronic focuser, Finger Lakes Instrumentation (FLI) CFW-3-10 filter wheel, and a 2048 x 2048 pixel FLI Proline CCD3041 camera with a pixel scale of 0.90 arc-seconds per pixel and a 30.7× 30.7 arc-minute field-of-view. The telescope's automation, controls, and scheduling are implemented in Python, including a facility to add new targets in real time for rapid follow-up of time-critical targets. DEMONEXT will be used for the confirmation and detailed investigation of newly discovered planet candidates from the Kilodegree Extremely Little Telescope (KELT) survey, exploration of the atmospheres of Hot Jupiters via transmission spectroscopy and thermal emission measurements, and monitoring of select eclipsing binary star systems as benchmarks for models of stellar evolution. DEMONEXT will enable rapid confirmation imaging of supernovae, flare stars, tidal disruption events, and other transients discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN). DEMONEXT will also provide follow-up observations of single-transit planets identified by the Transiting Exoplanet Survey Satellite (TESS) mission, and to validate long-period eclipsing systems discovered by Gaia.

  19. Biological monitors of pollution

    SciTech Connect

    Root, M.

    1990-02-01

    This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).

  20. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...