Science.gov

Sample records for allantoin

  1. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Simultaneous determination of allantoin, choline and L-arginine in Rhizoma Dioscoreae by capillary electrophoresis.

    PubMed

    Zhang, Lan; Liu, Yuanhuan; Chen, Guonan

    2004-07-23

    A rapid, easy and reproducible capillary electrophoresis (CE) method for the simultaneous determination of allantoin, choline and arginine in Rhizoma Dioscoreae was developed first time. Under the optimum condition, the three analytes could be well separated within 5 min in a 70 cm (60 cm effective length) x 75 microm i.d. capillary. The relative standard deviations for both migration time and peak height were less than 3.20%. The linear response range was 5.0-150, 0.9-100 and 1.0-200 microg/ml for arginine, choline and allantoin, respectively. The detection limit of three components was 2.0, 0.4 and 0.5 microg/ml for arginine, choline and allantoin, respectively. Contents of arginine, choline and allantoin in the crude drug of Rhizoma Dioscoreae could be easily determined by the proposed method with satisfactory results.

  3. Effect of allantoin on experimentally induced gastric ulcers: Pathways of gastroprotection.

    PubMed

    da Silva, Dayane Moreira; Martins, José Luís Rodrigues; de Oliveira, Danillo Ramos; Florentino, Iziara Ferreira; da Silva, Daiany Priscilla Bueno; Dos Santos, Fernanda Cristina Alcântara; Costa, Elson Alves

    2018-02-15

    Gastric ulcer affects people worldwide, and its inefficacy and recurrence have fueled the search for new therapeutic strategies. Despite the well-known use of allantoin in medicines and cosmetic products, its effect has not yet been studied with regard to gastric ulcer. Hence, the aim of the present study was to explore the pharmaco-mechanistic efficacy of allantoin against commonly harmful agents that cause injuries to the stomach. Ethanol, indomethacin, and stress-induced gastric ulcer models were adopted, in addition to pylorus ligature, a quantification of vascular permeability, glutathione (GSH), gastric adhered mucus, prostaglandin (PGE 2 ), pro-inflammatory cytokines levels, myeloperoxidase (MPO), and catalase (CAT) activities. The gastric lesions were examined by gross, histological, and ultrastructural features. The results showed that treatment with allantoin (60mg/kg, per oral) reduced the gastric ulcer formation in all models. Furthermore, allantoin reduced the parameters of gastric acid secretion and attenuated both the vascular permeability and MPO activity. The levels of pro-inflammatory cytokines were also reduced, accompanied by a restoration of CAT activity and GSH levels. Notably, allantoin treatment preserved the gastric-adhered mucus and PGE 2 levels after ethanol administration. Microscopic and ultrastructural analysis revealed that allantoin maintained tissue integrity and prevented morphological changes in cells caused by ethanol. In summary, we demonstrated for the first time that allantoin possesses gastroprotective activity through anti-inflammatory, anti-oxidative, antisecretory, and cytoprotective mechanisms. The antisecretory and cytoprotective mechanisms are probably associated with an increase in PGE 2 levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes

    PubMed Central

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K.; Gramajo, Hugo

    2015-01-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. PMID:26187964

  5. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes.

    PubMed

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Gramajo, Hugo; Rodriguez, Eduardo

    2015-10-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Comparative Study of the Biological Activity of Allantoin and Aqueous Extract of the Comfrey Root.

    PubMed

    Savić, Vesna Lj; Nikolić, Vesna D; Arsić, Ivana A; Stanojević, Ljiljana P; Najman, Stevo J; Stojanović, Sanja; Mladenović-Ranisavljević, Ivana I

    2015-08-01

    This study investigates the biological activity of pure allantoin (PA) and aqueous extract of the comfrey (Symphytum officinale L.) root (AECR) standardized to the allantoin content. Cell viability and proliferation of epithelial (MDCK) and fibroblastic (L929) cell line were studied by using MTT test. Anti-irritant potential was determined by measuring electrical capacitance, erythema index (EI) and transepidermal water loss of artificially irritated skin of young healthy volunteers, 3 and 7 days after application of creams and gels with PA or AECR. Pure allantoin showed mild inhibitory effect on proliferation of both cell lines at concentrations 40 and 100 µg/ml, but more pronounced on MDCK cells. Aqueous extract of the comfrey root effect on cell proliferation in concentrations higher than 40 µg/ml was significantly stimulatory for L929 but inhibitory for MDCK cells. Pharmaceutical preparations that contained AECR showed better anti-irritant potential compared with PA. Creams showed better effect on hydration and EI compared with the gels that contained the same components. Our results indicate that the biological activity of the comfrey root extract cannot be attributed only to allantoin but is also likely the result of the interaction of different compounds present in AECR. Topical preparations that contain comfrey extract may have a great application in the treatment of skin irritation. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity

    PubMed Central

    Ma, Pikyee; Patching, Simon G.; Ivanova, Ekaterina; Baldwin, Jocelyn M.; Sharples, David; Baldwin, Stephen A.

    2016-01-01

    This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis–Menten kinetics with an apparent affinity (K mapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI. PMID:26967546

  8. Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection.

    PubMed

    Maksimović, Z; Malenović, A; Jancić, B; Kovacević, N

    2004-07-01

    A RP-HPLC method for quantification of allantoin in silk of fifteen maize hybrids (Zea mays L., Poaceae) was described. Following extraction of the plant material with an acetone-water (7:3, VN) mixture, filtration and dilution, the extracts were analyzed without previous chemical derivatization. Separation and quantification were achieved using an Alltech Econosil C18 column under isocratic conditions at 40 degrees C. The mobile phase flow (20% methanol--80% water with 5 mM sodium laurylsulfate added at pH 2.5, adjusted with 85% orthophosphoric acid; pH of water phase was finally adjusted at 6.0 by addition of triethylamine) was maintained at 1.0 mL/min. Column effluent was monitored at 235 nm. This simple procedure afforded efficient separation and quantification of allantoin in plant material, without interference of polyphenols or other plant constituents of medium to high polarity, or similar UV absorption. Our study revealed that the silk of all investigated maize hybrids could be considered relatively rich in allantoin, covering the concentration range between 215 and 289 mg per 100 g of dry plant material.

  9. In-vitro Antioxidant Activities of the Ethanolic Extracts of Some Contained-Allantoin Plants

    PubMed Central

    Selamoglu, Zeliha; Dusgun, Cihan; Akgul, Hasan; Gulhan, Mehmet Fuat

    2017-01-01

    It has been investigated the in-vitro antioxidant properties of ethanol extracts of the contained-allantoin plants in this study. Contained-allantoined plant samples Plantago lanceolata, Plantago major, Robinia pseudoacacia, Platanus orientalis and Aesculus hippocastanum were tested at different concentrations. The antioxidant activities of plant samples were analysed by 1,1- diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, cupric reducing antioxidant capacity (CUPRAC), reducing power assay and β-carotene bleaching method. Plantago major plant showed the highest antioxidant capacity compared to other plant extracts in results of the in-vitro assays including 1,1- diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method with 90.25 %, cupric reducing antioxidant capacity (CUPRAC) with 1.789 %, reducing power assay (FRAP) with 1.321 % and β-carotene bleaching method with 78.01 % in 1 mg/mL. The lowest antioxidant activity was determined in Robinia pseudoacacia plant. In conclusion, allantoin shows antioxidant properties and it has the positive effect on total antioxidant capacity.

  10. Ultraviolet light assisted extraction of flavonoids and allantoin from aqueous and alcoholic extracts of Symphytum officinale

    PubMed Central

    Al-Nimer, Marwan S. M.; Wahbee, Zainab

    2017-01-01

    Aim: Symphytum officinale (comfrey) is a medicinal plant commonly used in decoction and to treat ailments. It protects the skin against ultraviolet (UV)-irradiation. UV irradiation may induce variable effects on the constituents of herbal extracts and thereby may limit or improve the advantages of using these extracts as medicinal supplements. This study aimed to assess the effect of UV radiations including UV-A, UV-B, and UV-C on the constituents of S. officinale aqueous and alcoholic extracts. Materials and Methods: Comfrey extracts (1% w/v) were prepared using distilled water, ethanol, and methanol. They were exposed to wavelengths of UV-A, UV-B, and UV-C for 10 min. The principal peak on the UV-spectroscopy scanning, the flavonoids, reducing power, and the allantoin levels were determined before and after irradiation. Results: UV irradiation reduces the magnitude of the principle peak at 355 nm wavelength of the aqueous infusion and methanol extracts. It improves the levels of flavonoids and reducing power of the aqueous extracts and increases the levels of allanotoin in aqueous and methanol extracts. Conclusions: UV-radiation enhances the yields of active ingredient of comfrey extracted with methanol, whereas improves the flavonoids, reducing power, and allantoin levels of comfrey extracted by the aqueous infusion method. UV-radiation reduces the levels of flavonoids, reducing power and allantoin when the comfrey extracted by alcohols. PMID:28894626

  11. Identification of allantoin, uric acid, and indoxyl sulfate as biochemical indicators of filth in food packaging by LC.

    PubMed

    Carlson, M; Thompson, R D

    2001-01-01

    A liquid chromatographic (LC) method was developed for the determination of allantoin, uric acid, and indoxyl sulfate in mammalian urine contaminated packaging material including paper bagging, corrugated cardboard, grayboard, and burlap bagging. The procedure involves solvent extraction and isolation of the 3 analytes by reversed-phase LC with ultraviolet detection at 225 nm for allantoin and 286 nm for uric acid and indoxyl sulfate. The composition of authentic mammalian urine such as mouse, rat, cat, dog, and human were also determined with regard to the 3 compounds of interest. A linear concentration range of 0.11-20.4, 0.02-10.0, and 0.04-30.0 microg/mL was obtained for allantoin, uric acid, and indoxyl sulfate, respectively. Limits of detection (LOD) and quantitation (LOQ) were 0.0104 and 0.0345 microg/mL for allantoin; 0.0018 and 0.0060 microg/mL for uric acid; and 0.0049 and 0.0165 microg/mL for indoxyl sulfate, respectively. Interday relative standard deviation values for a mixture of standard allantoin, uric acid, and indoxyl sulfate (n = 5) were 0.97, 0.80, and 0.94%, respectively. Analyte composition for 5 types of authentic mammalian urine varied from 0.19-6.88 mg/mL allantoin; 0.08-0.57 mg/mL uric acid; and 0.03-0.78 mg/mL indoxyl sulfate. Analyte content for 8 samples including 2 samples each for paper, cardboard, grayboard, and burlap bagging each contaminated with mouse or rat urine ranged from allantoin; allantoin, uric acid, and indoxyl sulfate from 11 fortified samples (4 types) for both mouse and rat urine ranged from 28.2 to 114.1 % for allantoin; 32.6 to 123.4% for uric acid; and 52.6 to 118.2% for indoxyl sulfate.

  12. The Structure and Function of a Microbial Allantoin Racemase Reveal the Origin and Conservation of a Catalytic Mechanism.

    PubMed

    Cendron, Laura; Ramazzina, Ileana; Puggioni, Vincenzo; Maccacaro, Eleonora; Liuzzi, Anastasia; Secchi, Andrea; Zanotti, Giuseppe; Percudani, Riccardo

    2016-11-22

    The S enantiomer of allantoin is an intermediate of purine degradation in several organisms and the final product of uricolysis in nonhominoid mammals. Bioinformatics indicated that proteins of the Asp/Glu racemase superfamily could be responsible for the allantoin racemase (AllR) activity originally described in Pseudomonas species. In these proteins, a cysteine of the catalytic dyad is substituted with glycine, yet the recombinant enzyme displayed racemization activity with a similar efficiency (k cat /K M ≈ 5 × 10 4 M -1 s -1 ) for the R and S enantiomers of allantoin. The protein crystal structure identified a glutamate residue located three residues downstream (E78) that can functionally replace the missing cysteine; the catalytic role of E78 was confirmed by site-directed mutagenesis. Allantoin can undergo racemization through formation of a bicyclic intermediate (faster) or proton exchange at the chiral center (slower). By monitoring the two alternative mechanisms by 13 C and 1 H nuclear magnetic resonance, we found that the velocity of the faster reaction is unaffected by the enzyme, whereas the velocity of the slower reaction is increased by 7 orders of magnitude. Protein phylogenies trace the origin of the racemization mechanism in enzymes acting on glutamate, a substrate for which proton exchange is the only viable reaction mechanism. This mechanism was inherited by allantoin racemase through divergent evolution and conserved in spite of the substitution of catalytic residues.

  13. Improved high-performance liquid chromatography (HPLC) method for qualitative and quantitative analysis of allantoin in Zea mays.

    PubMed

    Haghi, Ghasem; Arshi, Rohollah; Safaei, Alireza

    2008-02-27

    A high-performance liquid chromatography (HPLC) method for the qualitative and quantitative analysis of allantoin in silk and seed of Zea mays has been developed. Allantoin separation in crude extract was achieved using a C 18 column and phosphate buffer solution (pH 3.0) as a mobile phase at ambient temperature at a flow rate of 1.0 mL/min and detected at 210 nm. The results showed that the amount of allantoin in samples was between 14 and 271 mg/100 g of dry plant material. A comprehensive validation of the method including sensitivity, linearity, repeatability, and recovery was conducted. The calibration curve was linear over the range of 0.2-200 microg/mL with a correlation coefficient of r2>0.999. Limit of detection (LOD, S/N=3) and limit of quantification (LOQ) values of the allantoin were 0.05 and 0.2 microg/mL (1.0 and 4.0 ng) respectively. The relative standard deviation (RSD) value of the repeatability was reported within 1.2%. The average recovery of allantoin added to samples was 100.6% with RSD of 1.5%.

  14. Silver(I) complexes with hydantoins and allantoin: synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics.

    PubMed

    Puszyńska-Tuszkanow, Mariola; Grabowski, Tomasz; Daszkiewicz, Marek; Wietrzyk, Joanna; Filip, Beata; Maciejewska, Gabriela; Cieślak-Golonka, Maria

    2011-01-01

    Coordination polymers [Ag(L(1,3))](n) (L(1)=hydantoin, L(3)=5,5-dimethylhydantoin), {[Ag(L(2))](.)0.5H(2)O}(n) (L(2)=1-methylhydantoin) and [Ag(NH(3))(L(4))](n) (L(4)=allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H(2)O}(n) was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN=3) coordination sphere around the Ag(+) ion. Additionally, a short Ag⋯Ag distance of 2.997Å was found in the structure resulting in the expanded [3+2] environment of a distorted square shape. The [Ag(L(2))] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    PubMed

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery.

    PubMed

    Manca, Maria Letizia; Matricardi, Pietro; Cencetti, Claudia; Peris, Josè Esteban; Melis, Virginia; Carbone, Claudia; Escribano, Elvira; Zaru, Marco; Fadda, Anna Maria; Manconi, Maria

    2016-05-30

    Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin delivery systems were compared with those obtained by water dispersion of allantoin and the commercial gel, Sameplast(®). Moreover, in this work, for the first time, the elastic and viscous moduli of the skin were measured, underlining the different hydrating/moisturizing effects of the formulations. The application of ARG liposomes seems to provide a softening and relaxing effect on the skin, thus facilitating the drug accumulation and passage into and trough it. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Prolonged winter undernutrition and the interpretation of urinary allantoin:creatinine ratios in white-tailed deer

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Kerr, Ken D.; Mech, L. David; Seal, Ulysses S.

    2000-01-01

    The urinary allantoin:creatinine (A:C) ratio (expressed in micromoles of allantoin to micromoles of creatinine) has shown potential as an index of recent winter energy intake in preliminary controlled studies of elk (Cervus elaphus) involving mild condition deterioration (up to 11% loss of body mass). To ensure reliable nutritional assessments of free-ranging cervids by measuring A:C ratios of urine in snow, it is essential to extend this work. We assessed the effect of moderate and severe winter nutritional restriction on urinary A:C ratios of captive white-tailed deer (Odocoileus virginianus) that lost up to 32% body mass and related these ratios to metabolizable energy intake (MEI), body-mass loss, and other reported nutritional indicators. Deer in the control group were fed a low-protein, low-energy diet ad libitum, whereas deer in the treatment group were fed restricted amounts of the same diet. MEI was below the winter maintenance requirement for all deer, but was lower (P = 0.029) in treatment deer than in control deer. Percent body-mass loss differed between the two groups as the study progressed, and represented the full range of physiological tolerance (0-32% loss). Mean A:C ratios of control deer, which lost up to 17.4% body mass, showed a slight increasing (P = 0.086) trend, whereas initially similar A:C ratios of severely restricted deer increased (P = 0.0002) markedly by the eighth week (0.52 vs. 0.09 µmol:µmol). The urinary A:C ratio was not related (P = 0.839) to recent (2 days prior to urine sampling) MEI, but there was a marginally significant relation (r2 = 0.42, P = 0.110) between the A:C ratio and cumulative percent mass loss. The urinary A:C ratio was directly related to urinary urea nitrogen:creatinine (r2 = 0.59, P < 0.0001) and 3-methylhistidine:creatinine (r2 = 0.43, P < 0.0001) ratios. This study confirms that elevated and increasing A:C ratios may be due either to increasing energy intake or to accelerated tissue catabolism and

  18. [The percutaneous action of a heparin-allantoin-dexpanthenol combination in a specific ointment base. Thrombolytic action on the rabbit ear].

    PubMed

    Tauschel, H D; Bonacina, F; Galetti, F

    1984-01-01

    Experimentally induced thrombi of ear veins in albino rabbits have been treated locally with heparin-containing ointments in presence or absence of allantoin and dexpanthenol, the heparin concentration varying. While the ointments, containing heparin only, induce no or only minor thrombolytic activity, the combination ointments Hepathrombin Adenylchemie containing heparin, allantoin and dexpanthenol show significant thrombolytic activity. This effect is dependent upon the heparin concentration, yet, heparin doses above 50 000 IU per 100 g of ointment do not enhance the thrombolysis furthermore. Further, the studies show that the effective components of Hepathrombin do penetrate into and through the skin, allantoin and dexpanthenol being important components of the ointment probably supporting the transdermal penetration of heparin. The studies also demonstrate the only local thrombolytic effect of the Hepathrombin ointments because the thrombus of the right ear, always treated with ointment base only, did not show any change in length as contrasted to that of the left ear of the same animal treated with the Hepathrombin ointments. Mechanisms of the locally by Hepathrombin/heparin induced thrombolysis will be discussed.

  19. The effects of a topical gel containing chitosan, 0,2% chlorhexidine, allantoin and despanthenol on the wound healing process subsequent to impacted lower third molar extraction

    PubMed Central

    Madrazo-Jiménez, Marta; Rodríguez-Caballero, Ángela; Serrera-Figallo, María-Ángeles; Garrido-Serrano, Roberto; Gutiérrez-Corrales, Aida; Gutiérrez-Pérez, José-Luis

    2016-01-01

    Background Despite efforts to prevent postoperative discomfort, there are still many immediate side effects associated with the surgical extraction of impacted lower third molars. Cicatrization is a physiological process through which the loss of integrity of oral mucosa is recovered and damaged tissues are repaired. Bexident Post (ISDIN, Spain) is a topical gel that contains chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol. While this gel has many clinical indications, there are no published clinical trials evaluating its use in impacted mandibular third molar surgery. This study aims to clinically evaluate the efficacy of a gel containing chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol on wound healing and reduction of postoperative side effects and complications after extraction of an impacted mandibular third molar. Material and Methods A split-mouth design study was carried out on a total of 50 bilaterally and symmetrically impacted third molar extractions, which were randomly placed into either a control group (CG=25) or an experimental group (EG=25). Patients were all informed of the purpose of the study and provided written consent. All procedures were carried out by the same dental practitioner, in accordance with standard surgical protocol. A different dental practitioner, unaware of which treatment had been applied, provided follow-up care. The EG applied 10 ml of topical gel composed of chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol to the surgical wound three times a day for 10 days, patients in the CG did not apply any gel. Results The groups were homogeneous insofar as potentially confounding variables. No significant findings were found regarding postoperative swelling and pain. Neither of the groups displayed poor healing or infectious complications of the wound during the postoperative period. In all the recorded follow-ups (Day 7 p=0.001, and Day 14 p=0.01), the wound’s aesthetic appearance was better in the EG

  20. Effectiveness and Safety of an Overnight Patch Containing Allium cepa Extract and Allantoin for Post-Dermatologic Surgery Scars.

    PubMed

    Prager, Welf; Gauglitz, Gerd G

    2018-06-14

    An occlusive overnight intensive patch medical device (OIP) containing onion extract and allantoin has been developed for preventing and treating dermatologic scars and keloids. Here, we examined the efficacy and safety of the OIP for post-dermatologic surgery scars. This was an intra-individual randomized, observer-blind, controlled study in adults with post-dermatologic surgery scars. Two scars per subject were randomized to no treatment or overnight treatment with the OIP for 12-24 weeks. Scar quality was assessed using the Patient and Observer Scar Assessment Scale (POSAS) and a Global Aesthetic Improvement Scale. A total of 125 subjects were included. The decrease in observer-assessed POSAS from baseline was significantly greater for treated than untreated scars at week 6 (p < 0.001) and 24 (p = 0.001). The decrease in patient-assessed POSAS was significantly greater for the treated scar than the untreated scar at week 12 (p = 0.017) and 24 (p = 0.014). Subject- and investigator-evaluated Global Aesthetic Improvement Scale scores were higher for the treated than the untreated scar at all visits. All subjects considered the global comfort of the OIP to be good or very good, and no safety concerns were identified. This study confirmed that the OIP safely promotes scar healing after minor dermatologic surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  1. The effects of a topical gel containing chitosan, 0,2% chlorhexidine, allantoin and despanthenol on the wound healing process subsequent to impacted lower third molar extraction.

    PubMed

    Madrazo-Jiménez, M; Rodríguez-Caballero, Á; Serrera-Figallo, M-Á; Garrido-Serrano, R; Gutiérrez-Corrales, A; Gutiérrez-Pérez, J-L; Torres-Lagares, D

    2016-11-01

    Despite efforts to prevent postoperative discomfort, there are still many immediate side effects associated with the surgical extraction of impacted lower third molars. Cicatrization is a physiological process through which the loss of integrity of oral mucosa is recovered and damaged tissues are repaired. Bexident Post (ISDIN, Spain) is a topical gel that contains chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol. While this gel has many clinical indications, there are no published clinical trials evaluating its use in impacted mandibular third molar surgery. This study aims to clinically evaluate the efficacy of a gel containing chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol on wound healing and reduction of postoperative side effects and complications after extraction of an impacted mandibular third molar. A split-mouth design study was carried out on a total of 50 bilaterally and symmetrically impacted third molar extractions, which were randomly placed into either a control group (CG=25) or an experimental group (EG=25). Patients were all informed of the purpose of the study and provided written consent. All procedures were carried out by the same dental practitioner, in accordance with standard surgical protocol. A different dental practitioner, unaware of which treatment had been applied, provided follow-up care. The EG applied 10 ml of topical gel composed of chitosan, 0.2% chlorhexidine, allantoin and dexpanthenol to the surgical wound three times a day for 10 days, patients in the CG did not apply any gel. The groups were homogeneous insofar as potentially confounding variables. No significant findings were found regarding postoperative swelling and pain. Neither of the groups displayed poor healing or infectious complications of the wound during the postoperative period. In all the recorded follow-ups (Day 7 p=0.001, and Day 14 p=0.01), the wound's aesthetic appearance was better in the EG. Overall treatment tolerance was satisfactory

  2. [Investigations on the percutaneous activity of a combination of heparin, allantoin and dexpanthenol in a specific ointment base, Antiinflammatory effect on UV-erythema in the guinea pig].

    PubMed

    Tauschel, H D; Rudolph, C

    1982-01-01

    Compared to the ointment base, the application of a heparin-allantoin-dexpanthenol combination ointment (Hepathrombin ointment) to guinea pigs immediately after as well as 30 and 120 min prior to UV-irradiation effects more rapid regression of the erythema along with a reduction in erythema formation. After a pretreatment of 30 min, the temperature of the erythematous skin is also significantly lower. At a pretreatment of 120 min, no temperature differences can be observed between the ointment groups. This effect might result from a superimposition of the anti-erythematous/antiinflammatory effect of Hepathrombin along with a vasodilation effect on the deeper skin layers. The antiinflammatory effect of Hepathrombin is also discussed in connection with the mechanism of UV-induced erythema. The inhibition of UV-erythema by Hepathrombin underlines the rapid skin penetration of the active substances.

  3. [The percutaneous effect of a heparin-allantoin-dexpanthenol combination in a specific ointment base. Anti-allergic, anti-inflammatory effect in the PCA test in the rat].

    PubMed

    Rudolph, C; Tauschel, H D

    1984-01-01

    Local application of a heparin-allantoin-dexpanthenol (Hepathrombin-Adenylchemie) ointment to rats 15 min prior to induction of a passive cutaneous anaphylaxis (PCA) reaction inhibits the anaphylactic reaction as compared to the ointment base. Also, the Evans Blue content as a measure for vascular permeability and the oedema weights are reduced under the heparin containing ointment. The antiallergic/antiinflammatory effect is probably due to heparin.

  4. Comparison of efficacy of silicone gel, silicone gel sheeting, and topical onion extract including heparin and allantoin for the treatment of postburn hypertrophic scars.

    PubMed

    Karagoz, Huseyin; Yuksel, Fuat; Ulkur, Ersin; Evinc, Rahmi

    2009-12-01

    We compared the efficacy of silicone gel (Scarfade), silicone gel sheet (Epi-Derm), and topical onion extract including heparin and allantoin (Contractubex) for the treatment of hypertrophic scars. Forty-five postburn scars were included in the study. Patients with scars less than 6 months from injury were assigned at random to three groups each containing 15 scars, and their treatment was continued for 6 months. Scars were treated with Scarfade, Epiderm and Contractubex. Scar assessment was performed at the beginning of the treatment, and at the end of the sixth month when the treatment was completed by using the Vancouver scar scale. The difference between before and after treatment scores for each three groups was statistically significant. The difference between Scarfade group and Epi-Derm group was not significant; however, the differences of the other groups (Scarfade-Contractubex, Epiderm-Contractubex) were significant. Silicone products, either in gel or sheet, are superior to Contractubex in the treatment of the hypertrophic scar. The therapist should select the most appropriate agent according to the patient's need and guidelines of these signs.

  5. Natural Oil-Based Emulsion Containing Allantoin Versus Aqueous Cream for Managing Radiation-Induced Skin Reactions in Patients With Cancer: A Phase 3, Double-Blind, Randomized, Controlled Trial

    SciTech Connect

    Chan, Raymond Javan, E-mail: email.rchan@gmail.com; School of Nursing, Queensland University of Technology, Kelvin Grove; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove

    Purpose: To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation-induced skin reactions. Methods and Materials: A total of 174 patients were randomized and participated in the study. Patients received either cream 1 (the natural oil-based emulsion containing allantoin) or cream 2 (aqueous cream). Skin toxicity, pain, itching, and skin-related quality of life scores were collected for up to 4 weeks after radiation treatment. Results: Patients who received cream 1 had a significantly lower average level of Common Terminology Criteria for Adverse Events at week 3 (P<.05) but had statistically higher averagemore » levels of skin toxicity at weeks 7, 8, and 9 (all P<.001). Similar results were observed when skin toxicity was analyzed by grades. With regards to pain, patients in the cream 2 group had a significantly higher average level of worst pain (P<.05) and itching (P=.046) compared with the cream 1 group at week 3; however, these differences were not observed at other weeks. In addition, there was a strong trend for cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison with cream 1 (P=.056). Overall, more participants in the cream 1 group were required to use another topical treatment at weeks 8 (P=.049) and 9 (P=.01). Conclusion: The natural oil-based emulsion containing allantoin seems to have similar effects for managing skin toxicity compared with aqueous cream up to week 5; however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching, and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream seems to be a more preferred option.« less

  6. Efficacy of chlorhexidine, dexpanthenol, allantoin and chitosan gel in comparison with bicarbonate oral rinse in controlling post-interventional inflammation, pain and cicatrization in subjects undergoing dental surgery.

    PubMed

    Lopez-Lopez, Jose; Lope-Lopez, Jose; Jan-Pallí, Enric; lez-Navarro, Beatriz Gonzá; González-Navarro, Beatriz; Jané-Salas, Enric; Estrugo-Devesa, Albert; Milani, Massimo

    2015-12-01

    Reducing post-interventional inflammation and pain in odontostomatological surgery procedures, such as tooth extractions, implants or oral biopsies is a relevant clinical goal. Chlorhexidine oral rinse is commonly used with this aim. Recently a new product containing chlorhexidine, dexpanthenol, allantoin and chitosan (Bexident Post [BP]) in a gel formulation has been developed. We evaluated the efficacy of BP in controlling postsurgical inflammation and pain and in promoting cicatrization in subjects undergoing molar extractions. We conducted a prospective sequential cross-over, randomized controlled study in patients undergoing surgical removal of at least two impacted mandibular third molars (teeth numbers 38 and 48) (numbers 17 and 32 in the Universal Tooth Numbering System), in two separate sessions, to determine the effect of BP in comparison with bicarbonate (BC) oral rinse (one spoonful in 200 ml of water), both used three times daily. Each subject utilized both products in a randomized sequential manner after each tooth extraction. Primary outcomes of the study were post-procedure pain and inflammation. Secondary outcomes were analgesic pill rescue use (metamizole 1 cap every 8 hours if needed) and an assessor-blinded evaluation of cicatrization with a semi-quantitative scale (good, satisfactory and insufficient). Post-procedure pain was assessed 6 hours after tooth extraction and for seven consecutive days by means of a 10 cm visual analogue scale (VAS) (from 0: no pain to 10: extreme pain). The extent of inflammation was evaluated through metric measurements of facial perimeter using standardized anatomical reference points. A total of 47 patients (22 men and 25 women; mean age 34 years) were enrolled with a total of 94 molars extracted. Nineteen subjects applied BC as the first sequential treatment and 28 BP as the first. Before surgery no mean differences in the two treatments in inflammation measurements were observed. After surgery mean VAS pain

  7. Allantoin crystal formation in Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae) females

    USDA-ARS?s Scientific Manuscript database

    Bagrada hilaris is a polyphagous herbivore recently reported as an invasive pest in the U.S. During the course of dissecting B. hilaris to understand ovarian morphology in relation to egg production and to determine sperm viability, unique crystals were observed in both the midgut and oviducts. Crys...

  8. Allantoin crystal formation in Bagrada hilaris (Burmeister)(Hemiptera: Pentatomidae) females

    USDA-ARS?s Scientific Manuscript database

    Bagrada hilaris is a polyphagous herbivore recently reported as an invasive pest in the U.S. During the course of dissecting B. hilaris to understand ovarian morphology in relation to egg production and to determine sperm viability, unique crystals were observed in both the midgut and oviducts. Cry...

  9. Aldioxa improves delayed gastric emptying and impaired gastric compliance, pathophysiologic mechanisms of functional dyspepsia

    PubMed Central

    Asano, Teita; Aida, Shuji; Suemasu, Shintaro; Tahara, Kayoko; Tanaka, Ken-ichiro; Mizushima, Tohru

    2015-01-01

    Delayed gastric emptying and impaired gastric accommodation (decreased gastric compliance) play important roles in functional dyspepsia (FD). Here we screen for a clinically used drug with an ability to improve delayed gastric emptying in rats. Oral administration of aldioxa (dihydroxyaluminum allantoinate) partially improved clonidine- or restraint stress-induced delayed gastric emptying. Administration of allantoin, but not aluminium hydroxide, restored the gastric emptying. Both aldioxa and allantoin inhibited clonidine binding to the α-2 adrenergic receptor, suggesting that antagonistic activity of the allantoin moiety of aldioxa on this receptor is involved in the restoration of gastric emptying activity. Aldioxa or aluminium hydroxide but not allantoin restored gastric compliance with restraint stress, suggesting that aluminium hydroxide moiety is involved in this restoration. We propose that aldioxa is a candidate drug for FD, because its safety in humans has already been confirmed and its ameliorating effect on both of delayed gastric emptying and impaired gastric compliance are confirmed here. PMID:26620883

  10. SciTech Connect

    Fedorova, T.A.; Babarin, P.M.

    A sharp drop of uric acid in the urine of irradiated rats begins on the second day afier exposure, and a considerable increase of allantoin ( approximates 26%) was observed the next day sfter the exposure. (R.V.J.)

  11. SciTech Connect

    Struck, W.A.; Elving, P.J.

    Alloxan is the dominant product of the chemical oxidation of uric acid under strongly acid conditions; allantoin is the corresponding product for less acidic to alkaline conditions; separate reaction paths have generally been postulated to account for this difference. A study of the electrolytic oxidation of uric acid indicates the presence of a common path which eventually diverges to produce both alloxan and allantoin in comparable amounts, Uric acid gives a well- defined anodic voltammetric wave at a graphite electrode. When uric acid is electrolytically oxidized in diIute acetic acid at large graphite electrodes, 2.2 Faradays are passed, and 0,25more » mole CO/sub 2/, 0.25 mole of a precursor of allantoin, 0.75 mole urea, 0,3 mole parabanic acid and 0.3 mole alloxan simultaneously appear per mole of uric acid oxidized. At any stage during electrolysis, the sum of the moles of allantoin precursor and urea equals the moles of uric acid oxidized. This material balance and the stability of the allantoin precursor indicate that the production of urea is associated with the pathway(s) that produce alloxan and parabanic acid. These and other facts indicate a mechanism whereby uric acid is oxidized in a 2e process to a primary short-lived intermediate, which undergoes three simultaneous transformations: (1) hydrolysis to the allantoin precursor, (2) hydrolysis to alloxan and urea, and (3) further oxidation and hydrolysis leading to parabanic acid and urea. The non- stoichiometric amount of CO/sub 2/ produced and the non-integral number of electrons involved are accounted for by the formation of parabanic acid. The primary oxidation intermediate ultimately produces both allantoin and alloxan, suggesting that this intermediate may be common to all uric acid oxidations and that the ultimate product heretofore considered to be typified by either allantoin or alloxan (but not both) is most likely controlled by experimental conditions. (auth)« less

  12. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    SciTech Connect

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insectsmore » and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.« less

  13. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  14. SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  15. Allantoinase in the marine polychaete Eudistylia vancouveri

    USGS Publications Warehouse

    Passino, Dora R.M.; Brown, G.W.

    1976-01-01

    Allantoinase, an enzyme in the purine-urea cycle, was found in Eudistylia vancouveri (Polychaeta). The enzyme had a pH optimum at 7.6. The Km was 0.012 M allantoin, and the Arrhenius energy of activation was 12.6 to 14.6 kcal/mol.

  16. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    PubMed

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  18. Potential mechanisms for low uric acid in Parkinson disease

    PubMed Central

    Young, Sarah; Rosen, Ami; Bernhard, Douglas; Millington, David; Factor, Stewart

    2018-01-01

    Several epidemiologic studies have described an association between low serum uric acid (UA) and Parkinson disease (PD). Uric acid is a known antioxidant, and one proposed mechanism of neurodegeneration in PD is oxidative damage of dopamine neurons. However, other complex metabolic pathways may contribute. The purpose of this study is to elucidate potential mechanisms of low serum UA in PD. Subjects who met diagnostic criteria for definite or probable PD (n = 20) and controls (n = 20) aged 55–80 years were recruited. Twenty-four hour urine samples were collected from all participants, and both uric acid and allantoin were measured and corrected for body mass index (BMI). Urinary metabolites were compared using a twoway ANOVA with diagnosis and sex as the explanatory variables. There were no significant differences between PD and controls for total UA (p = 0.60), UA corrected for BMI (p = 0.37), or in the interaction of diagnosis and sex on UA (p = 0.24). Similarly, there were no significant differences between PD and controls for allantoin (p = 0.47), allantoin corrected for BMI (p = 0.57), or in the interaction of diagnosis and sex on allantoin (p = 0.78). Allantoin/UA ratios also did not significantly differ by diagnosis (p = 0.99). Our results imply that low serum UA in PD may be due to an intrinsic mechanism that alters the homeostatic set point for serum UA in PD, and may contribute to relatively lower protection against oxidative damage. These findings provide indirect support for neuroprotection trials aimed at raising serum UA. PMID:26747026

  19. Identification of the fitness determinants of budding yeast on a natural substrate

    PubMed Central

    Filteau, Marie; Charron, Guillaume; Landry, Christian R

    2017-01-01

    The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway. PMID:27935595

  20. Urinary and plasma purine derivatives in fed and fasted llamas (Lama glama and L. guanacoe).

    PubMed

    Bakker, M L; Chen, X B; Kyle, D J; Orskov, E R; Bourke, D A

    1996-02-01

    The changes in urinary and plasma purine derivatives in response to fasting and level of feeding in llamas were examines. In one experiment, four llamas were gradually deprived of feed within 3 days and then fasted for 6 days. Daily urinary excretion of purine derivatives decreased with feed intake and leveled on the last 3 days of fasting at 177 +/- 26 mumol/kg W0.75. Allantoin and uric acid comprised 71% and 15% of total purine derivatives, respectively, in both fed and fasted states, but hypoxanthine plus xanthine increased from 9% to 36%. Plasma concentration of allantoin declined with feed intake reduction, but those of uric acid (217 mumol/l) and hypoxanthine plus xanthine (27 mumol/l) remained relatively unchanged. Concentration of uric acid was higher than that of allantoin, probably due to a high reabsorption of uric acid in renal tubules, which was measured as over 90%. In a second experiment, the four llamas were fed at 860 and 1740 g dry matter/d in a crossover design. Urinary total purine derivatives excretion responded to feed intake (10.4 vs 14.4 mmol/d), although the observed differences did not reach significance. Compared with some ruminant species, it appears that the llama resembles sheep regarding the magnitude of urinary purine derivatives excretion but is unique in maintaining a high concentration of uric acid in plasma, which could be part of the llama's adaptation to their environment.

  1. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family.

    PubMed

    Dresler, Sławomir; Szymczak, Grażyna; Wójcik, Małgorzata

    2017-12-01

    The Boraginaceae family comprises plants that have important therapeutic and cosmetic applications. Their pharmacological effect is related to the presence of naphthaquinones, flavonoids, terpenoids, phenols, or purine derivative - allantoin. In the present study, comparison of some secondary metabolite content and phytochemical relationship between 17 species of the Boraginaceae family were analyzed. High performance capillary electrophoresis (HPCE) was used to perform a chemometric analysis in the following Boraginaceae species: Anchusa azurea Mill., Anchusa undulata L., Borago officinalis L., Buglossoides purpurocaerulea (L.) I.M. Johnst., Cerinthe minor L., Cynoglossum creticum Mill, Echium italicum L., Echium russicum J.F. Gmel., Echium vulgare L., Lindelofia macrostyla (Bunge) Popov (syn. Lindelofia anchusoides (Lindl.) Lehm.), Lithospermum officinale L., Nonea lutea (Desr.) DC., Omphalodes verna Moench (syn. Cynoglossum omphaloides L.), Pulmonaria mollis Wulfen ex Hornem., Pulmonaria obscura Dumort., Symphytum cordatum Waldst. & Kit ex Willd., and Symphytum officinale L. Six active compounds in shoot extracts (allantoin, p-hydroxybenzoic acid, rutin, hydrocaffeic acid, rosmarinic acid, and chlorogenic acid) and four compounds in root extracts (allantoin, hydrocaffeic acid, rosmarinic acid, and shikonin) were identified. The presence and abundance of these compounds were used for the characterization of the species and for revealing their phytochemical similarity and differentiation. The present study provides the first comprehensive report of the extraction and quantification of several compounds in Boraginaceae species (some of them for the first time). Among the 17 species studied, species with potentially high pharmacological activity were recognized.

  2. Identification of the fitness determinants of budding yeast on a natural substrate.

    PubMed

    Filteau, Marie; Charron, Guillaume; Landry, Christian R

    2017-04-01

    The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway.

  3. Metagenomic Analysis Revealed Methylamine and Ureide Utilization of Soybean-Associated Methylobacterium

    PubMed Central

    Minami, Tomoyuki; Anda, Misue; Mitsui, Hisayuki; Sugawara, Masayuki; Kaneko, Takakazu; Sato, Shusei; Ikeda, Seishi; Okubo, Takashi; Tsurumaru, Hirohito; Minamisawa, Kiwamu

    2016-01-01

    Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere. PMID:27431374

  4. Identification, Biochemical Characterization, and Subcellular Localization of Allantoate Amidohydrolases from Arabidopsis and Soybean1[W

    PubMed Central

    Werner, Andrea K.; Sparkes, Imogen A.; Romeis, Tina; Witte, Claus-Peter

    2008-01-01

    Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO2, and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 μm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of l-asparagine and l-aspartate but not d-asparagine. l-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum. PMID:18065556

  5. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood.

    PubMed

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Su, Kuan-Wen; Hua, Man-Chin; Liao, Sui-Ling; Lai, Shen-Hao; Yao, Tsung-Chieh; Yeh, Kuo-Wei; Huang, Jing-Long

    2018-04-21

    Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time-series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years were assessed using 1 H-nuclear magnetic resonance (NMR) spectroscopy coupled with partial least-squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = 0.032 and P = 0.021 respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -0.297 P = 0.035). Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. [Evaluation of Cepan Cream after 15 years of treatment of burn scars].

    PubMed

    Stozkowska, Wiesława

    2002-01-01

    Cepan Cream is used for the topical treatment of scars and keloids resulting from burns, post-operative scars, and contractures. Cepan Cream makes scars more elastic, softer and paler. Plant extracts, heparin and allantoin in Cepan act on the biochemical processes in the developing connective tissue, preventing the formation of hyperplastic scars. These active ingredients enhance swelling, softening and loosening of connective tissue. It exerts softening and smoothing action on indurated and hyperplastic scar tissue, improving collagen structure. It promotes tissue regeneration and reduces exuberant granulation. Cepan is well tolerated.

  7. Effectiveness of a nonrinse, alcohol-free antiseptic hand wash.

    PubMed

    Moadab, A; Rupley, K F; Wadhams, P

    2001-06-01

    This study evaluated the efficacy of a novel surfactant, allantoin, and benzalkonium chloride hand sanitizer using the US Food and Drug Administration's method for testing antiseptic hand washes that podiatric physicians and other health-care personnel use. The alcohol-free product, HandClens, was compared with an alcohol-based product, Purell. Independent researchers from the California College of Podiatric Medicine conducted the study using 40 volunteer students from the class of 2001. The results show that HandClens outperformed Purell and met the regulatory requirements for a hand sanitizer. Purell failed as an antimicrobial hand wash and was less effective than a control soap used in the study.

  8. Phytochemical Composition, Antioxidant Activity, and the Effect of the Aqueous Extract of Coffee (Coffea arabica L.) Bean Residual Press Cake on the Skin Wound Healing

    PubMed Central

    Voytena, Ana Paula Lorenzen; Fanan, Simone; Pitz, Heloísa; Coelho, Daniela Sousa; Horstmann, Ana Luiza; Pereira, Aline; Uarrota, Virgílio Gavicho; Hillmann, Maria Clara; Varela, Lucas Andre Calbusch; Ribeiro-do-Valle, Rosa Maria; Maraschin, Marcelo

    2016-01-01

    The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE), their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA), allantoin (positive control), and carbopol (negative control). The treatments' performance was compared by measuring the reduction of the wound area, with superior result (p < 0.05) for the green coffee AE (78.20%) with respect to roasted coffee AE (53.71%), allantoin (70.83%), and carbopol (23.56%). CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake. PMID:27965732

  9. Phytochemical Composition, Antioxidant Activity, and the Effect of the Aqueous Extract of Coffee (Coffea arabica L.) Bean Residual Press Cake on the Skin Wound Healing.

    PubMed

    Affonso, Regina Celis Lopes; Voytena, Ana Paula Lorenzen; Fanan, Simone; Pitz, Heloísa; Coelho, Daniela Sousa; Horstmann, Ana Luiza; Pereira, Aline; Uarrota, Virgílio Gavicho; Hillmann, Maria Clara; Varela, Lucas Andre Calbusch; Ribeiro-do-Valle, Rosa Maria; Maraschin, Marcelo

    2016-01-01

    The world coffee consumption has been growing for its appreciated taste and its beneficial effects on health. The residual biomass of coffee, originated in the food industry after oil extraction from coffee beans, called coffee beans residual press cake, has attracted interest as a source of compounds with antioxidant activity. This study investigated the chemical composition of aqueous extracts of coffee beans residual press cake (AE), their antioxidant activity, and the effect of topical application on the skin wound healing, in animal model, of hydrogels containing the AE, chlorogenic acid (CGA), allantoin (positive control), and carbopol (negative control). The treatments' performance was compared by measuring the reduction of the wound area, with superior result ( p < 0.05) for the green coffee AE (78.20%) with respect to roasted coffee AE (53.71%), allantoin (70.83%), and carbopol (23.56%). CGA hydrogels reduced significantly the wound area size on the inflammatory phase, which may be associated with the well known antioxidant and anti-inflammatory actions of that compound. The topic use of the coffee AE studied improved the skin wound healing and points to an interesting biotechnological application of the coffee bean residual press cake.

  10. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  11. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    PubMed

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-08-09

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  12. Regulation of Purine Metabolism in Intact Leaves of Coffea arabica.

    PubMed

    Nazario, G. M.; Lovatt, C. J.

    1993-12-01

    The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions.

  13. Urate as a Physiological Substrate for Myeloperoxidase

    PubMed Central

    Meotti, Flavia C.; Jameson, Guy N. L.; Turner, Rufus; Harwood, D. Tim; Stockwell, Samantha; Rees, Martin D.; Thomas, Shane R.; Kettle, Anthony J.

    2011-01-01

    Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 105 m−1 s−1 for compound I and 1.7 × 104 m−1 s−1 for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease. PMID:21266577

  14. Pea Fiber and Wheat Bran Fiber Show Distinct Metabolic Profiles in Rats as Investigated by a 1H NMR-Based Metabolomic Approach

    PubMed Central

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729

  15. SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structuralmore » isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.« less

  16. Ureide metabolism during seedling development in French bean (Phaseolus vulgaris).

    PubMed

    Quiles, Francisco Antonio; Raso, María José; Pineda, Manuel; Piedras, Pedro

    2009-01-01

    French bean (Phaseolus vulgaris) is a legume that transports most of the atmospheric nitrogen fixed in its nodules to the aerial parts of the plant as ureides. Changes in ureide content and in enzymatic activities involved in their metabolism were identified in the cotyledons and embryonic axes during germination and early seedling development. Accumulation of ureides (ca. 1300 nmol per pair of cotyledons) was observed in the cotyledons of dry seeds. Throughout germination, the total amount of ureides slightly decreased to about 1200 nmol, but increased both in cotyledons and in embryonic axes after radicle emergence. In the axes, the ureides were almost equally distributed in roots, hypocotyls and epicotyls. The pattern of ureide distribution was not affected by the presence of nitrate or sucrose in the media up to 6 days after imbibition. Ureides are synthesized from purines because allopurinol (a xanthine dehydrogenase inhibitor) blocks the increase of ureides. Allantoin and allantoate-degrading activities were detected in French bean dried seeds, whereas no ureidoglycolate-degrading activity was detected. During germination, the levels of the three activities remain unchanged in cotyledons. After radicle emergence, the levels of activities in cotyledons changed. Allantoin-degrading activity increased, allantoate-degrading activity decreased and ureidoglycolate-degrading activity remained undetectable in cotyledons. In developing embryonic axes, the three activities were detected throughout germination and early seedling development. The embryonic axes are able to synthesize ureides, because those compounds accumulated in axes without cotyledons.

  17. Evaluation of wound healing properties of Arrabidaea chica Verlot extract.

    PubMed

    Jorge, Michelle Pedroza; Madjarof, Cristiana; Gois Ruiz, Ana Lúcia Tasca; Fernandes, Alik Teixeira; Ferreira Rodrigues, Rodney Alexandre; de Oliveira Sousa, Ilza Maria; Foglio, Mary Ann; de Carvalho, João Ernesto

    2008-08-13

    Arrabidaea chica Verlot. (Bignoniaceae), popularly known as Crajiru, has been traditionally used as wound healing agent. Investigate in vitro and in vivo healing properties of Arrabidaea chica leaves extract (AC). AC was evaluated in vitro in fibroblast growth stimulation (0.25-250 microg/mL) and collagen production stimulation (250 microg/mL) assays. Allantoin (0.25-250 microg/mL) and vitamin C (25 microg/mL) were used as controls respectively. DPPH and Folin-Ciocalteau assays were used for antioxidant evaluation, using trolox (0.25-250 microg/mL) as reference antioxidant. To study wound healing properties in rats, AC (100mg/mL, 200 microL/wound/day) was topically administered during 10 days and wound area was evaluated every day. Allantoin (100mg/mL, 200 microL/wound/day) was used as standard drug. After treatment, wound sites were removed for histopathological analysis and total collagen determination. AC stimulated fibroblast growth in a concentration dependent way (EC50=30 microg/mL), increased in vitro collagen production and demonstrated moderate antioxidant capacity. In vivo, AC reduced wound size in 96%, whereas saline group showed only 36% wound healing. AC efficiency seems to involve fibroblast growing stimulus and collagen synthesis both in vitro and in vivo, beyond moderate scavenging activity, corroborating Crajiru folk use.

  18. Green tea and the skin.

    PubMed

    Hsu, Stephen

    2005-06-01

    Plant extracts have been widely used as topical applications for wound-healing, anti-aging, and disease treatments. Examples of these include ginkgo biloba, echinacea, ginseng, grape seed, green tea, lemon, lavender, rosemary, thuja, sarsaparilla, soy, prickly pear, sagebrush, jojoba, aloe vera, allantoin, feverwort, bloodroot, apache plume, and papaya. These plants share a common character: they all produce flavonoid compounds with phenolic structures. These phytochemicals are highly reactive with other compounds, such as reactive oxygen species and biologic macromolecules, to neutralize free radicals or initiate biological effects. A short list of phenolic phytochemicals with promising properties to benefit human health includes a group of polyphenol compounds, called catechins, found in green tea. This article summarizes the findings of studies using green tea polyphenols as chemopreventive, natural healing, and anti-aging agents for human skin, and discusses possible mechanisms of action.

  19. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.

    PubMed

    Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S

    2013-09-01

    The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. (+)-rumphiin and polyalthurea, new compounds from the stems of Polyalthia rumphii.

    PubMed

    Wang, Tian-Shan; Luo, You-Ping; Wang, Jing; He, Meng-Xiong; Zhong, Ming-Guo; Li, Ying; Song, Xiao-Ping

    2013-10-01

    Two new compounds, (+)-rumphiin (3) and polyalthurea (7), together with seven known ones, 3,4,5-trimethoxy benzoic acid (1), (-)-seselinone (2), cannabisin D (4), allantoin (5), oxostephanine (6) and a mixture of beta-sitosterol (8) and stigmasterol (9) were isolated from the stems of Polyalthia rumphii. The chemical structures of 3 and 7 were elucidated by the combination of spectroscopic data, and the absolute configuration of 3 at C-2 was determined by the matrix method to be R. All compounds were evaluated for their cytotoxicity on four human cancer cell lines, which demonstrated that 3 was a moderate bioactive lignan, and 6 showed significant anticancer activity against SPC-A-1 and BEL-7402 cell lines with IC50 values of 1.47 and 1.73 microg/mL, respectively.

  1. A study of the effect of oral glucose loading on plasma oxidant:antioxidant balance in normal subjects.

    PubMed

    Ma, Shuk-Woon; Tomlinson, Brian; Benzie, Iris F F

    2005-06-01

    Antioxidant defence has been reported to decrease, and oxidative stress to increase, after oral glucose loading in both normal and diabetic subjects. If confirmed in normal subjects, glucose-induced antioxidant depletion has important implications for health in relation to the modern, sugar-rich diet. To investigate changes in plasma biomarkers of oxidant:antioxidant balance in non-diabetic subjects following oral glucose loading. Baseline inter-relationships between biomarkers of glycaemic control, oxidant:antioxidant balance and inflammation were also explored. A single-blinded, placebo-controlled, crossover intervention trial involving 10 healthy, consenting subjects. Venous blood was collected after ingestion of 75 g glucose in 300 mL water, or of water alone. Blood was collected at 0 time (fasting) and 30, 60, 90, 120 min post-ingestion. Within 2 weeks the procedure was repeated with volunteers crossed-over onto the other treatment. Plasma total antioxidant capacity (as the FRAP value), ascorbic acid, alpha-tocopherol, uric acid, malondialdehyde (MDA), allantoin and high sensitivity C-reactive protein (hsCRP), glucose and insulin, were measured in all samples. Paired results post-glucose and post-water at each time interval were compared using the Wilcoxon matched-pairs signed-ranks test. Normal glucose tolerance was observed in all subjects, although, as expected, plasma glucose and insulin increased significantly (p < 0.05, n = 10) after glucose loading. Post-glucose responses in plasma FRAP and the individual antioxidants tested were not significantly different to the responses seen post-water, although both FRAP and alpha-tocopherol decreased slightly. Neither were post-glucose changes in plasma MDA and allantoin, putative biomarkers of oxidative stress, significantly different to those after intake of water alone. Plasma FRAP and alpha-tocopherol also decreased slightly, but not significantly, after intake of water. A significant direct correlation (r = 0

  2. Testing a new alcohol-free hand sanitizer to combat infection.

    PubMed

    Dyer, D L; Gerenraich, K B; Wadhams, P S

    1998-08-01

    Universal precautions require that perioperative health care personnel wash their hand before and after all patient contact. Time constraints, however, can make adhering to universal precautions, including proper hand washing, difficult. Some perioperative health care workers, therefore, routinely use rise-free hand sanitizers to supplement normal hand washing. This study evaluated immediate and persistent antimicrobial effectiveness of two alcohol--containing hand sanitizers and a novel surfactant, allantoin, benzalkonium chloride (SAB) hand sanitizer using a federally approved effectiveness protocol. Results indicate that all three products were equally effective after a single application. After repeated use, the alcohol-containing sanitizers did not meet federal performance standards, and the alcohol-free sanitizer did. These properties and others illustrated in this article indicate that the nonflammable, alcohol-free SAB hand sanitizer is the most favorable of the rise-free hand sanitizer formulas for normal hand washing.

  3. Studies of the effect of grasshopper abdominal secretion on wound healing with the use of murine model.

    PubMed

    Buszewska-Forajta, M; Siluk, D; Daghir-Wojtkowiak, E; Sejda, A; Staśkowiak, D; Biernat, W; Kaliszan, R

    2015-12-24

    Grasshopper, belonging to Chorthippus sp., is a widespread insect inhabiting Polish territory. According to folk knowledge and folk tales, the grasshopper abdominal secretion was used by villagers of Central and South-West Poland as a natural drug accelerating the wound healing process. In the reported study the hypothesis about beneficial properties of grasshopper abdominal secretion on hard to heal wounds was verified. The study was carried out with the use of a murine model (mice C57BL/6). In order to verify the beneficial properties of grasshopper abdominal secretion, the wounds of 8mm in diameter were formed on one side of each tested mouse. The influence of ethanolic extract of insects' secretion on healing process was evaluated in comparison to ethanolic solution of allantoin and 30% aqueous solution of ethanol (medium). The observation was carried out over a 14 day period. Finally the statistical analysis (ANOVA) was carried out to highlight the differences in wound healing rate between applied preparations. Moreover, qualitative composition of grasshoppers' secretion was studied with the use of GC/MS technique. During the first three days of observation, wounds treated with allantoin were healed with higher efficiency in comparison to ethanol and insect secretion preparations. The trend of healing changed from the 4th day of observation. Wounds treated with grasshoppers' abdominal secretion were closuring faster than wounds treated with allantoin or ethanol. In this part of observation, in the case of allantoin and ethanol application, the wound healing efficiency was similar. Since the 9th day of experiment the measurement of wounds size was problematic, due to crust formation. Finally at the 14th day of the study, wounds were totally healed. Morphological study enabled to observe all the phases of healing. In the 5th and 8th day, the infiltration of neutrophils and mononuclear cells in dermis was observed, which is characteristic for inflammatory phase

  4. SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight intomore » the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less

  5. SciTech Connect

    Meadows, J.; Smith, R.C.

    Uric acid has been proposed to be an important antioxidant and free radical scavenger in humans. Of the purine and pyrimidine compounds examined in this study, uric acid showed the greatest susceptibility to ozone-induced degradation. The parent compounds, purine and pyrimidine, were more resistant to ozonation than were the nucleobases. When the degradation of OH-substituted purines was examined, it was found that the more OH groups on the purine ring, the more readily the purine was degraded. Urea and allantoin were identified as degradation products of uric acid. The relative rates of nucleobase degradation in the presence and absence ofmore » uric acid were compared. Uric acid protected thymine, guanine, and uracil from degradation by ozone. In this system uric acid was found to protect the nucleobases as effectively as reduced glutathione.« less

  6. Urinary excretion of purine derivatives as an index of microbial protein synthesis in the camel (Camelus dromedarius).

    PubMed

    Guerouali, Abdelhai; El Gass, Youssef; Balcells, Joaquim; Belenguer, Alvaro; Nolan, John

    2004-08-01

    Five experiments were carried out to extend knowledge of purine metabolism in the camel (Camelus dromedarius) and to establish a model to enable microbial protein outflow from the forestomachs to be estimated from the urinary excretion of purine derivatives (PD; i.e. xanthine, hypoxanthine, uric acid, allantoin). In experiment 1, four camels were fasted for five consecutive days to enable endogenous PD excretion in urine to be determined. Total PD excretion decreased during the fasting period to 267 (SE 41.5) micromol/kg body weight (W)0.75 per d. Allantoin and xanthine + hypoxanthine were consistently 86 and 6.1 % of total urinary PD during this period but uric acid increased from 3.6 % to 7.4 %. Xanthine oxidase activity in tissues (experiment 2) was (micromol/min per g fresh tissue) 0.038 in liver and 0.005 in gut mucosa but was not detected in plasma. In experiment 3, the duodenal supply of yeast containing exogenous purines produced a linear increase in urinary PD excretion rate with the slope indicating that 0.63 was excreted in urine. After taking account of endogenous PD excretion, the relationship can be used to predict purine outflow from the rumen. From the latter prediction, and also the purine:protein ratio in bacteria determined in experiment 5, we predicted the net microbial outflow from the rumen. In experiment 4, with increasing food intake, the rate of PD excretion in the urine increased linearly by about 11.1 mmol PD/kg digestible organic matter intake (DOMI), equivalent to 95 g microbial protein/kg DOMI.

  7. Effects of corn particle size and source on performance of lactating cows fed direct-cut grass-legume forage.

    PubMed

    Reis, R B; Emeterio, F S; Combs, D K; Satter, L D; Costa, H N

    2001-02-01

    We conducted two experiments to evaluate the effects of corn supplementation, source of corn, and corn particle size on performance and nutrient utilization of lactating dairy cows. In experiment 1, treatments were 1) direct-cut grass-legume forage without supplement, 2) direct-cut forage plus 10 kg DM of ground dry shelled corn-based concentrate, and 3) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate. In experiment 2, treatments were 1) direct-cut grass-legume forage plus 10 kg DM of ground dry shelled corn-based concentrate, 2) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate, and 3) direct-cut forage plus 10 kg of DM finely ground high moisture ear corn-based concentrate. Both experiments were designed as 3 x 3 Latin squares replicated three times. In experiment 1, yields of milk and milk protein increased with concentrate supplementation, but were not affected by source of corn. Solids-corrected milk yield tended to increase with grain supplementation. Dry matter intake increased with concentrate supplementation, but was not affected by source of corn or corn particle size. Corn supplements decreased ruminal pH and acetate to propionate ratio and increased ruminal propionate concentration. Grain supplements reduced ruminal ammonia concentration, increased concentration of urine allantoin, and increased the urinary allantoin to creatinine ratio. In the second study, fine grinding of high moisture corn reduced fecal starch plus free glucose levels and tended to increase its apparent digestibility. In both experiments, starch plus free glucose intake was higher on the diets with dry corn, but its utilization was not affected by source of corn.

  8. Effect of Dioscorea opposita Thunb. (yam) supplementation on physicochemical and sensory characteristics of yogurt.

    PubMed

    Kim, S H; Lee, S Y; Palanivel, G; Kwak, H S

    2011-04-01

    A study was conducted to examine the physicochemical, microbial, and sensory properties of yogurt made by supplementing powdered yam Dioscorea opposita Thunb. (YPT) at different concentrations (0.2, 0.4, 0.6, and 0.8%, wt/vol) into milk, which was pasteurized and then fermented at 43°C for 6 h and stored for 16 d. The pH values of all samples decreased, whereas viscosity values and mean microbial counts increased during storage. The L* and a* color values (indicators of lightness and redness, respectively) of yogurt samples were not remarkably influenced by adding YPT, whereas the b* values (indicating yellowness) significantly increased with the addition of YPT at all concentrations at 0 d of storage, probably due to the original yellow color of yam powder. In functional component analyses, when the concentration of YPT increased, the amount of allantoin and diosgenin proportionally increased. The content of allantoin was 3.22 and diosgenin 4.69 μg/mL when 0.2% (wt/vol) YPT was supplemented and did not change quantitatively during the storage period (16 d). The sensory test revealed that the overall acceptability scores of YPT-supplemented yogurt samples (0.2 to 0.6%, wt/vol) were quite similar to those of the control throughout the storage period of 16 d. Based on the data obtained from the present study, it was concluded that the concentrations (0.2 to 0.6%, wt/vol) of YPT could be used to produce YPT-supplemented yogurt without significant adverse effects on physicochemical, microbial, and sensory properties, and enhance functional components from the supplementation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Antioxidant and molecular chaperone defences during estivation and arousal in the South American apple snail Pomacea canaliculata.

    PubMed

    Giraud-Billoud, Maximiliano; Vega, Israel A; Tosi, Martín E Rinaldi; Abud, María A; Calderón, María L; Castro-Vazquez, Alfredo

    2013-02-15

    The invasive Pomacea canaliculata estivates during periods of drought and should cope with harmful effects of reoxygenation during arousal. We studied thiobarbituric acid reactive substances (TBARS), enzymatic (superoxide dismutase, SOD and catalase, CAT) and non-enzymatic antioxidants (uric acid and reduced glutathione), and heat shock protein expression (Hsc70, Hsp70 and Hsp90) in (1) active control snails, (2) snails after 45 days of estivation, and (3) aroused snails 20 min and (4) 24 h after water exposure, in midgut gland, kidney and foot. Both kidney and foot (but not the midgut gland) showed a TBARS increase during estivation and a decrease after arousal. Tissue SOD and CAT did not change in any experimental groups. Uric acid increased during estivation in all tissues, and it decreased after arousal in the kidney. Allantoin, the oxidation product of uric acid, remained constant in the midgut gland but it decreased in the kidney until 20 min after arousal; however, allantoin levels rose in both kidney and foot 24 h after arousal. Reduced glutathione decreased during estivation and arousal, in both midgut gland and kidney, and it remained constant in the foot. Hsc70 and Hsp70 kidney levels were stable during the activity-estivation cycle and Hsp90 expression decreases during estivation and recovers in the early arousal. In foot, the expression of Hsp70 and Hsp90 was high during activity and estivation periods and disminished after arousal. Results indicate that a panoply of antioxidant and molecular chaperone defences may be involved during the activity-estivation cycle in this freshwater gastropod.

  10. Biochemical characterisation of an allantoate-degrading enzyme from French bean (Phaseolus vulgaris): the requirement of phenylhydrazine.

    PubMed

    Raso, María José; Muñoz, Alfonso; Pineda, Manuel; Piedras, Pedro

    2007-10-01

    In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the atmospheric nitrogen fixed in nodules is used for synthesis of the ureides allantoin and allantoic acid, the major long distance transport forms of organic nitrogen in these species. The purpose of this investigation was to characterise the allantoate degradation step in Phaseolus vulgaris. The degradation of allantoin, allantoate and ureidoglycolate was determined "in vivo" using small pieces of chopped seedlings. With allantoate and ureidoglycolate as substrates, the determination of the reaction products required the addition of phenylhydrazine to the assay mixture. The protein associated with the allantoate degradation has been partially purified 22-fold by ultracentrifugation and batch separation with DEAE-Sephacel. This enzyme was specific for allantoate and could not use ureidoglycolate as substrate. The activity was completely dependent on phenylhydrazine, which acts as an activator at low concentrations and decreases the affinity of the enzyme for the substrate at higher concentrations. The optimal pH for the activity of the purified protein was 7.0 and the optimal temperature was 37 degrees C. The activity was completely inhibited by EDTA and only manganese partially restored the activity. The level of activity was lower in extracts obtained from leaves and fruits of French bean grown with nitrate than in plants actively fixing nitrogen and, therefore, relying on ureides as nitrogen supply. This is the first time that an allantoate-degrading activity has been partially purified and characterised from a plant extract. The allosteric regulation of the enzyme suggests a critical role in the regulation of ureide degradation.

  11. The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge.

    PubMed

    Söder, Josefin; Hagman, Ragnvi; Dicksved, Johan; Lindåse, Sanna; Malmlöf, Kjell; Agback, Peter; Moazzami, Ali; Höglund, Katja; Wernersson, Sara

    2017-01-01

    Obesity in dogs is an increasing problem and better knowledge of the metabolism of overweight dogs is needed. Identification of molecular changes related to overweight may lead to new methods to improve obesity prevention and treatment. The aim of the study was firstly to investigate whether Nuclear Magnetic Resonance (NMR) based metabolomics could be used to differentiate postprandial from fasting urine in dogs, and secondly to investigate whether metabolite profiles differ between lean and overweight dogs in fasting and postprandial urine, respectively. Twenty-eight healthy intact male Labrador Retrievers were included, 12 of which were classified as lean (body condition score (BCS) 4-5 on a 9-point scale) and 16 as overweight (BCS 6-8). After overnight fasting, a voided morning urine sample was collected. Dogs were then fed a high-fat mixed meal and postprandial urine was collected after 3 hours. Metabolic profiles were generated using NMR and 45 metabolites identified from the spectral data were evaluated using multivariate data analysis. The results revealed that fasting and postprandial urine differed in relative metabolite concentration (partial least-squares discriminant analysis (PLS-DA) 1 comp: R2Y = 0.4, Q2Y = 0.32; cross-validated ANOVA: P = 0.00006). Univariate analyses of discriminant metabolites showed that taurine and citrate concentrations were elevated in postprandial urine, while allantoin concentration had decreased. Interestingly, lean and overweight dogs differed in terms of relative metabolite concentrations in postprandial urine (PLS-DA 1 comp: R2Y = 0.5, Q2Y = 0.36, cross-validated ANOVA: P = 0.005) but not in fasting urine. Overweight dogs had lower postprandial taurine and a trend of higher allantoin concentrations compared with lean dogs. These findings demonstrate that metabolomics can differentiate 3-hour postprandial urine from fasting urine in dogs, and that postprandial urine metabolites may be more useful than fasting metabolites

  12. The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge

    PubMed Central

    Söder, Josefin; Hagman, Ragnvi; Dicksved, Johan; Lindåse, Sanna; Malmlöf, Kjell; Agback, Peter; Moazzami, Ali; Höglund, Katja; Wernersson, Sara

    2017-01-01

    Obesity in dogs is an increasing problem and better knowledge of the metabolism of overweight dogs is needed. Identification of molecular changes related to overweight may lead to new methods to improve obesity prevention and treatment. The aim of the study was firstly to investigate whether Nuclear Magnetic Resonance (NMR) based metabolomics could be used to differentiate postprandial from fasting urine in dogs, and secondly to investigate whether metabolite profiles differ between lean and overweight dogs in fasting and postprandial urine, respectively. Twenty-eight healthy intact male Labrador Retrievers were included, 12 of which were classified as lean (body condition score (BCS) 4–5 on a 9-point scale) and 16 as overweight (BCS 6–8). After overnight fasting, a voided morning urine sample was collected. Dogs were then fed a high-fat mixed meal and postprandial urine was collected after 3 hours. Metabolic profiles were generated using NMR and 45 metabolites identified from the spectral data were evaluated using multivariate data analysis. The results revealed that fasting and postprandial urine differed in relative metabolite concentration (partial least-squares discriminant analysis (PLS-DA) 1 comp: R2Y = 0.4, Q2Y = 0.32; cross-validated ANOVA: P = 0.00006). Univariate analyses of discriminant metabolites showed that taurine and citrate concentrations were elevated in postprandial urine, while allantoin concentration had decreased. Interestingly, lean and overweight dogs differed in terms of relative metabolite concentrations in postprandial urine (PLS-DA 1 comp: R2Y = 0.5, Q2Y = 0.36, cross-validated ANOVA: P = 0.005) but not in fasting urine. Overweight dogs had lower postprandial taurine and a trend of higher allantoin concentrations compared with lean dogs. These findings demonstrate that metabolomics can differentiate 3-hour postprandial urine from fasting urine in dogs, and that postprandial urine metabolites may be more useful than fasting

  13. Urea Synthesis and Excretion in Aedes aegypti Mosquitoes Are Regulated by a Unique Cross-Talk Mechanism

    PubMed Central

    Isoe, Jun; Scaraffia, Patricia Y.

    2013-01-01

    Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), either separately or simultaneously (ARUO) was silenced by RNAi. The amounts of several nitrogen compounds were quantified in excreta using mass spectrometry. Injection of mosquitoes with either dsRNA-AR or dsRNA-UO significantly decreased the expressions of AR or UO in the fat body (FB) and Malpighian tubules (MT). Surprisingly, the expression level of AR was increased when UO was silenced and vice versa, suggesting a cross-talk regulation between pathways. In agreement with these data, the amount of urea measured 48 h after blood feeding remained unchanged in those mosquitoes injected with dsRNA-AR or dsRNA-UO. However, allantoin significantly increased in the excreta of dsRNA-AR-injected females. The knockdown of ARUO mainly led to a decrease in urea and allantoin excretion, and an increase in arginine excretion. In addition, dsRNA-AR-injected mosquitoes treated with a specific nitric oxide synthase inhibitor showed an increase of UO expression in FB and MT and a significant increase in the excretion of nitrogen compounds. Interestingly, both a temporary delay in the digestion of a blood meal and a significant reduction in the expression of several genes involved in ammonia metabolism were observed in dsRNA-AR, UO or ARUO-injected females. These results reveal that urea synthesis and excretion in A. aegypti are tightly regulated by a unique cross-talk signaling mechanism. This process allows blood-fed mosquitoes to regulate the synthesis and/or excretion of nitrogen waste products, and avoid toxic effects that could result from a lethal concentration of ammonia in their

  14. The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae

    PubMed Central

    Zhao, Xinrui; Zou, Huijun; Chen, Jian; Du, Guocheng; Zhou, Jingwen

    2016-01-01

    In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348–375 and 366–510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae. PMID:26899143

  15. Economic analysis of uricase production under uncertainty: Contrast of chromatographic purification and aqueous two‐phase extraction (with and without PEG recycle)

    PubMed Central

    Torres‐Acosta, Mario A.; Aguilar‐Yáñez, José M.; Rito‐Palomares, Marco

    2015-01-01

    Uricase is the enzyme responsible for the breakdown of uric acid, the key molecule leading to gout in humans, into allantoin, but it is absent in humans. It has been produced as a PEGylated pharmaceutical where the purification is performed through three sequential chromatographic columns. More recently an aqueous two‐phase system (ATPS) was reported that could recover Uricase with high yield and purity. Although the use of ATPS can decrease cost and time, it also generates a large amount of waste. The ability, therefore, to recycle key components of ATPS is of interest. Economic modelling is a powerful tool that allows the bioprocess engineer to compare possible outcomes and find areas where further research or optimization might be required without recourse to extensive experiments and time. This research provides an economic analysis using the commercial software BioSolve of the strategies for Uricase production: chromatographic and ATPS, and includes a third bioprocess that uses material recycling. The key parameters that affect the process the most were located via a sensitivity analysis and evaluated with a Monte Carlo analysis. Results show that ATPS is far less expensive than chromatography, but that there is an area where the cost of production of both bioprocesses overlap. Furthermore, recycling does not impact the cost of production. This study serves to provide a framework for the economic analysis of Uricase production using alternative techniques. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:126–133, 2016 PMID:26561271

  16. Process parameter optimization for hydantoinase-mediated synthesis of optically pure carbamoyl amino acids of industrial value using Pseudomonas aeruginosa resting cells.

    PubMed

    Engineer, Anupama S; Dhakephalkar, Anita P; Gaikaiwari, Raghavendra P; Dhakephalkar, Prashant K

    2013-12-01

    Hydantoinase-mediated enzymatic synthesis of optically pure carbamoyl amino acids was investigated as an environmentally friendly, energy-efficient alternative to the otherwise energy-intensive, polluting chemical synthesis. Hydantoinase-producing bacterial strain was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing and biochemical profiling using the BIOLOG Microbial Identification System. Hydantoinase activity was assessed using hydantoin analogs and 5-monosubstituted hydantoins as substrates in a colorimetric assay. The hydantoinase gene was PCR amplified using gene-specific primers and sequenced on an automated gene analyzer. Hydantoinase gene sequence of P. aeruginosa MCM B-887 revealed maximum homology of only 87 % with proven hydantoinase gene sequences in GenBank. MCM B-887 resting cells converted >99 % of substrate into N-carbamoyl amino acids under optimized condition at 42 °C, pH 8.0, and 100 mM substrate concentration in <120 min. Hydantoin hydrolyzing activity was D-selective and included broad substrate profile of 5-methyl hydantoin, 5-phenyl hydantoin, 5-hydroxyphenyl hydantoin, o-chlorophenyl hydantoin, as well as hydantoin analogs such as allantoin, dihydrouracil, etc. MCM B-887 resting cells may thus be suitable for bio-transformations leading to the synthesis of optically pure, unnatural carbamoyl amino acids of industrial importance.

  17. Effectiveness of Cicer arietinum in cutaneous problems: viewpoint of Avicenna and Razi.

    PubMed

    Mahjour, Marjan; Khoushabi, Arash; Noras, MohammadReza; Hamedi, Shokouhsadat

    2017-08-29

    Cicer arietinum is one of the popular legumes in the most parts of the world. It's known for a long time in Asia because of the many possibilities of its application. Cicer arietinum has benefits for the skin regarding safe ingredients. Some of these ingredients are recommended in skin care. This study aimed to introduce the benefits of Cicer arietinum by reviewing of traditional literature from 10th to 21th century and also conventional medicine for its safe ingredients by searching the electronic data banks such as ISI, Pub Med and Scopus. The results showed Cicer arietinum has many ingredients such as Phenolic compounds, allantoin and amino acids that effect on the skin problems. Also, great traditional Persian scientists such as Avicenna and Razi suggested about the cutaneous benefits of Cicer arietinum. The findings of this study can help the researchers in producing better cosmetic and therapeutic products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Economic analysis of uricase production under uncertainty: Contrast of chromatographic purification and aqueous two-phase extraction (with and without PEG recycle).

    PubMed

    Torres-Acosta, Mario A; Aguilar-Yáñez, José M; Rito-Palomares, Marco; Titchener-Hooker, Nigel J

    2016-01-01

    Uricase is the enzyme responsible for the breakdown of uric acid, the key molecule leading to gout in humans, into allantoin, but it is absent in humans. It has been produced as a PEGylated pharmaceutical where the purification is performed through three sequential chromatographic columns. More recently an aqueous two-phase system (ATPS) was reported that could recover Uricase with high yield and purity. Although the use of ATPS can decrease cost and time, it also generates a large amount of waste. The ability, therefore, to recycle key components of ATPS is of interest. Economic modelling is a powerful tool that allows the bioprocess engineer to compare possible outcomes and find areas where further research or optimization might be required without recourse to extensive experiments and time. This research provides an economic analysis using the commercial software BioSolve of the strategies for Uricase production: chromatographic and ATPS, and includes a third bioprocess that uses material recycling. The key parameters that affect the process the most were located via a sensitivity analysis and evaluated with a Monte Carlo analysis. Results show that ATPS is far less expensive than chromatography, but that there is an area where the cost of production of both bioprocesses overlap. Furthermore, recycling does not impact the cost of production. This study serves to provide a framework for the economic analysis of Uricase production using alternative techniques. © 2015 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  19. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  20. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    PubMed Central

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  1. Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE.

    PubMed

    Zhao, Ying-Yong; Lei, Ping; Chen, Dan-Qian; Feng, Ya-Long; Bai, Xu

    2013-01-01

    Poria cocos epidermis is one of ancient traditional Chinese medicines (TCMs), which is usually used for the treatment of chronic kidney disease (CKD) for thousands of years in China. A metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight high-sensitivity mass spectrometry (UPLC Q-TOF/HSMS) and a mass spectrometry(Elevated Energy) (MS(E)) data collection technique was developed to obtained a systematic view of the development and progression of CKD and biochemistry mechanism of therapeutic effects of P. cocos epidermis (Fu-Ling-Pi, FLP). By partial least squares-discriminate analysis, 19 metabolites were identified as potential biomarkers of CKD. Among the 19 biomarkers, 10 biomarkers including eicosapentaenoic acid, docosahexaenoic acid, lysoPC(20:4), lysoPC(18:2), lysoPC(15:0), lysoPE(20:0/0:0), indoxyl sulfate, hippuric acid, p-cresol sulfate and allantoin were reversed to the control level in FLP-treated groups. The study indicates that FLP treatment can ameliorate CKD by intervening in some dominating metabolic pathways, such as fatty acid metabolism, phospholipid metabolism, purine metabolism and tryptophan metabolism. This work was for the first time to investigate the FLP therapeutic effect based on metabonomics technology, which is a potentially powerful tool to study the TCMs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy.

    PubMed

    Liu, Jingping; Wang, Chengshi; Liu, Fang; Lu, Yanrong; Cheng, Jingqiu

    2015-03-01

    Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which is a major public health problem in the world. To reveal the metabolic changes associated with DN, we analyzed the serum, urine, and renal extracts obtained from control and streptozotocin (STZ)-induced DN rats by (1)H NMR-based metabonomics and multivariate data analysis. A significant difference between control and DN rats was revealed in metabolic profiles, and we identified several important DN-related metabolites including increased levels of allantoin and uric acid (UA) in the DN rats, suggesting that disturbed purine metabolism may be involved in the DN. Combined with conventional histological and biological methods, we further demonstrated that xanthine oxidase (XO), a key enzyme for purine catabolism, was abnormally activated in the kidney of diabetic rats by hyperglycemia. The highly activated XO increased the level of intracellular ROS, which caused renal injury by direct oxidative damage to renal cells, and indirect inducing inflammatory responses via activating NF-κB signaling pathway. Our study highlighted that metabonomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of DN.

  4. Allantoinase in lake trout (Salvelinus namaycush): In vitro effects of PCBs, DDT and metals

    USGS Publications Warehouse

    Passino, Dora R. May; Cotant, Carol A.

    1979-01-01

    1. Allantoinase, an enzyme in the purine-urea cycle, was found in livers of Salvelinus namaycush (Osteichthyes: Salmoniformes).2. The enzyme was active from pH 6.6 to 8.2 at 37°C and from pH 7.4 to 9.0 at 10°C and had an Arrhenius energy was activation of 11.0 kcal/mol and a temperature quotient of 2.0. The Km of the enzyme homogenate was 8.4 mM allantoin.3. The concentrations of inorganic metals at which 50% inhibition occurred during in vitro exposure were 6.0 mg/l Cu2+, 6.7 mg/l Cd2+, 34 mg/l Hg2+ and 52 mg/l Pb2+. The in vitro sensitivity to PCBs, DDT and DDE and kinetics in the presence of metals were determined.4. Allantoinase activity was negatively correlated with body length for fish from Lake Michigan but not from Lake Superior or the laboratory.

  5. The effects of concentrate added to pineapple (Ananas comosus Linn. Mer.) waste silage in differing ratios to form complete diets, on digestion, excretion of urinary purine derivatives and blood metabolites in growing, male, Thai swamp buffaloes.

    PubMed

    Jetana, T; Suthikrai, W; Usawang, S; Vongpipatana, C; Sophon, S; Liang, J B

    2009-04-01

    Four, male, growing Thai swamp buffaloes (197 +/- 5.3 kg and all 1 year old) were used to evaluate the effects of concentrate added to pineapple waste silage in differing ratios, to form a complete diet, studying in vivo digestion, the rate of passage, microbial protein synthesis and blood metabolites. Animals were fed ad libitum with 4 diets, using four combinations of pineapple waste silage (P) and concentrate (C), in the proportions (on a dry matter basis) of 0.8:0.2 (P80:C20), 0.6:0.4 (P60:C40), 0.4:0.6 (P40:C60) and 0.2:0.8 (P20:C80). The results showed that the intakes of dry matter (DM), organic matter (OM), nitrogen (N), the N-balance, urinary purine derivatives (PD) excretion, the ratios of allantoin to creatinine (CR), PD to CR, the plasma urea-N (PUN) and insulin increased in the animals, but the intake of neutral detergent fiber (NDF), the coefficient of whole tract, apparent digestibility of NDF, the transit time (TT) and the mean retention time (TMRT) decreased, when the proportion of concentrate in the diet increased. This study indicated that the proportion of P40:C60 in the diet produced the best efficiency of urinary PD excretion (mmol) per digestible OM intake (kg DOMI).

  6. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  7. A nutritionally mediated risk effect of wolves on elk.

    PubMed

    Christianson, David; Creel, Scott

    2010-04-01

    Though it is widely argued that antipredator responses carry nutritional costs, or risk effects, these costs are rarely measured in wild populations. To quantify risk effects in elk, a species that strongly responds to the presence of wolves, we noninvasively monitored diet selection and nutrient balance in wintering elk in the Upper Gallatin, Montana, USA, over three winters while quantifying the local presence of wolves at a fine spatiotemporal scale. Standard nutritional indices based on the botanical and chemical composition of 786 fecal samples, 606 snow urine samples, and 224 forage samples showed that elk were generally malnourished throughout winter. Increased selection for dietary nitrogen within forage types (e.g., grasses) led to approximately 8% higher fecal nitrogen in the presence of wolves. However, urinary allantoin : creatinine and potassium : creatinine ratios decreased in the presence of wolves, suggesting large declines in energy intake, equal to 27% of maintenance requirements. Urinary nitrogen : creatinine ratios confirmed that deficiencies in nitrogen and/or energy were exacerbated in the presence of wolves, leading to increased endogenous protein catabolism. Overall, the nutritional effects of wolf presence may be of sufficient magnitude to reduce survival and reproduction in wintering elk. Nutritionally mediated risk effects may be important for understanding predator-prey dynamics in wild populations, but such effects could be masked as bottom-up forces if antipredator responses are not considered.

  8. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli.

    PubMed

    Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo

    2005-08-01

    A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.

  9. Reduction of illness absenteeism in elementary schools using an alcohol-free instant hand sanitizer.

    PubMed

    White, C G; Shinder, F S; Shinder, A L; Dyer, D L

    2001-10-01

    Hand washing is the most effective way to prevent the spread of communicable disease. The purpose of this double-blind, placebo-controlled study was to assess whether an alcohol-free, instant hand sanitizer containing surfactants, allantoin, and benzalkonium chloride could reduce illness absenteeism in a population of 769 elementary school children and serve as an effective alternative when regular soap and water hand washing was not readily available. Prior to the study, students were educated about proper hand washing technique, the importance of hand washing to prevent transmission of germs, and the relationship between germs and illnesses. Children in kindergarten through the 6th grade (ages 5-12) were assigned to the active or placebo hand-sanitizer product and instructed to use the product at scheduled times during the day and as needed after coughing or sneezing. Data on illness absenteeism were tracked. After 5 weeks, students using the active product were 33% less likely to have been absent because of illness when compared with the placebo group.

  10. 15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1

    PubMed Central

    Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André

    1982-01-01

    This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517

  11. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    PubMed

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  12. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations.

    PubMed

    Dresler, Sławomir; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Stanisławski, Grzegorz; Bany, Izabela; Wójcik, Małgorzata

    2017-06-01

    The aim of the study was to determine the response of metallicolous and nonmetallicolous Echium vulgare L. populations to chronic multi-metal (Zn, Pb, Cd) and acute Zn (200, 400 μM) and Pb (30, 60 μM) stress. Three populations of E. vulgare, one from uncontaminated and two from metal-contaminated areas, were studied. Two types of experiments were performed - a short-term hydroponic experiment with acute Zn or Pb stress and a long-term manipulative soil experiment with the use of soils from the sites of origin of the three populations. Growth parameters, such as shoot and root fresh weight and leaf area, as well as organic acid accumulation were determined. Moreover, the concentration of selected secondary metabolites and antioxidant capacity in the three populations exposed to Pb or Zn excess were measured. Both metallicolous populations generally achieved higher biomass compared with the nonmetallicolous population cultivated under metal stress in hydroponics or on metalliferous substrates. Plants exposed to Pb or Zn excess or contaminated soil substrate exhibited higher malate and citrate concentrations compared with the reference (no metal stress) plants. It was observed that Zn or Pb stress increased accumulation of allantoin, chlorogenic and rosmarinic acids, total phenolics, and flavonoids. Moreover, it was shown that Pb sequestration in the roots or Zn translocation to the shoots may play a role in enhanced metal tolerance of metallicolous populations under acute Pb/Zn stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. A pilot study investigating the efficacy of botanical anti-inflammatory agents in an OTC eczema therapy.

    PubMed

    Draelos, Zoe Diana

    2016-06-01

    Eczema is a frequently encountered dermatologic condition characterized by inflammation resulting in erythema, scaling, induration, and lichenification. The objective of this research was to examine the roll of botanical anti-inflammatories in alleviating the signs and symptoms of mild-to-moderate eczema. A total of 25 subjects 18+ years of age with mild-to-moderate eczema were asked to leave all oral medications and cleansers unchanged substituting the botanical study moisturizer for all topical treatment three times daily for 2 weeks. Investigator, subject, and noninvasive assessments were obtained at baseline and week 2. There was a highly statistically significant (P < 0.001) improvement in investigator-assessed irritation, erythema, desquamation, roughness, dryness, lichenification, itching, and overall skin appearance after 2 weeks of botanical anti-inflammatory moisturizer use. Overall, a 79% reduction in itching was noted. Skin hydration as measured by corneometry increased 44% increase (P < 0.001). The study moisturizer containing the occlusive ingredients of dimethicone and shea butter oil; the humectant ingredients of glycerin, vitamin B, sodium PCA, and sodium hyaluronate; the barrier repair ingredients of ceramide 3, cholesterol, phytosphingosine, ceramide 6 II, and ceramide 1; and the botanical anti-inflammatories allantoin and bisabolol were helpful in reducing the signs and symptoms of mild-to-moderate eczema. © 2015 Wiley Periodicals, Inc.

  14. Serum metabolites are associated with all-cause mortality in chronic kidney disease.

    PubMed

    Hu, Jiun-Ruey; Coresh, Josef; Inker, Lesley A; Levey, Andrew S; Zheng, Zihe; Rebholz, Casey M; Tin, Adrienne; Appel, Lawrence J; Chen, Jingsha; Sarnak, Mark J; Grams, Morgan E

    2018-06-02

    Chronic kidney disease (CKD) involves significant metabolic abnormalities and has a high mortality rate. Because the levels of serum metabolites in patients with CKD might provide insight into subclinical disease states and risk for future mortality, we determined which serum metabolites reproducibly associate with mortality in CKD using a discovery and replication design. Metabolite levels were quantified via untargeted liquid chromatography and mass spectroscopy from serum samples of 299 patients with CKD in the Modification of Diet in Renal Disease (MDRD) study as a discovery cohort. Six among 622 metabolites were significantly associated with mortality over a median follow-up of 17 years after adjustment for demographic and clinical covariates, including urine protein and measured glomerular filtration rate. We then replicated associations with mortality in 963 patients with CKD from the African American Study of Kidney Disease and Hypertension (AASK) cohort over a median follow-up of ten years. Three of the six metabolites identified in the MDRD cohort replicated in the AASK cohort: fumarate, allantoin, and ribonate, belonging to energy, nucleotide, and carbohydrate pathways, respectively. Point estimates were similar in both studies and in meta-analysis (adjusted hazard ratios 1.63, 1.59, and 1.61, respectively, per doubling of the metabolite). Thus, selected serum metabolites were reproducibly associated with long-term mortality in CKD beyond markers of kidney function in two well characterized cohorts, providing targets for investigation. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.

    PubMed

    Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A

    1982-08-01

    This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment.

  16. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes.

    PubMed

    Lanza, Ian R; Zhang, Shucha; Ward, Lawrence E; Karakelides, Helen; Raftery, Daniel; Nair, K Sreekumaran

    2010-05-10

    Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by (1)H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency.

  17. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  18. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  19. Treatment of pruritus in mild-to-moderate atopic dermatitis with a topical non-steroidal agent.

    PubMed

    Veraldi, Stefano; De Micheli, Paolo; Schianchi, Rossana; Lunardon, Luisa

    2009-06-01

    Atopiclair (Zarzenda) is a topical non-steroidal anti-inflammatory agent for the treatment of allergic diseases of the skin. Three main ingredients are contained in this product: glycyrrhetinic acid, telmesteine and Vitis vinifera extracts. Other ingredients include: allantoin, alpha-bisabolol, capryloyl glycine, hyaluronic acid, shea butter and tocopheryl acetate. Two previous randomized, double-blind, vehicle-controlled clinical studies provided evidence that Atopiclair is effective in the treatment of atopic dermatitis. This article presents an open, multicenter, sponsor-free, study on the anti-pruritic activity of this product in adult patients with mild-to-moderate atopic dermatitis. The Median Visual Analogue Scale (VAS) values were: at the start of the study (TO), median VAS was 48.5 mm; three weeks later (T1), median VAS was 34.1 mm (-14.4 mm from baseline); six weeks later (T2), median VAS was 24.6 mm (-23.9 mm from baseline). Statistical analysis revealed that differences between TO versus T1, TO versus T2 and T1 versus T2 were highly significant (p<0.001). Side effects (local burning) were relatively common, although mild in severity. On the basis of the results of this study, Atopiclair showed efficacy in relief of pruritus in adult patients with mild-to-moderate atopic dermatitis.

  20. Deletion of the Uracil Permease Gene Confers Cross-Resistance to 5-Fluorouracil and Azoles in Candida lusitaniae and Highlights Antagonistic Interaction between Fluorinated Nucleotides and Fluconazole

    PubMed Central

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle

    2014-01-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. PMID:24867971

  1. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action.

    PubMed

    Xuan, Jiekun; Pan, Guihua; Qiu, Yunping; Yang, Lun; Su, Mingming; Liu, Yumin; Chen, Jian; Feng, Guoyin; Fang, Yiru; Jia, Wei; Xing, Qinghe; He, Lin

    2011-12-02

    Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.

  2. Towards natural mimetics of metformin and rapamycin.

    PubMed

    Aliper, Alexander; Jellen, Leslie; Cortese, Franco; Artemov, Artem; Karpinsky-Semper, Darla; Moskalev, Alexey; Swick, Andrew G; Zhavoronkov, Alex

    2017-11-15

    Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.

  3. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation.

    PubMed

    Giskeødegård, Guro F; Davies, Sarah K; Revell, Victoria L; Keun, Hector; Skene, Debra J

    2015-10-09

    Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2-8 h intervals and analysed by (1)H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies.

  4. SciTech Connect

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined.more » KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less

  5. Suppressive effect of viscous dietary fiber on elevations of uric acid in serum and urine induced by dietary RNA in rats is associated with strength of viscosity.

    PubMed

    Koguchi, Takashi; Nakajima, Hisao; Koguchi, Hiromi; Wada, Masahiro; Yamamoto, Yuji; Innami, Satoshi; Maekawa, Akio; Tadokoro, Tadahiro

    2003-10-01

    This study was performed to clarify how dietary fiber (DF) with different viscosities would be associated with dietary RNA metabolism. Male Wistar strain rats, four weeks old, were fed diets containing a 3% (w/w) yeast RNA and a 5% (w/w) viscous DF for five days. Viscosity of DF samples used, in order of strength, were xanthan gum (XG) > guar gum (GG) > locust bean gum (LBG) > karaya gum (KG) > pectin (PE) = arabic gum (AG) > CM-cellulose (CMC) = inulin (IN). The serum uric acid concentration in the viscous DF groups significantly decreased as compared with that in the cellulose (CL) group. The urinary excretions of uric acid and allantoin in the respective groups given AG, GG, IN, KG, PE, and XG were significantly suppressed as compared with those in the CL group. The fecal RNA excretion was markedly increased in the IN, KG, PE, and XG groups in comparison to the CL group. The DF with high viscosity significantly suppressed RNA digestion by RNase A and decreased uptakes of 14C-labeled adenosine and adenosine 5'-monophosphate (5'-AMP) in rat jejunum. The results reveal that the suppressive effect of DF on elevation of serum uric acid concentration induced by dietary RNA in rats is associated with the strength of DF viscosity. The mechanism by which this is accomplished is suggested to be attributed to the inhibitions of digestion for dietary RNA and/or absorption of the hydrolyzed compounds.

  6. High level bacterial contamination of secondary school students' mobile phones.

    PubMed

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  7. High level bacterial contamination of secondary school students’ mobile phones

    PubMed Central

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-01-01

    Introduction While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students’ mobile phones. Methods Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline (tetA, tetB, tetM), erythromycin (ermB) and sulphonamide (sul1) resistance genes was assessed. Results We found a high median bacterial count on secondary school students’ mobile phones (10.5 CFU/cm2) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes (Staphylococcus aureus, Acinetobacter spp., Pseudomonas spp., Bacillus cereus and Neisseria flavescens) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner’s gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Conclusion Quantitative study methods revealed high level bacterial contamination of secondary school students’ mobile phones. PMID:28626737

  8. SciTech Connect

    Meadows, J.R.

    The ozone-induced degradation rates of various purine bases, hydroxylated purine compounds, pyrimidine bases, and uric acid were compared. Of the compounds examined, uric acid was the one most readily degraded while the parent compounds, purine and pyrimidine, were the ones most resistant to ozonation. When the breakdown of hydroxylated purines was studied, it was determined that the more OH substituents on the purine, the more readily it was degraded. Because of the preferential attack by ozone on uric acid in solutions containing a nucleic acid base plus uric acid, the presence of the uric acid had a sparing effect onmore » the base. This effect was readily apparent for guanine, thymine, and uracil which were the bases more labile to ozone. Two of the ozonation products of uric acid were identified as allantoin and urea. Ozonation of bovine and swine erythrocyte suspensions resulted in oxidation of oxyhemoglobin to methemoglobin, formation of thiobarbituric acid-reactive materials-a measure of lipid oxidation- and lysis of the red cells. Each of these changes was inhibited by the presence of uric acid in the solution during ozonation.« less

  9. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L.

    PubMed

    Díaz-Leal, Juan Luis; Gálvez-Valdivieso, Gregorio; Fernández, Javier; Pineda, Manuel; Alamillo, Josefa M

    2012-06-01

    The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.

  10. Effects of Parental Temperature and Nitrate on Seed Performance are Reflected by Partly Overlapping Genetic and Metabolic Pathways.

    PubMed

    He, Hanzi; Willems, Leo A J; Batushansky, Albert; Fait, Aaron; Hanson, Johannes; Nijveen, Harm; Hilhorst, Henk W M; Bentsink, Leónie

    2016-03-01

    Seed performance is affected by the seed maturation environment, and previously we have shown that temperature, nitrate and light intensity were the most influential environmental factors affecting seed performance. Seeds developed in these environments were selected to assess the underlying metabolic pathways, using a combination of transcriptomics and metabolomics. These analyses revealed that the effects of the parental temperature and nitrate environments were reflected by partly overlapping genetic and metabolic networks, as indicated by similar changes in the expression levels of metabolites and transcripts. Nitrogen metabolism-related metabolites (asparagine, γ-aminobutyric acid and allantoin) were significantly decreased in both low temperature (15 °C) and low nitrate (N0) maturation environments. Correspondingly, nitrogen metabolism genes (ALLANTOINASE, NITRATE REDUCTASE 1, NITRITE REDUCTASE 1 and NITRILASE 4) were differentially regulated in the low temperature and nitrate maturation environments, as compared with control conditions. High light intensity during seed maturation increased galactinol content, and displayed a high correlation with seed longevity. Low light had a genotype-specific effect on cell surface-encoding genes in the DELAY OF GERMINATION 6-near isogenic line (NILDOG6). Overall, the integration of phenotypes, metabolites and transcripts led to new insights into the regulation of seed performance. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire.

    PubMed

    Cobo-Díaz, José F; Fernández-González, Antonio J; Villadas, Pablo J; Robles, Ana B; Toro, Nicolás; Fernández-López, Manuel

    2015-05-01

    Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.

  12. Discovery of metabolic signatures for predicting whole organism toxicology.

    PubMed

    Hines, Adam; Staff, Fred J; Widdows, John; Compton, Russell M; Falciani, Francesco; Viant, Mark R

    2010-06-01

    Toxicological studies in sentinel organisms frequently use biomarkers to assess biological effect. Development of "omic" technologies has enhanced biomarker discovery at the molecular level, providing signatures unique to toxicant mode-of-action (MOA). However, these signatures often lack relevance to organismal responses, such as growth or reproduction, limiting their value for environmental monitoring. Our primary objective was to discover metabolic signatures in chemically exposed organisms that can predict physiological toxicity. Marine mussels (Mytilus edulis) were exposed for 7 days to 12 and 50 microg/l copper and 50 and 350 microg/l pentachlorophenol (PCP), toxicants with unique MOAs. Physiological responses comprised an established measure of organism energetic fitness, scope for growth (SFG). Metabolic fingerprints were measured in the same individuals using nuclear magnetic resonance-based metabolomics. Metabolic signatures predictive of SFG were sought using optimal variable selection strategies and multivariate regression and then tested upon independently field-sampled mussels from rural and industrialized sites. Copper and PCP induced rational metabolic and physiological changes. Measured and predicted SFG were highly correlated for copper (r(2) = 0.55, P = 2.82 x 10(-7)) and PCP (r(2) = 0.66, P = 3.20 x 10(-6)). Predictive metabolites included methionine and arginine/phosphoarginine for copper and allantoin, valine, and methionine for PCP. When tested on field-sampled animals, metabolic signatures predicted considerably reduced fitness of mussels from the contaminated (SFG = 6.0 J/h/g) versus rural (SFG = 15.2 J/h/g) site. We report the first successful discovery of metabolic signatures in chemically exposed environmental organisms that inform on molecular MOA and that can predict physiological toxicity. This could have far-reaching implications for monitoring impacts on environmental health.

  13. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines.

    PubMed

    Dou, Rongkun; Liu, Zongying; Yuan, Xue; Xiangfei, Danzhou; Bai, Ruixue; Bi, Zhenfei; Yang, Piao; Yang, Yalan; Dong, Yinsong; Su, Wei; Li, Diqiang; Mao, Canquan

    2017-01-01

    Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs) for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 μg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC), IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema) and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.

  14. Consensus conference on the management of tumor lysis syndrome.

    PubMed

    Tosi, Patrizia; Barosi, Giovanni; Lazzaro, Carlo; Liso, Vincenzo; Marchetti, Monia; Morra, Enrica; Pession, Andrea; Rosti, Giovanni; Santoro, Antonio; Zinzani, Pier Luigi; Tura, Sante

    2008-12-01

    Tumor lysis syndrome is a potentially life threatening complication of massive cellular lysis in cancers. Identification of high-risk patients and early recognition of the syndrome is crucial in the institution of appropriate treatments. Drugs that act on the metabolic pathway of uric acid to allantoin, like allopurinol or rasburicase, are effective for prophylaxis and treatment of tumor lysis syndrome. Sound recommendations should regulate diagnosis and drug application in the clinical setting. The current article reports the recommendations on the management of tumor lysis syndrome that were issued during a Consensus Conference project, and which were endorsed by the Italian Society of Hematology (SIE), the Italian Association of Pediatric Oncologists (AIEOP) and the Italian Society of Medical Oncology (AIOM). Current concepts on the pathophysiology, clinical features, and therapy of tumor lysis syndrome were evaluated by a Panel of 8 experts. A consensus was then developed for statements regarding key questions on tumor lysis syndrome management selected according to the criterion of relevance by group discussion. Hydration and rasburicase should be administered to adult cancer patients who are candidates for tumor-specific therapy and who carry a high risk of tumor lysis syndrome. Cancer patients with a low-risk of tumor lysis syndrome should instead receive hydration along with oral allopurinol. Hydration and rasburicase should also be administered to patients with clinical tumor lysis syndrome and to adults and high-risk children who develop laboratory tumor lysis syndrome. In conclusion, the Panel recommended rasburicase for tumor lysis syndrome prophylaxis in selected patients based on the drug efficacy profile. Methodologically rigorous studies are needed to clarify its cost-effectiveness profile.

  15. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry.

    PubMed

    Abernethy, Grant; Higgs, Kerianne

    2013-05-03

    A method to aid in the detection of the economically driven adulteration of fresh milk with a range of small, nitrogen containing compounds, including melamine, ammeline, ammelide, cyanuric acid, allantoin, thiourea, urea, biuret, triuret, semicarbazide, aminotriazine, 3- and 4-aminotriazole, cyanamide, dicyandiamide, guanidine, choline, hydroxyproline, nitrate, and a range of amino acids, has been developed. (15)N2-Urea is used as an internal standard. The adulteration of milk with exogenous urea has previously been difficult to detect because of the variation in the naturally occurring levels of urea in milk. However, by monitoring the contaminants biuret and triuret, which comprise up to 1% of synthetic urea, the adulteration of milk with urea-based fertilizer can be detected. We estimate that to be economically viable, adulteration of the order of 90-4000ppm of the above adulterants would need to be added to fresh milk. For most of the compounds, an arbitrary detection threshold of 2ppm is therefore more than sufficient. For biuret, a lower detection threshold, better than 0.5ppm, is desirable and the sensitivity for biuret and triuret can be improved by the post-column addition of lithium to create lithium adducts under electrospray ionisation. Sample handling involves a two-step solvent precipitation method that is deployed in a 96-well plate format, and the hydrophilic interaction liquid chromatography uses a rapid gradient (1.2min). Three separate injections, to detect the positively charged compounds, the negatively charged compounds and amino acids and finally the lithium adducts, are used. This rapid and qualitative survey method may be deployed as a second tier screening method to quickly reduce sample numbers indicated as irregular by an FTIR based screening system, and to direct analysis to appropriate quantification methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats.

    PubMed

    Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I

    2013-09-01

    Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.

  17. Diabetes Associated Metabolomic Perturbations in NOD Mice

    PubMed Central

    Hwang, Jessica; Poudel, Ananta; Jo, Junghyo; Periwal, Vipul; Fiehn, Oliver; Hara, Manami

    2014-01-01

    Non-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressinggreen fluorescent protein under the control of mouse insulin I promoter.While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue;overt T1D did not develop until animals lost ~70% of the total beta-cell mass.Gas chromatography time of flight mass spectrometry (GC-TOF) was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n=76) across a wide range of ages (neonates to >40-wk).Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric oxide-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6)perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression. PMID:25755629

  18. Generation of semicarbazide from natural azine development in foods, followed by reaction with urea compounds.

    PubMed

    Abernethy, Grant A

    2015-01-01

    This paper proposes a mechanism to explain the trace levels of natural semicarbazide occasionally observed in foods. The analytical derivative of semicarbazide, 2-nitrobenzaldehyde semicarbazone, is often measured as a metabolite marker to detect the widely banned antibiotic nitrofurazone. However, this marker is not specific as semicarbazide may be present in foods for several reasons other than exposure to nitrofurazone. In some cases, an entirely natural origin of semicarbazide is suspected, although up until now there was no explanation about how semicarbazide could occur naturally. In this work, semicarbazide is proposed as being generated from natural food compounds via an azine intermediate. Hydrazine, in the form of azines or hydrazones, may be generated in dilute aqueous solution from the natural food compounds ammonia, hydrogen peroxide and acetone, following known oxidation chemistry. When this mixture was prepared in the presence of ureas such as allantoin, urea, biuret or hydroxyurea, and then analysed by the standard method for the determination of semicarbazide, 2-nitrobenzaldehyde semicarbazone was detected. 2-Nitrobenzaldehyde aldazine was also found, and it may be a general marker for azines in foods. This proposal, that azine formation is central to semicarbazide development, provides a convergence of the published mechanisms for semicarbazide. The reaction starts with hydrogen peroxide, peracetic acid, atmospheric oxygen or hypochlorite; generates hydrazine either by an oxaziridine intermediate or via the chlorination of ammonia; and then either route may converge on azine formation, followed by reaction with a urea compound. Additionally, carbamate ion may speculatively generate semicarbazide by reaction with hydrazine, which might be a significant route in the case of the hypochlorite treatment of foods or food contact surfaces. Significantly, detection of 2-nitrobenzaldehyde semicarbazone may be somewhat artefactual because semicarbazide can

  19. Pharmacokinetic study of the structural components of adenosine diphosphate-encapsulated liposomes coated with fibrinogen γ-chain dodecapeptide as a synthetic platelet substitute.

    PubMed

    Taguchi, Kazuaki; Ujihira, Hayato; Ogaki, Shigeru; Watanabe, Hiroshi; Fujiyama, Atsushi; Doi, Mami; Okamura, Yosuke; Takeoka, Shinji; Ikeda, Yasuo; Handa, Makoto; Otagiri, Masaki; Maruyama, Toru

    2013-08-01

    Fibrinogen γ-chain (dodecapeptide HHLGGAKQAGDV, H12)-coated, ADP-encapsulated liposomes [H12-(ADP)-liposomes] were developed as a synthetic platelet alternative that specifically accumulates at bleeding sites as the result of interactions with activated platelets via glycoprotein IIb/IIIa and augments platelet aggregation by releasing ADP. The aim of this study is to characterize the pharmacokinetic properties of H12-(ADP)-liposomes and structural components in rats, and to predict the blood retention of H12-(ADP)-liposomes in humans. With use of H12-(ADP)-liposomes in which the encapsulated ADP and liposomal membrane cholesterol were radiolabeled with (14)C and (3)H, respectively, it was found that the time courses for the plasma concentration curves of (14)C and (3)H radioactivity showed that the H12-(ADP)-liposomes remained intact in the blood circulation for up to 24 hours after injection, and were mainly distributed to the liver and spleen. However, the (14)C and (3)H radioactivity of H12-(ADP)-liposomes disappeared from organs within 7 days after injection. The encapsulated ADP was metabolized to allantoin, which is the final metabolite of ADP in rodents, and was mainly eliminated in the urine, whereas the cholesterol was mainly eliminated in feces. In addition, the half-life of the H12-(ADP)-liposomes in humans was predicted to be approximately 96 hours from pharmacokinetic data obtained for mice, rats, and rabbits using an allometric equation. These results suggest that the H12-(ADP)-liposome has potential with proper pharmacokinetic and acceptable biodegradable properties as a synthetic platelet substitute.

  20. Urinary excretion of purine derivatives in Bos indicus x Bos taurus crossbred cattle.

    PubMed

    Ojeda, Alvaro; de Parra, Ornella; Balcells, Joaquím; Belenguer, Alvaro

    2005-06-01

    Four experiments were performed to study the kinetics of purine metabolism and urinary excretion in Zebu crossbred cattle. Fasting excretion was established in Expt 1, using eighteen male Bos indicus x Bos taurus crossbred cattle (261 (SE 9.1) kg body weight), six of each of the following genotypes: 5/8 Bos indicus, 1/2 Bos indicus and 3/8 Bos indicus. No significant differences were observed among genotypes in fasting purine derivative excretion (277.3 (SE 35.43) micromol/metabolic body weight). In a second experiment we measured the xanthine oxidase activity, which was higher in liver than in duodenal mucosa (0.64 and 0.06 (SE 0.12) units/g wet tissue per min respectively; P>0.05) being in plasma 0.60 (SE 0.36) units/l per min. The kinetics of uric acid were measured by intravenous pulse dose of [1,3-15N]uric acid (Expt 3). The cumulative recovery of the isotope in urine was 82 (SE 6.69) %, and uric acid plasma removal, pool size and mean retention time were 0.284 (SE 0.051) per h, 5.45 (SE 0.823) mmol and 3.52 (SE 0.521) h, respectively. Allantoin was removed from plasma at an estimated fractional rate of 0.273 (SE 0.081) per h and mean retention was 3.66 (SE 1.08) h. In Expt 4, the relationship between urinary purine derivative excretion (Y; mmol/d) and digestible organic matter intake (X, kg/d) was defined by the equation: Y=7.69 (SE 4.2)+5.69 (SE 1.68) X; n 16, Se 1.31, r 0.67.

  1. Metabolomic profiling in the prediction of gestational diabetes mellitus.

    PubMed

    Bentley-Lewis, Rhonda; Huynh, Jennifer; Xiong, Grace; Lee, Hang; Wenger, Julia; Clish, Clary; Nathan, David; Thadhani, Ravi; Gerszten, Robert

    2015-06-01

    Metabolomic profiling in populations with impaired glucose tolerance has revealed that branched chain and aromatic amino acids (BCAAs) are predictive of type 2 diabetes. Because gestational diabetes mellitus (GDM) shares pathophysiological similarities with type 2 diabetes, the metabolite profile predictive of type 2 diabetes could potentially identify women who will develop GDM. We conducted a nested case-control study of 18- to 40-year-old women who participated in the Massachusetts General Hospital Obstetrical Maternal Study between 1998 and 2007. Participants were enrolled during their first trimester of a singleton pregnancy and fasting serum samples were collected. The women were followed throughout pregnancy and identified as having GDM or normal glucose tolerance (NGT) in the third trimester. Women with GDM (n = 96) were matched to women with NGT (n = 96) by age, BMI, gravidity and parity. Liquid chromatography-mass spectrometry was used to measure the levels of 91 metabolites. Data analyses revealed the following characteristics (mean ± SD): age 32.8 ± 4.4 years, BMI 28.3 ± 5.6 kg/m(2), gravidity 2 ± 1 and parity 1 ± 1. Six metabolites (anthranilic acid, alanine, glutamate, creatinine, allantoin and serine) were identified as having significantly different levels between the two groups in conditional logistic regression analyses (p < 0.05). The levels of the BCAAs did not differ significantly between GDM and NGT. Metabolic markers identified as being predictive of type 2 diabetes may not have the same predictive power for GDM. However, further study in a racially/ethnically diverse population-based cohort is necessary.

  2. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort.

    PubMed

    Gil, Ana M; Duarte, Daniela; Pinto, Joana; Barros, António S

    2018-03-02

    This nuclear magnetic resonance metabolomics study compared the influence of two different central Portugal exposomes, one of which comprised an important source of pollutants (the Estarreja Chemical Complex, ECC), on the urinary metabolic trajectory of a cohort of healthy pregnant women (total n = 107). An exposome-independent description of pregnancy metabolism was found to comprise a set of 18 metabolites reflecting expected changes in branched-chain amino acid catabolism and hormone and lipid metabolisms. In addition, a set of small changes in some metabolites was suggested to be exposome-dependent and characteristic of pregnant subjects from the Estarreja region. These results suggested that the Estarreja exposome may impact to a very low extent pregnancy metabolism, inducing slight changes in amino acid metabolism (alanine, glycine, and 3-hydroxyisobutyrate, possibly involved in valine metabolism), tricarboxylic acid (TCA) cycle (cis-aconitate), diet, or gut microflora (furoylglycine) as well as allantoin, 2-hydroxyisobutyrate, and an unassigned resonance at δ 8.45. Furthermore, the urine of Estarreja subjects was found to generally contain higher levels of 4-hydroxyphenylacetate and lower levels of citrate. However, out of the above metabolites, only glycine and citrate seemed to correlate with the proximity to the ECC, with slightly relative higher levels of these compounds found for subjects living closer to the ECC. This suggested possible small effects of local pollutants on energy metabolism, with the remaining exposome-dependent metabolite changes most probably originating from other aspects of the local exposome such as diet and lifestyle. Despite the limitation of this study regarding the unavailability of objective environmental parameters for the period under study, our results confirm the usefulness of metabolomics of human urine to gauge exposome effects on human health and, particularly, during pregnancy.

  3. Comparison of Antioxidant Constituents of Agriophyllum squarrosum Seed with Conventional Crop Seeds.

    PubMed

    Xu, Hai-Yan; Zheng, Hua-Chuan; Zhang, Hui-Wen; Zhang, Jin-Yu; Ma, Chao-Mei

    2018-06-05

    Twelve chemical constituents were identified from the Agriophyllum squarrosum seed (ASS). ASS contained large amounts of flavonoids, which were more concentrated in the seed coat. ASS-coat (1 g) contained 335.7 μg flavonoids of rutin equivalent, which was similar to the flavonoid content in soybean (351.2 μg/g), and greater than that in millet, wheat, rice, peanut, and corn. By LC-MS analysis, the major constituents in ASS were 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D- glucopyranosyl]-7- O-(β-D-glucopyranosyl)-quercetin (1), rutin (4), quercetin-3-O-β-D- apiosyl(1→2)-[α-L-rhamnosyl(l→6)]-β-D-glucoside (2), isorhamnetin-3-O-rutinoside (5), and allantoin (3), compared with isoflavonoids-genistin (16), daidzin (14), and glycitin (18) in soybean. Among constituents in ASS, compounds 1, 2, 4, protocatechuic acid (8), isoquercitrin (11), and luteolin-6-C-glucoside (12) potently scavenged DPPH radicals and intracellular ROS; strongly protected against peroxyl radical-induced DNA scission; and upregulated Nrf2, phosphorylated p38, phosphorylated JNK, and Bcl-2 in HepG2 cells. These results indicate that ASS is rich in antioxidant constituents that can enrich the varieties of food flavonoids, with significant beneficial implications for those who suffer from oxidative stress-related conditions. This study found that A. squarrosum seed contains large amounts of antioxidative flavonoids and compared its chemical constituents with those of conventional foods. These results should increase the interest in planting the sand-fixing A. squarrosum on a large scale, thus preventing desertification and providing valuable foods. © 2018 Institute of Food Technologists®.

  4. Early signaling, synthesis, transport and metabolism of ureides.

    PubMed

    Baral, Bikash; Teixeira da Silva, Jaime A; Izaguirre-Mayoral, Maria Luisa

    2016-04-01

    The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition

  5. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice.

    PubMed

    Garcia-Perez, Isabel; Angulo, Santiago; Utzinger, Jürg; Holmes, Elaine; Legido-Quigley, Cristina; Barbas, Coral

    2010-07-01

    Metabonomic and metabolomic studies are increasingly utilized for biomarker identification in different fields, including biology of infection. The confluence of improved analytical platforms and the availability of powerful multivariate analysis software have rendered the multiparameter profiles generated by these omics platforms a user-friendly alternative to the established analysis methods where the quality and practice of a procedure is well defined. However, unlike traditional assays, validation methods for these new multivariate profiling tools have yet to be established. We propose a validation for models obtained by CE fingerprinting of urine from mice infected with the blood fluke Schistosoma mansoni. We have analysed urine samples from two sets of mice infected in an inter-laboratory experiment where different infection methods and animal husbandry procedures were employed in order to establish the core biological response to a S. mansoni infection. CE data were analysed using principal component analysis. Validation of the scores consisted of permutation scrambling (100 repetitions) and a manual validation method, using a third of the samples (not included in the model) as a test or prediction set. The validation yielded 100% specificity and 100% sensitivity, demonstrating the robustness of these models with respect to deciphering metabolic perturbations in the mouse due to a S. mansoni infection. A total of 20 metabolites across the two experiments were identified that significantly discriminated between S. mansoni-infected and noninfected control samples. Only one of these metabolites, allantoin, was identified as manifesting different behaviour in the two experiments. This study shows the reproducibility of CE-based metabolic profiling methods for disease characterization and screening and highlights the importance of much needed validation strategies in the emerging field of metabolomics.

  6. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  7. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    PubMed

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  8. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  9. Metabolomic profiling in the prediction of gestational diabetes mellitus

    PubMed Central

    Huynh, Jennifer; Xiong, Grace; Lee, Hang; Wenger, Julia; Clish, Clary; Nathan, David; Thadhani, Ravi; Gerszten, Robert

    2015-01-01

    Aims/hypothesis Metabolomic profiling in populations with impaired glucose tolerance has revealed that branched chain and aromatic amino acids (BCAAs) are predictive of type 2 diabetes. Because gestational diabetes mellitus (GDM) shares pathophysiological similarities with type 2 diabetes, the metabolite profile predictive of type 2 diabetes could potentially identify women who will develop GDM. Methods We conducted a nested case–control study of 18- to 40-year-old women who participated in the Massachusetts General Hospital Obstetrical Maternal Study between 1998 and 2007. Participants were enrolled during their first trimester of a singleton pregnancy and fasting serum samples were collected. The women were followed throughout pregnancy and identified as having GDM or normal glucose tolerance (NGT) in the third trimester. Women with GDM (n=96) were matched to women with NGT (n=96) by age, BMI, gravidity and parity. Liquid chromatography–mass spectrometry was used to measure the levels of 91 metabolites. Results Data analyses revealed the following characteristics (mean±SD): age 32.8±4.4 years, BMI 28.3±5.6 kg/m2, gravidity 2±1 and parity 1±1. Six metabolites (anthranilic acid, alanine, glutamate, creatinine, allantoin and serine) were identified as having significantly different levels between the two groups in conditional logistic regression analyses (p<0.05). The levels of the BCAAs did not differ significantly between GDM and NGT. Conclusions/interpretation Metabolic markers identified as being predictive of type 2 diabetes may not have the same predictive power for GDM. However, further study in a racially/ethnically diverse population-based cohort is necessary. PMID:25748329

  10. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants1[w

    PubMed Central

    Nikiforova, Victoria J.; Kopka, Joachim; Tolstikov, Vladimir; Fiehn, Oliver; Hopkins, Laura; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2005-01-01

    Sulfur is an essential macroelement in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production. PMID:15834012

  11. Using next generation transcriptome sequencing to predict an ectomycorrhizal metablome.

    SciTech Connect

    Larsen, P. E.; Sreedasyam, A.; Trivedi, G

    Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models usingmore » a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.« less

  12. Deletion of the uracil permease gene confers cross-resistance to 5-fluorouracil and azoles in Candida lusitaniae and highlights antagonistic interaction between fluorinated nucleotides and fluconazole.

    PubMed

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle; Noël, Thierry

    2014-08-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178

    PubMed Central

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-01-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2−), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX. PMID:16085803

  14. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Sterol content in the artificial diet of Mythimna separata affects the metabolomics of Arma chinensis (Fallou) as determined by proton nuclear magnetic resonance spectroscopy.

    PubMed

    Guo, Yi; Liu, Chen-Xi; Zhang, Li-Sheng; Wang, Meng-Qing; Chen, Hong-Yin

    2017-12-01

    Insects cannot synthesize sterols and must obtain them from plants. Therefore, reducing plant sterol content or changing sterol type might be an effective pest control strategy. However, the impacts of these changes on pests' natural predators remain unknown. Here, we fed artificial diets with reduced sterol content to Mythimna separata (Walker) (Lepidoptera: Noctuidae) and investigated the effects on its natural predator, Arma chinensis (Fallou) (Hemiptera: Pentatomidae). Reduced sterol content in M. separata (MS1, MS2, and MS5) was achieved by feeding them artificial diets prepared from a feed base subjected to one, two, or five cycles of sterol extractions, respectively. The content of most substances increased in A. chinensis (AC) groups feeding on MS2 and MS5. The content of eight substances (alanine, betaine, dimethylamine, fumarate, glutamine, glycine, methylamine, and sarcosine) differed significantly between the control (AC0) and treated (AC1, AC2, and AC5) groups. Metabolic profiling revealed that only AC5 was significantly distinct from AC0; the major substances contributing to this difference were maltose, glucose, tyrosine, proline, O-phosphocholine, glutamine, allantoin, lysine, valine, and glutamate. Furthermore, only two metabolic pathways, that is, nicotinate and nicotinamide metabolism and ubiquinone and other terpenoid-quinone biosynthesis, differed significantly between AC1 and AC5 and the control, albeit with an impact value of zero. Thus, the sterol content in the artificial diet fed to M. separata only minimally affected the metabolites and metabolic pathways of its predator A. chinensis, suggesting that A. chinensis has good metabolic self-regulation with high resistance to sterol content changes. © 2017 Wiley Periodicals, Inc.

  16. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    PubMed

    Smith, Adam Alexander Thil; Belda, Eugeni; Viari, Alain; Medigue, Claudine; Vallenet, David

    2012-05-01

    Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  17. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.

    PubMed

    Dall'Acqua, Stefano; Stocchero, Matteo; Boschiero, Irene; Schiavon, Mariano; Golob, Samuel; Uddin, Jalal; Voinovich, Dario; Mammi, Stefano; Schievano, Elisabetta

    2016-03-01

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.

    PubMed

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-08-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2-), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.

  19. Structural and Functional Insights into the Catalytic Inactivity of the Major Fraction of Buffalo Milk Xanthine Oxidoreductase

    PubMed Central

    Gadave, Kaustubh S.; Panda, Santanu; Singh, Surender; Kalra, Shalini; Malakar, Dhruba; Mohanty, Ashok K.; Kaushik, Jai K.

    2014-01-01

    Background Xanthine oxidoreductase (XOR) existing in two interconvertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO), catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. Methods and Findings Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (k cat/K m) of 0.11 sec−1 µM−1 of buffalo XO was 8–10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm) of 46,000 M−1 cm−1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum) were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. Conclusion A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way. PMID:24498153

  20. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    PubMed

    Puri, Krishna D; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media) and in planta (during infection on the susceptible wheat cultivar 'Briggs') using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%), polysaccharide metabolism (7.7%) or were of unknown functions (57.6%). The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI), respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved in

  1. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    PubMed

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen

  2. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment.

    PubMed

    Dias, Julia D L; Silva, Rayana B; Fernandes, Tatiane; Barbosa, Eugenio F; Graças, Larissa E C; Araujo, Rafael C; Pereira, Renata A N; Pereira, Marcos N

    2018-04-04

    The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles <8 mm, and refused short particles at night. Milk yield was not different (30.5 kg/d for CTL and 30.2 kg/d for YC). Feeding YC reduced dry matter intake (20.3 vs. 19.4 kg/d) and the digestible organic matter intake (15.6 vs. 13.9 kg/d). The inclusion of YC increased the ratios of milk to dry matter intake (1.50 vs. 1.64) and energy-corrected milk to dry matter intake (1.81 vs. 1.98). The covariate adjusted body weight (648 kg) and body condition score (3.0) did not differ. Milk solids yields and

  3. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities.

    PubMed

    Ferreira, L M M; Hervás, G; Belenguer, A; Celaya, R; Rodrigues, M A M; García, U; Frutos, P; Osoro, K

    2017-10-01

    This study aimed to compare feed intake, digestion, rumen fermentation parameters and bacterial community of 5 beef cows, 12 crossed ewes and 12 goats grazing together in spring-early summer on heather-gorse vegetation communities with an adjacent area of improved pasture. Organic matter intake (OMI) and digestibility (OMD) were estimated using alkane markers. Ruminal fluid samples were collected for measuring fermentation parameters, and studying the bacterial community using terminal restriction fragment length polymorphism (T-RFLP). Spot samples of urine were taken to determine purine derivative (PD) and creatinine concentrations to estimate microbial protein synthesis in the rumen. Herbaceous species were the main dietary component in all animal species. Cattle had higher (p < 0.05) daily OMI (g/kg LW 0.75 ) and OMD, whereas sheep and goats showed similar values. The highest ammonia concentration was observed in sheep. Total VFA, acetate and butyrate concentrations were not influenced by animal species, while propionate concentrations in goats were 1.8 times lower (p < 0.05) than in sheep. Acetate:propionate ratio was greater (p < 0.05) in goats, whereas cattle excreted more allantoin (p < 0.05). Estimated supply of microbial N was higher in cows (p < 0.01), whereas the efficiency of microbial protein synthesis was lower (p < 0.01) in this animal species. Hierarchical clustering analysis indicated a clear effect of animal species on rumen bacterial structure. Differences among animal species were also observed in the relative frequency of several T-RFs. Certain T-RFs compatible with Lachnospiraceae, Proteobacteria and Clostridiales species were not found in goats, while these animals showed high relative frequencies of some fragments compatible with the Ruminococcaceae family that were not detected in sheep and cattle. Results suggest a close relationship between animals' grazing behaviour and rumen bacterial structure and its function. Goats seem

  4. The effects of high-sugar ryegrass/red clover silage diets on intake, production, digestibility, and N utilization in dairy cows, as measured in vivo and predicted by the NorFor model.

    PubMed

    Bertilsson, J; Åkerlind, M; Eriksson, T

    2017-10-01

    , particularly at higher inclusion rates of clover. Rumen pool of total purines did not differ between treatments, nor did protein production assessed from urinary allantoin. The NorFor feed evaluation model overestimated digestibility of neutral detergent fiber and N, but underestimated N excretion in feces. We concluded that addition of WSC to dairy cow diets at levels up to 3 kg of WSC per day (>14% of DM) does not dramatically affect cow performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effects on milk urea concentration, urine output, and drinking water intake from incremental doses of potassium bicarbonate fed to mid-lactation dairy cows.

    PubMed

    Eriksson, T; Rustas, B-O

    2014-07-01

    /L. Urinary creatinine excretion was not affected by K addition, but allantoin excretion increased linearly by 27% from LO to HI, suggesting increased rumen microbial growth. Rumen pH, acetate proportion of total volatile fatty acids, and digestibility of DM, organic matter, and neutral detergent fiber increased linearly with increasing potassium intake. We concluded that increased ration K concentration lowers milk urea concentration with a magnitude significant for the interpretation of milk urea values, but other sources of variation, such as sampling time relative to feeding, may be even more important. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Comparative evaluation of alternative forages to grass silage in the diet of early lactation dairy cows.

    PubMed

    Burke, F; Murphy, J J; O'Donovan, M A; O'Mara, F P; Kavanagh, S; Mulligan, F J

    2007-02-01

    glucose, nonesterified fatty acids, beta-hydroxybutyrate, urea, or total protein at d 64 +/- 17.4 and d 92 +/- 17.4 postpartum. Efficiency of N utilization was greatest for CS with 0.36 of N intake being recovered in milk compared with 0.28, 0.32, and 0.26 for GS, F-WCW, and UP-WCW, respectively. There was no effect of treatment on milk urea N concentration or the urinary allantoin N to creatinine N ratio. The results of this experiment indicate that corn silage is a more suitable supplementary forage to grass silage than fermented or urea-treated processed WCW, with advantages realized in milk production and more efficient N utilization.

  7. Final report of the key comparison CCQM-K106: Pb, As and Hg measurements in cosmetic (cream)

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Qian; Yamani, Randa Nasr Ahmed; Shehata, Adel B.; Jacimovic, Radojko; Pavlin, Majda; Horvat, Milena; Tsoi, Y. P.; Tsang, C. K.; Shin, Richard; Chailap, Benjamat; Yafa, Charun; Caciano de Sena, Rodrigo; de Almeida, Marcelo; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Heun Kim, Sook; Konopelko, Leonid; Ari, Betül; Tokman, Nilgün; Rienitz, Olaf; Jaehrling, Reinhard; Pape, Carola

    2015-01-01

    Cosmetics are used in practically all walks of life as a means of improving skin and beautifying complexion. In recent years, more and more attention has been paid to the cosmetic safety. In response to the cosmetic safety issue, the accurate measurement of the heavy metals in cosmetics is, therefore, particularly important. NMIs from different countries should establish their chemical metrology traceability system in this area, which includes both measurement methods research and certain CRMs development. It should be noted that because the matrix of many cosmetics is complex and the contents of the heavy metals are relatively low, it still is a challenging task to measure the analytes with high accuracy and precision. CCQM-K106 followed up CCQM pilot study 'CCQM-P128: Pb, As measurements in cosmetic (cream)' coordinated by the National Institute of Metrology, China (NIM) in 2009. The cream was selected as the testing material, which is widely used as a daily skin care worldwide. This is the first CCQM key comparison regarding the measurement of toxic metal elements with the cosmetic matrix, which includes pure water, liquid paraffin, silicone oil, synthetic squalane, hyaluronic acid, glycerin, propylene glycol, allantoin, preservative and so on. The aim of the CCQM-K106 is to demonstrate the capability of participating NMIs and designated institutes in measuring the contents of poisonous elements, including lead, arsenic and mercury in a cosmetic sample (cream), and support CMC claims relating to inorganic elements in cosmetic materials and similar chemical industry products. The cream matrix sample was prepared under the guidance of professional technicians. The formula of the cream was carefully chosen to match with a real cosmetic. The homogeneity and stability level of Pb, As and Hg in the cream sample were fit for the objective of the comparison. Each participant received two numbered bottles containing about 5g samples in each bottle. The instruction