Science.gov

Sample records for allele size distribution

  1. RHD allele distribution in Africans of Mali

    PubMed Central

    Wagner, Franz F; Moulds, Joann M; Tounkara, Anatole; Kouriba, Bourema; Flegel, Willy A

    2003-01-01

    Background Aberrant and non-functional RHD alleles are much more frequent in Africans than in Europeans. The DAU cluster of RHD alleles exemplifies that the alleles frequent in Africans have evaded recognition until recently. A comprehensive survey of RHD alleles in any African population was lacking. Results We surveyed the molecular structure and frequency of RHD alleles in Mali (West Africa) by evaluating 116 haplotypes. Only 69% could be attributed to standard RHD (55%) or the RHD deletion (14%). The aberrant RHD allele DAU-0 was predicted for 19%, RHDΨ for 7% and Ccdes for 4% of all haplotypes. DAU-3 and the new RHD allele RHD(L207F), dubbed DMA, were found in one haplotype each. A PCR-RFLP for the detection of the hybrid Rhesus box diagnostic for the RHD deletion in Europeans was false positive in 9 individuals, including all carriers of RHDΨ . Including two silent mutations and the RHD deletion, a total of 9 alleles could be differentiated. Conclusion Besides standard RHD and the RHD deletion, DAU-0, RHDΨ and Ccdes are major alleles in Mali. Our survey proved that the most frequent alleles of West Africans have been recognized allowing to devise reliable genotyping and phenotyping strategies. PMID:14505497

  2. Distribution of repeat unit differences between alleles at tandem repeat microsatellite loci

    SciTech Connect

    Jin, L. |; Zhong, Y.; Chakraborty, R.

    1994-09-01

    PCR-based assays of tandemly repeated microsatellite loci detect genetic variation from which alleles may be scored by their repeat unit lengths. Comparison of allele sizes from such data yields a probability distribution (P{sub k}) of repeat unit differences (k) between alleles segregating in a population. We show that this distribution (P{sub k}; k = 0, 1,2,...) provides insight regarding the mechanism of production of new alleles at such loci and the demographic history of populations, far better than that obtained from other summary measures (e.g., heterozygosity, number of alleles, and the range of allele sizes). The distributions of P{sub k} under multi-step stepwise models of mutation are analytically derived, which show that when a population is at equilibrium under the mutation-drift balance, the distribution of repeat unit differences between alleles is positively skewed with a mode larger than zero. However, when the heterozygosity at a locus is low (say, less than 40%), P{sub k} is a monotonically decreasing function of k. Applications of this theory to data on repeat unit sizes at over 1,240 microsatellite loci from the Caucasians, categorized by the average heterozygosity of loci, indicate that at most microsatellite loci new alleles are produced by stepwise mutations, and this is consistent with the replication slippage mechanism of mutations. The repeat size changes of mutants are probably within one or two units of alleles from which the mutants arise. Distributions of P{sub k} at microsatellite loci located within genes show evidence of allele size constraints. No significant evidence of recent expansion of population sizes in the Caucasians is detected by the distribution of P{sub k}.

  3. Distribution of FMR-1 and associated microsatellite alleles in a normal Chinese population

    SciTech Connect

    Zhong, N.; Houck, G.E. Jr.; Li, S.; Dobkin, C.; Brown, W.T.; Xixian Liu; Shen Gou

    1994-07-15

    The CGG repeat size distribution of the fragile X mental retardation gene (FMR-1) was studied in a population of normal Chinese X chromosomes along with that of two proximal microsatellite polymorphic markers: FRAXAC1 and DXS548. The most common CGG repeat allele was 29 (47.2%) with 30 being second most common (26%). This distribution was different from that seen in Caucasian controls, where the most common allele was 30 repeats. Other differences with Caucasian controls included a secondary model peak at 36 repeats and the absence of peaks at 20 or 23 repeats. There were only two FRAXAC1 and five DXS548 alleles found in the Chinese sample. A striking linkage disequilibrium of FMR-1 alleles with FRAXAC1 alleles was observed, in that 90% of the 29 CGG repeat alleles but only 41% of the 30 CGG repeat alleles had the FRAXAC1 152 bp allele (18 AC repeats). This disequilibrium suggests that slippage between the closely spaced normal CGG repeat alleles, 29 and 30, and between 152 and 154 FRAXAC1 alleles is very rare. This study lays the groundwork for an understanding of founder chromosome effects in comparing Asian and Caucasian populations. 29 refs., 5 tabs.

  4. VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach

    SciTech Connect

    Shriver, M.D.; Jin, L.; Chakraborty, R.; Boerwinkle, E. )

    1993-07-01

    Variable numbers of tandem repeats (VNTRs) are a class of highly informative and widely dispersed genetic markers. Despite their wide application in biological science, little is known about their mutational mechanisms or population dynamics. The objective of this work was to investigate four summary measures of VNTR allele frequency distributions: number of alleles, number of modes, range in allele size, and heterozygosity, using computer simulations of the one-step stepwise mutation model (SMM). The authors estimated these measures and their probability distributions for a wide range of mutation rates and compared the simulation results with predictions from analytical formulations of the one-step SMM. The average heterozygosity from the simulations agreed with the analytical expectation under the SMM. The average number of alleles, however, was larger in the simulations than the analytical expectation of the SMM. The authors then compared simulation expectations with actual data reported in the literature. They used the sample size and observed heterozygosity to determine the expected value, 5th and 95th percentiles for the other three summary measures, allelic size range, number of modes and number of alleles. The loci analyzed were classified into three groups based on the size of the repeat unit: microsatellites (1-2 base pair (bp) repeat unit), short tandem repeats [(STR) 3-5 bp repeat unit], and minisatellites (15-70 bp repeat unit). In general, STR loci were most similar to the simulation results under the SMM for the three summary measures (number of alleles, number of modes and range in allele size), followed by the microsatellite loci and then by the minisatellite loci, which showed deviations in the direction of the infinite allele model (IAM). Based on these differences, it is hypothesized that these three classes of loci are subject to different mutational forces.

  5. Linkage disequilibrium in the insulin gene region: size variation at the 5' flanking polymorphism and bimodality among "class I" alleles.

    PubMed Central

    McGinnis, R. E.; Spielman, R. S.

    1994-01-01

    The 5' flanking polymorphism (5'FP), a hypervariable region at the 5' end of the insulin gene, has "class 1" alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). We report that precise sizing of the 5'FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. We also examined 5'FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5'FP, we found that one allele exhibits near-total association with the upper component of the 5'FP class 1 distribution. Such associations represent a little-known but potentially widespread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. PMID:7915880

  6. Intraclass and interclass correlations of allele sizes within and between loci in DNA typing data

    SciTech Connect

    Chakraborty, R.; Srinivasan, M.R.; Andrade, M. de )

    1993-02-01

    Nonparametric measures of correlations of DNA fragment lengths within and between variable number of tandem repeat (VNTR) loci are proposed to test the hypothesis of random association of allele sizes at VNTR loci. Transformations of these nonparametric correlation measures are suggested to detect deviations of their null expectations caused by population subdivision and errors of measurement of VNTR fragment lengths. Analytic and permutation-based computer simulation studies are performed to show that under the hypothesis of independence of allele sizes the transformed correlation measures are normally distributed, irrespective of the VNTR fragment size distribution in the population even when the number of individuals samples is as low as 100. Power calculations are performed to establish that the current population data on six VNTR loci in the US Hispanic sample are in accordance with the hypothesis of random association of allele sizes within and between loci. Implications of these results in the context of forensic use of DNA typing are also discussed. 29 refs., 1 fig., 4 tabs.

  7. Allelic disequilibrium and allele frequency distribution as a function of social and demographic history.

    PubMed Central

    Thompson, E A; Neel, J V

    1997-01-01

    Allelic disequilibrium between closely linked genes is a common observation in human populations and often gives rise to speculation concerning the role of selective forces. In a previous treatment, we have developed a population model of the expected distribution of rare variants (including private polymorphisms) in Amerindians and have argued that, because of the great expansion of Amerindian numbers with the advent of agriculture, most of these rare variants are of relatively recent origin. Many other populations have similar histories of striking recent expansions. In this treatment, we demonstrate that, in consequence of this fact, a high degree of linkage disequilibrium between two nonhomologous alleles <0.5 cM apart is the "normal" expectation, even in the absence of selection. This expectation is enhanced by the previous subdivision of human populations into relatively isolated tribes characterized by a high level of endogamy and inbreeding. We also demonstrate that the alleles associated with a recessive disease phenotype are expected to exist in a population in very variable frequencies: there is no need to postulate positive selection with respect to the more common disease-associated alleles for such entities as phenylketonuria or cystic fibrosis. PMID:8981963

  8. Microsatellite allele sizes alone are insufficient to delineate species boundaries in Symbiodinium.

    PubMed

    Howells, E J; Willis, B L; Bay, L K; van Oppen, M J H

    2016-06-01

    Symbiodinium are a diverse group of unicellular dinoflagellates that are important nutritional symbionts of reef-building corals. Symbiodinium putative species ('types') are commonly identified with genetic markers, mostly nuclear and chloroplast encoded ribosomal DNA regions. Population genetic analyses using microsatellite loci have provided insights into Symbiodinium biogeography, connectivity and phenotypic plasticity, but are complicated by: (i) a lack of consensus criteria used to delineate inter- vs. intragenomic variation within species; and (ii) the high density of Symbiodinium in host tissues, which results in single samples comprising thousands of individuals. To address this problem, Wham & LaJeunesse (2016) present a method for identifying cryptic Symbiodinium species from microsatellite data based on correlations between allele size distributions and nongeographic genetic structure. Multilocus genotypes that potentially do not recombine in sympatry are interpreted as secondary 'species' to be discarded from downstream population genetic analyses. However, Symbiodinium species delineations should ideally incorporate multiple physiological, ecological and molecular criteria. This is because recombination tests may be a poor indicator of species boundaries in Symbiodinium due to their predominantly asexual mode of reproduction. Furthermore, discontinuous microsatellite allele sizes in sympatry may be explained by secondary contact between previously isolated populations and by mutations that occur in a nonstepwise manner. Limitations of using microsatellites alone to delineate species are highlighted in earlier studies that demonstrate occasional bimodal distributions of allele sizes within Symbiodinium species and considerable allele size sharing among Symbiodinium species. We outline these issues and discuss the validity of reinterpretations of our previously published microsatellite data from Symbiodinium populations on the Great Barrier Reef

  9. Hail Size Distribution Mapping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.

  10. Statistical Studies on Protein Polymorphism in Natural Populations. III. Distribution of Allele Frequencies and the Number of Alleles per Locus

    PubMed Central

    Chakraborty, Ranajit; Fuerst, Paul A.; Nei, Masatoshi

    1980-01-01

    With the aim of understanding the mechanism of maintenance of protein polymorphism, we have studied the properties of allele frequency distribution and the number of alleles per locus, using gene-frequency data from a wide range of organisms (mammals, birds, reptiles, amphibians, Drosophila and non-Drosophila invertebrates) in which 20 or more loci with at least 100 genes were sampled. The observed distribution of allele frequencies was U-shaped in all of the 138 populations (mostly species or subspecies) examined and generally agreed with the theoretical distribution expected under the mutation-drift hypothesis, though there was a significant excess of rare alleles (gene frequency, 0 ∼ 0.05) in about a quarter of the populations. The agreement between the mutation-drift theory and observed data was quite satisfactory for the numbers of polymorphic (gene frequency, 0.05 ∼ 0.95) and monomorphic (0.95 ∼ 1.0) alleles.—The observed pattern of allele-frequency distribution was incompatible with the prediction from the overdominance hypothesis. The observed correlations of the numbers of rare alleles, polymorphic alleles and monomorphic alleles with heterozygosity were of the order of magnitude that was expected under the mutation-drift hypothesis. Our results did not support the view that intracistronic recombination is an important source of genetic variation. The total number of alleles per locus was positively correlated with molecular weight in most of the species examined, and the magnitude of the correlation was consistent with the theoretical prediction from mutation-drift hypothesis. The correlation between molecular weight and the number of alleles was generally higher than the correlation between molecular weight and heterozygosity, as expected. PMID:17249018

  11. Correlation of DNA fragment sizes within loci in the presence of non-detectable alleles.

    PubMed

    Chakraborty, R; Li, Z

    1995-01-01

    At present most forensic databases of DNA profiling of individuals consist of DNA fragment sizes measured from Southern blot restriction fragment length polymorphism (RFLP) analysis. Statistical studies of these databases have revealed that, when fragment sizes are measured from RFLP analysis, some of the single-band patterns of individuals may actually be due to heterozygosity of alleles in which fragment size resulting from one allele remains undetected. In this work, we evaluate the effect of such allelic non-detectability on correlation of fragment sizes within individuals at a locus, and its impact on the inference of independence of fragment sizes within loci. We show that when non-detectable alleles are present in a population at a locus, positive correlations of fragment sizes are expected, which increase with the proportion of non-detectable alleles at the locus. Therefore, a non-zero positive correlation is not a proof of allelic dependence within individuals. Applications of this theory to the current forensic RFLP databases within the US show that there is virtually no evidence of significant allelic dependence within any of the loci. Therefore, the assumption that DNA fragment sizes within loci are independent is valid, and hence, the population genetic principles of computing DNA profile frequencies by multiplying binned frequencies of fragment sizes are most likely to be appropriate for forensic applications of DNA typing data.

  12. The effects of selection and genetic drift on the genomic distribution of sexually antagonistic alleles.

    PubMed

    Mullon, Charles; Pomiankowski, Andrew; Reuter, Max

    2012-12-01

    Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males.

  13. Kinetic narrowing of size distribution

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2016-05-01

    We present a model that reveals an interesting possibility for narrowing the size distribution of nanostructures when the deterministic growth rate changes its sign from positive to negative at a certain stationary size. Such a behavior occurs in self-catalyzed one-dimensional III-V nanowires and more generally whenever a negative "adsorption-desorption" term in the growth rate is compensated by a positive "diffusion flux." By asymptotically solving the Fokker-Planck equation, we derive an explicit representation for the size distribution that describes either Poissonian broadening or self-regulated narrowing depending on the parameters. We show how the fluctuation-induced spreading of the size distribution can be completely suppressed in systems with size self-stabilization. These results can be used for obtaining size-uniform ensembles of different nanostructures.

  14. Ewens' sampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles.

    PubMed

    Griffiths, Robert C; Lessard, Sabin

    2005-11-01

    Ewens' sampling formula, the probability distribution of a configuration of alleles in a sample of genes under the infinitely-many-alleles model of mutation, is proved by a direct combinatorial argument. The distribution is extended to a model where the population size may vary back in time. The distribution of age-ordered frequencies in the population is also derived in the model, extending the GEM distribution of age-ordered frequencies in a model with a constant-sized population. The genealogy of a rare allele is studied using a combinatorial approach. A connection is explored between the distribution of age-ordered frequencies and ladder indices and heights in a sequence of random variables. In a sample of n genes the connection is with ladder heights and indices in a sequence of draws from an urn containing balls labelled 1,2,...,n; and in the population the connection is with ladder heights and indices in a sequence of independent uniform random variables.

  15. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    SciTech Connect

    McGinnis, R.E.; Spielman, R.S.

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  16. Distribution of HLA-B alleles in Mexican Amerindian populations.

    PubMed

    Vargas-Alarcón, Gilberto; Hernández-Pacheco, Guadalupe; Zuñiga, Joaquín; Rodríguez-Pérez, José Manuel; Pérez-Hernández, Nonanzit; Rangel, Carlos; Villarreal-Garza, Cynthia; Martínez-Laso, Jorge; Granados, Julio; Arnaiz-Villena, Antonio

    2003-02-01

    In the present study we analyzed by PCR-SSO technique the HLA-B gene frequencies in 281 healthy individuals from four Mexican Amerindian populations (66 Mayos, 90 Mazatecans, 72 Nahuas and 53 Teenek). The most frequent alleles in all studied populations were HLA-B35, HLA-B39, and HLA-B40; however, some differences were observed between populations. The HLA-B35 allele was the most frequent in three of the four populations studied (Mayos, Nahuas and Teenek), whereas in Mazatecans the most frequent allele was HLA-B39. HLA-B40 presented frequencies higher than 10% in all groups. On the other hand, only Mayos presented an HLA-B51 gene frequency higher than 10%. When comparisons were made, important differences between groups were observed. The Teenek group presented an increased frequency of HLA-B35 when compared to Mazatecans and the HLA-B52 allele was increased in Nahuas and Teenek when compared to Mayos. An increased frequency of HLA-B39 was observed in Mazatecans when compared to Nahuas, Mayos and Teenek. Also, an increased frequency of HLA-B51 was observed in Mayos when compared to Mazatecans and Nahuas. These data corroborate the restricted polymorphism of HLA-B alleles and the high frequency of HLA-B35, HLA-B39 and HLA-B40 alleles in autochthonous American populations. In spite of the restriction in this polymorphism, differences in frequencies of HLA-B alleles could be helpful in distinguishing each of these populations.

  17. Analysis of the distribution of HLA-A alleles in populations from five continents.

    PubMed

    Middleton, D; Williams, F; Meenagh, A; Daar, A S; Gorodezky, C; Hammond, M; Nascimento, E; Briceno, I; Perez, M P

    2000-10-01

    The variation and frequency of HLA-A genotypes were established by PCR-SSOP typing in diverse geographically distributed populations: Brazilian, Colombian Kogui, Cuban, Mexican, Omani, Singapore Chinese, and South African Zulu. HLA-A allelic families with only one allele were identified for HLA-A*01, -A*23, -A*25, -A*31, -A*32, -A*36, -A*43, -A*69, -A*80; and with two alleles for HLA-A*03, -A*11, -A*26, -A*29, -A*33, -A*34, and -A*66. Greater variation was detected for HLA-A*02, -A*24, and -A*68 allele families. Colombian Kogui and Mexican Seris showed the least diversity with respect to HLA-A alleles, albeit with small numbers tested, with only four and five HLA-A alleles identified, respectively. It would appear by their presence in all populations studied, either rural or indigenous, that certain alleles are very important in pathogen peptide presentation. PMID:11082518

  18. Analysis of the distribution of HLA-A alleles in populations from five continents.

    PubMed

    Middleton, D; Williams, F; Meenagh, A; Daar, A S; Gorodezky, C; Hammond, M; Nascimento, E; Briceno, I; Perez, M P

    2000-10-01

    The variation and frequency of HLA-A genotypes were established by PCR-SSOP typing in diverse geographically distributed populations: Brazilian, Colombian Kogui, Cuban, Mexican, Omani, Singapore Chinese, and South African Zulu. HLA-A allelic families with only one allele were identified for HLA-A*01, -A*23, -A*25, -A*31, -A*32, -A*36, -A*43, -A*69, -A*80; and with two alleles for HLA-A*03, -A*11, -A*26, -A*29, -A*33, -A*34, and -A*66. Greater variation was detected for HLA-A*02, -A*24, and -A*68 allele families. Colombian Kogui and Mexican Seris showed the least diversity with respect to HLA-A alleles, albeit with small numbers tested, with only four and five HLA-A alleles identified, respectively. It would appear by their presence in all populations studied, either rural or indigenous, that certain alleles are very important in pathogen peptide presentation.

  19. Size Distribution of Bacterial Cells

    PubMed Central

    Stull, V. R.

    1972-01-01

    By using differential light-scattering measurements of single cells suspended in a laser beam, an effective cell radius has been determined for 141 individual bacteria from suspensions of Staphylococcus epidermidis. The accumulation of these measurements has provided the size distribution for the sampling. PMID:4551753

  20. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    SciTech Connect

    Tomczak, J.; Grebner, E.E. ); Boogen, C. )

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  1. Size distribution of ring polymers

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-06-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 - d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  2. Distribution of forensic marker allelic frequencies in Pernambuco, Northestern Brazil.

    PubMed

    Santos, S M; Souza, C A; Rabelo, K C N; Souza, P R E; Moura, R R; Oliveira, T C; Crovella, S

    2015-04-30

    Pernambuco is one of the 27 federal units of Brazil, ranking seventh in the number of inhabitants. We examined the allele frequencies of 13 short tandem repeat loci (CFS1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, vWA, and TPOX), the minimum recommended by the Federal Bureau of Investigation and commonly used in forensic genetics laboratories in Brazil, in a sample of 609 unrelated individuals from all geographic regions of Pernambuco. The allele frequencies ranged from 5 to 47.2%. No significant differences for any loci analyzed were observed compared with other publications in other various regions of Brazil. Most of the markers observed were in Hardy-Weinberg equilibrium. The occurrence of the allele 47.2 (locus FGA) and alleles 35.1 and 39 (locus D21S11), also described in a single study of the Brazilian population, was observed. The other forensic parameters analyzed (matching probability, power of discrimination, polymorphic information content, paternity exclusion, complement factor I, observed heterozygosity, expected heterozygosity) indicated that the studied markers are very informative for human forensic identification purposes in the Pernambuco population.

  3. Parameterizing the Raindrop Size Distribution

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Durden, Stephen L.; Im, Eastwood

    1996-01-01

    This paper addresses the problem of finding a parametric form for the raindrop size distribution (DSD) that(1) is an appropriate model for tropical rainfall, and (2) involves statistically independent parameters. Such a parameterization is derived in this paper. One of the resulting three "canonical" parameters turns out to vary relatively little, thus making the parameterization particularly useful for remote sensing applications. In fact, a new set of r drop-size-distribution-based Z-R and k-R relations is obtained. Only slightly more complex than power laws, they are very good approximations to the exact radar relations one would obtain using Mie scattering. The coefficients of the new relations are directly related to the shape parameters of the particular DSD that one starts with. Perhaps most important, since the coefficients are independent of the rain rate itself, the relations are ideally suited for rain retrieval algorithms.

  4. Size distribution of ring polymers

    PubMed Central

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  5. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution.

    PubMed

    Yao, Jia-Long; Xu, Juan; Cornille, Amandine; Tomes, Sumathi; Karunairetnam, Sakuntala; Luo, Zhiwei; Bassett, Heather; Whitworth, Claire; Rees-George, Jonathan; Ranatunga, Chandra; Snirc, Alodie; Crowhurst, Ross; de Silva, Nihal; Warren, Ben; Deng, Cecilia; Kumar, Satish; Chagné, David; Bus, Vincent G M; Volz, Richard K; Rikkerink, Erik H A; Gardiner, Susan E; Giraud, Tatiana; MacDiarmid, Robin; Gleave, Andrew P

    2015-10-01

    The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.

  6. Estimating the Effective Population Size from Temporal Allele Frequency Changes in Experimental Evolution

    PubMed Central

    Jónás, Ágnes; Taus, Thomas; Kosiol, Carolin; Schlötterer, Christian; Futschik, Andreas

    2016-01-01

    The effective population size (Ne) is a major factor determining allele frequency changes in natural and experimental populations. Temporal methods provide a powerful and simple approach to estimate short-term Ne. They use allele frequency shifts between temporal samples to calculate the standardized variance, which is directly related to Ne. Here we focus on experimental evolution studies that often rely on repeated sequencing of samples in pools (Pool-seq). Pool-seq is cost-effective and often outperforms individual-based sequencing in estimating allele frequencies, but it is associated with atypical sampling properties: Additional to sampling individuals, sequencing DNA in pools leads to a second round of sampling, which increases the variance of allele frequency estimates. We propose a new estimator of Ne, which relies on allele frequency changes in temporal data and corrects for the variance in both sampling steps. In simulations, we obtain accurate Ne estimates, as long as the drift variance is not too small compared to the sampling and sequencing variance. In addition to genome-wide Ne estimates, we extend our method using a recursive partitioning approach to estimate Ne locally along the chromosome. Since the type I error is controlled, our method permits the identification of genomic regions that differ significantly in their Ne estimates. We present an application to Pool-seq data from experimental evolution with Drosophila and provide recommendations for whole-genome data. The estimator is computationally efficient and available as an R package at https://github.com/ThomasTaus/Nest. PMID:27542959

  7. An improved assay for the determination of Huntington`s disease allele size

    SciTech Connect

    Reeves, C.; Klinger, K.; Miller, G.

    1994-09-01

    The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra- or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.

  8. The distribution of MICA alleles in an Austrian population: evidence for increasing polymorphism.

    PubMed

    Wenda, Sabine; Faé, Ingrid; Sanchez-Mazas, Alicia; Nunes, José M; Mayr, Wolfgang R; Fischer, Gottfried F

    2013-10-01

    The Major Histocompatibility Complex Class I Chain-Related Gene A (MICA) is located 46.4 Kb centromeric to HLA-B locus on chromosome 6; 84 alleles have been described so far. To assess the distribution of MICA alleles in an Austrian population, 322 unrelated Austrian blood donors have been typed for MICA by direct sequencing of amplified exons 2-5; sequencing of exon 6 and separating alleles by haplotype specific primers or by cloning was performed to resolve ambiguities. HLA-B was typed at low level resolution and linkage disequilibrium was determined. We observed 20 already known and four novel MICA alleles. MICA*008:01/04 was the most frequent allele (42%), followed by MICA*002:01 (11%) and MICA*009:01 (9%), three alleles (MICA*029, *067 and *068) were observed only once. No deviation from the Hardy Weinberg equilibrium was observed. Linkage disequilibrium between MICA and HLA-B alleles was observed, most extensively between MICA*008:01/04 and HLA-B*07. Our population data are in agreement with other European populations. The fact that four novel alleles have been observed indicates that the polymorphism of MICA is larger than currently estimated.

  9. Molecular strain typing of Brucella abortus isolates from Italy by two VNTR allele sizing technologies.

    PubMed

    De Santis, Riccardo; Ancora, Massimo; De Massis, Fabrizio; Ciammaruconi, Andrea; Zilli, Katiuscia; Di Giannatale, Elisabetta; Pittiglio, Valentina; Fillo, Silvia; Lista, Florigio

    2013-10-01

    Brucellosis, one of the most important re-emerging zoonoses in many countries, is caused by bacteria belonging to the genus Brucella. Furthermore these bacteria represent potential biological warfare agents and the identification of species and biovars of field strains may be crucial for tracing back source of infection, allowing to discriminate naturally occurring outbreaks instead of bioterrorist events. In the last years, multiple-locus variable-number tandem repeat analysis (MLVA) has been proposed as complement of the classical biotyping methods and it has been applied for genotyping large collections of Brucella spp. At present, the MLVA band profiles may be resolved by automated or manual procedures. The Lab on a chip technology represents a valid alternative to standard genotyping techniques (as agarose gel electrophoresis) and it has been previously used for Brucella genotyping. Recently, a new high-throughput genotyping analysis system based on capillary gel electrophoresis, the QIAxcel, has been described. The aim of the study was to evaluate the ability of two DNA sizing equipments, the QIAxcel System and the Lab chip GX, to correctly call alleles at the sixteen loci including one frequently used MLVA assay for Brucella genotyping. The results confirmed that these technologies represent a meaningful advancement in high-throughput Brucella genotyping. Considering the accuracy required to confidently resolve loci discrimination, QIAxcel shows a better ability to measure VNTR allele sizes compared to LabChip GX.

  10. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-01

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.

  11. Allelic distribution of CCR5 and CCR2 genes in an Italian population sample.

    PubMed

    Romano-Spica, V; Ianni, A; Arzani, D; Cattarini, L; Majore, S; Dean, M

    2000-01-20

    Genetic polymorphisms of CCR5 and CCR2 human chemokine receptors have been associated with resistance during HIV-1 infection and disease progression. The protective effect of mutant alleles at these loci has important implications in AIDS pathogenesis. Chemokine receptors have a role in viral entry into target cells as well as in immune response modulation. In the present report, we studied the frequency of CCR5delta32 and CCR264I allelic variants among a representative sample of the Italian population. Observed allelic frequencies were 0.0454 and 0.0655, respectively. In both cases, genotype distribution was in equilibrium as predicted by the Hardy-Weinberg equation. Taken as a whole, about 21% of the population sample was found to be heterozygous for one or another of those two mutated alleles. Distribution of CCR5delta32 and CCR264I allelic variants within a population can be considered as a measure of genetic susceptibility to HIV infection and disease progression. PMID:10659048

  12. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia

    PubMed Central

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E

    2015-01-01

    Abstract Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations.

  13. Contrasting dynamics of a mutator allele in asexual populations of differing size.

    PubMed

    Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D

    2012-07-01

    Mutators have been shown to hitchhike in asexual populations when the anticipated beneficial mutation supply rate of the mutator subpopulation, NU(b) (for subpopulation of size N and beneficial mutation rate U(b)) exceeds that of the wild-type subpopulation. Here, we examine the effect of total population size on mutator dynamics in asexual experimental populations of Saccharomyces cerevisiae. Although mutators quickly hitchhike to fixation in smaller populations, mutator fixation requires more and more time as population size increases; this observed delay in mutator hitchhiking is consistent with the expected effect of clonal interference. Interestingly, despite their higher beneficial mutation supply rate, mutators are supplanted by the wild type in very large populations. We postulate that this striking reversal in mutator dynamics is caused by an interaction between clonal interference, the fitness cost of the mutator allele, and infrequent large-effect beneficial mutations in our experimental populations. Our work thus identifies a potential set of circumstances under which mutator hitchhiking can be inhibited in natural asexual populations, despite recent theoretical predictions that such populations should have a net tendency to evolve ever-higher genomic mutation rates.

  14. Distribution of HLA-DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates.

    PubMed

    Tahir, M A; al Khayat, A Q; al Shamali, F; Budowle, B; Novick, G E

    1997-03-14

    PCR-based typing of the HLA-DQA1 locus, using allele specific oligonucleotide (ASO) probes and reverse dot blot methodology was used to determine allelic distributions and construct a database for Arab and Pakistani individuals living in Dubai. Genotype and allelic frequencies were calculated, and the data were tested for departures from Hardy-Weinberg (HWE) equilibrium. The most frequent HLA-DQA1 alleles among Dubaian Arabs are DQA1 4 and 1.2. Among Pakistanis, the most frequent allele is also DQA1 4. No significant deviations from HWE were detected.

  15. A method for estimating the intensity of overdominant selection from the distribution of allele frequencies.

    PubMed Central

    Slatkin, M; Muirhead, C A

    2000-01-01

    A method is proposed for estimating the intensity of overdominant selection scaled by the effective population size, S = 2Ns, from allele frequencies. The method is based on the assumption that, with strong overdominant selection, allele frequencies are nearly at their deterministic equilibrium values and that, to a first approximation, deviations depend only on S. Simulations verify that reasonably accurate estimates of S can be obtained for realistic sample sizes. The method is applied to data from several loci in the major histocompatibility complex (Mhc) in numerous human populations. For alleles distinguished by both serological typing and the sequence of the peptide-binding region, our estimates of S are comparable to those obtained by analysis of DNA sequences in showing that selection is strongest on HLA-B and weaker on HLA-A, HLA-DRB1, and HLA-DQA1. The intensity of selection on HLA-B varied considerably among populations. Two populations, Native American and Inuit, showed an excess rather than a deficiency in homozygosity. Comparable estimates of S were obtained for alleles at Mhc class II loci distinguished by serological reactions (serotyping) and by differences in the amino acid sequences of the peptide-binding region (molecular typing). A comparison of two types of data for DQA1 and DRB1 showed that serotyping led to generally lower estimates of S. PMID:11102400

  16. Analysis of simple tandem repeat (STR) marker allele distributions in a Balinese population

    SciTech Connect

    Morell, R.; Ashler, J.H.; Friedman, T.B.

    1994-09-01

    Genotypes for 53 simple tandem repeat (STR) markers distributed at greater than 39 cM intervals throughout the genome were determined for 46 individuals from the village of Bengkala, Bali. This village dates to at least the thirteenth century, has approximately 2,200 individuals and has an oral and written tradition suggesting genetic bottlenecks. The allele frequency distributions in Bengkala were compared with distributions obtained by typing individuals in the CEPH data base using a Kolmogorov-Smirnov two sample test. Twenty-eight of the 53 markers showed differences (p<0.05) in distribution between the two populations. Allele frequencies of tetranucleotide STRs were much more similar between the two populations than were those of dinucleotide STRs (p < 0.0043). This may be due to the higher mutation rate of tetranucleotide STRs, combining with selection on repeat lengths, to produce a {open_quotes}stable{close_quotes} allele distribution. Population heterogeneity in Bengkala was indicated by an excess of observed homozygosity, deviations from Hardy-Weinberg equilibrium at seven loci, and significant genotypic disequilibrium between physically unlinked loci. These analyses serve as a resource to map a gene causing non-syndromal autosomal recessive deafness in Bengkala, and to corroborate the anthropological study of the history and social structure of the village.

  17. Body size distribution of the dinosaurs.

    PubMed

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  18. Body Size Distribution of the Dinosaurs

    PubMed Central

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  19. Experimental determination of size distributions: analyzing proper sample sizes

    NASA Astrophysics Data System (ADS)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  20. Asteroid Size-Frequency Distribution

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6 inch PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e. 12 micron) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i,e., between 150 and 350 times fainter than any of the asteroids observed by IRAS. These data provide the first direct measurement of the 12 pm sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  1. The distribution of Tap2 alleles among laboratory rat RT1 haplotypes.

    PubMed

    Joly, E; Deverson, E V; Coadwell, J W; Günther, E; Howard, J C; Butcher, G W

    1994-01-01

    We are reporting the cDNA sequences of Tap2 from two cima and two cimb rat strains. Comparison of the cDNA sequences shows that these alleles fall into two groups, which we refer to as Tap2-A and Tap2-B. We found that alleles from the Tap2-B group are more closely related to the mouse homologue than are Tap2-A alleles, and among the 48 nucleotides which differ between the Tap2-A and Tap2-B cDNAs, three affect restriction sites. We defined pairs of oligonucleotides which allow amplification of the regions bearing these restriction sites from genomic DNA or cDNA, and this technique has been successful for the genotyping of all of the 56 laboratory strains of Rattus norvegicus tested and for five cell lines tested so far. All 14 known RT1 standard haplotypes were tested, and 7 found to belong to the Tap2-B group, and 7 to Tap2-A. We also found that intron sizes among the alleles of the Tap2-B group fall into two subgroups, providing further insight into the phylogeny of these various haplotypes. PMID:8206525

  2. The distribution of Tap2 alleles among laboratory rat RT1 haplotypes.

    PubMed

    Joly, E; Deverson, E V; Coadwell, J W; Günther, E; Howard, J C; Butcher, G W

    1994-01-01

    We are reporting the cDNA sequences of Tap2 from two cima and two cimb rat strains. Comparison of the cDNA sequences shows that these alleles fall into two groups, which we refer to as Tap2-A and Tap2-B. We found that alleles from the Tap2-B group are more closely related to the mouse homologue than are Tap2-A alleles, and among the 48 nucleotides which differ between the Tap2-A and Tap2-B cDNAs, three affect restriction sites. We defined pairs of oligonucleotides which allow amplification of the regions bearing these restriction sites from genomic DNA or cDNA, and this technique has been successful for the genotyping of all of the 56 laboratory strains of Rattus norvegicus tested and for five cell lines tested so far. All 14 known RT1 standard haplotypes were tested, and 7 found to belong to the Tap2-B group, and 7 to Tap2-A. We also found that intron sizes among the alleles of the Tap2-B group fall into two subgroups, providing further insight into the phylogeny of these various haplotypes.

  3. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  4. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions.

  5. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population

    PubMed Central

    Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.

    2014-01-01

    Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  6. Particle size distribution instrument. Topical report 13

    SciTech Connect

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  7. Factors influencing the effect size distribution of adaptive substitutions.

    PubMed

    Dittmar, Emily L; Oakley, Christopher G; Conner, Jeffrey K; Gould, Billie A; Schemske, Douglas W

    2016-04-13

    The distribution of effect sizes of adaptive substitutions has been central to evolutionary biology since the modern synthesis. Early theory proposed that because large-effect mutations have negative pleiotropic consequences, only small-effect mutations contribute to adaptation. More recent theory suggested instead that large-effect mutations could be favoured when populations are far from their adaptive peak. Here we suggest that the distributions of effect sizes are expected to differ among study systems, reflecting the wide variation in evolutionary forces and ecological conditions experienced in nature. These include selection, mutation, genetic drift, gene flow, and other factors such as the degree of pleiotropy, the distance to the phenotypic optimum, whether the optimum is stable or moving, and whether new mutation or standing genetic variation provides the source of adaptive alleles. Our goal is to review how these factors might affect the distribution of effect sizes and to identify new research directions. Until more theory and empirical work is available, we feel that it is premature to make broad generalizations about the effect size distribution of adaptive substitutions important in nature.

  8. Factors influencing the effect size distribution of adaptive substitutions

    PubMed Central

    Oakley, Christopher G.; Gould, Billie A.; Schemske, Douglas W.

    2016-01-01

    The distribution of effect sizes of adaptive substitutions has been central to evolutionary biology since the modern synthesis. Early theory proposed that because large-effect mutations have negative pleiotropic consequences, only small-effect mutations contribute to adaptation. More recent theory suggested instead that large-effect mutations could be favoured when populations are far from their adaptive peak. Here we suggest that the distributions of effect sizes are expected to differ among study systems, reflecting the wide variation in evolutionary forces and ecological conditions experienced in nature. These include selection, mutation, genetic drift, gene flow, and other factors such as the degree of pleiotropy, the distance to the phenotypic optimum, whether the optimum is stable or moving, and whether new mutation or standing genetic variation provides the source of adaptive alleles. Our goal is to review how these factors might affect the distribution of effect sizes and to identify new research directions. Until more theory and empirical work is available, we feel that it is premature to make broad generalizations about the effect size distribution of adaptive substitutions important in nature. PMID:27053750

  9. Identification of internal variation in the pseudoautosomal VNTR DXYS17, with nonrandom distribution of the alleles on the X and the Y chromosomes

    SciTech Connect

    Decorte, R.; Wu, R.; Marynen, P.; Cassiman, J.J.

    1994-03-01

    The PCR technique was used to analyze the DXYS17 locus in the pseudoautosomal region of the X and the Y chromosomes. Analysis on an automated DNA sequencer allowed for sensitive and highly accurate typing of 16 different alleles with a size between 480 and 1,100 bp. Two DXYS17 alleles migrated with the same size on agarose or denaturing polyacrylamide gels but with different mobilities on nondenaturing polyacrylamide gels. Sequence analysis showed that, while an identical number of repeats were present in both alleles, differences in the composition of the units were observed. The origin of these differences was found in the 28- and 33-bp units, which only had a specific repeat pattern at the 5' and 3' ends of the region. The genotype distribution for DXYS17 in a Caucasian population did not deviate from the values expected under Hardy-Weinberg equilibrium. However, the frequency of one allele and one genotype was significantly different between males and females. Segregation analysis showed that this difference was the result of a nonrandom distribution of certain alleles on the sex chromosomes in males. 31 refs., 4 figs., 2 tabs.

  10. Further data on the microsatellite locus D12S67 in worldwide populations: an unusual distribution of D12S67 alleles in Native Americans.

    PubMed

    Mitchell, R J; Federle, L; Sofro, A S; Papiha, S S; Briceno, I; Bernal, J E

    2000-08-01

    We report the frequencies of alleles at the microsatellite locus D12S67 in 2 widely separated ethnic groups of the world: 2 populations from Sulawesi, an island in the Indonesian archipelago, and 5 Native American tribes of Colombia, South America. The allele frequencies in the Minihasans and Torajans of Sulawesi are similar to each other (but the modal class allele is different) and in general agreement with those reported in mainland Asian groups, but different from both Europeans and Chinese Han of Taiwan. The 5 Native American tribes (Arsario, Kogui, Ijka, Wayuu, and Coreguaje) display different allele frequencies from those seen in Sulawesi populations, in other groups from Europe and mainland Asia, and in Chinese Han of Taiwan. Native Americans exhibit a bimodal distribution of alleles, unlike other groups, with significant differences among the tribes. The Arsario and Kogui have no admixture with Europeans or Africans and are the most distinctive, while the Wayuu have the most admixture and show most similarity to other groups. The data suggest that nonadmixed Native Americans may be quite distinctive with respect to this marker. The most common allele varies across the 5 tribes, from 249 base pairs to 261 base pairs. All samples exhibit Hardy-Weinberg genotype proportions; heterozygosities are lowest in the 2 nonadmixed Native American tribes. Examination of all the available data indicates that some east Asian and southeast Asian groups are characterized by a high frequency of smaller sized D12S67 alleles, while other populations have a greater proportion of the larger sized alleles. The cumulative, though still highly restricted, population data on locus D12S67 demonstrate that it may be of considerable value in anthropological genetic studies of ethnic groups. Data are required on Native Americans outside Colombia before this marker can be used in admixture studies of this group. PMID:11048795

  11. Domain Size Distribution in Segregating Binary Superfluids

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu

    2016-05-01

    Domain size distribution in phase separating binary Bose-Einstein condensates is studied theoretically by numerically solving the Gross-Pitaevskii equations at zero temperature. We show that the size distribution in the domain patterns arising from the dynamic instability obeys a power law in a scaling regime according to the dynamic scaling analysis based on the percolation theory. The scaling behavior is kept during the relaxation dynamics until the characteristic domain size becomes comparable to the linear size of the system, consistent with the dynamic scaling hypothesis of the phase-ordering kinetics. Our numerical experiments indicate the existence of a different scaling regime in the size distribution function, which can be caused by the so-called coreless vortices.

  12. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  13. Genetic variability and distribution of mating type alleles in field populations of Leptosphaeria maculans from France.

    PubMed

    Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène

    2006-01-01

    Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041

  14. Comparative allele distribution at 16 STR loci between the Andean and coastal population from Peru.

    PubMed

    Talledo, Michael; Gavilan, Martín; Choque, Cecilia; Aiquipa, Lina; Arévalo, Jorge; Montoya, Ysabel

    2010-07-01

    In the present study, we analysed the allelic distribution of 16 autosomal short tandem repeats (STRs) performed on unrelated individuals from seven different Peruvian cities, three highland Andean cities and four coastal ones. The loci investigated were F13A01, FESFPS, vWA, CSF1PO, TPOX, TH01, D16S539, D7S820, D13S317, D5S818, D19S253, F13B, D21S11, LPL and D8S1179 y D3S1358. The allele frequency, statistical parameters, Hardy-Weinberg equilibrium and population pair comparison across all loci were determinate. The combined matching probability for the 16 loci was 5.41136 x 10(-15) and the combined probability of exclusion (PE) was 0.999998307. The results showed new local databases for the evaluation of Andean and coastal Peruvian populations in human identity testing.

  15. Confidence intervals for population allele frequencies: the general case of sampling from a finite diploid population of any size.

    PubMed

    Fung, Tak; Keenan, Kevin

    2014-01-01

    The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management. PMID:24465792

  16. Population size, distribution and growth in Iran.

    PubMed

    Kamiar, M

    1985-01-01

    The author examines population size, distribution, and growth in Iran using data for 1966, 1976 census data, and some historical data for the nineteenth century. "This paper discusses changes in the size of population through time, population distribution, and regional patterns of population growth of the 23 provinces. It has been argued in this paper that because of a large family size norm as a religious duty to increase the numbers of the Islamic faith, early age at marriage, especially among females, common practice of polygamy, and the war with Iraq, population will grow even faster. It is concluded that population policy must be integrated into the national development plans."

  17. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  18. Exponential Size Distribution of von Willebrand Factor

    PubMed Central

    Lippok, Svenja; Obser, Tobias; Müller, Jochen P.; Stierle, Valentin K.; Benoit, Martin; Budde, Ulrich; Schneppenheim, Reinhard; Rädler, Joachim O.

    2013-01-01

    Von Willebrand Factor (VWF) is a multimeric protein crucial for hemostasis. Under shear flow, it acts as a mechanosensor responding with a size-dependent globule-stretch transition to increasing shear rates. Here, we quantify for the first time, to our knowledge, the size distribution of recombinant VWF and VWF-eGFP using a multilateral approach that involves quantitative gel analysis, fluorescence correlation spectroscopy, and total internal reflection fluorescence microscopy. We find an exponentially decaying size distribution of multimers for recombinant VWF as well as for VWF derived from blood samples in accordance with the notion of a step-growth polymerization process during VWF biosynthesis. The distribution is solely described by the extent of polymerization, which was found to be reduced in the case of the pathologically relevant mutant VWF-IIC. The VWF-specific protease ADAMTS13 systematically shifts the VWF size distribution toward smaller sizes. This dynamic evolution is monitored using fluorescence correlation spectroscopy and compared to a computer simulation of a random cleavage process relating ADAMTS13 concentration to the degree of VWF breakdown. Quantitative assessment of VWF size distribution in terms of an exponential might prove to be useful both as a valuable biophysical characterization and as a possible disease indicator for clinical applications. PMID:24010664

  19. Size distributions of chemically synthesized Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Bonsak, Jack; Fosli, Carl Huseby; Muntingh, Georg

    2011-08-01

    Silver nanocrystals made by a chemical reduction of silver salts (AgNO3) by sodium borohydride (NaBH4) were studied using transmission electron microscopy and light scattering simulations. For various AgNO3/NaBH4 molar ratios, the size distributions of the nanocrystals were found to be approximately log-normal. In addition, a linear relation was found between the mean nanocrystal size and the molar ratio. In order to relate the size distribution of Ag nanocrystals of the various molar ratios to the scattering properties of Ag nanocrystals in solar cell devices, light scattering simulations of Ag nanocrystals in Si, SiO2, SiN, and Al2O3 matrices were carried out using MiePlot. These light scattering spectra for the individual nanocrystal sizes were combined into light scattering spectra for the fitted size distributions. The evolution of these scattering spectra with respect to an increasing mean nanocrystal size was then studied. From these findings, it is possible to find the molar ratio for which the corresponding nanocrystal size distribution has maximum scattering at a particular wavelength in the desired matrix.

  20. Clouds of venus: particle size distribution measurements.

    PubMed

    Knollenberg, R G; Hunten, D M

    1979-02-23

    Data from the Pioneer Venus cloud particle size spectrometer experiment has revealed the Venus cloud system to be a complicated mixture of particles of various chemical composition distinguishable by their multimodal size distributions. The appearance, disappearance, growth, and decay of certain size modes has aided the preliminary identification of both sulfuric acid and free sulfur cloud regions. The discovery of large particles > 30 micrometers, significant particle mass loading, and size spectral features suggest that precipitation is likely produced; a peculiar aerosol structure beneath the lowest cloud layer could be residue from a recent shower.

  1. HLA-DRB1 allele distribution and its relation to rheumatoid arthritis in eastern Black Sea Turkish population.

    PubMed

    Uçar, Fahri; Karkucak, Murat; Alemdaroğlu, Emel; Capkin, Erhan; Yücel, Burcu; Sönmez, Mehmet; Tosun, Mehmet; Karaca, Adem

    2012-04-01

    Rheumatoid arthritis (RA [MIM 180300]) is a complex, polygenic inflammatory autoimmune disease, resulting from interactions between genetic and environmental factors. Some of the RA-associated HLA-DRB1 alleles have shared epitope, but their distribution varies among different racial/ethnic groups. This study was aimed at investigating the distribution of HLA-DRB1 alleles in patients with RA in eastern Black Sea region of Turkey. DNA samples of 320 patients with RA and 360 healthy controls were studied for the determination of HLA-DRB1 allele distribution using PCR-SSP method. The allele frequencies of HLA-DRB1*01, *04, and *09 were higher in patients with RA compared with the controls (P < 0.005, P < 0.0001, and P < 0.01, respectively). On the other hand, in patients with RA, HLA-DRB1*13 allele was lower than the controls (P < 0.001). Of the HLA-DRB1*04 subgroups, *0401 (40.83% vs. 18.75%, P < 0.001) was the most frequent allele in patients with RA, while DRB1*0402 (30.00% vs. 12.50%, P < 0.005) allele in the controls. HLA-DRB1 allele frequencies in the patients with RA and the controls showed Hardy-Weinberg rule compliance. Results of this study indicate that HLA-DRB1*01, *04, and *09 alleles were associated with RA, and HLA-DRB1*13 was protective allele against RA. Among the subgroups of HLA-DRB1*04, *0401 was detected to be RA associated, while *0402 was being protective. These results have some differences compared with previous reports originating from other regions of Turkey. PMID:21246357

  2. Comparison of drop size distributions from two droplet sizing systems

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.; Ide, Robert F.

    1990-01-01

    A comparison between the Phase Doppler Particle Analyzer and the combined measurements from Particle Measuring Systems' Forward Scattering Spectrometer Probe and the Optical Array Probe was conducted in an icing wind tunnel using NASA Icing Research Tunnel spray nozzles to produce the supercooled water droplet cloud. Clouds having a range of volume median diameters from 10 to greater than 50 microns were used for the instrument comparisons. A volume median diameter was calculated from combining the droplet distributions of the Optical Array Probe and the Forward Scattering Spectrometer Probe. A comparison of the combined volume median diameters and the Phase Doppler Particle Analyzer volume median diameters showed agreement from 10 microns up to 30 microns. Typical drop size distributions from the Phase Doppler Particle Analyzer, the Forward Scattering Spectrometer Probe, and Optical Array Probe are presented for several median volume diameters. A comparison of the distributions illustrates regions of the distributions where there is good agreement and other regions where there are discrepancies between the Phase Doppler Particle Analyzer and the Particle Measuring Systems' droplet size instruments.

  3. The size-distribution of Earth's lakes.

    PubMed

    Cael, B B; Seekell, D A

    2016-01-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth's lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km(2) are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05; d = 4/3). Lakes <8.5 km(2) are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales. PMID:27388607

  4. Acoustical concept for measuring particle size distributions

    SciTech Connect

    Mahler, D.S.; Kaufman, M.

    1981-02-01

    A new concept is investigated for measuring particle size and distribution for air pollution control applications. This study illustrates that the proposed device--the Acoustic Particulate Monitor (APM)--can measure total mass loading, mean particle diameter, and width of particle size distributions on an in-situ basis. The concept for such an instrument is based upon experimental and theoretical observations that the presence of dust in air causes a reduction in the speed of sound as a function of the transmitted frequency. These percentage reductions in the speed of sound are small and the research results illustrate how the accompanying shift in the acoustical phase is a highly sensitive method for detecting such effects. The magnitudes of the phase shift are related to mass loading. The frequency associated with the maximum phase shift is defined as the acoustic frequency, fA. Experimentally determining fA provides a measure of the mean particle size of the distribution. The detailed shape of the phase shift as a function of frequency is a measure of the spread in the size distribution of the entrained particulate. Experiments were performed using several configurations. Results were verified using direct mass measurements and microphotographs.

  5. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  6. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  7. Size from Specular Highlights for Analyzing Droplet Size Distributions

    NASA Astrophysics Data System (ADS)

    Jalba, Andrei C.; Westenberg, Michel A.; Grooten, Mart H. M.

    In mechanical engineering, heat-transfer models by dropwise condensation are under development. The condensation process is captured by taking many pictures, which show the formation of droplets, of which the size distribution and area coverage are of interest for model improvement. The current analysis method relies on manual measurements, which is time consuming. In this paper, we propose an approach to automatically extract the positions and radii of the droplets from an image. Our method relies on specular highlights that are visible on the surfaces of the droplets. We show that these highlights can be reliably extracted, and that they provide sufficient information to infer the droplet size. The results obtained by our method compare favorably with those obtained by laborious and careful manual measurements. The processing time per image is reduced by two orders of magnitude.

  8. Phenotypic and allelic distribution of the ABO and Rhesus (D) blood groups in the Cameroonian population.

    PubMed

    Ndoula, S T; Noubiap, J J N; Nansseu, J R N; Wonkam, A

    2014-06-01

    Data on blood group phenotypes are important for blood transfusion programs, for disease association and population genetics studies. This study aimed at reporting the phenotypic and allelic distribution of ABO and Rhesus (Rh) groups in various ethnolinguistic groups in the Cameroonians. We obtained ABO and Rhesus blood groups and self-identified ethnicity from 14,546 Cameroonian students. Ethnicity was classified in seven major ethnolinguistic groups: Afro-Asiatic, Nilo-Saharan, Niger-Kordofanian/West Atlantic, Niger-Kordofanian/Adamawa-Ubangui, Niger-Kordofanian/Benue-Congo/Bantu/Grassfield, Niger-Kordofanian/Benue-Congo/Bantu/Mbam and Niger-Kordofanian/Benue-Congo/Bantu/Equatorial. ABO allelic frequencies were determined using the Bernstein method. Differences in phenotypic distribution of blood groups were assessed using the chi-square test; a P value <0.05 being considered as statistically significant. The frequencies of the antigens of blood groups O, A, B and AB were 48.62%, 25.07%, 21.86% and 4.45%, respectively. Rhesus-positive was 96.32%. The allelic frequencies of O, A and B genes were 0.6978, 0.1605 and 0.1416, respectively. Phenotypic frequencies of the blood groups in the general study population and in the different ethnolinguistic groups were in agreement with Hardy-Weinberg equilibrium expectations (P > 0.05). The frequencies of O, A, and B blood phenotypes were significantly lower, respectively, in the Nilo-Saharan group (P = 0.009), the Niger-Kordofanian/Benue-Congo/Bantu groups (P = 0.021) and the Niger-Kordofanian/West-Atlantic group. AB blood group was most frequent in the Niger-Kordofanian/Adamawa-Ubangui group (P = 0.024). Our study provides the first data on ethnic distribution of ABO and Rhesus blood groups in the Cameroonian population and suggests that its general profile is similar to those of several sub-Saharan African populations. We found some significant differences in phenotypic distribution amongst major ethnolinguistic groups

  9. Allele frequency distribution of 10 MiniSTRs in the Pashtun population of Pakistan.

    PubMed

    Shafique, Muhammad; Shahzad, Muhammad Saqib; Perveen, Uzma; Parveen, Rukhsana; Ali, Azam; Hussain, Manzoor; Rehman, Ziaur; Shahid, Ahmad Ali; Husnain, Tayyab

    2015-05-01

    Two hundred individual samples of Pashtun population from Khyber Pakhtunkhwa province of Pakistan were randomly evaluated through 10 MiniSTR loci (CSF1PO, D7S820, TPOX, D18S51, D2S1338, D13S317, FGA, D5S818, D21S11, and D16S539). The PCR product size was reduced in the range of 65 to 280 bp. A total of 112 alleles were observed containing allelic frequency ranging from 0.0025 to 0.4325. Statistical values for forensic and parentage analysis were calculated including combined power of discrimination (PD), combined power of exclusion (PE), and cumulative probability of matching (PM) and equaled to 0.99999999999768, 0.99984944, and 2.33 × 10(-12), respectively. These MiniSTRs show a high degree of polymorphism information content and discriminatory power which would be helpful to resolve forensic cases and establish DNA database for major population groups of Pakistan. In contrast to different populations, significant differences were also observed on these loci. PMID:25821203

  10. Size distributions of submicrometer aerosols from cooking

    SciTech Connect

    Li, C.S.; Lin, W.H.; Jeng, F.T. )

    1993-01-01

    Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 [mu]m to 1 [mu]m. The concentrations of the submicrometer particles increased significantly from 15,000 cm[sup [minus]3] to 150,000 cm[sup [minus]3] during cooking. Additionally, the ultrafine particles constituted 60%--70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300--350 nm. 10 refs., 6 figs., 2 tabs.

  11. The size distribution of 'gold standard' nanoparticles.

    PubMed

    Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F

    2009-11-01

    The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 +/- 0.04 nm (RM 8011), 12.20 +/- 0.03 nm (RM 8012), and 25.74 +/- 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 +/- 0.006 (RM 8011), 0.103 +/- 0.003, (RM 8012), and 0.10 +/- 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions--repulsive or attractive--were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles.

  12. Geographic distributions of Idh-1 alleles in a cricket are linked to differential enzyme kinetic performance across thermal environments

    PubMed Central

    Huestis, Diana L; Oppert, Brenda; Marshall, Jeremy L

    2009-01-01

    Background Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. Results We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. Conclusion This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles. PMID:19460149

  13. Company size distribution in different countries

    NASA Astrophysics Data System (ADS)

    Ramsden, J. J.; Kiss-Haypál, Gy.

    2000-03-01

    The distribution of companies in a country, ranked in order of size (annual net revenue) s, follows the simplified canonical law s r∼(r+ρ) -1/θ remarkably well, where r is the rank, and θ and ρ are the parameters of the distribution. These parameters have been determined for 20 countries in America, Asia and Europe. Significant differences between countries are found. Neither θ nor ρ appears to correlate well with traditional economic indicators; indeed some countries often thought to be economically and politically, but not necessarily socially, similar show surprising differences, suggesting that wealth and prosperity are influenced by hidden layers hitherto inaccessible through standard economic theory.

  14. Remote Laser Diffraction Particle Size Distribution Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  15. Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations

    PubMed Central

    Vina, Marcelo A. Fernandez; Hollenbach, Jill A.; Lyke, Kirsten E.; Sztein, Marcelo B.; Maiers, Martin; Klitz, William; Cano, Pedro; Mack, Steven; Single, Richard; Brautbar, Chaim; Israel, Shosahna; Raimondi, Eduardo; Khoriaty, Evelyne; Inati, Adlette; Andreani, Marco; Testi, Manuela; Moraes, Maria Elisa; Thomson, Glenys; Stastny, Peter; Cao, Kai

    2012-01-01

    The human leucocyte antigen (HLA) system shows extensive variation in the number and function of loci and the number of alleles present at any one locus. Allele distribution has been analysed in many populations through the course of several decades, and the implementation of molecular typing has significantly increased the level of diversity revealing that many serotypes have multiple functional variants. While the degree of diversity in many populations is equivalent and may result from functional polymorphism(s) in peptide presentation, homogeneous and heterogeneous populations present contrasting numbers of alleles and lineages at the loci with high-density expression products. In spite of these differences, the homozygosity levels are comparable in almost all of them. The balanced distribution of HLA alleles is consistent with overdominant selection. The genetic distances between outbred populations correlate with their geographical locations; the formal genetic distance measurements are larger than expected between inbred populations in the same region. The latter present many unique alleles grouped in a few lineages consistent with limited founder polymorphism in which any novel allele may have been positively selected to enlarge the communal peptide-binding repertoire of a given population. On the other hand, it has been observed that some alleles are found in multiple populations with distinctive haplotypic associations suggesting that convergent evolution events may have taken place as well. It appears that the HLA system has been under strong selection, probably owing to its fundamental role in varying immune responses. Therefore, allelic diversity in HLA should be analysed in conjunction with other genetic markers to accurately track the migrations of modern humans. PMID:22312049

  16. Graphical modeling of the joint distribution of alleles at associated loci.

    PubMed

    Thomas, Alun; Camp, Nicola J

    2004-06-01

    Pairwise linkage disequilibrium, haplotype blocks, and recombination hotspots provide only a partial description of the patterns of dependences and independences between the allelic states at proximal loci. On the gross scale, where recombination and spatial relationships dominate, the associations can be reasonably described in these terms. However, on the fine scale of current high-density maps, the mutation process is also important and creates associations between loci that are independent of the physical ordering and that can not be summarized with pairwise measures of association. Graphical modeling provides a standard statistical framework for characterizing precisely these sorts of complex stochastic data. Although graphical models are often used in situations in which assumptions lead naturally to specific models, it is less well known that estimation of graphical models is also a developed field. We show how decomposable graphical models can be fitted to dense genetic data. The objective function is the maximized log likelihood for the model penalized by a multiple of the model's degrees of freedom. We also describe how this can be modified to incorporate prior information of locus position. Simulated annealing is used to find good solutions. Part of the appeal of this approach is that categorical phenotypes can be included in the same analysis and association with polymorphisms can be assessed jointly with the interlocus associations. We illustrate our method with genotypic data from 25 loci in the ELAC2 gene. The results contain third- and fourth-order locus interactions and show that, at this density of markers, linkage disequilibrium is not a simple function of physical distance. Graphical models provide more flexibility to express these features of the joint distribution of alleles than do monotonic functions connecting physical and genetic maps.

  17. Geographical distribution of pyrethroid resistance allele frequency in head lice (Phthiraptera: Pediculidae) from Argentina.

    PubMed

    Toloza, Ariel Ceferino; Ascunce, Marina S; Reed, David; Picollo, María Inés

    2014-01-01

    The human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is an obligate ectoparasite that causes pediculosis capitis and has parasitized humans since the beginning of humankind. Head louse infestations are widespread throughout the world and have been increasing since the early 1990s partially because of ineffective pediculicides. In Argentina, the overuse of products containing pyrethroids has led to the development of resistant louse populations. Pyrethroid insecticides act on the nervous system affecting voltage-sensitive sodium channels. Three point mutations at the corresponding amino acid sequence positions M815I, T917I, and L920F in the voltage-gated sodium channel gene are responsible for contributing to knockdown resistance (kdr). The management of pyrethroid resistance requires either early detection or the characterization of the mechanisms involved in head louse populations. In the current study, we estimated the distribution of kdr alleles in 154 head lice from six geographical regions of Argentina. Pyrethroid resistance kdr alleles were found in high frequencies ranging from 67 to 100%. Of these, 131 (85.1%) were homozygous resistant, 13 (8.4%) were homozygous susceptible, and 10 (6.5%) were heterozygous. Exact tests for the Hardy-Weinberg equilibrium for each location showed that genotype frequencies differed significantly from expectation in four of the six sites studied. These results show that pyrethroid resistance is well established reaching an overall frequency of 88%, thus close to fixation. With 30 yr of pyrethroid-based pediculicides use in Argentina, kdr resistance has evolved rapidly among these head louse populations. PMID:24605463

  18. Geographical distribution of pyrethroid resistance allele frequency in head lice (Phthiraptera: Pediculidae) from Argentina.

    PubMed

    Toloza, Ariel Ceferino; Ascunce, Marina S; Reed, David; Picollo, María Inés

    2014-01-01

    The human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is an obligate ectoparasite that causes pediculosis capitis and has parasitized humans since the beginning of humankind. Head louse infestations are widespread throughout the world and have been increasing since the early 1990s partially because of ineffective pediculicides. In Argentina, the overuse of products containing pyrethroids has led to the development of resistant louse populations. Pyrethroid insecticides act on the nervous system affecting voltage-sensitive sodium channels. Three point mutations at the corresponding amino acid sequence positions M815I, T917I, and L920F in the voltage-gated sodium channel gene are responsible for contributing to knockdown resistance (kdr). The management of pyrethroid resistance requires either early detection or the characterization of the mechanisms involved in head louse populations. In the current study, we estimated the distribution of kdr alleles in 154 head lice from six geographical regions of Argentina. Pyrethroid resistance kdr alleles were found in high frequencies ranging from 67 to 100%. Of these, 131 (85.1%) were homozygous resistant, 13 (8.4%) were homozygous susceptible, and 10 (6.5%) were heterozygous. Exact tests for the Hardy-Weinberg equilibrium for each location showed that genotype frequencies differed significantly from expectation in four of the six sites studied. These results show that pyrethroid resistance is well established reaching an overall frequency of 88%, thus close to fixation. With 30 yr of pyrethroid-based pediculicides use in Argentina, kdr resistance has evolved rapidly among these head louse populations.

  19. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  20. HLA-A, HLA-B, and HLA-DRB1 allele distribution in a large Armenian population sample.

    PubMed

    Matevosyan, L; Chattopadhyay, S; Madelian, V; Avagyan, S; Nazaretyan, M; Hyussian, A; Vardapetyan, E; Arutunyan, R; Jordan, F

    2011-07-01

    Human leukocyte antigen (HLA)-A, HLA-B, and HLA-DRB1 gene frequencies were investigated in 4279 unrelated Armenian bone marrow donors. HLA alleles were defined by using PCR amplification with sequence specific primers (PCR-SSP) high- and low-resolution kits. The aim of this study was to examine the HLA diversity at the high-resolution level in a large Armenian population sample, and to compare HLA allele group distribution in Armenian subpopulations. The most frequently observed alleles in the HLA class I were HLA-A*0201, A*0101, A*2402, A*0301, HLA-B*5101, HLA-B*3501, and B*4901. Among DRB1 alleles, high frequencies of DRB1*1104 and DRB1*1501 were observed, followed by DRB1*1101 and DRB1*1401. The most common three-locus haplotype found in the Armenian population was A*33-B*14-DRB1*01, followed by A*03-B*35-DRB1*01. Our results show a similar distribution of alleles in Armenian subpopulations from different countries, and from different regions of the Republics of Armenia and Karabagh. The low level of genetic distances between subpopulations indicates a high level of population homogeneity, and the genetic distances between Armenians and other populations show Armenians as a distinct ethnic group relative to others, reflecting the fact that Armenians have been an 'isolated population' throughout centuries. This study is the first comprehensive investigation of HLA-allele group distribution in a subset of Armenian populations, and the first to provide HLA-allele and haplotype frequencies at a high-resolution level. It is a valuable reference for organ transplantation and for future studies of HLA-associated diseases in Armenian populations.

  1. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  2. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  3. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  4. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  5. Allele frequency distributions of D1S80 in the Polish population.

    PubMed

    Ciesielka, M; Kozioł, P; Krajka, A

    1996-08-15

    The polymorphism of the D1S80 locus has been analyzed in a population sample of 208 unrelated individuals in the Southeast Poland and 103 mother/child pairs. PCR amplified alleles were separated by a vertical discontinuous polyacrylamide gel electrophoresis system. Nineteen different alleles and 52 phenotypes could be distinguished. The alleles 18 (f = 0.267) and 24 (f = 0.300) were most common in Poland. D1S80 genotype frequencies of Poland population do not deviate from Hardy-Weinberg equilibrium. All mother/child pairs shared at least one D1S80 allele.

  6. Charge and Size Distributions of Electrospray Drops

    PubMed

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  7. A single IGF1 allele is a major determinant of small size in dogs.

    PubMed

    Sutter, Nathan B; Bustamante, Carlos D; Chase, Kevin; Gray, Melissa M; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G; Quignon, Pascale; Johnson, Gary S; Parker, Heidi G; Fretwell, Neale; Mosher, Dana S; Lawler, Dennis F; Satyaraj, Ebenezer; Nordborg, Magnus; Lark, K Gordon; Wayne, Robert K; Ostrander, Elaine A

    2007-04-01

    The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.

  8. Origins, distribution and expression of the Duarte-2 (D2) allele of galactose-1-phosphate uridylyltransferase

    PubMed Central

    Carney, Amanda E.; Sanders, Rebecca D.; Garza, Kerry R.; McGaha, Lee Anne; Bean, Lora J. H.; Coffee, Bradford W.; Thomas, James W.; Cutler, David J.; Kurtkaya, Natalie L.; Fridovich-Keil, Judith L.

    2009-01-01

    Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity and carry one profoundly impaired GALT allele (G) along with a second, partially impaired GALT allele (Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense substitution, three intronic base changes and a 4 bp deletion in the 5′ proximal sequence. The four non-coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in mammalian cell and yeast expression studies. In contrast, the 4 bp 5′ deletion characteristic of D2 alleles appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific qRT–PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the difference is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly implicate the 4 bp 5′ deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the basis of the presence and absence of linked coding sequence polymorphisms. PMID:19224951

  9. Global distribution of allele frequencies at the human dopamine D4 receptor locus

    SciTech Connect

    Chang, F.M.; Kidd, J.R.; Livak, K.J.

    1994-09-01

    The dopamine D4 receptor (DRD4) is a candidate gene for schizophrenia because the dopaminergic system has been implicated in this neuropsychiatric disorder. Several research groups have reported an association between allelic variants at DRD4 and schizophrenia, while others have been unable to replicate that finding. Knowledge of the appropriate gene frequencies in the underlying populations may resolve these inconsistencies. We have determined the frequencies of 8 different alleles of the 48 bp imperfect tandem repeat of exon 3 at the DRD4 locus in samples from 33 populations around the world. The frequencies vary considerably in the different populations with the most common allele ranging from 16% to 95%. Frequencies and Fst values will be presented for the 3 most common alleles (4-, 7-, and 2- repeat) by continental groupings, but the individual populations vary significantly around the averages. The populations averaged 4.3 alleles (range 2 to 7).

  10. Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers

    PubMed Central

    Hippolyte, I.; Jenny, C.; Gardes, L.; Bakry, F.; Rivallan, R.; Pomies, V.; Cubry, P.; Tomekpe, K.; Risterucci, A. M.; Roux, N.; Rouard, M.; Arnaud, E.; Kolesnikova-Allen, M.; Perrier, X.

    2012-01-01

    Background and Aims The production of triploid banana and plantain (Musa spp.) cultivars with improved characteristics (e.g. greater disease resistance or higher yield), while still preserving the main features of current popular cultivars (e.g. taste and cooking quality), remains a major challenge for Musa breeders. In this regard, breeders require a sound knowledge of the lineage of the current sterile triploid cultivars, to select diploid parents that are able to transmit desirable traits, together with a breeding strategy ensuring final triploidization and sterility. Highly polymorphic single sequence repeats (SSRs) are valuable markers for investigating phylogenetic relationships. Methods Here, the allelic distribution of each of 22 SSR loci across 561 Musa accessions is analysed. Key Results and Conclusions We determine the closest diploid progenitors of the triploid ‘Cavendish’ and ‘Gros Michel’ subgroups, valuable information for breeding programmes. Nevertheless, in establishing the likely monoclonal origin of the main edible triploid banana subgroups (i.e. ‘Cavendish’, ‘Plantain’ and ‘Mutika-Lujugira’), we postulated that the huge phenotypic diversity observed within these subgroups did not result from gamete recombination, but rather from epigenetic regulations. This emphasizes the need to investigate the regulatory mechanisms of genome expression on a unique model in the plant kingdom. We also propose experimental standards to compare additional and independent genotyping data for reference. PMID:22323428

  11. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    aggregate size distribution which is led to nutrient and organic matter redistribution is one of a key questions to improve erosion estimation. G. Jakab was supported by the János Bolyai fellowship of the HAS.

  12. Power laws, discontinuities and regional city size distributions

    USGS Publications Warehouse

    Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.

    2008-01-01

    Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.

  13. Serum lipid levels and M/L55 allele distribution of HDL paraoxonase gene in Saami and Finnish men.

    PubMed

    Malin, R; Lehtinen, S; Luoma, P; Näyhä, S; Hassi, J; Koivula, T; Lehtimäki, T

    2001-01-01

    Paraoxonase (PON) is an antioxidative enzyme, which eliminates lipid peroxides. The mutation in codon 55 of PON1 gene causes a change of methionine (M-allele) to leucine (L-allele) and influences PON activity. The Saami are a population living in the northern part of Fennoscandia. In previous studies their death rate from coronary artery disease (CAD) was found to be low. We compared PON M/L55 allele frequencies of 68 Saami and 68 Finnish men and related the PON genotypes to plasma lipid levels and to the levels of autoantibodies against oxidized LDL. The M/L55 genotypes were determined by PCR and restriction enzyme digestion. ELISA was used to measure antibodies against oxidized LDL. The L- and M-allele frequencies were 64% and 36% in Saami population and 64% and 36% in Finnish men, respectively (p = NS, Fisher's exact test). There were also no significant differences in plasma lipid levels or in antibody levels against oxidized LDL between PON genotypes or between Saami and Finnish men. Our results indicate that the PON M/L55 genotype is not associated with plasma lipid levels or the levels of autoantibodies against oxidized LDL in these populations. The Saami men have the same PON M/L55 allele distribution as the Finnish men and the PON genotype might thus not be one factor protecting Saami against CAD.

  14. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  15. HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies.

    PubMed

    Koffman, B M; Sivakumar, K; Simonis, T; Stroncek, D; Dalakas, M C

    1998-04-15

    We studied the HLA class II associations in patients with sporadic inclusion body myositis (s-IBM) and hereditary inclusion body myopathies (h-IBM) and attempted to distinguish these myopathies on the basis of HLA allele assignments. Forty-five patients, 30 with s-IBM and 15 with h-IBM, underwent HLA class II allele-specific typing using polymerase chain reaction sequence-specific primers for 71 alleles contained in the DRbeta1, DRbeta3-5, and DQbeta1 loci. In s-IBM, we found a high (up to 77%) frequency of DRbeta1*0301, DRbeta3*0101 (or DRbeta3*0202) and DQbeta1*0201 alleles. No significant association with alleles in the DR and DQ haplotypes was found among the 15 h-IBM patients. The strong association of prominent alleles with s-IBM, but not h-IBM, suggests that s-IBM is a distinct disorder with an immunogenetic background that differs from h-IBM.

  16. Single-gene speciation with pleiotropy: effects of allele dominance, population size, and delayed inheritance.

    PubMed

    Yamamichi, Masato; Sasaki, Akira

    2013-07-01

    Single-gene speciation is considered to be unlikely, but an excellent example is found in land snails, in which a gene for left-right reversal has given rise to new species multiple times. This reversal might be facilitated by their small population sizes and maternal effect (i.e., "delayed inheritance," in which an individual's phenotype is determined by the genotype of its mother). Recent evidence suggests that a pleiotropic effect of the speciation gene on antipredator survival may also promote speciation. Here we theoretically demonstrate that, without a pleiotropic effect, in small populations the fixation probability of a recessive mutant is higher than a dominant mutant, but they are identical for large populations and sufficiently weak selection. With a pleiotropic effect that increases mutant viability, a dominant mutant has a higher fixation probability if the strength of viability selection is sufficiently greater than that of reproductive incompatibility, whereas a recessive mutant has a higher fixation probability otherwise. Delayed inheritance increases the fixation probability of a mutant if viability selection is sufficiently weaker than reproductive incompatibility. Our results clarify the conflicting effects of viability selection and positive frequency-dependent selection due to reproductive incompatibility and provide a new perspective to single-gene speciation theory. PMID:23815656

  17. A novel fluorescent quadruplex STR typing system and the allele frequency distributions in a Thai population.

    PubMed

    Yoshimoto, Takashi; Yamamoto, Toshimichi; Mizutani, Masaki; Uchihi, Rieko; Ohtaki, Hiroyuki; Katsumata, Yoshinao; Waiyawuth, Worawee; Songsivilai, Sirirurg

    2003-01-01

    We have previously reported a new triplex amplification and typing system by silver staining for three short tandem repeat (STR) loci, 9q2h2 (D2S3020), D15S233, and D14S299 without "microvariant" alleles such as .1, .2, and, .3 alleles in the Japanese population. In the present study, we established a new quadruplex system with an additional locus D7S809 using primer sets labeled with fluorescent multi-color dyes. Using this system, we genotyped 183 Thai people, found only one "microvariant" allele (allele 20.2) at D7S809, and calculated allele frequencies and some statistical properties at these four STR loci. From these allele frequencies at four STR loci, we performed three statistical analyses including a homozygosity test, a likelihood ratio test, and an exact test for Hardy-Weinberg equilibrium (HWE). Deviations from HWE (p < 0.05) were observed only in the two tests at the locus D7S809. In the present study, we compared the allele frequencies at these four loci in the Thai population to those in the Japanese population described previously. Consequently, all observed heterozygosities and power of discrimination (PD) at those loci in the Thai population were higher than 0.8 and 0.9, respectively, and all statistical values for discriminating power in the Thai population were slightly higher than those in the Japanese population. The combined paternity exclusion rate (combined PE) in the Thai population (0.978) was almost the same as that in the Japanese population (0.971). Therefore, this novel PCR amplification and typing system for four STR loci would be a convenient and informative DNA profiling system in the forensic field. PMID:12570210

  18. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, Erin L.; Gedy, Bradley C.; Oyler-McCance, Sara J.; Garey, Andrew L.; Emel, Sarah L.; Mumma, Matthew; Wagner, Helene H.; Fortin, Marie-Josée; Cushman, Samuel A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.

  19. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals. ?? 2011 Blackwell Publishing Ltd.

  20. Human acetylator polymorphism: estimate of allele frequency in Libya and details of global distribution.

    PubMed Central

    Karim, A K; Elfellah, M S; Evans, D A

    1981-01-01

    Acetylator phenotyping by means of a sulphadimidine tests revealed 65% of Libyan Arabs to be slow acetylators. Hence the frequency of the allele controlling slow acetylation (As) is estimated as q = 0.81 +/- 0.05. This estimate is similar to those previously recorded in European and adjacent Middle Eastern populations. PMID:7328611

  1. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  2. Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach.

    PubMed Central

    Berthier, Pierre; Beaumont, Mark A; Cornuet, Jean-Marie; Luikart, Gordon

    2002-01-01

    A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk. PMID:11861575

  3. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  4. Prevalence of carriers of premutation-size alleles of the FMR1 gene-and implications for the population genetics of the fragile X syndrome

    SciTech Connect

    Rousseau, F.; Rouillard, P.; Morel, M.L.

    1995-11-01

    The fragile X syndrome is the second leading cause of mental retardation after Down syndrome. Fragile X premutations are not associated with any clinical phenotype but are at high risk of expanding to full mutations causing the disease when they are transmitted by a carrier woman. There is no reliable estimate of the prevalence of women who are carriers of fragile X premutations. We have screened 10,624 unselected women by Southern blot for the presence of FMR1 premutation alleles and have confirmed their size by PCR analysis. We found 41 carriers of alleles with 55-101 CGG repeats, a prevalence of 1/259 women (95% confidence interval 1/373-1/198). Thirty percent of these alleles carry an inferred haplotype that corresponds to the most frequent haplotype found in fragile X males and may indeed constitute premutations associated with a significant risk of expansion on transmission by carrier women. We identified another inferred haplotype that is rare in both normal and fragile X chromosomes but that is present on 13 (57%) of 23 chromosomes carrying FMR1 alleles with 53-64 CGG repeats. This suggests either (1) that this haplotype may be stable or (2) that the associated premutation-size alleles have not yet reached equilibrium in this population and that the incidence of fragile X syndrome may increase in the future. 42 refs., 3 figs., 4 tabs.

  5. First report on HLA-DPA1 gene allelic distribution in the general Lebanese population

    PubMed Central

    Haddad, Joseph; Shammaa, Dina; Abbas, Fatmeh; Mahfouz, Rami A.R.

    2016-01-01

    Aims HLA-DPA1 is an important marker in bone marrow and organ transplantation and a highly emerging screening parameter in histocompatibility laboratories. Being highly polymorphic, it has another significant value in detecting population origins and migrations. This is the first study to assess DPA1 allele frequencies in an Arab population. Methods The HLA DPA1 alleles were identified using the One-Lambda assays on a Luminex reverse SSO DNA typing system. Our study included 101 individuals coming from different Lebanese geographical areas representing the different communities and religious sects of the country. Results We compared the results of this study to 16 different populations and found very interesting similarities and differences between Lebanese people and individuals of European ancestry. Conclusion This study is the first to describe the different allelic frequencies of HLA-DPA1 in the Lebanese population and will serve as a template that can be later used for disease association studies both at the level of the country and internationally. PMID:27014585

  6. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    PubMed

    Bin, Yue; Ye, Wanhui; Muller-Landau, Helene C; Wu, Linfang; Lian, Juyu; Cao, Honglin

    2012-01-01

    Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes. PMID:23300714

  7. Helicobacter pylori outer membrane protein Q allele distribution is associated with distinct pathologies in Pakistan.

    PubMed

    Yakoob, Javed; Abbas, Zaigham; Khan, Rustam; Salim, Saima Azhar; Awan, Safia; Abrar, Ambar; Jafri, Wasim

    2016-01-01

    Helicobacter pylori (H. pylori) strains expressing outer membrane protein Q (HopQ) promote adherence to the gastric epithelial cell. We characterized HopQ alleles in relation to H. pylori-related disease, histology and virulence markers. Gastric biopsies were obtained at esophagogastroduodenoscopy from patients with upper gastrointestinal symptoms. H. pylori culture, histology and polymerase chain reaction (PCR) for HopQ types, cagA, cagA-promoter and vacA alleles were performed. DNA extracted was used for PCR. Sequencing of PCR products of HopQ types 1 and 2 was followed by BLAST query. We examined 241 H. pylori isolates. HopQ type 1 was positive in 70 (29%) isolates, type 2 in 60 (25%) isolates, while both type 1 and type 2 in 111 (46%) H. pylori isolates, respectively. Nonulcer dyspepsia (NUD) was associated with HopQ type 2 in 48 (41%) isolates, while gastric carcinoma (GC) in 37 (53%) (P<0.001) with type 1 isolates. Gastric ulcers (GU) were 39 (46%) (P<0.001) in H. pylori infection with multiple HopQ alleles compared to 6 (23%) in HopQ type 1. Multivariate analysis demonstrated that multiple HopQ alleles were associated with GU OR 2.9 (1.07-7.8) (P=0.03). HopQ type 1 was associated with cagA 58 (84%) (P<0.001) and cagA-promoter 58 (83%) (P<0.001) compared to 14 (23%) and 17 (28%) respectively, in type 2. VacAs1a was associated with HopQ type 1 in 59 (84%) isolates compared to HopQ type 2 in 35 (58%) (P=0.002) isolates. VacAm1 was associated with HopQ type 1 in 53 (76%) isolates compared to HopQ type 2 in 32 (53%) (P=0.004) isolates. H. pylori infection with multiple HopQ alleles was predominant. H. pylori infection with single HopQ type 1 was associated with GC in the presence of other H. pylori virulence markers.

  8. Determination of the cumulus size distribution from LANDSAT pictures

    NASA Technical Reports Server (NTRS)

    Karg, E.; Mueller, H.; Quenzel, H.

    1983-01-01

    Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.

  9. Zipf Distribution of U.S. Firm Sizes

    NASA Astrophysics Data System (ADS)

    Axtell, Robert L.

    2001-09-01

    Analyses of firm sizes have historically used data that included limited samples of small firms, data typically described by lognormal distributions. Using data on the entire population of tax-paying firms in the United States, I show here that the Zipf distribution characterizes firm sizes: the probability a firm is larger than size s is inversely proportional to s. These results hold for data from multiple years and for various definitions of firm size.

  10. Cluster size distribution in Gaussian glasses

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.

    2011-03-01

    A simple method for the estimation of the asymptotics of the cluster numbers in Gaussian glasses is described. Validity of the method was tested by the comparison with the exact analytic result for the non-correlated field and simulation data for the distribution of random energies in strongly spatially correlated dipolar glass model.

  11. The distribution of bubble sizes during reionization

    NASA Astrophysics Data System (ADS)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  12. Power Laws for Heavy-Tailed Distributions: Modeling Allele and Haplotype Diversity for the National Marrow Donor Program

    PubMed Central

    Gragert, Loren; Maiers, Martin; Chatterjee, Ansu; Albrecht, Mark

    2015-01-01

    Measures of allele and haplotype diversity, which are fundamental properties in population genetics, often follow heavy tailed distributions. These measures are of particular interest in the field of hematopoietic stem cell transplant (HSCT). Donor/Recipient suitability for HSCT is determined by Human Leukocyte Antigen (HLA) similarity. Match predictions rely upon a precise description of HLA diversity, yet classical estimates are inaccurate given the heavy-tailed nature of the distribution. This directly affects HSCT matching and diversity measures in broader fields such as species richness. We, therefore, have developed a power-law based estimator to measure allele and haplotype diversity that accommodates heavy tails using the concepts of regular variation and occupancy distributions. Application of our estimator to 6.59 million donors in the Be The Match Registry revealed that haplotypes follow a heavy tail distribution across all ethnicities: for example, 44.65% of the European American haplotypes are represented by only 1 individual. Indeed, our discovery rate of all U.S. European American haplotypes is estimated at 23.45% based upon sampling 3.97% of the population, leaving a large number of unobserved haplotypes. Population coverage, however, is much higher at 99.4% given that 90% of European Americans carry one of the 4.5% most frequent haplotypes. Alleles were found to be less diverse suggesting the current registry represents most alleles in the population. Thus, for HSCT registries, haplotype discovery will remain high with continued recruitment to a very deep level of sampling, but population coverage will not. Finally, we compared the convergence of our power-law versus classical diversity estimators such as Capture recapture, Chao, ACE and Jackknife methods. When fit to the haplotype data, our estimator displayed favorable properties in terms of convergence (with respect to sampling depth) and accuracy (with respect to diversity estimates). This

  13. Lunar soil: Size distribution and mineralogical constituents

    USGS Publications Warehouse

    Duke, M.B.; Woo, C.C.; Bird, M.L.; Sellers, G.A.; Finkelman, R.B.

    1970-01-01

    The lunar soil collected by Apollo 11 consists primarily of submillimeter material and is finer in grain size than soil previously recorded photographically by Surveyor experiments. The main constituents are fine-grained to glassy rocks of basaltic affinity and coherent breccia of undetermined origin. Dark glass, containing abundant nickel-iron spheres, coats many rocks, mineral, and breccia fragments. Several types of homogeneous glass occur as fragments and spheres. Colorless spheres, probably an exotic component, are abundant in the fraction finer than 20 microns.

  14. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  15. Resonance-induced multimodal body-size distributions in ecosystems

    PubMed Central

    Lampert, Adam; Tlusty, Tsvi

    2013-01-01

    The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche. Here, we suggest an alternative, generic mechanism underlying multimodal size distributions, by showing that the size-dependent tradeoff between reproduction and resource utilization entails an inherent resonance that may induce multiple peaks, all competing over the same niche. Our theory is well fitted to empirical data in various ecosystems, in which both model and measurements show a multimodal, periodically peaked distribution at larger sizes, followed by a smooth tail at smaller sizes. Moreover, we show a universal pattern of size distributions, manifested in the collapse of data from ecosystems of different scales: phytoplankton in a lake, metazoans in a stream, and arthropods in forests. The demonstrated resonance mechanism is generic, suggesting that multimodal distributions of numerous ecological characters emerge from the interplay between local competition and global migration. PMID:23248320

  16. Knife mill operating factors effect on switchgrass particle size distributions

    SciTech Connect

    Bitra, V.S.P.; Womac, A.R.; Yang, Y.T.; Igathinathane, C.; Miu, P.I; Chevanan, Nehru; Sokhansanj, Shahabaddine

    2009-06-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin Rammler function fit the chopped switchgrass size distribution data with an R2 > 0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced strongly fine skewed mesokurtic particles with 12.7 25.4 mm screens and fine skewed mesokurtic particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  17. Knife mill operating factors effect on switchgrass particle size distributions.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Yang, Yuechuan T; Igathinathane, C; Miu, Petre I; Chevanan, Nehru; Sokhansanj, Shahab

    2009-11-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2)>0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  18. Optical heterodyne measurement of cloud droplet size distributions.

    PubMed

    Gollub, J P; Chabay, L; Flygare, W H

    1973-12-01

    Optical heterodyne spectra of laser light quasi-elastically scattered by falling water droplets (1-10-micro radius) in a diffusion cloud chamber were used to determine the droplet size distribution. The rate of fall depends on radius in a known way, thus yielding a heterodyne spectrum manifesting a distribution of Doppler shifts. This spectrum, in conjunction with the calculated Mie scattering intensity as a function of droplet radius, provides a direct measure of the droplet size distribution for droplets large enough that Brownian motion is negligible. The experiments described in this paper demonstrate the technique and establish the potential for further more quantitative studies of size distributions.

  19. Calculating Confidence Intervals for Effect Sizes Using Noncentral Distributions.

    ERIC Educational Resources Information Center

    Norris, Deborah

    This paper provides a brief review of the concepts of confidence intervals, effect sizes, and central and noncentral distributions. The use of confidence intervals around effect sizes is discussed. A demonstration of the Exploratory Software for Confidence Intervals (G. Cuming and S. Finch, 2001; ESCI) is given to illustrate effect size confidence…

  20. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  1. Analytic scaling function for island-size distributions.

    PubMed

    Dubrovskii, V G; Sibirev, N V

    2015-04-01

    We obtain an explicit solution for the island-size distribution described by the rate equations for irreversible growth with the simplified capture rates of the form σ(s)(Θ)∝Θ(p)(a+s-1) for all s≥1, where s is the size and Θ is the time-dependent coverage. The intrinsic property of this solution is its scaling form in the continuum limit. The analytic scaling function depends on the two parameters a and p and is capable of describing very dissimilar distribution shapes, both monomodal and monotonically decreasing. The obtained results suggest that the scaling features of the size distributions are closely related to the size linearity of the capture rates. A simple analytic scaling is obtained rigorously here and helps to gain a better theoretical understanding of possible origins of the scaling behavior of the island-size distributions. PMID:25974509

  2. Size distributions of quantum islands on stepped substrates.

    PubMed

    Liang, S; Zhu, H L; Wang, W

    2009-10-21

    The size distributions of self-assembled quantum islands on stepped substrates are studied using kinetic Monte Carlo simulations. It is found that the energy barrier E(SW) between the step and the terrace region is the key factor in affecting the size distribution of islands. With small E(SW) (< or = 0.1 eV), lines of uniform islands can be obtained at relative low surface coverage. As the surface coverage is increased, wirelike islands can be obtained. Scaling behavior is obeyed for the size distributions of the wirelike islands. When the size distributions are separated into their width and length components, however, scaling is only observed in the length distribution of the wirelike islands. With larger E(SW), the size distribution of islands shows a clear bimodal size distribution and anomalous growth temperature dependent island size evolutions are observed. The simulation results reproduce qualitatively the phenomena observed in the cases of InAs islands grown on stepped GaAs substrates.

  3. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    NASA Astrophysics Data System (ADS)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  4. PCR/oligonucleotide probe typing of HLA class II alleles in a Filipino population reveals an unusual distribution of HLA haplotypes

    SciTech Connect

    Bugawan, T.L.; Chang, J.D.; Erlich, H.A. ); Klitz, W. )

    1994-02-01

    The authors have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date, the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D[prime] = .41) with DPB 1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this populations. 30 refs., 2 figs., 6 tabs.

  5. Scale invariance of incident size distributions in response to sizes of their causes.

    PubMed

    Englehardt, James D

    2002-04-01

    Incidents can be defined as low-probability, high-consequence events and lesser events of the same type. Lack of data on extremely large incidents makes it difficult to determine distributions of incident size that reflect such disasters, even though they represent the great majority of total losses. If the form of the incident size distribution can be determined, then predictive Bayesian methods can be used to assess incident risks from limited available information. Moreover, incident size distributions have generally been observed to have scale invariant, or power law, distributions over broad ranges. Scale invariance in the distributions of sizes of outcomes of complex dynamical systems has been explained based on mechanistic models of natural and built systems, such as models of self-organized criticality. In this article, scale invariance is shown to result also as the maximum Shannon entropy distribution of incident sizes arising as the product of arbitrary functions of cause sizes. Entropy is shown by simulation and derivation to be maximized as a result of dependence, diversity, abundance, and entropy of multiplicative cause sizes. The result represents an information-theoretic explanation of invariance, parallel to those of mechanistic models. For example, distributions of incident size resulting from 30 partially dependent causes are shown to be scale invariant over several orders of magnitude. Empirical validation of power law distributions of incident size is reviewed, and the Pareto (power law) distribution is validated against oil spill, hurricane, and insurance data. The applicability of the Pareto distribution, in particular, for assessment of total losses over a planning period is discussed. Results justify the use of an analytical, predictive Bayesian version of the Pareto distribution, derived previously, to assess incident risk from available data.

  6. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  7. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  8. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  9. Asymptotic Distributions of Coalescence Times and Ancestral Lineage Numbers for Populations with Temporally Varying Size

    PubMed Central

    Chen, Hua; Chen, Kun

    2013-01-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n − An(t) follows a Poisson distribution, and as m → n, n(n−1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference. PMID:23666939

  10. What We Can Learn From Supernova Remnant Size Distributions

    NASA Astrophysics Data System (ADS)

    Elwood, Benjamin; Murphy, Jeremiah; Diaz, Mariangelly

    2016-01-01

    Previous literature regarding size distributions of supernova remnants generally discuss a uniform distribution for the radius, occasionally considering a Gaussian alternative. We indeed show that these distributions are consistent with log-normal, which can be considered a natural consequence of the Central Limit Theorem and Sedov expansion. Modeling explosion energy, remnant age, and ambient density as independent, random distributions, we show, using simple Monte Carlo simulations, that the size distribution is indistinguishable from log-normal when the SNR sample size is of order three hundred. This implies that these SNR distributions provide only information on the mean and variance, yielding additional information only when the sample size grows large. We then proceed to Bayesian statistical inference to characterize the information provided by the size distributions. In particular, we use the mean and variance of sizes and explosion energies to subsequently estimate the mean and variance of the ambient medium surrounding SNR progenitors. This in turn allows us to characterize potential bias in studies involving samples of supernova remnants.

  11. Determination of aerosol size distributions from spectral attenuation measurements.

    PubMed

    Grassl, H

    1971-11-01

    An iteration method for the determination of size distributions of aerosols from spectral attenuation data, similar to the one previously published for clouds, is presented. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting functions covering the entire radius region of a distribution. The weighting functions were calculated exactly from the Mie theory. Aerosol distributions are shown derived from tests with analytical size distributions and also generated from measured aerosol extinction data in seven spectral channels from 0.4-microto 10-micro wavelength in continental aerosols. The influence of relative humidity on the complex index of refraction is also discussed.

  12. SELF-CONSISTENT SIZE AND VELOCITY DISTRIBUTIONS OF COLLISIONAL CASCADES

    SciTech Connect

    Pan, Margaret; Schlichting, Hilke E. E-mail: hilke@ucla.edu

    2012-03-10

    The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan and Sari can steepen to values as large as q = 3.26. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies for the Kuiper belt, the asteroid belt, and extrasolar debris disks may constrain the mass and number of large bodies stirring the cascade as well as the colliding bodies' internal strengths.

  13. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    SciTech Connect

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-08-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R {approx} 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R {approx} 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R {approx}< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R {approx} 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from

  14. Distribution of VP4 gene alleles in human rotaviruses by using probes to the hyperdivergent region of the VP4 gene.

    PubMed Central

    Steele, A D; Garcia, D; Sears, J; Gerna, G; Nakagomi, O; Flores, J

    1993-01-01

    The rotavirus VP4 protein elicits the production of neutralizing antibodies and is known to play a role in inducing resistance to disease. At least five human rotavirus VP4 gene alleles have been described on the basis of antigenic polymorphism and/or nucleotide sequence differences. In the present study, we developed cDNA probes directed at the hyperdivergent region of the VP4 gene of the five described human rotavirus VP4 alleles (Wa, DS1, M37, AU228, and 69M) and used them in hybridization assays with human rotavirus strains from Latin America and Europe to determine the distribution of the VP4 gene alleles in nature. The Wa-like allele was detected most frequently, occurring in 57% of the 402 rotavirus strains tested, and the DS1-like allele was the next most common, occurring in 14% of the strains tested. The M37- and AU228-like alleles were detected in only 4 and 3% of the rotavirus strains tested, respectively, whereas the 69M-like VP4 gene allele was not detected. Several rotavirus strains from Europe did not react with any of the VP4 gene probes, although they did hybridize to a probe generated from a representative strain from the group. These data indicate the global distribution of various VP4 gene alleles and raise the possibility that other, unrecognized human VP4 alleles exist in nature because almost one-fourth of the strains could not be classified into any of the established VP4 groups. Images PMID:8394374

  15. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  16. Distribution of apolipoprotein E alleles in coras and huicholes from Nayarit and Nahuas and Mestizos from Veracruz, Mexico.

    PubMed

    Cruz-Fuentes, Carlos S; González-Sobrino, Blanca Zoila; Gómez-Sanchez, Ariadna; Martínez Rueda, Hortencia; Chávez-Eakle, Rosa Aurora; Serrano Sánchez, Carlos

    2005-12-01

    We report allele frequencies for the most common polymorphism of the APOE gene in Mexican individuals from two regions not previously described: Coras and Huicholes from Nayarit, and Nahuas and mestizos from Veracruz. We also report APOE allele frequencies for inhabitants of Mexico City. These descriptive data underscore the allelic heterogeneity for this particular locus in Mexico.

  17. Nanocrystal size distribution analysis from transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    van Sebille, Martijn; van der Maaten, Laurens J. P.; Xie, Ling; Jarolimek, Karol; Santbergen, Rudi; van Swaaij, René A. C. M. M.; Leifer, Klaus; Zeman, Miro

    2015-12-01

    We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect.We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06292f

  18. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  19. Characterization of events by aerosol mass size distributions.

    PubMed

    Nicolás, José; Yubero, Eduardo; Galindo, Nuria; Giménez, Joaquín; Castañer, Ramón; Carratalá, Adoración; Crespo, Javier; Pastor, Carlos

    2009-02-01

    Continuous measurements of particle mass size distributions were carried out in summer 2004 at an urban location in the western Mediterranean using an optical particle counter. In this work we propose a simple methodology to identify PM episodes and determine their influence on mass size distributions. During the study period three types of event produced a significant increase in TSP daily levels: Saharan dust intrusions, firework displays and strong winds, modifying size distributions in different ways. As well, a traffic-related mass size spectrum was obtained showing road dust particles injected into the atmosphere by vehicle-induced resuspension having mainly aerodynamic diameters between 5 and 15 microm. This was confirmed by principal component and conditional probability function analyses.

  20. Particle size and shape distributions of hammer milled pine

    SciTech Connect

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  1. Size distribution of microbubbles as a function of shell composition.

    PubMed

    Dicker, Stephen; Mleczko, Michał; Schmitz, Georg; Wrenn, Steven P

    2013-09-01

    The effect of modifying the shell composition of a population of microbubbles on their size demonstrated through experiment. Specifically, these variations include altering both the mole fraction and molecular weight of functionalized polymer, polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell (1-15 mol% PEG, and 1000-5000 g/mole, respectively). The size distribution is measured with an unbiased image segmentation program written in MATLAB which identifies and sizes bubbles from micrographs. For a population of microbubbles with a shell composition of 5 mol% PEG2000, the mean diameter is 1.42 μm with a variance of 0.244 μm. For the remainder of the shell compositions studied herein, we find that the size distributions do not show a statistically significant correlation to either PEG molecular weight or mole fraction. All the measured distributions are nearly Gaussian in shape and have a monomodal peak.

  2. Inferring Volcanic Degassing Processes From Vesicle Size Distributions

    NASA Astrophysics Data System (ADS)

    Blower, J. D.; Keating, J. P.; Mader, H. M.; Phillips, J. C.

    2001-12-01

    Both power law and exponential vesicle size distributions (VSDs) have been observed in many different types of volcanic rocks. We present results of laboratory analogue experiments, of the type pioneered by Brad Sturtevant, which reproduce these observations, and use experimental results and computer simulations to show that the distributions can be interpreted as the product of continuous bubble nucleation resulting from non-equilibrium degassing. This ongoing nucleation causes the bubbles to evolve through an exponential size distribution into a power law size distribution as nucleation and growth progress. The process of continuous nucleation is a mechanism whereby the volcanic system maintains near-equilibrium in the case of rapid depressurisation and slow volatile diffusion.

  3. Packing fraction of particles with lognormal size distribution.

    PubMed

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  4. Density, chemistry, and size distribution of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Horz, F.; Hartung, J. B.; Gault, D. E.

    1975-01-01

    Depth/diameter ratios measured for 98 craters in lunar glass targets reveal a broad distribution with a single strong peaking between 0.55 and 0.8. The measured values indicate a mean meteoroid density greater than 1 g/cu cm and probably less than 4 g/cu cm. Microprobe analyses show that typical glass pit liners on silicate targets contain only approximately 0.1% or less of meteoritic material. The size-frequency distribution of meteoroids was analyzed for a fractured glass surface of 60095, and a very steep size distribution of submicron meteoroids is indicated. As in the case of 15205, a dip at approximately 5 micron in the size-frequency distribution is detected.

  5. Allele frequencies at microsatellite loci: The stepwise mutation model revisited

    SciTech Connect

    Valdes, A.M.; Slatkin, M. ); Freimer, N.B. )

    1993-03-01

    The authors summarize available data on the frequencies of alleles at microsatellite loci in human populations and compare observed distributions of allele frequencies to those generated by a simulation of the stepwise mutation model. They show that observed frequency distributions at 108 loci are consistent with the results of the model under the assumption that mutations cause an increase or decrease in repeat number by one and under the condition that the product Nu, where N is the effective population size and u is the mutation rate, is larger than one. It is also shown that the variance of the distribution of allele sizes is a useful estimator of Nu and performs much better than previously suggested estimators for the stepwise mutation model. In the data, there is no correlation between the mean and variance in allele size at a locus or between the number of alleles and mean allele size, which suggests that the mutation rate at these loci is independent of allele size. 39 refs., 6 figs., 4 tabs.

  6. Identification of a Novel Allele of TaCKX6a02 Associated with Grain Size, Filling Rate and Weight of Common Wheat.

    PubMed

    Lu, Jie; Chang, Cheng; Zhang, Hai-Ping; Wang, Sheng-Xing; Sun, Genlou; Xiao, Shi-He; Ma, Chuan-Xi

    2015-01-01

    Cytokinin oxidase (CKX) plays a crucial role in plant growth and development by reversibly inactivating cytokinin (CTK). Twenty-four primer pairs, designed from ESTs of the TaCKX genes family of common wheat, were used to identify their allelic variations associated with grain size, weight, and filling rate in 169 recombinant inbred lines (RIL) derived from Jing 411 × Hongmangchun 21. TaCKX6a02, a member of TaCKX gene family, amplified by primer pair T31-32, showed a close association with grain traits in this RIL population. Statistical analysis indicated that allelic variation of TaCKX6a02 had significant correlation with grain size, weight, and filling rate (GFR; P < 0.001) under varied environments. The TaCKX6a02-D1a allele from Jing411 significantly increased grain size, weight and grain filling rate, compared with TaCKX6a02-D1b from Hongmangchun 21. TaCKX6a02 was located on chromosome 3DS in the interval of Xbarc1119 and Xbarc1162, with a genetic distance of 1.4 cM. The location was further confirmed using Chinese Spring nulli-tetrasomic lines. A major QTL (quantitative trait locus) tightly linked to TaCKX6a02 was detected in the RIL population, explaining 17.1~38.2% of phenotype variations for grain size, weight, GFRmax and GFRmean in different environments. In addition, significant effects of variations of TaCKX6a02 on grain weight and GFR were further validated by association analysis among 102 wheat varieties in two cropping seasons. 12.8~35.1% of phenotypic variations were estimated for these genotypes. A novel 29-bp InDel behind the stop codon was detected by DNA sequence analysis between the two alleles of TaCKX6a02-D1. The gene-specific marker, TKX3D, was designed according to the novel variation, and can be used in marker-assisted selection (MAS) for grain size, weight, and GFR in common wheat. PMID:26657796

  7. Identification of a Novel Allele of TaCKX6a02 Associated with Grain Size, Filling Rate and Weight of Common Wheat

    PubMed Central

    Zhang, Hai-Ping; Wang, Sheng-Xing; Sun, Genlou; Xiao, Shi-He; Ma, Chuan-Xi

    2015-01-01

    Cytokinin oxidase (CKX) plays a crucial role in plant growth and development by reversibly inactivating cytokinin (CTK). Twenty-four primer pairs, designed from ESTs of the TaCKX genes family of common wheat, were used to identify their allelic variations associated with grain size, weight, and filling rate in 169 recombinant inbred lines (RIL) derived from Jing 411 × Hongmangchun 21. TaCKX6a02, a member of TaCKX gene family, amplified by primer pair T31–32, showed a close association with grain traits in this RIL population. Statistical analysis indicated that allelic variation of TaCKX6a02 had significant correlation with grain size, weight, and filling rate (GFR; P < 0.001) under varied environments. The TaCKX6a02-D1a allele from Jing411 significantly increased grain size, weight and grain filling rate, compared with TaCKX6a02-D1b from Hongmangchun 21. TaCKX6a02 was located on chromosome 3DS in the interval of Xbarc1119 and Xbarc1162, with a genetic distance of 1.4 cM. The location was further confirmed using Chinese Spring nulli–tetrasomic lines. A major QTL (quantitative trait locus) tightly linked to TaCKX6a02 was detected in the RIL population, explaining 17.1~38.2% of phenotype variations for grain size, weight, GFRmax and GFRmean in different environments. In addition, significant effects of variations of TaCKX6a02 on grain weight and GFR were further validated by association analysis among 102 wheat varieties in two cropping seasons. 12.8~35.1% of phenotypic variations were estimated for these genotypes. A novel 29-bp InDel behind the stop codon was detected by DNA sequence analysis between the two alleles of TaCKX6a02-D1. The gene-specific marker, TKX3D, was designed according to the novel variation, and can be used in marker-assisted selection (MAS) for grain size, weight, and GFR in common wheat. PMID:26657796

  8. Crater size distributions on Ganymede and Callisto: fundamental issues

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Schmedemann, Nico; Werner, Stefanie; Ivanov, Boris; Stephan, Katrin; Jaumann, Ralf

    2015-04-01

    Crater size distributions on the two largest Jovian satellites Ganymede and Callisto and the origin of impactors are subject of intense and controversial debates. In this paper, we reinvestigate crater size distributions measured in surface units derived from a recently published global geologic map, based on Voyager and Galileo SSI images at a scale of 1 km/pxl (Collins G. C. et al. (2013), U. S. Geol. Surv., Sci. Inv. Map 3237). These units are used as a context to units mapped in more detail at higher resolution in Galileo SSI images. We focus on the following fundamental issues: (1) Similarity between shapes of crater distributions on the Galilean satellites and on inner solar system bodies; (2) production versus equilibrium distributions; (3) apex/antapex variations in crater distributions. First, our results show a strong similarity in shape between the crater distributions on the most densely cratered regions on Ganymede and Callisto with those in the lunar highlands. We conclude that the shape of the crater distributions on these two Jovian satellites implies the craters were preferentially formed from members of a collisionally evolved projectile family, derived either from Main Belt asteroids as candidates of impactors on the Jovian satellites, or from projectiles stemming from the outer solar system which have undergone collisional evolution, resulting in a size distribution similar to those of Main Belt asteroids. Second, the complex shape of the crater distributions on Ganymede and Callisto indicates they are mostly production distributions and can be used to infer the underlying shape of the projectile size distribution. Locally, equilibrium distributions occur, especially at smaller sub-kilometer diameters. Third, the most densely cratered regions on both satellites do not show apex-antapex variations in crater frequency, as inferred for bodies from heliocentric orbits (e.g., Zahnle K. et al. (2003), Icarus 163, 263-289). This indicates that these

  9. Size Distributions of Solar Proton Events: Methodological and Physical Restrictions

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Yanke, V. G.

    2016-10-01

    Based on the new catalogue of solar proton events (SPEs) for the period of 1997 - 2009 (Solar Cycle 23) we revisit the long-studied problem of the event-size distributions in the context of those constructed for other solar-flare parameters. Recent results on the problem of size distributions of solar flares and proton events are briefly reviewed. Even a cursory acquaintance with this research field reveals a rather mixed and controversial picture. We concentrate on three main issues: i) SPE size distribution for > 10 MeV protons in Solar Cycle 23; ii) size distribution of > 1 GV proton events in 1942 - 2014; iii) variations of annual numbers for > 10 MeV proton events on long time scales (1955 - 2015). Different results are critically compared; most of the studies in this field are shown to suffer from vastly different input datasets as well as from insufficient knowledge of underlying physical processes in the SPEs under consideration. New studies in this field should be made on more distinct physical and methodological bases. It is important to note the evident similarity in size distributions of solar flares and superflares in Sun-like stars.

  10. Thresholded Power law Size Distributions of Instabilities in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-11-01

    Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

  11. On the Challenge of Fitting Tree Size Distributions in Ecology

    PubMed Central

    Taubert, Franziska; Hartig, Florian; Dobner, Hans-Jürgen; Huth, Andreas

    2013-01-01

    Patterns that resemble strongly skewed size distributions are frequently observed in ecology. A typical example represents tree size distributions of stem diameters. Empirical tests of ecological theories predicting their parameters have been conducted, but the results are difficult to interpret because the statistical methods that are applied to fit such decaying size distributions vary. In addition, binning of field data as well as measurement errors might potentially bias parameter estimates. Here, we compare three different methods for parameter estimation – the common maximum likelihood estimation (MLE) and two modified types of MLE correcting for binning of observations or random measurement errors. We test whether three typical frequency distributions, namely the power-law, negative exponential and Weibull distribution can be precisely identified, and how parameter estimates are biased when observations are additionally either binned or contain measurement error. We show that uncorrected MLE already loses the ability to discern functional form and parameters at relatively small levels of uncertainties. The modified MLE methods that consider such uncertainties (either binning or measurement error) are comparatively much more robust. We conclude that it is important to reduce binning of observations, if possible, and to quantify observation accuracy in empirical studies for fitting strongly skewed size distributions. In general, modified MLE methods that correct binning or measurement errors can be applied to ensure reliable results. PMID:23469137

  12. Bayesian analysis of size-dependent overwinter mortality from size-frequency distributions.

    PubMed

    Carlson, Stephanie M; Kottas, Athanasios; Mangel, Marc

    2010-04-01

    Understanding the relationship between body size and mortality is an important problem in ecology. We introduce a novel Bayesian method that can be used to quantify this relationship when the only data available are size-frequency distributions of unmarked individuals measured at two successive time periods. The inverse Gaussian distribution provides a parametric form for the statistical model development, and we use Markov chain Monte Carlo methods to evaluate posterior distributions. We illustrate the method using data on threespine stickleback (Gasterosteus aculeatus) collected before and after the winter season in an Alaskan lake. Our method allows us to compare the intensity of size-biased mortality in different years. We discuss generalizations that include more complicated relationships between size and survival as well as time-series modeling.

  13. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton

    PubMed Central

    Huete-Ortega, María; Cermeño, Pedro; Calvo-Díaz, Alejandra; Marañón, Emilio

    2012-01-01

    The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03–1.32), negating the idea that Kleiber's law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of −1.15 (range: −1.29 to −0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems. PMID:22171079

  14. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton.

    PubMed

    Huete-Ortega, María; Cermeño, Pedro; Calvo-Díaz, Alejandra; Marañón, Emilio

    2012-05-01

    The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03-1.32), negating the idea that Kleiber's law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of -1.15 (range: -1.29 to -0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems.

  15. Initial drop size and velocity distributions for airblast coaxial atomizers

    NASA Technical Reports Server (NTRS)

    Eroglu, H.; Chigier, N.

    1991-01-01

    Phase Doppler measurements were used to determine initial drop size and velocity distributions after a complete disintegration of coaxial liquid jets. The Sauter mean diameter (SMD) distribution was found to be strongly affected by the structure and behavior of the preceding liquid intact jet. The axial measurement stations were determined from the photographs of the coaxial liquid jet at very short distances (1-2 mm) downstream of the observed break-up locations. Minimum droplet mean velocities were found at the center, and maximum velocities were near the spray boundary. Size-velocity correlations show that the velocity of larger drops did not change with drop size. Drop rms velocity distributions have double peaks whose radial positions coincide with the maximum mean velocity gradients.

  16. Production, depreciation and the size distribution of firms

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru

    2008-05-01

    Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.

  17. The Size Frequency Distribution of Small Main-Belt Asteroids

    NASA Technical Reports Server (NTRS)

    Burt, Brian J.; Trilling, David E.; Hines, Dean C.; Stapelfeldt, Karl R.; Rebull, Luisa M.; Fuentes, Cesar I.; Hulsebus, Alan

    2012-01-01

    The asteroid size distribution informs us about the formation and composition of the Solar System. We build on our previous work in which we harvest serendipitously observed data of the Taurus region and measure the brightness and size distributions of Main-belt asteroids. This is accomplished with the highly sensitive MIPS 24 micron channel. We expect to catalog 104 asteroids, giving us a statistically significant data set. Results from this investigation will allow us to characterize the total population of small, Main-belt asteroids. Here we will present new results on the completeness of our study; on the presence of size distribution variations with inclination and radial distance in the belt; and early result on other archival fields.

  18. Particle size distribution and particle size-related crystalline silica content in granite quarry dust.

    PubMed

    Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan

    2008-05-01

    Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.

  19. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    SciTech Connect

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  20. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  1. Modal character of atmospheric black carbon size distributions

    NASA Astrophysics Data System (ADS)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  2. Space Shuttle exhausted aluminum oxide - A measured particle size distribution

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.; Edahl, R. A.; Winstead, E. L.

    1991-01-01

    Aluminum oxide (A2O3) particles were collected from the Space Shuttle exhaust plume immediately following the launch of STS-34 on October 18, 1989. A2O3 samples were obtained at 2.4, 3.0, 3.2, and 7.4 km in altitude. The samples were analyzed using SEM to develope particle size distributions. There were no indications that the particle size distribution changed as a function of altitude. The particle number concentrations per cubic meter of air sampled for the four collections was found to fit an exponential expression.

  3. Saturn's rings - Particle size distributions for thin layer model

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Marouf, E. A.; Tyler, G. L.

    1985-01-01

    A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.

  4. Size distribution of Portuguese firms between 2006 and 2012

    NASA Astrophysics Data System (ADS)

    Pascoal, Rui; Augusto, Mário; Monteiro, A. M.

    2016-09-01

    This study aims to describe the size distribution of Portuguese firms, as measured by annual sales and total assets, between 2006 and 2012, giving an economic interpretation for the evolution of the distribution along the time. Three distributions are fitted to data: the lognormal, the Pareto (and as a particular case Zipf) and the Simplified Canonical Law (SCL). We present the main arguments found in literature to justify the use of distributions and emphasize the interpretation of SCL coefficients. Methods of estimation include Maximum Likelihood, modified Ordinary Least Squares in log-log scale and Nonlinear Least Squares considering the Levenberg-Marquardt algorithm. When applying these approaches to Portuguese's firms data, we analyze if the evolution of estimated parameters in both lognormal power and SCL is in accordance with the known existence of a recession period after 2008. This is confirmed for sales but not for assets, leading to the conclusion that the first variable is a best proxy for firm size.

  5. Time evolution of cell size distributions in dense cell cultures

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  6. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  7. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  8. Size distribution of native cytosolic proteins of Thermoplasma acidophilum.

    PubMed

    Sun, Na; Tamura, Noriko; Tamura, Tomohiro; Knispel, Roland Wilhelm; Hrabe, Thomas; Kofler, Christine; Nickell, Stephan; Nagy, István

    2009-07-01

    We used molecular sieve chromatography in combination with LC-MS/MS to identify protein complexes that can serve as templates in the template matching procedures of visual proteomics approaches. By this method the sample complexity was lowered sufficiently to identify 464 proteins and - on the basis of size distribution and bioinformatics analysis - 189 of them could be assigned as subunits of macromolecular complexes over the size of 300 kDa. From these we purified six stable complexes of Thermoplasma acidophilum whose size and subunit composition - analyzed by electron microscopy and MALDI-TOF-MS, respectively - verified the accuracy of our method.

  9. Size distributions of gold nanoclusters studied by liquid chromatography

    SciTech Connect

    WILCOXON,JESS P.; MARTIN,JAMES E.; PROVENCIO,PAULA P.

    2000-05-23

    The authors report high pressure liquid chromatography, (HPLC), and transmission electron microscopy, (TEM), studies of the size distributions of nanosize gold clusters dispersed in organic solvents. These metal clusters are synthesized in inverse micelles at room temperature and those investigated range in diameter from 1--10 nm. HPLC is sensitive enough to discern changes in hydrodynamic volume corresponding to only 2 carbon atoms of the passivating agent or metal core size changes of less than 4 {angstrom}. The authors have determined for the first time how the total cluster volume (metal core + passivating organic shell) changes with the size of the passivating agent.

  10. The size-distribution of Earth’s lakes

    PubMed Central

    Cael, B. B.; Seekell, D. A.

    2016-01-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth’s lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km2 are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05; d = 4/3). Lakes <8.5 km2 are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales. PMID:27388607

  11. The size-distribution of Earth’s lakes

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Seekell, D. A.

    2016-07-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth’s lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km2 are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05 d = 4/3). Lakes <8.5 km2 are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales.

  12. Aggregation dynamics explain vegetation patch-size distributions.

    PubMed

    Irvine, M A; Bull, J C; Keeling, M J

    2016-04-01

    Vegetation patch-size distributions have been an intense area of study for theoreticians and applied ecologists alike in recent years. Of particular interest is the seemingly ubiquitous nature of power-law patch-size distributions emerging in a number of diverse ecosystems. The leading explanation of the emergence of these power-laws is due to local facilitative mechanisms. There is also a common transition from power law to exponential distribution when a system is under global pressure, such as grazing or lack of rainfall. These phenomena require a simple mechanistic explanation. Here, we study vegetation patches from a spatially implicit, patch dynamic viewpoint. We show that under minimal assumptions a power-law patch-size distribution appears as a natural consequence of aggregation. A linear death term also leads to an exponential term in the distribution for any non-zero death rate. This work shows the origin of the breakdown of the power-law under increasing pressure and shows that in general, we expect to observe a power law with an exponential cutoff (rather than pure power laws). The estimated parameters of this distribution also provide insight into the underlying ecological mechanisms of aggregation and death.

  13. Aerosol mobility imaging for rapid size distribution measurements

    DOEpatents

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  14. Size distributions of metal nanoparticles in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Svergun, D. I.; Shtykova, E. V.; Dembo, A. T.; Bronstein, L. M.; Platonova, O. A.; Yakunin, A. N.; Valetsky, P. M.; Khokhlov, A. R.

    1998-12-01

    Small-angle x-ray scattering is used to study size distributions of noble metal nanoparticles embedded in polyelectrolyte hydrogels with oppositely charged surfactants. A procedure is proposed to subtract matrix scattering and to extract pure scattering due to the nanoparticles allowing to evaluate their size distribution functions by means of a regularization technique. Two kinds of collapsed gel-surfactant complexes were studied: a complex of a cationic gel of poly(diallyldimethylammonium chloride) with an anionic surfactant sodium dodecyl sulfate (PDADMACl/SDS), and that of an anionic gel of poly(methacrylic acid) with a cationic surfactant cetylpyridinium chloride (PMA/CPC). Addition of a gold compound (HAuCl4ṡ3H2O) to the PDADMACl/SDS system forms the metal compound clusters and leads to a partial distortion of the gel structure. After subsequent reduction of the gold compound with sodium borohydride (NaBH4) ordering in the gel disappears and gold nanoparticles are formed. Their size distribution includes a fraction of small particles with approximately the same size as the compound clusters before reduction and a fraction of larger particles with the radii up to 40 nm. For the collapsed PDADMACl/SDS gels, aging does not change the size distribution profile; for the noncollapsed PDADMACl gels without surfactant, metal particles are found to grow with time. This suggests that the aggregation of metal colloids is prevented by the ordering in the collapsed gel-surfactant complex. The addition of HAuCl4ṡ3H2O and the subsequent reduction of the metal ions in the PMA/CPC system does not distort the gel structure as the degree of incorporation of AuCl4- ions is very low. Particle sizes in the PMA/CPC system are found to be somewhat larger than those in the PDADMACl/SDS system. The PDADMACl/SDS gels loaded with the PtCl4 compound were also studied to analyze the influence of the reducing agent type on the particle size distribution distributions. Fast reduction

  15. Particle Size Distribution in Saturn’s Ring C

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Wong, K.; French, R.; Rappaport, N.

    2012-10-01

    Information about particle sizes in Saturn’s rings is provided by two complementary types of Cassini radio occultation measurements. The first is differential extinction of three coherent sinusoidal signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The differential measurements strongly constraint three parameters of an assumed power-law size distribution n(a) = n0 (a/a0)q, amin ≤ a ≤ amax: namely, the power law index q, the minimum radius amin, and reference abundance n0 at reference radius a0. The differential measurements are particularly sensitive to radii in the range 0.1 mm < a < 1 m. Complementing this capability, is a second type of measurements that is particularly sensitive to the larger radii 1 m < a < 20 m and their abundance. Signature of the collective near-forward scattering by these particles is captured in power spectrum measurements as broadened component of width, shape, and strength that depend on ring particle sizes, their spatial distribution, and observation geometry. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. We use three inverse scattering algorithms (Bayes, constrained linear inversion, generalized singular-value-decomposition) to recover the size distribution of particles of resolved ring features over the size range 1 m < a < 20 m without assuming an explicit size distribution model. We also investigate consistency of the results with a single power-law model extending over 0.1 mm < a < 20 m and implications to the spatial distribution of ring particles normal to the ring plane (vertical ring thickness). We present example results for selected features across Saturn’s Ring C where little evidence for gravitational wakes is present, hence the approaches above are applicable.

  16. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  17. An historical perspective on "The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus".

    PubMed

    Kidd, Kenneth K; Pakstis, Andrew J; Yun, Libing

    2014-04-01

    Human population genetics is a completely different science today compared to two decades ago, at least at the empiric level. Our paper [Chang (Hum Genet 98:91-101, 1996a)] demonstrated that three different alleles were common when one considered many populations although other low frequency alleles occurred. Because previous work had been largely done on European subjects, our findings involved 36 distinct populations and showed that East Asian populations had nearly lost the 7-repeat allele, and that Native American populations had the highest frequencies of that allele globally, was a significant early empiric demonstration of the potential magnitude of population variation at important genes. There are thousands of loci tested on many of the same populations and the gene frequency pattern seen for the DRD4 7-repeat allele is seen at other loci, arguing that this pattern commonly reflects the pattern of divergence of populations and accumulated random genetic drift.

  18. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  19. Optical Sizing of Ultrafine Metallic Particles: Retrieval of Particle Size Distribution from Spectral Extinction Measurements.

    PubMed

    Oshchepkov; Sinyuk

    1998-12-01

    The inverse problem of optical sizing of ultrafine metallic particles from the spectral extinction measurements in the visible range is investigated. Solving the inverse problem becomes possible due to the strong size effect which in the framework of classical electrodynamics can be described by the dependence of complex refractive index on the particle size. It is shown that the size effect leads to the considerable increase of information content of spectral extinction data with respect to desired size composition of the particles. This makes it possible to retrieve the size distribution of ultrafine metallic particles with reasonably high accuracy, including the Rayleigh size region. The analysis is performed mainly within the framework of numerical tests by the typical example of ultrafine silver particles in a gelatin matrix. The results in retrieving of size distribution from experimentally measured extinction spectra are also presented. Calculations of spectral extinction coefficient are made by means of Mie theory. In so doing, the dielectric function of particles is modified by using the electron's mean free path limitation model. Copyright 1998 Academic Press.

  20. Novel magnetic Fe onion-like fullerene micrometer-sized particles of narrow size distribution

    NASA Astrophysics Data System (ADS)

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2012-01-01

    Magnetic polydivinylbenzene (PDVB)/magnetite micrometer-sized particles of narrow size distribution were prepared by entrapping Fe(CO)5 within the pores of uniform porous PDVB particles, followed by the thermal decomposition of the encapsulated Fe(CO)5 at 300 °C in a sealed cell under inert atmosphere. Magnetic Fe onion-like fullerene micrometer-sized particles of narrow size distribution have been prepared by the thermal decomposition of the PDVB/magnetite magnetic microspheres at 1100 °C under inert atmosphere. The graphitic coating protects the elemental iron particles from oxidation and thereby preserves their very high magnetic moment for at least a year. Characterization of these unique magnetic carbon graphitic particles was also performed.

  1. Tracing Particle Size Distribution Curves Using an Analogue Circuit.

    ERIC Educational Resources Information Center

    Bisschop, F. De; Segaert, O.

    1986-01-01

    Proposes an analog circuit for use in sedimentation analysis of finely divided solid materials. Discusses a method of particle size distribution analysis and provides schematics of the circuit with list of components as well as a discussion about the operation of the circuit. (JM)

  2. Pore-size distributions of N-isopropylacrylamide (NIPA) hydrogels

    SciTech Connect

    Walther, D.H.; Blanch, H.W.; Prausnitz, J.M. |

    1993-11-01

    Pore-size distributions have been measured for N-isopropylacrylamide (NIPA) hydrogels at 25 and 32{degrees}C with swelling capacities 11.3 and 6.0 g swollen gel per g dry gel. The mixed-solute-exclusion method (introduced by Kuga) was used to obtain the experimental solute-exclusion curve which represents the amount of imbibed liquid inside the gel inaccessible for a solute of radius r. The pore-size distributions were obtained by using Casassa`s Brownian-motion model and numerically solving the Fredholm integral equation. The pore-size distributions of temperature-sensitive NIPA hydrogels are strongly dependent on temperature which determines swelling capacity. With increasing swelling capacity (from 6.0 to 11.3), the pore-size distribution shifts to higher mode values (27.3 to 50.6 {angstrom}) and to higher variance (1.07{center_dot}10{sup 3} to 3.58{center_dot}10{sup 3} {angstrom}{sup 2}).

  3. Asymmetric competition causes multimodal size distributions in spatially structured populations.

    PubMed

    Velázquez, Jorge; Allen, Robert B; Coomes, David A; Eichhorn, Markus P

    2016-01-27

    Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts.

  4. Sample Size Tables, "t" Test, and a Prevalent Psychometric Distribution.

    ERIC Educational Resources Information Center

    Sawilowsky, Shlomo S.; Hillman, Stephen B.

    Psychology studies often have low statistical power. Sample size tables, as given by J. Cohen (1988), may be used to increase power, but they are based on Monte Carlo studies of relatively "tame" mathematical distributions, as compared to psychology data sets. In this study, Monte Carlo methods were used to investigate Type I and Type II error…

  5. Turbulent Concentration of Chondrules: Size Distribution and Multifractal Scaling

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Paque, Julie M.; Dobrovolskis, Anthony R.

    1999-01-01

    Size-selective concentration of particles in 3D turbulence may be related to collection of chondrules and other constituents into primitive bodies in a weakly turbulent protoplanetary nebula. In the terrestrial planet region, both the characteristic size and narrow size distribution of chondrules are explained, whereas "fluffier" particles would be concentrated in lower density, or more intensely turbulent, regions of the nebula. The spatial distribution of concentrated particle density obeys multifractal scaling, suggesting a dose tie to the turbulent cascade process. This scaling behavior allows predictions of the concentration probabilities to be made in the protoplanetary nebula, which are so large (> 10(exp 3) - 10(exp 4)) that further studies must be made of the role of mass loading.

  6. Lognormal field size distributions as a consequence of economic truncation

    USGS Publications Warehouse

    Attanasi, E.D.; Drew, L.J.

    1985-01-01

    The assumption of lognormal (parent) field size distributions has for a long time been applied to resource appraisal and evaluation of exploration strategy by the petroleum industry. However, frequency distributions estimated with observed data and used to justify this hypotheses are conditional. Examination of various observed field size distributions across basins and over time shows that such distributions should be regarded as the end result of an economic filtering process. Commercial discoveries depend on oil and gas prices and field development costs. Some new fields are eliminated due to location, depths, or water depths. This filtering process is called economic truncation. Economic truncation may occur when predictions of a discovery process are passed through an economic appraisal model. We demonstrate that (1) economic resource appraisals, (2) forecasts of levels of petroleum industry activity, and (3) expected benefits of developing and implementing cost reducing technology are sensitive to assumptions made about the nature of that portion of (parent) field size distribution subject to economic truncation. ?? 1985 Plenum Publishing Corporation.

  7. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  8. Size distribution of iron and manganese species in freshwaters

    NASA Astrophysics Data System (ADS)

    Laxen, Duncan P. H.; Chandler, I. Michael

    1983-04-01

    A recently established technique for size fractionation of particulate matter in freshwaters, based on low volume filtration through Nuclepore filters in the field, has been applied to the study of Fe and Mn species in 3 freshwater lakes and a stream feeding one of the lakes. The technique has also been used in a series of laboratory experiments to provide further insight into the process of particle formation. The results are complemented with scanning electron microscope examination of the particles. The raw data are transformed into mass size distributions, which are generally unimodal, with the major part of the mass confined to a single log unit size range. These size distributions are compared and contrasted with a theoretical model of particle behaviour in a lake. The results suggest that particulate Fe and Mn behave according to particle theory. The observed size distributions represent a balance between hydraulic input/output, aggregation, and gravitational settling, as well as chemical precipitation and dissolution processes. Overall particle aggregation is shown to be a slow process in the waters examined, with a time constant of the order of days. There is evidence for a fairly stable particle regime in the 0.05-0.4 μm size range. Deviations from the unimodal distribution in the epilimnion of the lakes indicate the association of Fe, but not Mn, with phytoplankton. In the waters examined Mn was most frequently found in solution, while Fe was predominantly particulate. These findings are interpreted in terms of the differing redox behaviour of the metals.

  9. Cell Size Distributions of Soil Bacterial and Archaeal Taxa

    PubMed Central

    Portillo, Maria C.; Leff, Jonathan W.; Lauber, Christian L.

    2013-01-01

    Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 μm to 0.2 μm) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 μm in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized. PMID:24077710

  10. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  11. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  12. Aged Boreal Biomass Burning Size Distributions from Bortas 2011

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Sakamoto, K.; Allan, J. D.; Coe, H.; Taylor, J.; Duck, T.

    2014-12-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are strong functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ~ 1.5 - 2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 232 nm, σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA/ΔCO) along the path of Flight b622 show values of 0.08-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution and flux corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes only based on the insignificant net OA production/evaporation derived from the ΔOA/ΔCO enhancement ratios. Depending on the, we estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8. Thus, the size of the freshly emitted particles is somewhat unconstrained due to the uncertainties in the plume dilution rates.

  13. Aged boreal biomass burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2014-09-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1-2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in

  14. Relationship between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distribution.

    PubMed

    Hartl, G B; Lang, G; Klein, F; Willing, R

    1991-06-01

    Morphological characters in red deer (Cervus elaphus), which serve as criteria for selective hunting, were examined in relation to electrophoretic variation in three populations from the Vosges in eastern France. From the polymorphic loci examined, certain alleles at Idh-2, Me-1 and Acp-1 showed significant associations with a special development of body and antler characters selected for by hunters. Idh-2(125) was associated with larger hind foot length in females and a higher number of antler points in males. Me-1(90) and Acp-1(100) were associated with small spikes. The populations studied differed from one another in the duration and intensity of selective hunting and the increase or decrease in the respective allele frequencies could be explained by selection for large body size, a high number of antler points and against small spikes in yearlings, rather than by genetic drift. Among other morphological characters examined, the length of the main beam was significantly associated with the allele Acp-2(100). In contrast, no associations could be detected between overall heterozygosity and the development or the degree of asymmetry (in paired structures) of any of the morphological traits in question. Although no obvious differences in the overall values of polymorphism or heterozygosity were found between the populations, selective hunting leads towards a change in allele frequencies and eventually to the loss of one or the other rare allele. PMID:1880046

  15. Transneptunians as probes of planet building: The Plutino size distribution

    NASA Astrophysics Data System (ADS)

    Alexandersen, M.; Gladman, B.; Kavelaars, J.; Petit, J.; Gwyn, S.

    2014-07-01

    Planetesimals that formed during planet formation are the building blocks of giant planet cores; some are preserved as large transneptunian objects (TNOs). Previous work has shown steep power-law size distributions for TNOs of diameters > 100 km. Recent results claim a dramatic roll-over or divot in the size distribution of Neptunian Trojans (1:1 resonance with Neptune) and scattering TNOs, with a significant lack of intermediate-size D < 100 km planetesimals [1,2,3]. One theoretical explanation for this is that planetesimals were born big, skipping the intermediate sizes, contrary to the expectation of bottom-up planetesimal formation. Exploration of the TNO size distribution requires more precisely calibrated detections in order to improve statistics on these results. We have searched a 32 sq.deg. area near RA=2 hr to an r-band limiting magnitude of m_r=24.6 using the Canada-France-Hawaii Telescope. This coverage was near the Neptunian L4 region to maximise our detection rate, as this is where Neptunian Trojans reside and where Plutinos (and several other resonant populations) come to perihelion. This program successfully detected and tracked 77 TNOs and Centaurs for up to 17 months, giving us both the high-quality orbits and the quantitative detection efficiency needed for precise modelling. Among our detections were one Uranian Trojan, two Neptunian Trojans, 18 Plutinos (3:2 resonance with Neptune) and other resonant objects. We test TNO size and orbital-distribution models using a survey simulator, which simulates the detectability of model objects, accounting for the survey biases. We show that the Plutino size distribution cannot continue as a rising power law past H_r˜8.3 (equivalent to ˜100 km). A single power law is found rejectable at 99.5 % confidence, and a knee (a broken power law to a softer slope) is also rejectable. A divot (sudden drop in number of objects at a transition size), with parameters found independently for scattering TNOs by Shankman

  16. Apolipoprotein A-IV-2 allele: association of its worldwide distribution with adult persistence of lactase and speculation on its function and origin.

    PubMed

    Weinberg, R B

    1999-11-01

    Apolipoprotein A-IV (apo A-IV) is a 46-Kd plasma glycoprotein that may play a major role in intestinal lipid absorption. A genetic polymorphism in the apo A-IV gene, apo A-IV-2, encodes a His-->Gln substitution at codon 360 that alters the biological function of this apolipoprotein. As the worldwide distribution of the apo A-IV-2 allele appeared similar to the frequency of a genetic polymorphism that determines the persistence of lactase into adulthood, we examined the relationship between the apo A-IV-2 and lactase persistence polymorphisms by compiling the prevalence of adult lactase persistence in all populations in which the frequency of the apo A-IV-2 allele has been determined. Across 29 groups, there was an extremely strong correlation (4 = 0.937, P < 0.000001) between apo A-IV-2 allele frequency and the prevalence of adult lactase persistence. Apo A-IV-2 allele frequency was highest in Iceland, an ancient Viking colony, and decreased across Europe in a north-to-south and west-to-east gradient, generally following hypothetical isoclines for the lactase persistence gene. There were no correlations between the population frequencies of the apo E2, E3, or E4 alleles and either the prevalence of lactase persistence or the frequency of the apo A-IV-2 allele. In light of the effects of the apo A-IV-2 polymorphism on lipid metabolism, we speculate that the apo A-IV-2 allele may have originated in ancient Scandinavia, spread by conferring a nutritional advantage in the setting of a lifelong high milkfat intake, and was later carried southwards by the Viking incursions into Europe.

  17. Packing fraction of particles with a Weibull size distribution.

    PubMed

    Brouwers, H J H

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ_{1}, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1-φ_{1})β as function of φ_{1} is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data. PMID:27575204

  18. Packing fraction of particles with a Weibull size distribution

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  19. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  20. Raindrop size distribution: Fitting performance of common theoretical models

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Volpi, E.; Lombardo, F.; Baldini, L.

    2016-10-01

    Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov-Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.

  1. Allelic frequency distributions of 21 non-combined DNA index system STR loci in a Russian ethnic minority group from Inner Mongolia, China*

    PubMed Central

    Wang, Hong-dan; Shen, Chun-mei; Liu, Wen-juan; Zhang, Yu-dang; Yang, Guang; Yan, Jiang-wei; Qin, Hai-xia; Zhu, Bo-feng

    2013-01-01

    We studied the allelic frequency distributions and statistical forensic parameters of 21 new short tandem repeat (STR) loci and the amelogenin locus, which are not included in the combined DNA index system (CODIS), in a Russian ethnic minority group from the Inner Mongolia Autonomous Region, China. A total of 114 bloodstain samples from unrelated individuals were extracted and co-amplified with four fluorescence-labeled primers in a multiplex polymerase chain reaction (PCR) system. Using capillary electrophoresis, the PCR products of the 21 STR loci were separated and genotyped. A total of 161 alleles were observed in the Russian ethnic minority group, and corresponding allelic frequencies ranged from 0.0044 to 0.5965. The 21 non-CODIS STR loci of the Russian ethnic minority group were characterized by high genetic diversity and therefore may be useful for elucidating the population’s genetic background, for individual identification, and for paternity testing in forensic practice. PMID:23733431

  2. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. PMID:26783342

  3. Allelic frequency distributions of 21 non-combined DNA index system STR loci in a Russian ethnic minority group from Inner Mongolia, China.

    PubMed

    Wang, Hong-dan; Shen, Chun-mei; Liu, Wen-juan; Zhang, Yu-dang; Yang, Guang; Yan, Jiang-wei; Qin, Hai-xia; Zhu, Bo-feng

    2013-06-01

    We studied the allelic frequency distributions and statistical forensic parameters of 21 new short tandem repeat (STR) loci and the amelogenin locus, which are not included in the combined DNA index system (CODIS), in a Russian ethnic minority group from the Inner Mongolia Autonomous Region, China. A total of 114 bloodstain samples from unrelated individuals were extracted and co-amplified with four fluorescence-labeled primers in a multiplex polymerase chain reaction (PCR) system. Using capillary electrophoresis, the PCR products of the 21 STR loci were separated and genotyped. A total of 161 alleles were observed in the Russian ethnic minority group, and corresponding allelic frequencies ranged from 0.0044 to 0.5965. The 21 non-CODIS STR loci of the Russian ethnic minority group were characterized by high genetic diversity and therefore may be useful for elucidating the population's genetic background, for individual identification, and for paternity testing in forensic practice.

  4. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  5. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  6. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-04-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm-10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1-1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  7. Aerosol size distribution, composition, and CO2 backscatter

    NASA Astrophysics Data System (ADS)

    Clarke, Antony D.; Porter, John N.

    1991-03-01

    The aerosol size distribution, composition, and CO2 backscatter at 10.6 microns (beta-CO2) were measured continuosly at the Mauna Loa Observatory (Hawaii) during January-March and November-December, 1988 periods to compare the characteristics of periods associated with appreciable Asian dust transport to that site (January-March) with those of periods characterized by low-dust condition. The aerosol size distribution in the range 0.15 micron to 7.6 microns was measured at temperatures of 40, 150, and 340 C to differentiate between volatile and nonvolatile aerosols. Large ranges of variability was found in measurements of aerosol size distribution during both periods, but the average distributions were similar for both the high-dust and the low-dust periods. However, values for beta-CO2 were more elevated (by about six times) during periods associated with active Asian dust transport to the observatory site than during the low-dust periods.

  8. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  9. Method for determining the droplet size distribution of emulsified water

    SciTech Connect

    Rzaev, A.G.

    1988-09-10

    Accelerating crude-oil processing requires estimation of the major parameters, including the droplet size distribution of the oil emulsion (OE) in the flow ahead of the settlers. This is handled here as follows. Under industrial conditions, samples are taken ahead of the settler into a calibrated vessel specially designed for the purpose and allowed to separate at a temperature equal to the flow temperature, where the amount of water deposited and the settling time are recorded. A hyperbolic relation applies quite closely to those data. The model expresses the droplet size as a function of the hydrodynamic parameters and can be used in optimizing dewatering and desalting oil.

  10. Collagen fibril arrangement and size distribution in monkey oral mucosa

    PubMed Central

    OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.

    1998-01-01

    Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498

  11. The measurement of the size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Cliff, W. C.; Mcdonald, J. R.; Ozarski, R.; Thomson, J. A. L.; Huffaker, R. M.

    1974-01-01

    The size-distribution of the fog droplets at various fog particle concentrations in fog chamber was determined by two methods: (1) the Stokes' velocity photographic method and (2) using the active scattering particle spectrometer. It is shown that the two techniques are accurate in two different ranges of particle size - the former in the radii range (0.1 micrometers to 10.0 micrometers), and the latter for radii greater than 10.0 micrometers. This was particularly true for high particle concentration, low visibility fogs.

  12. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    SciTech Connect

    Yuan, C. W.; Yi, D. O.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Haller, E. E.; Chrzan, D. C.; Sharp, I. D.; Ager, J. W. III

    2009-04-10

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady-state shape for the cluster-size distribution that depends only on a characteristic length determined by the effective diffusion coefficient, the ion solubility, and the volumetric ion flux. The average cluster size in the steady-state regime is determined by the implanted species or matrix interface energy.

  13. Droplet Size Distributions in Atomization of Dilute Viscoelastic Solutions

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; McKinley, Gareth; Houze, Eric; Moore, John; Pottiger, Michael; Cotts, Patricia; M. I. T. Collaboration; DuPont Collaboration

    2012-11-01

    The droplet size probability distribution functions (PDF) for atomization/fragmentation processes in Newtonian fluids are now generally accepted to be close to Gamma distributions. Despite the great practical importance, little is known about the nature of corresponding distributions for viscoelastic liquids, e.g. polymeric solutions such as pesticide sprays and paints. We present data from air-assisted atomization experiments for model viscoelastic solutions composed of very dilute solutions of polyethylene oxide. Although the addition of small amounts of high molecular weight polymer keeps the fluid shear viscosity and surface tension close to the solvent values, the size distributions are skewed towards higher values of the Sauter mean diameter. We show that the PDF curves for these weakly-elastic fluids are well described by Gamma distributions, but the exponent n is systematically decreased by fluid elasticity. Flow visualization images show that this behavior arises from the non-linear dynamics close to the break-up point which are dominated by an elasto-capillary force balance within the thinning ligaments and the magnitude of the extensional viscosity in the viscoelastic fluid. Mechanical Engineering Department, Cambridge, MA.

  14. Allele frequency distribution of CYP2C9 2 and CYP2C9 3 polymorphisms in six Mexican populations.

    PubMed

    Castelán-Martínez, Osvaldo D; Hoyo-Vadillo, Carlos; Sandoval-García, Emmanuel; Sandoval-Ramírez, Lucila; González-Ibarra, Miriam; Solano-Solano, Gloria; Gómez-Díaz, Rita A; Parra, Esteban J; Cruz, Miguel; Valladares-Salgado, Adán

    2013-07-10

    Allele frequency differences of functional CYP2C9 polymorphisms are responsible for some of the variation in drug response observed in human populations. The most relevant CYP2C9 functional variants are CYP2C9*2 (rs1799853) and CYP2C9 3 (rs1057910). These polymorphisms show variation in allele frequencies among different population groups. The present study aimed to analyze these polymorphisms in 947 Mexican-Mestizo from Mexico City and 483 individuals from five indigenous Mexican populations: Nahua, Teenek, Tarahumara, Purepecha and Huichol. The CYP2C9*2 allele frequencies in the Mestizo, Nahua and Teenek populations were 0.051, 0.007 and 0.005, respectively. As for CYP2C9 3, the allelic frequencies in the Mestizo, Nahua and Teenek populations were 0.04, 0.005 and 0.005, respectively. The CYP2C9 2 and CYP2C9 3 alleles were not observed in the Tarahumara, Purepecha and Huichol populations. These findings are in agreement with previous studies reporting very low allele frequencies for these polymorphisms in American Indigenous populations.

  15. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  16. Asteroid collisions: Target size effects and resultant velocity distributions

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen V.

    1993-03-01

    To study the dynamic fragmentation of rock to simulate asteroid collisions, we use a 2-D, continuum damage numerical hydrocode which models two-body impacts. This hydrocode monitors stress wave propagation and interaction within the target body, and includes a physical model for the formation and growth of cracks in rock. With this algorithm we have successfully reproduced fragment size distributions and mean ejecta speeds from laboratory impact experiments using basalt, and weak and strong mortar as target materials. Using the hydrocode, we have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained indicate that mean ejecta speeds resulting from large-body collisions do not exceed escape velocities.

  17. Rapid determination of particle size distribution of microbead catalysts

    SciTech Connect

    Mirshii, Y.V.; Goos, T.V.; Kaviev, V.M.; Kazahov, G.I.; Klimov, A.V.; Nesmeyanova, T.S.

    1986-05-01

    The authors have developed a rapid method for the determination of the particle size distribution of microbead catalysts by a photosedimentation method. This method is based on a determination of the settling velocity of the particles according to the change in optical density of the suspension as the particles settle. The design of the instrument was modified for application to the analysis of microbead cracking catalysts and microbead zeolites; it was originally developed for studies of particle size distribution in other materials. The measuring part of the AFS-2M photosedimentograph is shown schematically. For the high-zeolite catalysts, the results obtained by photosedimenation analysis are somewhat different from those obtained by the pipette method. The photosedimentation method can also be used in the analysis of microbead zeolites that are intended for use in the fluid-bed recovery of liquid paraffins.

  18. The fossilized size distribution of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Hal

    2005-05-01

    Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law QD∗. In contrast to previous efforts, we find our derived QD∗ function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a "fossil" from this violent early epoch. We find that most diameter D≳120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation

  19. Permeability & Grain Size Distribution of Wenchuan Earthquake Fault Rocks

    NASA Astrophysics Data System (ADS)

    Yang, X.; Chen, J.; Ma, S.

    2010-12-01

    Permeability and grain size distribution of fault rocks from two outcrops of Wenchuan earthquake fault zone were measured. The results show that the permeability (at 40MPa) varies obviously across the fault zone, from 10-13 m2 -10-15 m2 for fractured and shattered breccias, ~ 10-17 m2 for crushed breccias to 10-18 m2 - <10-19 m2 for fresh gouges and country rocks. Particle sizes dominate the permeability of the fault rocks. The more the percentage of fine particles is, the lower the permeability is. Due to the impermeable gouges and permeable fractured breccias, seismic fault zone is characterized by anisotropy for fluid flowing. Fluids cycle along fault zone easily if breccias are not cemented. Two methods, sieve weighting and laser analyzer, were combined to analyze the grain size distribution of the fault rocks. The measurements indicate that the slope of log(N) ~ log(d) changes at a critical diameter dc with 1 - 2 mm, which corresponds to grinding limit of rocks and may represent a change from grinding process to attrition one. The fractal dimension (D), calculated based on the grains with size larger than dc, of gouges is higher than 3.0 with the fresh gouges having the highest value (≥ 3.4), of crushed breccias ranges from 2.56 to 2.99, and of fractured and shattered breccias has the lowest value, about 2.63 in average. However, the fractal dimension matching smaller grains (> 2 mm) becomes much lower, ranging from 1.7 to 2.2. It is expected that the estimation of surface fracture energy associated with faulting is less than that we thought if the grain size distribution is considered.

  20. Grain-size Distributions from Deconvolved Broadband Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2014-12-01

    A magnetic susceptibility meter with several-decade frequency band has recently made it possible to obtain superparamagnetic grain-size distributions only by room-temperature measurement. A rigorous deconvolution scheme of frequency dependence of susceptibility is already available. I have made some corrections on the deconvolution scheme and present its applications to broadband susceptibility data on loess and volcanic rocks. Deconvolution of frequency dependence of susceptibility was originally developed by Shchervakov and Fabian [2005]. Suppose an ensemble of grains distributed for two independent variables of volume (grain-size) and energy barrier. Applying alternating magnetic field with varying frequency results in differentiating grains by energy barrier - not directly by volume. Since the response function for frequency is known, deconvolution of frequency dependence of susceptibility provide a rigorous solution for the second moment of volume on the volume-energy barrier distribution. Based on a common assumption of a linear relation between volume and energy barrier, we can obtain analytical volume or grain-size distributions of superparamagnetic grains. A ZH broadband susceptibility meter comprises of two separated devices for lower (SM-100, 65 - 16kHz) and higher (SM-105, 16k - 512kHz) frequency ranges. At every frequency susceptibility calibration was conducted using three kinds of paramagnetic rare earth oxides [Fukuma and Torii, 2011]. Almost all samples exhibited seemingly linear dependences of in-phase susceptibility on logarithmic frequency. This indicates that the measured data do not suffer serious noise, and that the second moment of volume is relatively constant against energy barrier. Nonetheless, third-order polynomial fittings revealed slight deflections from the quasi-linear susceptibility - logarithmic frequency relations. Deconvolving the polynomials showed that such slight defections come from peaks or troughs in varying second moment

  1. Controls on phytoplankton cell size distributions in contrasting physical environments

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Daines, S. J.; Lenton, T. M.

    2012-04-01

    A key challenge for marine ecosystem and biogeochemical models is to capture the multiple ecological and evolutionary processes driving the adaptation of diverse communities to changed environmental conditions over different spatial and temporal scales. These range from short-term acclimation in individuals, to population-level selection, immigration and ecological succession on intermediate scales, to shifts in the global biogeochemical cycling of key elements. As part of the "EVE" project, we have been working toward improving the representation of ecological and evolutionary processes in models, with a focus on understanding the role of marine ecosystems in the past, present, and future Earth system. Our approach is to develop a mechanistic understanding of trade-offs between different functional traits through the explicit representation of resource investment in sub-cellular components controlled by a synthetic genome. Trait expression (including size, metabolic strategies on a continuum from autotrophy to heterotrophy, and predation strategies) and adaptation to the environment are then emergent properties of the model, following from natural selection operating in the model environment. Here we show results relating to controls on phytoplankton cell size - a key phytoplankton trait which is inextricably linked to the structuring and functioning of marine ecosystems. Coupled to the MIT OGCM, we use the model to derive dynamic optimal size-class distributions at representative oligotrophic and high-latitude time series sites, which are then compared with in situ data. Particular attention is given to the relative importance of top-down vs bottom-up drivers for phytoplankton cell size, and their influence on global patterns in phytoplankton cell size, as well as changes in the cell size distribution during phytoplankton bloom periods.

  2. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

    PubMed Central

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-01-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines. PMID:25925176

  3. Single-size thermometric measurements on a size distribution of neutral fullerenes.

    PubMed

    Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F

    2013-05-10

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.

  4. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    SciTech Connect

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  5. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  6. Measuring Technique of Bubble Size Distributions in Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  7. Fog-Influenced Submicron Aerosol Number Size Distributions

    NASA Astrophysics Data System (ADS)

    Zikova, N.; Zdimal, V.

    2013-12-01

    The aim of this work is to evaluate the influence of fog on aerosol particle number size distributions (PNSD) in submicron range. Thus, five-year continuous time series of the SMPS (Scanning Mobility Particle Sizer) data giving information on PNSD in five minute time step were compared with detailed meteorological records from the professional meteorological station Kosetice in the Czech Republic. The comparison included total number concentration and PNSD in size ranges between 10 and 800 nm. The meteorological records consist from the exact times of starts and ends of individual meteorological phenomena (with one minute precision). The records longer than 90 minutes were considered, and corresponding SMPS spectra were evaluated. Evaluation of total number distributions showed considerably lower concentration during fog periods compared to the period when no meteorological phenomenon was recorded. It was even lower than average concentration during presence of hydrometeors (not only fog, but rain, drizzle, snow etc. as well). Typical PNSD computed from all the data recorded in the five years is in Figure 1. Not only median and 1st and 3rd quartiles are depicted, but also 5th and 95th percentiles are plotted, to see the variability of the concentrations in individual size bins. The most prevailing feature is the accumulation mode, which seems to be least influenced by the fog presence. On the contrary, the smallest aerosol particles (diameter under 40 nm) are effectively removed, as well as the largest particles (diameter over 500 nm). Acknowledgements: This work was supported by the projects GAUK 62213 and SVV-2013-267308. Figure 1. 5th, 25th, 50th, 75th and 95th percentile of aerosol particle number size distributions recorded during fog events.

  8. INITIAL SIZE DISTRIBUTION OF THE GALACTIC GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Shin, Jihye; Kim, Sungsoo S.; Yoon, Suk-Jin; Kim, Juhan

    2013-01-10

    Despite the importance of their size evolution in understanding the dynamical evolution of globular clusters (GCs) of the Milky Way, studies that focus specifically on this issue are rare. Based on the advanced, realistic Fokker-Planck (FP) approach, we theoretically predict the initial size distribution (SD) of the Galactic GCs along with their initial mass function and radial distribution. Over one thousand FP calculations in a wide parameter space have pinpointed the best-fit initial conditions for the SD, mass function, and radial distribution. Our best-fit model shows that the initial SD of the Galactic GCs is of larger dispersion than today's SD, and that the typical projected half-light radius of the initial GCs is {approx}4.6 pc, which is 1.8 times larger than that of the present-day GCs ({approx}2.5 pc). Their large size signifies greater susceptibility to the Galactic tides: the total mass of destroyed GCs reaches 3-5 Multiplication-Sign 10{sup 8} M {sub Sun }, several times larger than previous estimates. Our result challenges a recent view that the Milky Way GCs were born compact on the sub-pc scale, and rather implies that (1) the initial GCs were generally larger than the typical size of the present-day GCs, (2) the initially large GCs mostly shrank and/or disrupted as a result of the galactic tides, and (3) the initially small GCs expanded by two-body relaxation, and later shrank by the galactic tides.

  9. Average size and size distribution of large droplets produced in a free-jet expansion of a liquid

    NASA Astrophysics Data System (ADS)

    Knuth, E. L.; Henne, U.

    1999-02-01

    The experimental parameters and fluid properties affecting the average size N¯ and the size distribution P(N) of droplets formed by fragmentation of a liquid after expansion into a vacuum are investigated. The mean droplet size is found to be a function of the surface tension of the liquid, the nozzle diameter, and a characteristic flow speed. The size distribution is found to be a linear exponential distribution; measurements deviate from this distribution at small sizes if a factor which is a function of the cluster size is included in the measuring process. Good agreement with measured distributions of both positive and negative droplet ions formed from neutral 4He droplets by electron impact is found. The strong dependence of mean droplet size on source-orifice diameter found in the present analysis indicates that earlier correlations of droplet size with specific entropy in the source were useful at best only for a fixed nozzle size.

  10. Binary nucleation kinetics. I. Self-consistent size distribution

    SciTech Connect

    Wilemski, G.; Wyslouzil, B.E. ||

    1995-07-15

    Using the principle of detailed balance, we derive a new self-consistency requirement, termed the kinetic product rule, relating the evaporation coefficients and equilibrium cluster distribution for a binary system. We use this result to demonstrate and resolve an inconsistency for an idealized Kelvin model of nucleation in a simple binary mixture. We next examine several common forms for the equilibrium distribution of binary clusters based on the capillarity approximation and ideal vapor behavior. We point out fundamental deficiencies for each expression. We also show that each distribution yields evaporation coefficients that formally satisfy the new kinetic product rule but are physically unsatisfactory because they depend on the monomer vapor concentrations. We then propose a new form of the binary distribution function that is free of the deficiencies of the previous functions except for its reliance on the capillarity approximation. This new self-consistent classical (SCC) size distribution for binary clusters has the following properties: It satisfies the law of mass action; it reduces to an SCC unary distribution for clusters of a single component; and it produces physically acceptable evaporation rate coefficients that also satisfy the new kinetic product rule. Since it is possible to construct other examples of similarly well-behaved distributions, our result is not unique in this respect, but it does give reasonable predictions. As an illustration, we calculate binary nucleation rates and vapor activities for the ethanol--hexanol system at 260 K using the new SCC distribution and compare them to experimental results. The theoretical rates are uniformly higher than the experimental values over the entire vapor composition range. Although the predicted activities are lower, we find good agreement between the measured and theoretical slope of the critical vapor activity curve at a constant nucleation rate of 10{sup 7} cm{sup {minus}3} s{sup {minus}2}.

  11. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  12. Fine structure of mass size distributions in an urban environment

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Ocskay, Rita; Raes, Nico; Maenhaut, Willy

    As part of an urban aerosol research project, aerosol samples were collected by a small deposit area low-pressure impactor and a micro-orifice uniform deposit impactor in downtown Budapest in spring 2002. A total number of 23 samples were obtained with each device for separate daytime periods and nights. The samples were analysed by particle-induced X-ray emission spectrometry for 29 elements, or by gravimetry for particulate mass. The raw size distribution data were processed by the inversion program MICRON utilising the calibrated collection efficiency curve for each impactor stage in order to study the mass size distributions in the size range of about 50 nm to 10 μm in detail. Concentration, geometric mean aerodynamic diameter, and geometric standard deviation for each contributing mode were determined and further evaluated. For the crustal elements, two modes were identified in the mass size distributions: a major coarse mode and a (so-called) intermediate mode, which contained about 4% of the elemental mass. The coarse mode was associated with suspension, resuspension, and abrasion processes, whereby the major contribution likely came from road dust, while the particles of the intermediate mode may have originated from the same but also from the other sources. The typical anthropogenic elements exhibited usually trimodal size distributions including a coarse mode and two submicrometer modes instead of a single accumulation mode. The mode diameter of the upper submicrometer mode was somewhat lower for the particulate mass (PM) and S than for the anthropogenic metals, suggesting different sources and/or source processes. The different relative intensities of the two submicrometer modes for the anthropogenic elements and the PM indicate that the elements and PM have multiple sources. An Aitken mode was unambiguously observed for S, Zn, and K, but in a few cases only. The relatively large coarse mode of Cu and Zn, and the small night-to-daytime period

  13. Distribution of DI*A and DI*B Allele Frequencies and Comparisons among Central Thai and Other Populations

    PubMed Central

    Nathalang, Oytip; Panichrum, Puangpaka; Intharanut, Kamphon; Thattanon, Phatchira; Nathalang, Siriporn

    2016-01-01

    Alloantibodies to the Diego (DI) blood group system, anti-Dia and anti-Dib are clinically significant in causing hemolytic transfusion reactions (HTRs) and hemolytic disease of the fetus and newborn (HDFN), especially in Asian populations with Mongolian ancestry. This study aimed to report the frequency of the DI*A and DI*B alleles in a Central Thai population and to compare them with those of other populations previously published. Altogether, 1,011 blood samples from unrelated healthy blood donors at the National Blood Centre, Thai Red Cross Society, Bangkok were included. Only 391 samples were tested with anti-Dia by conventional tube technique. All samples were genotyped for DI*A and DI*B alleles using an in-house polymerase chain reaction with sequence-specific primer (PCR-SSP) technique. The DI phenotyping and genotyping results were in 100% concordance. The DI*A and DI*B allele frequencies among 1,011 Central Thais were 0.0183 (37/2,022) and 0.9817 (1,985/2,022), respectively. Allele frequencies were compared between Central Thai and other populations. Our data shows that DI*A and DI*B allele frequencies are similar to Southeast Asian, Brazilian, Southern Brazilian and American Native populations; whereas, these frequencies significantly differ from those reported in East Asian, Italian, Alaska Native/Aleut, Hawaiian/Pacific Islander and Filipino populations (P<0.05), corresponding to the results of a matrix of geometric genetic distances. This study confirms that the prevalence of DI*A and DI*B alleles among Central Thais is similar to Southeast Asians and different to others populations of the world. A PCR-based identification of DI genotyping should overcome some of the serological limitations in transfusion medicine and provides a complementary tool for further population-genetic studies. PMID:27764238

  14. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    NASA Technical Reports Server (NTRS)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  15. Characterization of particleboard aerosol - size distribution and formaldehyde content

    SciTech Connect

    Stumpf, J.M.; Blehm, K.D.; Buchan, R.M.; Gunter, B.J.

    1986-12-01

    Health hazards unique to particleboard include the generation of urea-formaldehyde resin bound in wood aerosol and release of formaldehyde gas that can be inhaled by the worker. A particleboard aerosol was generated by a sanding process and collected under laboratory conditions that determined the particle size distribution and formaldehyde content. Three side-by-side Marple 296 personal cascade impactors with midget impingers attached downstream collected particleboard aerosol and gaseous formaldehyde for ten sample runs. Gravimetric analysis quantified the collected aerosol mass, and chromotropic acid/spectrophotometric analytical methods were employed for formaldehyde content in particleboard aerosol and gaseous formaldehyde liberated from sanded particleboard. Significant variations (p<.005) were observed for the particleboard mass and gaseous formaldehyde collected between sample runs. No significant differences (..cap alpha.. = .05) were observed for the aerosol size distribution determined and formaldehyde content in particle board aerosol per unit mass for sampling trials. The overall MMAD of particleboard aerosol was 8.26 ..mu..mAED with a sigmag of 2.01. A predictive model was derived for determining the expected formaldehyde content (..mu..g) by particleboard aerosol mass (mg) collected and particulate size (..mu..mAED).

  16. Distribution of the FYBES and RHCE*ce(733C>G) alleles in an Argentinean population: Implications for transfusion medicine

    PubMed Central

    Cotorruelo, Carlos M; Fiori, Silvana V; Borrás, Silvia E García; Racca, Liliana L; Biondi, Claudia S; Racca, Amelia L

    2008-01-01

    Background The understanding of the molecular bases of blood groups makes possible the identification of red cell antigens and antibodies using molecular approaches, especially when haemagglutination is of limited value. The practical application of DNA typing requires the analysis of the polymorphism and allele distribution of the blood group genes under study since genetic variability was observed among different ethnic groups. Urban populations of Argentina are assumed to have a white Caucasian European genetic component. However, historical and biological data account for the influence of other ethnic groups. In this work we analyse FY and RH blood group alleles attributed to Africans and that could have clinical implications in the immune destruction of erythrocytes. Methods We studied 103 white trios (father, mother and child, 309 samples) from the city of Rosario by allele specific PCRs and serological methods. The data obtained were analysed with the appropriate statistical test considering only fathers and mothers (n = 206). Results We found the presence of the FY*BES and RHCE*ce(733C>G) alleles and an elevated frequency (0.0583) for the Dce haplotype. The number of individuals with a concomitant occurrence of both alleles was significantly higher than that expected by chance. We found that 4.68% of the present gene pool is composed by alleles primarily associated with African ancestry and about 10% of the individuals carried at least one RH or FY allele that is predominantly observed among African populations. Thirteen percent of Fy(b-) subjects were FY*A/FY*BES. Conclusion Taken together, the results suggest that admixture events between African slaves and European immigrants at the beginning of the 20th century made the physical characteristics of black Africans to be invisible nowadays. Considering that it was a recent historical event, the FY*BES and RHCE*ce(733C>G) alleles did not have time to become widespread but remain concentrated within families

  17. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  18. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  19. Marked point process models of raindrop-size distributions

    SciTech Connect

    Smith, J.A. )

    1993-02-01

    The principal process considered in this paper is the flux of raindrops through a volume of the atmosphere. This process is of fundamental importance for a wide variety of engineering and environmental problems, notably remote sensing of precipitation, infiltration of rainfall, soil erosion, atmospheric deposition of pollutants, and design of microwave communication systems. A marked point process model is developed in which the point process represents the arrival times of drops at the upper surface of a sample volume and the mark associated with a drop is its diameter. In the model, both the rate of occurrence of raindrops and the distribution of drop diameters vary randomly over time. Results that relate the drop-size distribution within the sample volume to the probability law of the drop-arrival process are presented. These results allow straightforward comparisons between temporal characterizations of drop-size distributions and spatial characterizations. Representations for derived processes such as rainfall rate and reflectivity are shown to be quite accurate using raindrop data from North Carolina. 30 refs.

  20. Marked point process models of raindrop-size distributions

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    1993-01-01

    The principal process considered in this paper is the flux of raindrops through a volume of the atmosphere. This process is of fundamental importance for a wide variety of engineering and environmental problems, notably remote sensing of precipitation, infiltration of rainfall, soil erosion, atmospheric deposition of pollutants, and design of microwave communication systems. A marked point process model is developed in which the point process represents the arrival times of drops at the upper surface of a sample volume and the mark associated with a drop is its diameter. In the model, both the rate of occurrence of raindrops and the distribution of drop diameters vary randomly over time. Results that relate the drop-size distribution within the sample volume to the probability law of the drop-arrival process are presented. These results allow straightforward comparisons between temporal characterizations of drop-size distributions and spatial characterizations. Representations for derived processes such as rainfall rate and reflectivity are shown to be quite accurate using raindrop data from North Carolina.

  1. Estimation of Raindrop size Distribution over Darjeeling (India)

    NASA Astrophysics Data System (ADS)

    Mehta, Shyam; Mitra, Amitabha

    2016-07-01

    A study of rain drop size distribution (DSD) model over Darjeeling (27001'N, 88015'E), India, has been carried out using a Micro Rain Radar (MRR). In this article on the basis of MRR which measured DSD (number of rain drop size and rain rates with the time interval of one minute), at the particular heights and the different rain rates. It starts the simulating data for using the general formula moment of the gamma DSD; however, Applying the method by DSD model of exponential, lognormal, and gamma, to check the true estimation of drop size distributions and it has been estimated by the lower order moments and higher order moments for gamma Distributions. It shows the DSD at different altitudes from 150 m to 2000 m, in the vertical steps of 500 m. however it has been simulated the DSD data about 2 km out of 4.5 km. (I). At the height of 150 m where most of DSD behaves gamma Distributions according to the moments order of low and the moments order of high, However, where occupying low concentrations for any rain rates, (ii). Upper altitudes from 450 m to 2000 m as where as shown most of DSD behaves gamma Distributions according to the moments order of high only, However, where occupying high concentrations for any rain rates. DSD at the altitudes of 2 km and even more 4.5 km (as not shown) but every height behaves more or less similar manner except at the height of 150 m, The DSD of empirical model has been derived on the basis of fit parameters evaluated from experimental data. It is observed that data fits well in gamma distribution for Darjeeling. And relation between slope (ΛɅ) and shape (μµ) which bears the best resemblance at the height of 150m (ground surface) at the lower order moments by the linear fit for any rain rates. In higher altitudes obtained where shape (μ) and slope (ΛɅ) which is not making any resemblance by the linear fit or polynomial fit for any rain rates in Darjeeling.

  2. HLA class II profile and distribution of HLA-DRB1 and HLA-DQB1 alleles and haplotypes among Lebanese and Bahraini Arabs.

    PubMed

    Almawi, Wassim Y; Busson, Marc; Tamim, Hala; Al-Harbi, Einas M; Finan, Ramzi R; Wakim-Ghorayeb, Saria F; Motala, Ayesha A

    2004-07-01

    The gene frequencies of HLA class II alleles were studied in 95 healthy Lebanese Arab and 72 healthy Bahraini Arab subjects. Our aim was to establish the genetic relationship between Bahraini and Lebanese Arabs in terms of HLA class II gene and haplotype frequencies and to compare these results with frequencies for other countries with populations of Caucasian and non-Caucasian descent. Subjects were unrelated and of both sexes, and HLA-DRB1 and -DQB1 genotyping was done by the PCR sequence-specific primer technique. Comparative analysis of the HLA-DR and -DQ alleles revealed differences in the allelic distribution among Bahraini and Lebanese subjects. Analysis of the 25 HLA-DRB1 alleles that have been investigated showed that the DRB1*040101 and DRB1*110101 alleles were more frequent among Lebanese, whereas DRB1*030101 and DRB1*160101 alleles were more frequent among Bahrainis. Similarly, of the seven HLA-DQB1 alleles analyzed, the presence of DQB1*0201 was more frequent among Bahrainis, whereas DQB1*030101 was more frequent among Lebanese. The DRB1*160101-DQB1*050101 (0.1318 versus 0.0379%) and DRB1*030101-DQB1*0201 (0.1202 versus 0.0321%) haplotypes were more frequent among Bahrainis, while the DRB1*110101-DQB1*030101 (0.3142 versus 0.1198%) and DRB1*040101-DQB1*0302 (0.1416 versus 0.0278%) haplotypes were more frequent in Lebanese subjects. Furthermore, a high prevalence of the DRB1*040101-DRB1*110101-DQB1*0302-DQB1*030101 (12.63 versus 1.35%, P = 0.015) and the homozygous DRB1*110101-DRB1*110101-DQB1*030101-DQB1*030101 (7.37 versus 0.00%, P = 0.046) genotypes was seen among Lebanese, and DRB1*070101-DRB1*160101-DQB1*0201-DQB1*050101 (6.76 versus 0.00%, P = 0.034) was seen more frequently among Bahraini subjects. Our results underline significant differences between these two populations in HLA class II distribution, provide basic information for further studies of major histocompatibility complex heterogeneity among Arabic-speaking countries, and serve as a

  3. HLA Class II Profile and Distribution of HLA-DRB1 and HLA-DQB1 Alleles and Haplotypes among Lebanese and Bahraini Arabs

    PubMed Central

    Almawi, Wassim Y.; Busson, Marc; Tamim, Hala; Al-Harbi, Einas M.; Finan, Ramzi R.; Wakim-Ghorayeb, Saria F.; Motala, Ayesha A.

    2004-01-01

    The gene frequencies of HLA class II alleles were studied in 95 healthy Lebanese Arab and 72 healthy Bahraini Arab subjects. Our aim was to establish the genetic relationship between Bahraini and Lebanese Arabs in terms of HLA class II gene and haplotype frequencies and to compare these results with frequencies for other countries with populations of Caucasian and non-Caucasian descent. Subjects were unrelated and of both sexes, and HLA-DRB1 and -DQB1 genotyping was done by the PCR sequence-specific primer technique. Comparative analysis of the HLA-DR and -DQ alleles revealed differences in the allelic distribution among Bahraini and Lebanese subjects. Analysis of the 25 HLA-DRB1 alleles that have been investigated showed that the DRB1*040101 and DRB1*110101 alleles were more frequent among Lebanese, whereas DRB1*030101 and DRB1*160101 alleles were more frequent among Bahrainis. Similarly, of the seven HLA-DQB1 alleles analyzed, the presence of DQB1*0201 was more frequent among Bahrainis, whereas DQB1*030101 was more frequent among Lebanese. The DRB1*160101-DQB1*050101 (0.1318 versus 0.0379%) and DRB1*030101-DQB1*0201 (0.1202 versus 0.0321%) haplotypes were more frequent among Bahrainis, while the DRB1*110101-DQB1*030101 (0.3142 versus 0.1198%) and DRB1*040101-DQB1*0302 (0.1416 versus 0.0278%) haplotypes were more frequent in Lebanese subjects. Furthermore, a high prevalence of the DRB1*040101-DRB1*110101-DQB1*0302-DQB1*030101 (12.63 versus 1.35%, P = 0.015) and the homozygous DRB1*110101-DRB1*110101-DQB1*030101-DQB1*030101 (7.37 versus 0.00%, P = 0.046) genotypes was seen among Lebanese, and DRB1*070101-DRB1*160101-DQB1*0201-DQB1*050101 (6.76 versus 0.00%, P = 0.034) was seen more frequently among Bahraini subjects. Our results underline significant differences between these two populations in HLA class II distribution, provide basic information for further studies of major histocompatibility complex heterogeneity among Arabic-speaking countries, and serve as a

  4. Distribution of the lactase persistence-associated variant alleles -13910* T and -13915* G among the people of Oman and Yemen.

    PubMed

    Al-Abri, Abdul Rahim; Al-Rawas, Omar; Al-Yahyaee, Saeed; Al-Habori, Molham; Al-Zubairi, Adel Sharaf; Bayoumi, Riad

    2012-06-01

    The high prevalence of lactase persistence (LP) among the people of Saudi Arabia is associated with the -13915(*)G variant allele upstream of the lactase gene (LCT). We, therefore, examined the frequency of the commonly known LP associated SNPs among randomly collected samples from Omani and Yemeni adult populations and obtained further data on the distribution of the two most common LP-associated variants, -13910(*)T and -13915T(*)G, in the Arabian Peninsula. The DNA fragment containing all the reported LP- associated SNPs was amplified and genotyped. The frequency of the -13915(*)G allele was highest among Dhofari Arabs of southern Oman (0.72) followed by Yemeni Arabs (0.54) and Arabs of northern Oman (0.14). It was not detected in Omanis of Asian origin. The frequency of the -13910(*)T allele was extremely low in Arabs of northern and southern Oman (0.00-0.01) and Yemenis (0.002). However, it had a frequency of 0.160 among Omanis of Asian origin. Results show that the highest frequency of the LCT -13915(*)G variant allele appears to be in the south of the Arabian Peninsula with clinal decrease within the Peninsula and further out in surrounding countries. PMID:23256641

  5. Distribution of the lactase persistence-associated variant alleles -13910* T and -13915* G among the people of Oman and Yemen.

    PubMed

    Al-Abri, Abdul Rahim; Al-Rawas, Omar; Al-Yahyaee, Saeed; Al-Habori, Molham; Al-Zubairi, Adel Sharaf; Bayoumi, Riad

    2012-06-01

    The high prevalence of lactase persistence (LP) among the people of Saudi Arabia is associated with the -13915(*)G variant allele upstream of the lactase gene (LCT). We, therefore, examined the frequency of the commonly known LP associated SNPs among randomly collected samples from Omani and Yemeni adult populations and obtained further data on the distribution of the two most common LP-associated variants, -13910(*)T and -13915T(*)G, in the Arabian Peninsula. The DNA fragment containing all the reported LP- associated SNPs was amplified and genotyped. The frequency of the -13915(*)G allele was highest among Dhofari Arabs of southern Oman (0.72) followed by Yemeni Arabs (0.54) and Arabs of northern Oman (0.14). It was not detected in Omanis of Asian origin. The frequency of the -13910(*)T allele was extremely low in Arabs of northern and southern Oman (0.00-0.01) and Yemenis (0.002). However, it had a frequency of 0.160 among Omanis of Asian origin. Results show that the highest frequency of the LCT -13915(*)G variant allele appears to be in the south of the Arabian Peninsula with clinal decrease within the Peninsula and further out in surrounding countries.

  6. [Discovery of a novel A2 allel in ABO blood group system and investigation of its distribution in Han population of Chinese Fujian province].

    PubMed

    Zhang, Ai; Chi, Quan; Ren, Ben-Chun

    2012-10-01

    This study was aimed to investigate the distribution of A2 subgroup in Han Population of Chinese Fujian province and its molecular mechanisms. One individual with serologic ABO blood grouping discrepancy was identified with commercially available monoclonal and polyclonal antibodies and lectin: anti-A, anti-B, anti-AB, anti-A1, and anti-H reagents according to the routine laboratory methods. DNA sequences of exon 6, 7 and intron 6 of ABO gene were analyzed by polymerase chain reaction using genomic DNA and direct DNA sequencing or sequencing after gene cloning. Red cells of 3 176 A or AB unrelated individuals were tested with anti-A1. The results showed that this individual was identified as A2 subgroup by serological technology, sequencing analysis indicated the A2 subgroup with novel A variant allele, the novel A allele being different from the allele A101 by 467C > T and 607G > A missense mutation in exon 7, no A2 subgroup was identified from the 3 176 individuals by using standard serological technology. It is concluded that a novel A allele responsible for A2 subgroup composing of 467C > T and 607G > A has been firstly confirmed, and the A2 subgroup is very rare in Chinese Fujian Han population.

  7. Size distribution of luteal cells during pseudopregnancy in domestic cats.

    PubMed

    Arikan, S; Yigit, A A; Kalender, H

    2009-10-01

    Experiments were designed to investigate the size distribution of queen steroidogenic luteal cells throughout pseudopregnancy. Corpora lutea were obtained from the queens following ovariohysterectomy on days 7, 15 or 25 of pseudopregnancy. Luteal cells were isolated from the ovary by collagenase digestion. Steriodogenic cells were identified by staining of cells for 3beta-HSD activity. Cell diameters were measured using a microscope. Luteal cells having steroidogenic capacity covered a wide spectrum of sizes ranging from 3 to 35 mum in diameter. There was a significant increase in mean cell diameters (p < 0.01) as pseudopregnancy progressed. Mean diameter of 3beta-HSD positive cells increased from 10.41 +/- 0.7 microm, on day 7 of pseudopregnancy, to 19.72 +/- 1.3 microm on day 25 of pseudopregnancy. The ratio of large (>20 microm in diameter) to small (3-20 microm in diameter) luteal cells was 0.08 : 1.0 on day 7 of pseudopregnancy, with the 7.5-10 microm cell size class predominant. By day 25 of pseudopregnancy, the ratio of large-to-small cells was increased to 0.87 : 1.0, and 20-25 microm cell sizes become predominant. In conclusion, this study has demonstrated that the cells of the corpus luteum undergo continuous differentiation during pseudopregnancy in queen. This study also demonstrates that luteal cells dissociated from pseudopregnant queen can be used as a model to study the physiology of corpus luteum in pregnant cats.

  8. Ultrasonically controlled particle size distribution of explosives: a safe method.

    PubMed

    Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B

    2008-03-01

    Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process. PMID:17532248

  9. Establishing different size distributions in the asteroid belt

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Morbidelli, Alessandro

    2016-05-01

    While gas is present in the protoplanetary disk, aerodynamic drag circularizes, equatorializes and shrinks planetesimal orbits. The strength of this effect is size-dependent effecting smaller planetesimals more severely. During planet formation debris from giant impacts amongst the growing terrestrial embryos can be transported to the asteroid belt via scattering events and secular resonances. The effectiveness of this transport is strongly size dependent due to the aforementioned gas drag. Thus transported debris in the asteroid belt can have a strong size sorting. Further processing due to collisions and YORP-induced rotational fission during the lifetime of the solar system must be taken into account before a model population of debris can be compared to suspected planetary debris in the asteroid belt, such as the A-type asteroids. Furthermore, scenarios such as the Grand Tack may establish size distributions since they predict that S-type asteroids are transported from an inner planetesimal disk while C-type asteroids are transporeted from an outer planetesimal disk.

  10. Quantifying Sediment Transport Determined From Grain-Size Distributions

    NASA Astrophysics Data System (ADS)

    de Almeida, R. A.; Möller, O. O.; Lentini, C. A.; Campos, E. J.

    2005-05-01

    A technique derived from McLaren & Bowles (1985) has been applied to investigate sediment dynamics in the Patos Lagoon estuary (Brazil). Qualitative sediment transport in the access channel of the estuary was inferred from changes in statistical properties describing grain-size distributions. Assuming the influence of a single transport function, the spatial gradient of particle mean size, sorting and skewness was used to determine the transport direction along the channel. A long-average net sediment deposition rate in the area was estimated using digitalized historical nautical charts. This deposition rate was used to quantify the sediment transport inside the estuary, through a simple application of Green's Theorem. Results show a net seaward transport in the deep channel of approximately 50 m3 day-1, accompanied by a net inward transport in the shallower channel margin of similar intensity. The estimated net sediment transport was validated against a numerical model output, with good agreement in terms of direction and intensity.

  11. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  12. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  13. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  14. Decomposition of biospeckle signals through granulometric size distribution.

    PubMed

    Blotta, Eduardo; Ballarin, Virginia; Rabal, Hector

    2009-04-15

    We present a method for the analysis of dynamic speckle signals based on morphological granulometry. We obtain selected information differentiating the morphological patterns of the temporal history of each pixel through the granulometric size distribution. The method is exemplified by detecting bruised regions on apples and studying the germination of corn seeds. Different levels of activity are observed in the bruised and healthy areas of the apple, within a certain range of the morphological spectrum. Likewise, the activity of the corn seed embryo can also be distinguished from the endosperm area. PMID:19370117

  15. Connecting Aerosol Size Distributions at Three Arctic Stations

    NASA Astrophysics Data System (ADS)

    Freud, E.; Krejci, R.; Tunved, P.; Barrie, L. A.

    2015-12-01

    Aerosols play an important role in Earth's energy balance mainly through interactions with solar radiation and cloud processes. There is a distinct annual cycle of arctic aerosols, with greatest mass concentrations in the spring and lowest in summer due to effective wet removal processes - allowing for new particles formation events to take place. Little is known about the spatial extent of these events as no previous studies have directly compared and linked aerosol measurements from different arctic stations during the same times. Although the arctic stations are hardly affected by local pollution, it is normally assumed that their aerosol measurements are indicative of a rather large area. It is, however, not clear if that assumption holds all the time, and how large may that area be. In this study, three different datasets of aerosol size distributions from Mt. Zeppelin in Svalbard, Station Nord in northern Greenland and Alert in the Canadian arctic, are analyzed for the measurement period of 2012-2013. All stations are 500 to 1000 km from each other, and the travel time from one station to the other is typically between 2 to 5 days. The meteorological parameters along the calculated trajectories are analyzed in order to estimate their role in the modification of the aerosol size distribution while the air is traveling from one field station to another. In addition, the exposure of the sampled air to open waters vs. frozen sea is assessed, due to the different fluxes of heat, moisture, gases and particles, that are expected to affect the aerosol size distribution. The results show that the general characteristics of the aerosol size distributions and their annual variation are not very different in all three stations, with Alert and Station Nord being more similar. This is more pronounced when looking into the cases for which the trajectory calculations indicated that the air traveled from one of the latter stations to the other. The probable causes for the

  16. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  17. Grain size distribution of the matrix in the Allende chondrite

    NASA Astrophysics Data System (ADS)

    Toriumi, M.

    1989-03-01

    Results are presented from analytical TEM, high-resolution TEM, and SEM studies of the Allende chondrite, showing that the matrix consists of very fine-grained Fe-rich olivine, Ca-poor and Fe-rich clinopyroxene, Fe-rich spinel, and Ni-bearing troilite. Slightly sintered and non-sintered very fine-grained aggregates are observed. The results suggest that the coarse-grained olivine aggregates experienced a heating event, whereas the ultrafine-grained aggregates did not. The size and frequency distributions of matrix grains are measured. The frequency distribution displays a long-term tail with power law and a log-normal pattern with a peak at 5 nm in the range from 1 to 10 nm. This suggests that the fine-grained matrix was probably formed at conditions far from equilibrium in the protosolar cloud.

  18. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  19. Debiased Orbital and Size Distributions of the NEOs

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Morbidelli, A.; Jedicke, R.; Petit, J. M.; Levison, H. F.

    2001-11-01

    The orbital and absolute magnitude distribution of the Near-Earth Objects (NEOs) is difficult to compute, partly because known NEOs are biased by complicated observational selection effects but also because only a modest fraction of the entire NEO population has been discovered so far. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test bodies from four ``intermediate sources'': three in or adjacent to the main asteroid belt (Bottke et al. 2000, Science 288, 2190.) and one in the Kuiper belt (Levison and Duncan 1997, Icarus 127, 13). The test bodies which passed into the NEO region were tracked until they were eliminated. Next, we calculated the observational biases and assumed a functional form for the absolute magnitude (H) distribution associated with objects on those orbits. By merging the observational biases with our NEO dynamical ``roadmaps'' and an observed NEO H distribution, we produced a probability distribution which was fit to the biased NEO population. By testing a range of possible source combinations, a ``best-fit'' distribution was then deconvolved to provide the debiased orbital and H distributions for the NEO population as well as the relative importance of each NEO replenishment source. Our best-fit model predicts there are ~ 1010 H < 18 NEOs out to T > 2 (i.e., a < ~ 7.4 AU), with ~ 55% coming from the inner main belt (a < 2.5 AU), ~ 30% from the central main belt (2.5 < a < 2.8 AU), and ~ 15% from the Jupiter-family comet region. These results suggest that roughly 40% of the H < 18 NEOs have been found. The Amor, Apollo, and Aten populations contain 30%, 64%, and 6% of the H < 22 NEO population, respectively. The population of objects inside Earth's orbit (IEOs) are about 2% the size of the NEO population. Active and extinct comets make up a third of the entire km-sized NEO population with T

  20. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  1. Influence of molecular size on tissue distribution of antibody fragments

    PubMed Central

    Li, Zhe; Krippendorff, Ben-Fillippo; Sharma, Sharad; Walz, Antje C.; Lavé, Thierry; Shah, Dhaval K.

    2016-01-01

    Biodistribution coefficients (BC) allow estimation of the tissue concentrations of proteins based on the plasma pharmacokinetics. We have previously established the BC values for monoclonal antibodies. Here, this concept is extended by development of a relationship between protein size and BC values. The relationship was built by deriving the BC values for various antibody fragments of known molecular weight from published biodistribution studies. We found that there exists a simple exponential relationship between molecular weight and BC values that allows the prediction of tissue distribution of proteins based on molecular weight alone. The relationship was validated by a priori predicting BC values of 4 antibody fragments that were not used in building the relationship. The relationship was also used to derive BC50 values for all the tissues, which is the molecular weight increase that would result in 50% reduction in tissue uptake of a protein. The BC50 values for most tissues were found to be ~35 kDa. An ability to estimate tissue distribution of antibody fragments based on the BC vs. molecular size relationship established here may allow better understanding of the biologics concentrations in tissues responsible for efficacy or toxicity. This relationship can also be applied for rational development of new biotherapeutic modalities with optimal biodistribution properties to target (or avoid) specific tissues. PMID:26496429

  2. Throughfall Drop Size Distribution in relation to Leaf Canopy State

    NASA Astrophysics Data System (ADS)

    Hudson, S.; Nanko, K.; Levia, D. F., Jr.

    2014-12-01

    The partitioning of incident precipitation by a forest canopy into throughfall and stemflow varies as a function of meteorological conditions, tree species, leaf morphology and surface roughness. Little work quantified the throughfall drop size signature of precipitation events relative to changes in leaf canopy state of deciduous forests. This is the first study to compare throughfall drop size distributions in the presence and absence of foliage. To quantify individual throughfall drops, a laser disdrometer gauge was deployed below an observed drip point under a Liriodendron tulipifera L. (yellow poplar) tree, in northeastern Maryland, USA. More than 750,000 individual throughfall droplets have been counted and measured from precipitation events generating more than 5 mm gross rainfall over a period of 12 months. Throughfall during leafless events had significantly larger maximum drop diameters (6.74mm leafless, 5.55mm leafed) and median volume diameter of drops (5.44mm leafless, 3.31mm leafed) than throughfall generated when leaves were present. Statistical techniques have demonstrated the substantial influence of canopy state over the drop size spectra. Principal component analysis and factor analysis both resulted in canopy state loading positively with increases in maximum drop diameter while loading negatively with air temperature. Boosted regression trees analysis corroborated these findings. Our findings correspond with the physical conditions of a leafless canopy, and illustrated the greater extent of surface adhesion of intercepted water films on woody surfaces as opposed to foliar surfaces, thereby underscoring the importance of canopy state on throughfall inputs.

  3. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  4. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2004-05-01

    The main asteroid belt evolved into its current state via two processes: dynamical depletion and collisional evolution. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). To explain this mass loss, we suggest the PMB evolved in the following manner: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of > 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size-frequency distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. We will show that the constraints provided by asteroid families and the shape of the main belt size distribution are essential to obtaining a unique solution from our model's initial conditions. We also use our model results to solve for the asteroid disruption scaling law Q*D, a critical function needed in all planet formation codes that include

  5. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    PubMed

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  6. Scale effects on the variability of the raindrop size distribution

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Berne, Alexis

    2016-04-01

    The raindrop size distribution (DSD) is of utmost important to the study of rainfall processes and microphysics. All important rainfall variables can be calculated as weighted moments of the DSD. Qualitative precipitation estimation (QPE) algorithms and numerical weather prediction (NWP) models both use the DSD in order to calculate quantities such as the rain rate. Often these quantities are calculated at a pixel scale: radar reflectivities, for example, are integrated over a volume, so a DSD for the volume must be calculated or assumed. We present results of a study in which we have investigated the change of support problem with respect to the DSD. We have attempted to answer the following two questions. First, if a DSD measured at point scale is used to represent an area, how much error does this introduce? Second, how representative are areal DSDs calculated by QPE and NWP algorithms of the microphysical process happening inside the pixel of interest? We simulated fields of DSDs at two representative spatial resolutions: at the 2.1x2.1 km2 resolution of a typical NWP pixel, and at the 5x5 km2 resolution of a Global Precipitation Mission (GPM) satellite-based weather radar pixel. The simulation technique uses disdrometer network data and geostatistics to simulate the non-parametric DSD at 100x100 m2 resolution, conditioned by the measured DSD values. From these simulations, areal DSD measurements were derived and compared to point measurements of the DSD. The results show that the assumption that a point represents an area introduces error that increases with areal size and drop size and decreases with integration time. Further, the results show that current areal DSD estimation algorithms are not always representative of sub-grid DSDs. Idealised simulations of areal DSDs produced representative values for rain rate and radar reflectivity, but estimations of drop concentration and characteristic drop size that were often outside the sub-grid value ranges.

  7. Effect Of Grain Size-Distribution And Nonthermal Ion Distribution On Dust Acoustic Solitons

    SciTech Connect

    Annou, K.; Annou, R.

    2005-10-31

    The investigation of the formation of non-linear coherent structures in dusty plasmas taking into account the dust size and non-thermal ion distributions is conducted. Conditions of the existence of solitons in terms of the Mach number, concentration of non-thermal ions, dust charge and the permeability of the grains are evaluated.

  8. Atmospheric mass and metal size distributions measured around Lake Michigan

    SciTech Connect

    Seung-Muk Yi; Sofuoglu, S.C.; Holsen, T.M.

    1996-12-31

    This study, which was part of a multi-university AEOLOS investigation, involved an assessment of the spatial and temporal variations in the dry deposition fluxes and mass size distributions (MSDs) of total mass, crustal (aluminum and magnesium), and anthropogenic (lead and copper) metals over the southern basin of Lake Michigan. The work included measurement of deposition fluxes and MSDs during winter, summer and fall, concurrently, in Chicago, IL, over Lake Michigan, and in South Haven, MI. A Cascade impactor was used to determine the size distribution in the fine particles (<2.5 {mu}m), while Noll Rotary Impactor (NRI) was used to collect coarse particles (>2.5 {mu}m). The flux of these metals was substantially higher in Chicago than at either South Haven or over Lake Michigan. The measured average aluminum and magnesium fluxes were 2.23 and 5.32 mg/m{sup 2}-day over Chicago, and 0.24 and 0.28 mg/m{sup 2}-day over Lake Michigan, while the average aluminum and magnesium fluxes in South Haven were 0.17 and 0.12 mg/m{sup 2}-day respectively. The measured average lead and copper fluxes were 0.07 and 0.06 mg/m{sup 2}-day in Chicago, 0.003 and 0.01 mg/m{sup 2}-day over Lake Michigan, and 0.004 and 0.003 mg/m{sup 2}-day in South Haven. This research provided evidence of three possible peaks in the MSDs: the first in the 0-1 {mu}m range, the second in the 1-10 {mu}m region, and the third in the > 10-50 {mu}m range, with the MSDs being unimodal, bimodal or trimodal. Temporal variations in flux were not evident in this study. The wind direction (e.g., from over land, or from over lake) had large impact on both fluxes and size distributions. 5 refs., 10 figs., 1 tab.

  9. Monte Carlo predictions of DNA fragment-size distributions for large sizes after HZE particle irradiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.

    2001-01-01

    DSBs (double-strand breaks) produced by densely ionizing space radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. DSB clustering at large scales, from >100 Mbp down to approximately 2 kbp, is modeled using a Monte-Carlo algorithm. A random-walk model of chromatin is combined with a track model, that predicts the radial distribution of energy from an ion, and the RLC (randomly-located-clusters) formalism, in software called DNAbreak. This model generalizes the random-breakage model, whose broken-stick fragment-size distribution is applicable to low-LET radiation. DSB induction due to track interaction with the DNA volume depends on the radiation quality parameter Q. This dose-independent parameter depends only weakly on LET. Multi-track, high-dose effects depend on the cluster intensity parameter lambda, proportional to fluence as defined by the RLC formalism. After lambda is determined by a numerical experiment, the model reduces to one adjustable parameter Q. The best numerical fits to the experimental data, determining Q, are obtained. The knowledge of lambda and Q allows us to give biophysically based extrapolations of high-dose DNA fragment-size data to low doses or to high LETs.

  10. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  11. Size Distribution of Main-Belt Asteroids with High Inclination

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2011-04-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) so as to explore asteroid collisional evolution under hypervelocity collisions of around 10 km s-1. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg² with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of the candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17±0.02 for low-inclination (<15°) MBAs and 2.02±0.03 for high-inclination (>15°) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with the inclination in the C-like group. The most probable cause of the shallow CSD of the high-inclination S-like MBAs is the large power-law index in the diameter-impact strength curve in hypervelocity collisions. The collisional evolution of MBAs may have advanced with oligopolistic survival during the dynamical excitation phase in the final stage of planet formation.

  12. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  13. Passive acoustic inversion to estimate bedload size distribution in rivers

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Belleudy, Philippe; Gervaise, Cédric

    2016-04-01

    The knowledge of sediment transport rate in rivers is related to issues like changes in channel forms, inundation risks and river's ecological functions. The passive acoustic method introduced here measures the bedload processes by recording the noise generated by the inter-particle collisions. In this research, an acoustic inversion is proposed to estimate the size distribution of mobile particles. The theoretical framework of Hertz's impact between two solids rigid is used to model the sediment-generated noise. This model combined with the acoustical power spectrum density gives the information on the particle sizes. The sensitivity of the method is performed and finally the experimental validation is done through a series of tests in the laboratory as well in a natural stream. The limitations of the proposed inversion method are drawn assuming the wave propagation effects in the channel. It is stated that propagation effects limit the applicability of the method to large rivers, like fluvial channels, in the detriment of mountain torrents.

  14. Size distribution and seasonal variation of atmospheric cellulose

    NASA Astrophysics Data System (ADS)

    Puxbaum, Hans; Tenze-Kunit, Monika

    Atmospheric cellulose is a main constituent of the insoluble organic aerosol and a "macrotracer" for plant debris. A time series of the cellulose concentration at a downtown site in Vienna showed a maximum concentration during fall and a secondary maximum during spring. The fall maximum appears to be associated with leaf litter production, the spring maximum with increased biological activity involving repulsion of cellulose-containing particles, e.g. seed production. The grand average of the time series over 9 months was 0.374 μg m -3 cellulose, respectively, 0.75 μg m -3 plant debris. Compared to an annual average of 5.7 μg m -3 organic carbon as observed at a Vienna downtown site it becomes clear that plant debris is a major contributor to the organic aerosol and has to be considered in source attribution studies. Simultaneous measurements at the downtown and a suburban site indicated that particulate cellulose is obviously not produced within the city in notable amounts, at least during the campaign in December. Size distribution measurements with impactors showed the unexpected result that "fine aerosol" size particles (0.1- 1.6 μm aerodynamic diameter) contained 0.7% "free cellulose" on a mass basis, forming a wettable, but insoluble part of the accumulation mode aerosol.

  15. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  16. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    PubMed Central

    Simonetti, Antonio

    2016-01-01

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210

  17. THE EFFECT OF THE DUST SIZE DISTRIBUTION ON ASTEROID POLARIZATION

    SciTech Connect

    Masiero, Joseph; Hartzell, Christine; Scheeres, Daniel J. E-mail: christine.hartzell@colorado.edu

    2009-12-15

    We have developed a theoretical description of how of an asteroid's polarization-phase curve will be affected by the removal of the dust from the surface due to a size-dependent phenomenon such as radiation pressure-driven escape of levitated particles. We test our calculations against new observations of four small (D {approx} 1 km) near-Earth asteroids (NEAs; (85236), (142348), (162900), and 2006 SZ{sub 217}) obtained with the Dual Beam Imaging Polarimeter on the University of Hawaii's 2.2 m telescope, as well as previous observations of (25143) Itokawa and (433) Eros. We find that the polarization of the light reflected from an asteroid is controlled by the mineralogical and chemical composition of the surface and is independent of dust particle. The relation between the slope of the polarization-phase curve beyond the inversion angle and the albedo of an asteroid is thus independent of the surface regolith size distribution and is valid for both Main Belt and NEAs.

  18. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    PubMed

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  19. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Petersen, Walter A.; Gatlin, Patrick; Wingo, Matthew

    2013-01-01

    An impact-type Joss-Waldvogel disdrometer (JWD), a two-dimensional video disdrometer (2DVD), and a laser optical OTT Particle Size and Velocity (PARSIVEL) disdrometer (PD) were used to measure the raindrop size distribution (DSD) over a 6-month period in Huntsville, Alabama. Comparisons indicate event rain totals for all three disdrometers that were in reasonable agreement with a reference rain gauge. In a relative sense, hourly composite DSDs revealed that the JWD was more sensitive to small drops (,1 mm), while the PD appeared to severely underestimate small drops less than 0.76mm in diameter. The JWD and 2DVD measured comparable number concentrations of midsize drops (1-3mm) and large drops (3-5 mm), while the PD tended to measure relatively higher drop concentrations at sizes larger than 2.44mm in diameter. This concentration disparity tended to occur when hourly rain rates and drop counts exceeded 2.5mm/h and 400/min, respectively. Based on interactions with the PD manufacturer, the partially inhomogeneous laser beam is considered the cause of the PD drop count overestimation. PD drop fall speeds followed the expected terminal fall speed relationship quite well, while the 2DVD occasionally measured slower drops for diameters larger than 2.4mm, coinciding with events where wind speeds were greater than 4m/s. The underestimation of small drops by the PD had a pronounced effect on the intercept and shape of parameters of gamma-fitted DSDs, while the overestimation of midsize and larger drops resulted in higher mean values for PD integral rain parameters

  20. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  1. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  2. Maternal-fetal interactions and birth order influence insulin variable number of tandem repeats allele class associations with head size at birth and childhood weight gain.

    PubMed

    Ong, Ken K; Petry, Clive J; Barratt, Bryan J; Ring, Susan; Cordell, Heather J; Wingate, Diane L; Pembrey, Marcus E; Todd, John A; Dunger, David B

    2004-04-01

    Polymorphism of the insulin gene (INS) variable number of tandem repeats (VNTR; class I or class III alleles) locus has been associated with adult diseases and with birth size. Therefore, this variant is a potential contributory factor to the reported fetal origins of adult disease. In the population-based Avon Longitudinal Study of Pregnancy and Childhood birth cohort, we have confirmed in the present study the association between the INS VNTR III/III genotype and larger head circumference at birth (odds ratio [OR] 1.92, 95% CI 1.23-3.07; P = 0.004) and identified an association with higher cord blood IGF-II levels (P = 0.05 to 0.0001). The genotype association with head circumference was influenced by maternal parity (birth order): the III/III OR for larger head circumference was stronger in second and subsequent pregnancies (OR 5.0, 95% CI 2.2-11.5; P = 0.00003) than in first pregnancies (1.2, 0.6-2.2; P = 0.8; interaction with birth order, P = 0.02). During childhood, the III/III genotype remained associated with larger head circumference (P = 0.004) and was also associated with greater BMI (P = 0.03), waist circumference (P = 0.03), and higher fasting insulin levels in girls (P = 0.02). In addition, there were interactions between INS VNTR genotype and early postnatal weight gain in determining childhood BMI (P = 0.001 for interaction), weight (P = 0.005), and waist circumference (P = 0.0005), such that in the approximately 25% of children (n = 286) with rapid early postnatal weight gain, class III genotype-negative children among this group gained weight more rapidly. Our results indicate that complex prenatal and postnatal gene-maternal/fetal interactions influence size at birth and childhood risk factors for adult disease. PMID:15047631

  3. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2003-05-01

    At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt

  4. High genetic diversity and distribution of Bubu-DQA alleles in swamp buffaloes (Bubalus bubalis carabanesis): identification of new Bubu-DQA loci and haplotypes.

    PubMed

    Mishra, S K; Niranjan, S K; Banerjee, B; Dubey, P K; Gonge, D S; Mishra, B P; Kataria, R S

    2016-07-01

    In this study, genetic diversity analysis of MHC class II-DQA locus helped in identification of 25 new Bubu-DQA nucleotide sequences in swamp buffaloes (Bubalus bubalis carabanesis, Bubu). Phylogenetic analysis revealed the distribution of the buffalo DQA sequences in two major clusters of DQA1 and DQA2 genes, sharing common lineages with corresponding cattle alleles, possibly due to trans-species evolution. However, a highly divergent sequence, Bubu-DQA*2501, homologous to cattle (BoLA) DQA3 allele, was identified, indicating the existence of an additional locus; putative DQA3 in buffalo. PCR-RFLP analysis revealed extensive duplication of DQA locus in swamp buffaloes, sharing DQA1, DQA2, and DQA3 alleles in different combinations in duplicated haplotypes. Higher dN than dS values and Wu-Kabat variability at peptide-binding regions in Bubu-DQA indicated high polymorphism with balancing selection. Levels of genetic diversity within DQA sequences and duplication in a small population of swamp buffalo indicate the genetic richness of the species, important for fitness. PMID:27177904

  5. Allele Distributions at Hybrid Incompatibility Loci Facilitate the Potential for Gene Flow between Cultivated and Weedy Rice in the US

    PubMed Central

    Craig, Stephanie M.; Reagon, Michael; Resnick, Lauren E.; Caicedo, Ana L.

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds. PMID:24489758

  6. Crystal Size Distributions in Igneous rocks: Where are we now?

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2003-12-01

    Modern Crystal Size Distributions (CSD) studies started in 1988 and have expanded since then, albeit somewhat slowly. We have now measured CSDs in a variety of different compositions and for both plutonic and volcanic rocks. However, the subject still lags far behind chemical petrology and we need many more studies. CSD methodology has advanced considerably, both for 3D and 2D methods, but it is unfortunate that some 2D studies still do not use appropriate stereological conversions or publish their raw data. The nature of the lower size limit is very important, real or measurement artefact, but is not commonly stated. All this is especially important for comparing data with earlier studies. Individual CSDs of minerals are not always very informative. A much better approach is to look at suites of related CSDs. For instance, different minerals within a single sample, ensembles of related whole rock samples, comparison of late and early textures as preserved in oikocrysts, dykes or volcanic rocks. As more data become available it will be possible to compare usefully unrelated suites of rocks. Straight or nearly straight CSDs in volcanic rocks can be produced by steady-state crystallisation. If the growth rate is known then the residence time can be determined. In some rocks there is a good agreement with other chronometric techniques, but others show no such concordance. In the latter case another model may be more appropriate, such as textural coarsening. This model has been applied in some cases in inappropriate situations, which has cast doubt on the whole subject of CSDs. For plutonic rocks exponentially increasing undercooling can also produce straight CSDs. However, many CSDs are slightly curved and other models are possible, especially if no small crystals are present. Within ensembles of straight CSDs the slope and intercept are commonly correlated. This is mostly accounted for by closure and hence this correlation is not significant, although the variation

  7. Interpolation of the raindrop size distribution over a GPM-pixel-sized region.

    NASA Astrophysics Data System (ADS)

    Berne, A.; Raupach, T.

    2014-12-01

    The raindrop size distribution (DSD) is crucial information on the structure of rainfall. All bulk rainfall variables of interest can be derived as weighted moments of the DSD. Usually the DSD is measured at point locations using disdrometers. In some contexts, such as the investigation of scale-change effects, it would be useful to be able to interpolate the DSD across space between point measurements. Traditionally such studies are performed by interpolating bulk variables individually. Such an approach fails to take into account any interrelationships between the bulk variables and information is lost. We present a spatial interpolation method for the whole drop size distribution. Instead of using multivariate geostatistics, we use a principle component analysis (PCA) to identify orthogonal components of the DSD. These components are independent, and thus we can apply univariate geostatistics to each one individually. Interpolation is carried out using ordinary kriging. Once components are interpolated, the interpolation of the DSD can be recovered at any requested point by recombining and back-transforming the components. The advantages of the method are that the DSD is interpolated in full, the use of PCA allows us to control and quantify the amount of information loss that occurs, and relationships between any bulk variables are maintained through the process. An important feature of rainfall that is considered in the proposed interpolation method is the intermittency and its influence on the spatial distribution of raindrops. We have applied this technique to DSDs recorded at point locations in a GPM-pixel sized area in Ardèche, France in the framework of the HyMeX project. To test the results we use leave-one-out testing and compare to interpolation of individual bulk variables; the results are favourable. An investigation of the radar reflectivity to rain-rate (Z-R) relationship shows that our DSD interpolation technique maintains the relationships

  8. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass

  9. Molecular size and molecular size distribution affecting traditional balsamic vinegar aging.

    PubMed

    Falcone, Pasquale Massimiliano; Giudici, Paolo

    2008-08-27

    A first attempt at a semiquantitative study of molecular weight (MW) and molecular weight distribution (MWD) in cooked grape must and traditional balsamic vinegar (TBV) with increasing well-defined age was performed by high-performance liquid size exclusion chromatography (SEC) using dual detection, that is, differential refractive index (DRI) and absorbance (UV-vis) based detectors. With this aim, MW and MWD, including number- and weight-average MW and polydispersity, were determined with respect to a secondary standard and then analyzed. All investigated vinegar samples were recognized as compositionally and structurally heterogeneous blends of copolymers (melanoidins) spreading over a wide range of molecular sizes: the relative MW ranged from 2 to >2000 kDa. The extent of the polymerization reactions was in agreement with the TBV browning kinetics. MWD parameters varied asymptotically toward either upper or lower limits during aging, reflecting a nonequilibrium status of the balance between polymerization and depolymerization reactions in TBV. MWD parameters were proposed as potential aging markers of TBV. PMID:18656930

  10. Mars: New Determination of Impact Crater Production Function Size Distribution

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11m

  11. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  12. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  13. Deposition Rate and Size Distribution of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Hikida, M.

    2006-12-01

    Sakurajima Volcano has been in violent activity since 1955 and erupting large amount of volcanic ash and stones from the crater. Volcanic fallouts have caused damages to the agricaltural products in the area and denuded the mountainside of vegitation. Deposited ash and stones on the mountainside has also caused hazardrous debris flows in the rivers. Therefore, it is necessary to know the deposition rate of the fallouts in prediction of debris flow. Due to the violent volcanic activity, however, it is prohibited to enter within two kilometers of the crater, making it impossible to measure the depth of deposited fallouts in the area. Theoretical study on deposition rate of volcanic fallouts should be needed to estimate the amount of fallouts in the upstream area. At first, motion of a particle erupted from the crater into the air was computed to examine its trajectory. From the simulation of the trajectory, a particle was assumed to fall at its terminal veloctity, and theoretical equation which give the deposition rate of volcanic ash and the distribution of deposited ash were obtained. In the derivation of these equations, the probability density functions of eruption column height, the terminal velocity of the erupted particles and the wind velocity were introduced. The computed values of amount of deposited ash show good agreement with the data taken from 93 collection points around Sakurajima Volcano. The annual amount of erupted volcanic ash was estimated to be about thirteen millions tons. The sample of deposited fallouts were taken to analize the size distribution. The data was also used to check the applicability of the theory presented.

  14. Population size and winter distribution of eastern American oystercatchers

    USGS Publications Warehouse

    Brown, S.C.; Schulte, Shiloh A.; Harrington, B.; Winn, Brad; Bart, J.; Howe, M.

    2005-01-01

    Conservation of the eastern subspecies of the American oystercatcher (Haematopus palliatus palliatus) is a high priority in the U.S. Shorebird Conservation Plan, but previous population estimates were unreliable, information on distribution and habitat associations during winter was incomplete, and methods for long-term monitoring had not been developed prior to this survey. We completed the aerial survey proposed in the U.S. Shorebird Conservation Plan to determine population size, winter distribution, and habitat associations. We conducted coastal aerial surveys from New Jersey to Texas during November 2002 to February 2003. This area comprised the entire wintering range of the eastern American oystercatcher within the United States. Surveys covered all suitable habitat in the United States for the subspecies, partitioned into 3 survey strata: known roost sites, high-use habitat, and inter-coastal tidal habitat. We determined known roost sites from extensive consultation with biologists and local experts in each state. High-use habitat included sand islands, sand spits at inlets, shell rakes, and oyster reefs. Partner organizations conducted ground counts in most states. We used high resolution still photography to determine detection rates for estimates of the number of birds in particular flocks, and we used ground counts to determine detection rates of flocks. Using a combination of ground and aerial counts, we estimated the population of eastern American oystercatchers to be 10,971 +/- 298. Aerial surveys can serve an important management function for shorebirds and possibly other coastal waterbirds by providing population status and trend information across a wide geographic scale.

  15. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Milutinović, S.; Marinov, I.; Cabré, A.

    2015-05-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth System models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing algorithms to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 μm in diameter), nanophytoplankton (2-20 μm) and microphytoplankton (20-50 μm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e. oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have large biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield on average ~0.2-0.3 Gt of C, consistent with analogous estimates from two other ocean color algorithms, and several state-of-the-art Earth System models. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, because the PSD-based algorithm is not a priori empirically constrained and introduces improvement over the assumptions of the other approaches. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm

  16. Extrahypophysial distribution of corticotropin as a function of brain size.

    PubMed Central

    Moldow, R; Yalow, R S

    1978-01-01

    Determination by radioimmunoassay of corticotropin in the brains of rats, rabbits, dogs, monkeys, and human beings reveals that the dimensions within which the hormone is found is about the same for each of these species but that the anatomical regions in which the hormone is found depends on brain size. Corticotropin is widely distributed in the brain of rats but is found only in the hypothalamic region of the primate brain. The patterns of immunoreactivity observed after Sephadex gel filtration confirm that the molecular forms of corticotropin found in extrahypophysial regions are similar to those in the pituitary of each species. These findings suggest that the mammalian pituitary is the sole site of synthesis of the hormone. The observation of persistence of corticotropin in the brains of commerically hypophysectomized rats has been interpreted by others as suggesting diencephalic as well as pituitary origin for this peptide. However, our studies demonstrate that 8 weeks after hypophysectomy the rats we have received from commerical sources manifest stress-stimulated plasma corticotropin concentrations about 80% of that found in intact rats in spite of the fact that residual pituitary tissue was not found by visual inspection of the sella. Scrapings from the sella revealed a corticotropin content up to 5% that of the average rat pituitary. Images PMID:204943

  17. Variability of the raindrop size distribution at small spatial scales

    NASA Astrophysics Data System (ADS)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  18. Regional variability of raindrop size distribution over Indonesia

    NASA Astrophysics Data System (ADS)

    Marzuki, M.; Hashiguchi, H.; Yamamoto, M. K.; Mori, S.; Yamanaka, M. D.

    2013-11-01

    Regional variability of raindrop size distribution (DSD) along the Equator was investigated through a network of Parsivel disdrometers in Indonesia. The disdrometers were installed at Kototabang (KT; 100.32° E, 0.20° S), Pontianak (PT; 109.37° E, 0.00° S), Manado (MN; 124.92° E, 1.55° N) and Biak (BK; 136.10° E, 1.18° S). It was found that the DSD at PT has more large drops than at the other three sites. The DSDs at the four sites are influenced by both oceanic and continental systems, and majority of the data matched the maritime-like DSD that was reported in a previous study. Continental-like DSDs were somewhat dominant at PT and KT. Regional variability of DSD is closely related to the variability of topography, mesoscale convective system propagation and horizontal scale of landmass. Different DSDs at different sites led to different Z-R relationships in which the radar reflectivity at PT was much larger than at other sites, at the same rainfall rate.

  19. Variations in earthquake-size distribution across different stress regimes.

    PubMed

    Schorlemmer, Danijel; Wiemer, Stefan; Wyss, Max

    2005-09-22

    The earthquake size distribution follows, in most instances, a power law, with the slope of this power law, the 'b value', commonly used to describe the relative occurrence of large and small events (a high b value indicates a larger proportion of small earthquakes, and vice versa). Statistically significant variations of b values have been measured in laboratory experiments, mines and various tectonic regimes such as subducting slabs, near magma chambers, along fault zones and in aftershock zones. However, it has remained uncertain whether these differences are due to differing stress regimes, as it was questionable that samples in small volumes (such as in laboratory specimens, mines and the shallow Earth's crust) are representative of earthquakes in general. Given the lack of physical understanding of these differences, the observation that b values approach the constant 1 if large volumes are sampled was interpreted to indicate that b = 1 is a universal constant for earthquakes in general. Here we show that the b value varies systematically for different styles of faulting. We find that normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Given that thrust faults tend to be under higher stress than normal faults we infer that the b value acts as a stress meter that depends inversely on differential stress.

  20. Controllable microgels from multifunctional molecules: structure control and size distribution

    NASA Astrophysics Data System (ADS)

    Gu, Zhenyu; Patterson, Gary; Cao, Rong; Armitage, Bruce

    2004-03-01

    Supramolecular microgels with fractal structures were produced by engineered multifunctional molecules. The combination of static and dynamic light scattering was utilized to characterize the fractal dimension (Df) of the microgels and analyze the aggregation process of the microgels. The microgels are assembled from (1) a tetrafunctional protein (avidin), (2) a trifunctional DNA construct known as a three-way junction, and (3) a biotinylated peptide nucleic acid (PNA) that acts as a crosslinker by binding irreversibly to four equivalent binding sites on the protein and thermoreversibly to three identical binding sites on the DNA. The structure of microgels can be controlled through different aggregation mechanisms. The initial microgels formed by titration have a compact structure with Df ˜2.6; while the reversible microgels formed from melted aggregates have an open structure with Df ˜1.8. The values are consistent with the point-cluster and the cluster-cluster aggregation mechanisms, respectively. A narrow size distribution of microgels was observed and explained in terms of the Flory theory of reversible self-assembly.

  1. Is the European spatial distribution of the HIV-1-resistant CCR5-Delta32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?

    PubMed

    Faure, Eric; Royer-Carenzi, Manuela

    2008-12-01

    We studied the possible effects of the expansion of ancient Mediterranean civilizations during the five centuries before and after Christ on the European distribution of the mutant allele for the chemokine receptor gene CCR5 which has a 32-bp deletion (CCR5-Delta32). There is a strong evidence for the unitary origin of the CCR5-Delta32 mutation, this it is found principally in Europe and Western Asia, with generally a north-south downhill cline frequency. Homozygous carriers of this mutation show a resistance to HIV-1 infection and a slower progression towards AIDS. However, HIV has clearly emerged too recently to have been the selective force on CCR5. Our analyses showed strong negative correlations in Europe between the allele frequency and two historical parameters, i.e. the first colonization dates by the great ancient Mediterranean civilizations, and the distances from the Northern frontiers of the Roman Empire in its greatest expansion. Moreover, other studies have shown that the deletion frequencies in both German Bronze Age and Swedish Neolithic populations were similar to those found in the corresponding modern populations, and this deletion has been found in ancient DNA of around 7000 years ago, suggesting that in the past, the deletion frequency could have been relatively high in European populations. In addition, in West Nile virus pathogenesis, CCR5 plays an antimicrobial role showing that host genetic factors are highly pathogen-specific. Our results added to all these previous data suggest that the actual European allele frequency distribution might not be due to genes spreading, but to a negative selection resulting in the spread of pathogens principally during Roman expansion. Indeed, as gene flows from colonizers to European native populations were extremely low, the mutational changes might be associated with vulnerability to imported infections. To date, the nature of the parasites remains unknown; however, zoonoses could be incriminated.

  2. Optimal Estimation Retrieval of Cloud Ice Particle Size Distributions

    NASA Astrophysics Data System (ADS)

    Griffith, B. D.; Kummerow, C.

    2006-12-01

    An optimal estimation retrieval technique has been applied to a multi-frequency airborne radar and radiometer data set from the Wakasa Bay AMSR-E validation experiment. First, airborne radar observations at 13.4, 35.6 and 94.9 GHz were integrated to retrieve all three parameters of a normalized gamma ice particle size distribution (PSD). The retrieved PSD was validated against near-simultaneous in situ cloud probe observations. The differences between the retrieved and in situ measured PSDs were explored through sensitivity analysis, and the sources of uncertainty were found to be the bulk density of the cloud ice and the aspect ratio of aspherical particles modeled as oblate spheroids. The optimal estimation technique was then applied to select an optimal density and aspect ratio for the cloud under study through integration of the in situ and radar observations. The optimal ice size-density relationship was found to be ρ(D)=0.07×D^{- 1.58} g cm-3 where the diameter, D, is in mm, and the oblate spheroid aspect ratio was found to be 0.53. The use of these optimal values, as improved assumptions in the PSD retrieval, reduced the uncertainty in the optimized forward model from ± 6 dB to ± 2 dB. Next, the retrieval technique was expanded to include passive microwave observations and retrieve a full column vertical hydrometeor profile. Eleven airborne passive microwave frequencies from 10.7 to 340 GHz were integrated with the airborne radar observations to retrieve all three parameters of a normalized gamma PSD at each vertical level in the column. The retrieved vertical profile was validated against a clear sky scene before being applied to the horizontal extent of an ice cloud. The retrieved PSD showed vertical structure consistent with cloud microphysical processes. PSDs were retrieved using both the general and improved assumption case-specific density and shape models. A comparison revealed an order of magnitude difference in ice water path between the two

  3. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  4. Note on a Strongly Unimodal Bibliometric Size Frequency Distribution.

    ERIC Educational Resources Information Center

    Sichel, H. S.

    1992-01-01

    This study demonstrates that the number of references at the end of scientific research papers forms a strongly unimodal frequency distribution and that the generalized Gaussian-Poisson distribution fits such unimodal data extremely well. (three references) (Author/MES)

  5. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  6. Grain-size Distribution of Apollo 11 Soil 10084

    NASA Technical Reports Server (NTRS)

    Basu, A.; Wentworth, S. J.; McKay, D. S.

    2000-01-01

    Results of a new grain size analysis of 0.99 g of the submillimeter fraction of the soil 10084, using the JSC methodology, are: 4.28 phi =(51 micrometers) and 2.23 phi (=213 micrometers). A significant fraction (14.2%) of the soil is less than 10 micrometers in size.

  7. Helicobacter pylori vacA s1a and s1b alleles from clinical isolates from different regions of Chile show a distinct geographic distribution

    PubMed Central

    Díaz, MI; Valdivia, A; Martínez, P; Palacios, JL; Harris, P; Novales, J; Garrido, E; Valderrama, D; Shilling, C; Kirberg, A; Hebel, E; Fierro, J; Bravo, R; Siegel, F; Leon, G; Klapp, G; Venegas, A

    2005-01-01

    AIM: To establish the most common vacA alleles in Helicobacter pylori (H pylori) strains isolated from Chilean patients and its relationship with gastritis and gastroduodenal ulcers. METHODS: Two hundred and forty five H pylori clinical isolates were obtained from 79 biopsies from Chilean infected patients suffering from gastrointestinal diseases. An average of 2-3 strains per patient was isolated and the vacA genotype was analyzed by PCR and 3% agarose electrophoresis. Some genotypes were checked by DNA sequencing. RESULTS: The most prevalent vacA genotype in Chilean patients was s1b m1 (76%), followed by s1a m1 (21%). In contrast, the s2 m2 genotype was scarcely represented (3%). The s1b m1 genotype was found most frequently linked to gastropathies (P<0.05) rather than ulcers. Ulcers were found more commonly in male and older patients. Curiously, patients living in cities located North and far South of Santiago, the capital and largest Chilean city, carried almost exclusively strains with the s1b m1 genotype. In contrast, patients from Santiago and cities located South of Santiago carried strains with either one or both s1a m1 and s1b m1 genotypes. Regarding the s2 m2 genotype, comparison with GenBank sequences revealed that Chilean s2 sequence was identical to those of Australian, American, and Colombian strains but quite different from those of Alaska and India. CONCLUSION: Differences in geographic distribution of the s and m vacA alleles in Chile and a relationship of s1b m1 genotype with gastritis were found. Sequence data in part support a hispanic origin for the vacA genotype. Asymmetric distribution of genotypes s1b m1 and s2 m2 recedes H Pylori strain distribution in Spain and Portugal. PMID:16419167

  8. [Distribution of allelic variants of promotor sites of cytokine genes and endothelial growth factor gene among healthy subjects and patients with rheumatoid arthritis in a Russian Europeoid population].

    PubMed

    Konenkov, V I; Golovanova, O V; Prokof'ev, V F; Shevchenko, A V; Zonova, E V; Korolev, M A; Leonova, Iu B; Khalaĭdzhi, N A; Lapsina, S A

    2010-01-01

    The article reports results of the first study of cytokine gene polymorphic sites and analysis of distribution of their complexes among healthy subjects and patients with rheumatoid arthritis (RA) representative of the Russian Europeoid population; their possible prognostic significance is evaluated. Comprehensive analysis of the frequency of allelic variants of cytokine genes IL1B C-31T, IL6 G-174C, TNFA A-238G, TNFA A-308G, TNFA A-863C, IL4 C-590T, IL10 A-592C and VEGF C-2578A was performed for 513 residents of the Novosibirsk region showing no obvious signs of any diseases and 125 RA patients. The results suggest association of RA with certain alleles of pro- and anti-inflammatory cytokine genes. Complex indices reflecting combinations of genotypes of two, three, four, five, six and seven loci of the explored cytokine genes found in individual patient demonstrate their high specificity for RA. It is supposed that these findings can be used in further clinical studies for the development of algorithm designed to detect risk groups among clinically healthy subjects.

  9. A study of SS size distribution during runoff and fractionation of phosphates depending on soil size in agricultural watershed.

    PubMed

    Sa, S H; Masuda, T; Hosoi, Y

    2005-01-01

    Characterization of the differences and algal-available fractions of P in soils, suspended solids, and bottom sediments have been the main topics of research during the past decade. However, the size distribution and properties of particulate matter in runoff have not been much studied in Japan. Here we study particle size distribution during runoff and the chemical characteristics of P in each soil size fraction and relate them to land use. The temporal variation of particulate sizes during rain events is different in each watershed. Most particles have the size in the range of 10-100 microm. Also, the percentage of BAP in TP as well as percentage of PCOD in SS also varies temporally and spatially during runoff. To investigate how soil particles characteristics depend on land use, soil samples from two watersheds are examined. For particle size distribution and specific gravity, no significant difference among watersheds is found. However, C, N, and P content are indirectly proportional to the particle size, which means smaller particle size results in larger. H2O-extracted P, NH4Cl-extracted P, NAI-P, Apatite-P, Organic-P, and TP contents in each soil particle sample vary depending on particle size, land use, and watershed.

  10. Dual matrilineal geographic distribution of Korean type 2 diabetes mellitus-associated -11,377 G adiponectin allele.

    PubMed

    Choi, Jee-Hye; Min, Na Young; Park, Sang Kil; Gavaachimed, Lkhagvasuren; Ko, Young Jong; Han, Sung Hoon; Kim, Kyung Yong; Kim, Kijung; Lee, Kwang Ho; Park, Ae Ja

    2014-12-01

    The present study was performed to identify the susceptible single nucleotide polymorphisms (SNPs) for the prediction of Korean type 2 diabetes mellitus (T2DM) and to clarify the matrilineal origin of Korean T2DM‑specific SNPs. Fourteen SNPs from the adiponectin (ADIPOQ), hepatocyte nuclear factor 4α, phosphoenolpyruvate carboxykinase 1 and glucokinase genes in the Korean population were analyzed. Only one SNP, ‑11,377 C/G on the ADIPOQ gene, was finally determined to be responsible for the incidence of Korean T2DM (P=0.028). The G‑T‑T‑A haplotype at positions ‑11,377, +45, +276 and +349 on the ADIPOQ gene was also associated with a high incidence of Korean T2DM (P=0.023). In addition, the susceptibility of Korean individuals to T2DM appears to be affected by their matrilineal origin. Of note, the group of Southern origin, consisting of mitochondrial DNA macrohaplogroups F and R, was predisposed to T2DM, whereas the group of Northern origin, consisting of haplogroups A and Y, was resistant to T2DM. This implied that the differential genetics between the two groups, which were formed from the initial peopling of the proto‑Korean population via Southern and Northern routes to the present time, may explain their differing susceptibility to T2DM. In conclusion, from Southern Asia Northward, a matrilineal origin of Korean individuals appears to be responsible for the prevalence of Korean T2DM caused by the ‑11,377 G allele.

  11. One-pot, high-yield synthesis of size-controlled gold particles with narrow size distribution.

    PubMed

    Guo, Shaojun; Wang, Erkang

    2007-08-01

    Here, we first report a facile one-step one-phase synthetic route to achieve size-controlled gold micro/nanoparticles with narrow size distribution by using o-diaminobenzene as a reducing agent in the presence of poly(N-vinyl-2-pyrrolidone) via a simple wet-chemical approach. All experimental data including that from scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques indicates that the gold micro/nanoparticles with a narrow size distribution were produced in high yield (approximately 100%).

  12. Intimin subtyping of atypical enteropathogenic Escherichia coli isolated from children with and without diarrhea: a possible temporal shift in the distribution of intimin alleles.

    PubMed

    Franco, Roger T; Araújo, Lizandra D R; Penna, Francisco J; Magalhães, Paula P; Mendes, Edilberto N

    2012-09-01

    Intimins of atypical EPEC strains from children with and without diarrhea were genotyped. κ was not found and β was the most common. η- and ζ-alleles prevailed in strains from children without diarrhea and ι-allele among children older than 13 months. ε-allele emerged in 2006 and was the most common in 2007.

  13. A Program for Partitioning Shifted Truncated Lognormal Distributions into Size-Class Bins

    USGS Publications Warehouse

    Attanasi, E.D.; Charpentier, Ronald R.

    2007-01-01

    In recent years, oil and gas accumulation-size frequency distributions have become a standard way to characterize undiscovered conventional oil and gas resources that have been postulated by geologic assessments. The preparation of such distributions requires the assessment geologists to explicitly choose parameters for the probability distribution for the sizes of undiscovered accumulations. The purpose of this report is to present a computational scheme for obtaining a binned size frequency distribution of undiscovered accumulations when the undiscovered accumulation size distribution is shifted truncated lognormal.

  14. A generalized statistical model for the size distribution of wealth

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  15. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  16. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  17. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles

    NASA Astrophysics Data System (ADS)

    Souza, T. G. F.; Ciminelli, V. S. T.; Mohallem, N. D. S.

    2016-07-01

    The accuracy of dynamic light scattering (DLS) measurements are compared with transmission electron microscopy (TEM) studies for characterization of size distributions of ceramic nanoparticles. It was found that measurements by DLS using number distribution presented accurate results when compared to TEM. The presence of dispersants and the enlargement of size distributions induce errors to DLS particle sizing measurements and shifts its results to higher values.

  18. Evolution of 2D Potts Model Grain Microstructures from an Initial Hillert Size Distribution

    SciTech Connect

    Battaile, C.C.; Holm E.A.

    1998-10-19

    Grain growth experiments and simulations exhibit self-similar grain size distributions quite different from that derived via a mean field approach by Hillert [ 1]. To test whether this discrepancy is due to insufficient anneal times, two different two-dimensional grain structures with realistic topologies and Hillert grain size distributions are generated and subjected to grain growth via the Monte Carlo Potts Model (MCPM). In both cases, the observed self-similar grain size distributions deviate from the initial Hillert form and conform instead to that observed in MCPM grain growth simulations that start from a random microstructure. This suggests that the Hillert grain size distribution is not an attractor.

  19. Particle size distributions in and exhausted from a poultry house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...

  20. Multi-component Erlang distribution of plant seed masses and sizes

    NASA Astrophysics Data System (ADS)

    Fan, San-Hong; Wei, Hua-Rong

    2012-12-01

    The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.

  1. The Distribution and Evolution of Lyman- Alpha Forest Cloud Sizes

    NASA Astrophysics Data System (ADS)

    Foltz, Craig

    1997-07-01

    Our ongoing program to measure the sizes of Ly-alpha forest clouds by looking for common absorption in close pairs of quasars using FOS UV spectroscopy {GO Programs 5320 and 6100} has yielded dramatic and unexpected results: {1} Observations of the pair Q0107-025A, B {z_em eq 0.95} give a firm and model-independent lower limit on the transverse size of the absorbers of more than 300 kpc and suggest a characteristic radius of the clouds of 600 , h^-1 kpc {h = 100 kms Mpc^-1; q_0 = 0.5} at 0.5 <= z <= 0.9. {2} Similar observations of the higher redshift pair LB 9605 {z_ em = 1.834} and LB 9612 {z_ em = 1.898} imply a characteristic radius of about half that inferred at lower redshift. Together with ground-based observations, these results imply an evolution of cloud radii with redshift, with the characteristic size of the Ly-alpha absorbers decreasing with increasing redshift. {3} Evidence is also found for a possible dependence of cloud radii on column density, with the high column density clouds being larger in extent than the lower column density clouds. Additional observations of these quasars, as well as a third quasar LBQS 0107-0232 within 3' of Q0107-025A, B, will establish whether the correlation with column density is real, further constrain the size of the clouds at two different redshift ranges, and probe cloud sizes on scales up to 1 Mpc.

  2. The Distribution and Evolution of Lyman- Alpha Forest Cloud Sizes

    NASA Astrophysics Data System (ADS)

    Foltz, Craig

    1996-07-01

    Our ongoing program to measure the sizes of Ly-alpha forest clouds by looking for common absorption in close pairs of quasars using FOS UV spectroscopy {GO Programs 5320 and 6100} has yielded dramatic and unexpected results: {1} Observations of the pair Q0107-025A,B {z_em eq 0.95} give a firm and model-independent lower limit on the transverse size of the absorbers of more than 300 kpc and suggest a characteristic radius of the clouds of 600 ,h^-1 kpc {h = 100 kms Mpc^-1; q_0 = 0.5} at 0.5 <= z <= 0.9. {2} Similar observations of the higher redshift pair LB 9605 {z_ em = 1.834} and LB 9612 {z_ em = 1.898} imply a characteristic radius of about half that inferred at lower redshift. Together with ground-based observations, these results imply an evolution of cloud radii with redshift, with the characteristic size of the Ly-alpha absorbers decreasing with increasing redshift. {3} Evidence is also found for a possible dependence of cloud radii on column density, with the high column density clouds being larger in extent than the lower column density clouds. Additional observations of these quasars, as well as a third quasar LBQS 0107-0232 within 3' of Q0107-025A,B, will establish whether the correlation with column density is real, further constrain the size of the clouds at two different redshift ranges, and probe cloud sizes on scales up to 1 Mpc.

  3. The Modelled Raindrop Size Distribution of Skudai, Peninsular Malaysia, Using Exponential and Lognormal Distributions

    PubMed Central

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance. PMID:25126597

  4. The modelled raindrop size distribution of Skudai, Peninsular Malaysia, using exponential and lognormal distributions.

    PubMed

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance. PMID:25126597

  5. The modelled raindrop size distribution of Skudai, Peninsular Malaysia, using exponential and lognormal distributions.

    PubMed

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.

  6. City-size distributions and the world urban system in the twentieth century.

    PubMed

    Ettlinger, N; Archer, J C

    1987-09-01

    "In this paper we trace and interpret changes in the geographical pattern and city-size distribution of the world's largest cities in the twentieth century. Since 1900 the geographical distribution of these cities has become increasingly dispersed; their city-size distribution by rank was nearly linear in 1900 and 1940, and convex in 1980. We interpret the convex distribution which emerged following World War 2 as reflecting an economically integrated but politically and demographically partitioned global urban system. Our interpretation of changes in size distribution of cities emphasizes demographic considerations, largely neglected in previous investigations, including migration and relative rates of population change."

  7. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population.

    PubMed

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M

    2015-07-22

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann's cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann's rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution.

  8. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    NASA Astrophysics Data System (ADS)

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-07-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution.

  9. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    PubMed Central

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  10. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population.

    PubMed

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann's cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann's rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  11. Coagulation-flocculation of beech condensate: particles size distribution.

    PubMed

    Irmouli, Mohammed; Haluk, Jean Pierre

    2002-05-01

    Beech wood (Fagus sylvatica L.) condensate from a steaming operation was studied. The objective of our work was to study the precipitation of these wood extracts in presence of calcium ion after autoxidation at basic pH (8). The autoxidation was carried out at 250 rpm for 30 min, and flocculation was followed up for 30 min. An investigation with a laser sizer Mastersizer of Malvern has been done in order to study the influence of the agitation on the state of aggregation of the condensate. A negative correlation was observed between the mean size of particles and the agitation rate. Without stirring, flocculation rapidly occurred and the mean size of particles was high. Calcium-induced aggregation of the condensate was also found to be reversible toward agitation. PMID:16290593

  12. Apollo 14 soils - Size distribution and particle types.

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Heiken, G. H.; Taylor, R. M.; Clanton, U. S.; Morrison, D. A.; Ladle, G. H.

    1972-01-01

    Particle size characteristics are discussed together with particle types, abundances, variation in the soils, questions of soil maturity, coarse fines, and ropy glasses. It is found that agglutinates are formed primarily by micrometeorite impact into lunar soil. Agglutinates appear to be the major particle type now being formed on the lunar surface. Agglutinate content of a soil increases with particle track densities and with surface exposure time.

  13. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  14. The impact of fuel particle size distribution on neutron transport in stochastic media

    SciTech Connect

    Liang, C.; Pavlou, A. T.; Ji, W.

    2013-07-01

    This paper presents a study of the particle size distribution impact on neutron transport in three-dimensional stochastic media. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. We construct 15 cases by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k{sub eff}) and flux distribution along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution has a significant impact on radiation transport in stochastic media, which can cause as high as {approx}270 pcm difference in k{sub eff} value and {approx}2.6% relative error difference in peak flux. As the packing fraction and optical thickness increase, the impact gradually dissipates. (authors)

  15. Allelic association between marker loci.

    PubMed

    Lonjou, C; Collins, A; Morton, N E

    1999-02-16

    Allelic association has proven useful to refine the location of major genes prior to positional cloning, but it is of uncertain value for genome scans in complex inheritance. We have extended kinship theory to give information content for linkage and allelic association. Application to pairs of closely linked markers as a surrogate for marker x oligogene pairs indicates that association is largely determined by regional founders, with little effect of subsequent demography. Sub-Saharan Africa has the least allelic association, consistent with settlement of other regions by small numbers of founders. Recent speculation about substantial advantages of isolates over large populations, of constant size over expansion, and of F1 hybrids over incrosses is not supported by theory or data. On the contrary, fewer affected cases, less opportunity for replication, and more stochastic variation tend to make isolates less informative for allelic association, as they are for linkage.

  16. Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size Distribution

    PubMed Central

    Tanford, Charles

    1974-01-01

    This paper presents a simple theory for the calculation of micelle size and other properties of micelleforming systems. The theory is based on the separate estimation of the components of the free energy arising from hydrophobic attraction and from head group repulsion, each as a function of micelle size. The difficult problem of an a priori calculation of the repulsive factor is circumvented by using experimental values of this parameter, derived from pressure-area curves of monolayers at an interface between an aqueous solution and liquid hydrocarbon. Though some parameters of the theory are still somewhat uncertain, self-consistent and physically realistic values can be assigned that lead to almost exact prediction of experimental micelle sizes and critical micelle concentrations for two distinctly different ionic detergents. PMID:4525294

  17. Convergence of the frequency-size distribution of global earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.; Naylor, Mark; Main, Ian G.

    2013-06-01

    The Gutenberg-Richter (GR) frequency-magnitude relation is a fundamental empirical law of seismology, but its form remains uncertain for rare extreme events. Here, we show that the temporal evolution of model likelihoods and parameters for the frequency-magnitude distribution of the global Harvard Centroid Moment Tensor catalog is inconsistent with an unbounded GR relation, despite if being the preferred model at the current time. During the recent spate of 12 great earthquakes in the last 8 years, record-breaking events result in profound steps in favor of the unbounded GR relation. However, between such events the preferred model gradually converges to the tapered GR relation, and the form of the convergence cannot be explained by random sampling of an unbounded GR distribution. The convergence properties are consistent with a global catalog composed of superposed randomly-sampled regional catalogs, each with different upper bounds, many of which have not yet sampled their largest event.

  18. Validation of Simulated Hurricane Drop Size Distributions using Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Bell, M. M.; Brown, B. R.; Frambach, A. J.

    2015-12-01

    Recent upgrades to the U.S. radar network now allow for polarimetric measurements of landfalling hurricanes, providing a new dataset to validate cloud microphysical parameterizations used in tropical cyclone simulations. Polarimetric radar variables simulated by the Weather Research and Forecasting model were compared with real radar observations from 2014 in Hurricanes Arthur and Ana. Six different microphysics parameterizations were tested that were able to capture the major features of both hurricanes, including accurate tracks, asymmetric distributions of precipitation, and the approximate intensity of the storms. However, most of the schemes produced a higher frequency of larger raindrops than observed. The Thompson aerosol-aware bulk and a spectral bin microphysical (SBM) scheme showed the best fidelity to the observed joint probability distribution of horizontal and differential reflectivity. The SBM also produced the most accurate intensity and lowest rainfall accumulation, but required much higher computational resources than the bulk schemes.

  19. Endotoxins in cotton: washing effects and size distribution

    SciTech Connect

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  20. Size distributions of fly ash using Coulter Multisizer: Use of multiple orifices and fitting to truncated log-normal distributions

    SciTech Connect

    Ghosal, S.; Ebert, J.L.; Self, S.A.

    1991-11-01

    Fly ash particles, which are predominantly spherical and glassy, are produced by melting of the mineral inclusions in the coal during combustion. Particle diameters can range from sub-micrometer (micron or {mu}m) to greater than 100 {mu}m. The size distribution of fly ash is needed to determine its role in the radiation transfer process in pulverized coal combustors. The Coulter Multisizer is an useful instrument for sizing powders with a broad size distribution. A single Multisizer orifice can size particles only within a specific size range limited at the lower end to a few percent of orifice diameter by sensitivity and at the upper end by increasing non-linearity of the signal-volume relation. A scheme for combining data obtained using orifices of different diameters is described. The manufacturers state that the smallest particle which can be sized accurately is nominally 2% of the diameter of the orifice. However, it was found that the data for particles less than 4% of the orifice diameter were not reliable. In order to use the smaller orifices, the larger particles have to be removed from the sample. A wet-sieving apparatus, designed for accurate separation of the particles by size, is described. A log-normal distribution function, truncated outside the measurement limits, fits the size distribution data well. Size parameters for fly ashes of six representative US coals are presented.

  1. Interpretation of size-exclusion chromatography for the determination of molecular-size distribution of human immunoglobulins.

    PubMed

    Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E

    2016-01-01

    Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs

  2. Interpretation of size-exclusion chromatography for the determination of molecular-size distribution of human immunoglobulins.

    PubMed

    Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E

    2016-01-01

    Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs

  3. Distribution of mating-type alleles and M13 PCR markers in the black leaf spot fungus Mycosphaerella fijiensis of bananas in Brazil.

    PubMed

    Queiroz, C B; Miranda, E C; Hanada, R E; Sousa, N R; Gasparotto, L; Soares, M A; Silva, G F

    2013-02-08

    The fungus Mycosphaerella fijiensis is the causative agent of black sigatoka, which is one of the most destructive diseases of banana plants. Infection with this pathogen results in underdeveloped fruit, with no commercial value. We analyzed the distribution of the M. fijiensis mating-type system and its genetic variability using M13 phage DNA markers. We found a 1:1 distribution of mating-type alleles, indicating MAT1-1 and MAT1-2 idiomorphs. A polymorphism analysis using three different primers for M13 markers showed that only the M13 minisatellite primers generated polymorphic products. We then utilized this polymorphism to characterize 40 isolates from various Brazilian states. The largest genetic distances were found between isolates from the same location and between isolates from different parts of the country. Therefore, there was no correlation between the genetic similarity and the geographic origin of the isolates. The M13 marker was used to generate genetic fingerprints for five isolates; these fingerprints were compared with the band profiles obtained from inter-simple sequence repeat (UBC861) and inter-retrotransposon amplified polymorphism analyses. We found that the M13 marker was more effective than the other two markers for differentiating these isolates.

  4. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    PubMed

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. PMID:23548563

  5. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    PubMed

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications.

  6. An analysis of the size distribution of Italian firms by age

    NASA Astrophysics Data System (ADS)

    Cirillo, Pasquale

    2010-02-01

    In this paper we analyze the size distribution of Italian firms by age. In other words, we want to establish whether the way that the size of firms is distributed varies as firms become old. As a proxy of size we use capital. In [L.M.B. Cabral, J. Mata, On the evolution of the firm size distribution: Facts and theory, American Economic Review 93 (2003) 1075-1090], the authors study the distribution of Portuguese firms and they find out that, while the size distribution of all firms is fairly stable over time, the distributions of firms by age groups are appreciably different. In particular, as the age of the firms increases, their size distribution on the log scale shifts to the right, the left tails becomes thinner and the right tail thicker, with a clear decrease of the skewness. In this paper, we perform a similar analysis with Italian firms using the CEBI database, also considering firms’ growth rates. Although there are several papers dealing with Italian firms and their size distribution, to our knowledge a similar study concerning size and age has not been performed yet for Italy, especially with such a big panel.

  7. Computer program calculates and plots surface area and pore size distribution data

    NASA Technical Reports Server (NTRS)

    Halpert, G.

    1968-01-01

    Computer program calculates surface area and pore size distribution of powders, metals, ceramics, and catalysts, and prints and plots the desired data directly. Surface area calculations are based on the gas adsorption technique of Brunauer, Emmett, and Teller, and pore size distribution calculations are based on the gas adsorption technique of Pierce.

  8. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones.

  9. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    NASA Technical Reports Server (NTRS)

    Lane, John

    2013-01-01

    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  10. DOES SIZE MATTER? THE UNDERLYING INTRINSIC SIZE DISTRIBUTION OF RADIO SOURCES AND IMPLICATIONS FOR UNIFICATION BY ORIENTATION

    SciTech Connect

    DiPompeo, M. A.; Runnoe, J. C.; Myers, A. D.; Boroson, T. A.

    2013-09-01

    Unification by orientation is a ubiquitous concept in the study of active galactic nuclei. A gold standard of the orientation paradigm is the hypothesis that radio galaxies and radio-loud quasars are intrinsically the same, but are observed over different ranges of viewing angles. Historically, strong support for this model was provided by the projected sizes of radio structure in luminous radio galaxies, which were found to be significantly larger than those of quasars, as predicted due to simple geometric projection. Recently, this test of the simplest prediction of orientation-based models has been revisited with larger samples that cover wider ranges of fundamental properties-and no clear difference in projected sizes of radio structure is found. Cast solely in terms of viewing angle effects, these results provide convincing evidence that unification of these objects solely through orientation fails. However, it is possible that conflicting results regarding the role orientation plays in our view of radio sources simply result from insufficient sampling of their intrinsic size distribution. We test this possibility using Monte Carlo simulations constrained by real sample sizes and properties. We develop models for the real intrinsic size distribution of radio sources, simulate observations by randomly sampling intrinsic sizes and viewing angles, and analyze how likely each sample is to support or dispute unification by orientation. We find that, while it is possible to reconcile conflicting results purely within a simple, orientation-based framework, it is very unlikely. We analyze the effects that sample size, relative numbers of radio galaxies and quasars, the critical angle that separates the two subclasses, and the shape of the intrinsic size distribution have on this type of test.

  11. A correction algorithm for particle size distribution measurements made with the forward-scattering spectrometer probe

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1989-01-01

    A correction algorithm for evaluating the particle size distribution measurements of atmospheric aerosols obtained with a forward-scattering spectrometer probe (FSSP) is examined. A model based on Poisson statistics is employed to calculate the average diameter and rms width of the particle size distribution. The dead time and coincidence errors in the measured number density are estimated. The model generated data are compared with a Monte Carlo simulation of the FSSP operation. It is observed that the correlation between the actual and measured size distribution is nonlinear. It is noted that the algorithm permits more accurate calculation of the average diameter and rms width of the distribution compared to uncorrected measured quantities.

  12. Particle Size Distributions During Laboratory-Scale Biomass Burns and Prescribed Burns Using Fast Response Instruments

    NASA Astrophysics Data System (ADS)

    Jung, H.; Hosseini, E.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Princevac, M.; Mahalingam, S.

    2010-12-01

    Particle size distribution from biomass combustion in an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies varies not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels and compare with that from prescribed burns. The combustion laboratory at the USDA Forest Service’s Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing volume size distribution from FMPS and APS measurement ~30 % of particle volume was attributable to the particles ranging from 0.5 to 10 µm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in MCE vs geometric mean diameter from each mode of combustion than only using MCE values. Prescribed burns were carried out at wildland managed by military bases. Evolution of particle distribution in and out of the plume will be compared with particle distribution from lab scale burning.

  13. A facile synthesis of Te nanoparticles with binary size distribution by green chemistry.

    PubMed

    He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E; Dickerson, James H

    2011-04-01

    Our work reports a facile route to colloidal Te nanocrystals with binary uniform size distributions at room temperature. The binary-sized Te nanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated. PMID:21431193

  14. A facile synthesis of Te nanoparticles with binary size distribution by green chemistry.

    PubMed

    He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E; Dickerson, James H

    2011-04-01

    Our work reports a facile route to colloidal Te nanocrystals with binary uniform size distributions at room temperature. The binary-sized Te nanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated.

  15. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    1993-01-01

    Rigorously light scattering by size-shape distributions of randomly oriented axially symmetric particles are calculated by the T-matrix method, as extended to randomly oriented scatterers. The computational scheme is described along with a newly developed convergence procedure that makes it possible to substantially reduce computer time and storage requirements. The elements of the Stokes scattering matrix for a power-law size distribution of randomly oriented moderately aspherical spheroids are shown to be much smoother than and differ substantially from those of equivalent monodisperse spheroids; averaging over orientations does not eliminate the necessity of averaging over particle sizes. The angular-scattering behavior of the ensembles of nonspherical particles is found to be significantly different from that of the equivalent polydisperse spheres.

  16. A High-Throughput Size Exclusion Chromatography Method to Determine the Molecular Size Distribution of Meningococcal Polysaccharide Vaccine.

    PubMed

    Khan, Imran; Rahman, K M Taufiqur; Siraj, S M Saad Us; Karim, Mahbubul; Muktadir, Abdul; Maheshwari, Arpan; Kabir, Md Azizul; Nahar, Zebun; Ahasan, Mohammad Mainul

    2016-01-01

    Molecular size distribution of meningococcal polysaccharide vaccine is a readily identifiable parameter that directly correlates with the immunogenicity. In this paper, we report a size exclusion chromatography method to determine the molecular size distribution and distribution coefficient value of meningococcal polysaccharide serogroups A, C, W, and Y in meningococcal polysaccharide (ACWY) vaccines. The analyses were performed on a XK16/70 column packed with sepharose CL-4B with six different batches of Ingovax® ACWY, a meningococcal polysaccharide vaccine produced by Incepta Vaccine Ltd., Bangladesh. A quantitative rocket immunoelectrophoresis assay was employed to determine the polysaccharide contents of each serogroup. The calculated distribution coefficient values of serogroups A, C, W, and Y were found to be 0.26 ± 0.16, 0.21 ± 0.11, 0.21 ± 0.11, and 0.14 ± 0.12, respectively, and met the requirements of British Pharmacopeia. The method was proved to be robust for determining the distribution coefficient values which is an obligatory requirement for vaccine lot release. PMID:27688770

  17. A High-Throughput Size Exclusion Chromatography Method to Determine the Molecular Size Distribution of Meningococcal Polysaccharide Vaccine

    PubMed Central

    Khan, Imran; Rahman, K. M. Taufiqur; Siraj, S. M. Saad Us; Karim, Mahbubul; Muktadir, Abdul; Maheshwari, Arpan; Kabir, Md Azizul; Nahar, Zebun

    2016-01-01

    Molecular size distribution of meningococcal polysaccharide vaccine is a readily identifiable parameter that directly correlates with the immunogenicity. In this paper, we report a size exclusion chromatography method to determine the molecular size distribution and distribution coefficient value of meningococcal polysaccharide serogroups A, C, W, and Y in meningococcal polysaccharide (ACWY) vaccines. The analyses were performed on a XK16/70 column packed with sepharose CL-4B with six different batches of Ingovax® ACWY, a meningococcal polysaccharide vaccine produced by Incepta Vaccine Ltd., Bangladesh. A quantitative rocket immunoelectrophoresis assay was employed to determine the polysaccharide contents of each serogroup. The calculated distribution coefficient values of serogroups A, C, W, and Y were found to be 0.26 ± 0.16, 0.21 ± 0.11, 0.21 ± 0.11, and 0.14 ± 0.12, respectively, and met the requirements of British Pharmacopeia. The method was proved to be robust for determining the distribution coefficient values which is an obligatory requirement for vaccine lot release.

  18. A High-Throughput Size Exclusion Chromatography Method to Determine the Molecular Size Distribution of Meningococcal Polysaccharide Vaccine

    PubMed Central

    Khan, Imran; Rahman, K. M. Taufiqur; Siraj, S. M. Saad Us; Karim, Mahbubul; Muktadir, Abdul; Maheshwari, Arpan; Kabir, Md Azizul; Nahar, Zebun

    2016-01-01

    Molecular size distribution of meningococcal polysaccharide vaccine is a readily identifiable parameter that directly correlates with the immunogenicity. In this paper, we report a size exclusion chromatography method to determine the molecular size distribution and distribution coefficient value of meningococcal polysaccharide serogroups A, C, W, and Y in meningococcal polysaccharide (ACWY) vaccines. The analyses were performed on a XK16/70 column packed with sepharose CL-4B with six different batches of Ingovax® ACWY, a meningococcal polysaccharide vaccine produced by Incepta Vaccine Ltd., Bangladesh. A quantitative rocket immunoelectrophoresis assay was employed to determine the polysaccharide contents of each serogroup. The calculated distribution coefficient values of serogroups A, C, W, and Y were found to be 0.26 ± 0.16, 0.21 ± 0.11, 0.21 ± 0.11, and 0.14 ± 0.12, respectively, and met the requirements of British Pharmacopeia. The method was proved to be robust for determining the distribution coefficient values which is an obligatory requirement for vaccine lot release. PMID:27688770

  19. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  20. Asteroid Size-Frequency Distribution (The ISO Deep Asteroid Survey)

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6" PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e., 12 micro-m) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described by Desert, et al. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i.e., between 150 and 350 times fainter than any of the asteroids observed by Infrared Astronomy Satellite (IRAS). These data provide the first direct measurement of the 12 micro-m sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  1. CaCO3 size distribution: A paleocarbonate ion proxy?

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.; Clark, E.

    1999-10-01

    Lysocline reconstructions play an important role in scenarios purporting to explain the lowered atmospheric CO2 content of glacial time. These reconstructions are based on indicators such as the CaCO3 content, the percent of coarse fraction, the ratio of fragments to whole foraminifera shells, the ratio of solution-susceptible to solution-resistant species, and the ratio of coarse to fine CaCO3. All assume that changes with time in the composition of the input material do not bias the result. However, as the composition of the input material does depend on climate, none of these indicators provides an absolute measure of the extent of dissolution. In this paper we evaluate the reliability of the ratio of >63 µm CaCO3 to total CaCO3 as a dissolution indicator. We present here results that suggest that in today's tropics this ratio appears to be determined solely by CO3= ion concentration and water depth (i.e., the saturation state of bottom waters). This finding offers the possibility that the size fraction index can be used to reconstruct CO3= ion concentrations for the late Quaternary ocean to an accuracy of ±5 µmol kg-1.

  2. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  3. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions.

    PubMed

    Taylor, Sabrina S; Jenkins, Deborah A; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.

  4. Comparison of Large and Mid-Size Lunar Crater Distributions

    NASA Astrophysics Data System (ADS)

    Povilaitis, R.; Robinson, M. S.; Nelson, D.; Ostrach, L. R.; van der Bogert, C.; Hiesinger, H.

    2013-12-01

    Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) team digitized rims of a total of 22,746 craters 5 to 20 km in diameter. A global areal crater density map using this dataset was created and compared to a ≥20 km diameter crater density map produced from Lunar Orbiter Laser Altimeter data [1]. The resulting difference map revealed several regions of crater density differences. Mapping: All craters between ~4 km and ~21 km in diameter (to ensure completeness) were digitized at a scale between 1:250,000 and 1:500,000 in ArcGIS. Basemaps used included: 1) a 100 m/pixel scale LROC Wide Angle Camera (WAC) monochrome (643 nm) mosaic with an average solar incidence of 60°, and 2) a 100 m/pixel LROC WAC Digital Elevation Model mosaic to help demarcate craters in shadowed regions at the poles and/or subdued craters. Craters outside the 5-20 km diameter range were not used in the creation of the global crater density map. Crater Density: We determined areal crater density for each diameter range (5-20 km and ≥20 km) independently using a moving neighborhood method with a radius of 500 km and an output cell size 15 km. Density magnitude values for each map were divided into 10 equal-interval bins and reclassified with a ranking of 1-10 (1 being lowest density and 10 being highest). The resulting 5-20 km density map was subtracted from the ≥20 km density map to produce a crater density difference map. Output cell values of the difference map range from -4 to +5. Positive difference values represent a high density of ≥20 km craters relative to 5-20 km craters, and negative values represent low density of ≥20 km craters relative to 5-20 km craters. Discussion: The difference map shows a high density difference west of the Mare Australe region (50° S to 70° S, 15° E to 45° E) with a value of +5, potentially indicative of widespread resurfacing. Alternatively, weaker crater retention due to topographic, regolith, and/or target property effects may also

  5. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  6. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  7. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles. PMID:19204485

  8. ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES

    SciTech Connect

    Huang Xu; Zhou Tingtao; Lin, D. N. C.

    2013-05-20

    Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. In this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.

  9. Sifting attacks in finite-size quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133–65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  10. Sifting attacks in finite-size quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  11. Significant effect of grain size distribution on compaction rates in granular aggregates

    NASA Astrophysics Data System (ADS)

    Niemeijer, André; Elsworth, Derek; Marone, Chris

    2009-07-01

    We investigate the role of pressure solution in deformation of upper- to mid-crustal rocks using aggregates of halite as a room temperature analog for fluid-assisted deformation processes in the Earth's crust. Experiments evaluate the effects of initial grain size distribution on macroscopic pressure solution rate of the aggregate and compare the results to theoretical models for pressure solution. We find that the grain size exponent deviates significantly from the theoretical value of 3 for diffusion-controlled pressure solution. Models typically assume mono-dispersed spherical particles in pseudo-regular packing. We infer that the discrepancy between experimentally determined grain size exponents and the theoretical values are a result of deviation of experimental (and natural) samples from regular packs of mono-dispersed spherical particles. Moreover, we find that compaction rates can vary by up to one order of magnitude as a function of the width of the grain size distribution for a given mean grain size. Wider size distributions allow for higher initial compaction rates, increasing the macroscopic compaction rate with respect to more narrow grain size distributions. Grain sizes in rocks, fault gouges, and hydrocarbon reservoirs are typically log-normal or power law distributed and therefore pressure solution rates may significantly exceed theoretical predictions. Spatiotemporal variations in pressure solution rates due to variations in grain size may cause the formation of low porosity zones, which could potentially focus deformation in these zones and produce pockets of high pore pressures, promoting nucleation of frictional instability and earthquake rupture.

  12. A study of the charged ice grains in the Enceladus plume with a composite size distribution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Hill, T. W.

    2013-12-01

    We study the negatively charged ice grains in the Enceladus plume ranging from nanometer to micrometer in size based on Cassini's multiple instrument observations. We have constructed a composite size distribution by combining the CAPS nanograin size distributions (Hill et al., 2012 JGR) and the CDA dust power-law size distribution (Kempf et al., 2008 Icarus). We also study the charging of the ice grains using RPWS-LP data (Morooka et al., 2011 JGR). E3 and E5 CDA data are not available, but RPWS detected impacts of micron sized dust grains with the same power law size distribution (Ye et al., 2012 AGU meeting). Our size distribution formula is fitted with E3 and E5 CAPS and RPWS data, and constrained with the total dust charge density inferred from the RPWS-LP cold plasma data. The fitting with E17 and E18 CAPS nanograin data (Tokar et al., 2012 AGU meeting) and RPWS dust data (Ye et al., 2013 MAPS workshop) will also be discussed. Based on the charge per grain and the size distribution, the densities, source rate, motion, and currents of the ice grains can be calculated. Our size distribution implies that the grains ~2-20 nm dominate in both charge density and number density. But the mass density is very sensitive to the larger grains. We discuss the mass densities and source rates with different size distribution parameters, and compare with the water vapor plume. We study the trajectories of the charged ice grains in both Enceladus and Saturn frames, and calculate the dust currents from their motion. We find that the total dust pickup current at Enceladus is ≥10^5 A. We will also discuss the ion and dust current systems and resulting magnetic perturbations near the moon.

  13. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Qi, L.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-04-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels. The combustion facility at the USDA Forest Service's Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which was attributable to dilution of the fresh smoke. Comparing volume size distribution from Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS) measurements, ~30% of particle volume was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in Modified Combustion Efficiency (MCE) vs. geometric mean diameter from each mode of combustion than only using MCE values.

  14. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI.

    PubMed

    Shemesh, Noam; Álvarez, Gonzalo A; Frydman, Lucio

    2015-01-01

    Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220

  15. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles.

  16. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles. PMID:26750519

  17. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite

    NASA Astrophysics Data System (ADS)

    Cabada, Juan C.; Rees, Sarah; Takahama, Satoshi; Khlystov, Andrey; Pandis, Spyros N.; Davidson, Cliff I.; Robinson, Allen L.

    Size-resolved aerosol mass and chemical composition were measured during the Pittsburgh Air Quality Study. Daily samples were collected for 12 months from July 2001 to June 2002. Micro-orifice uniform deposit impactors (MOUDIs) were used to collect aerosol samples of fine particulate matter smaller than 10 μm. Measurements of PM 0.056, PM 0.10, PM 0.18, PM 0.32, PM 0.56, PM 1.0, PM 1.8 and PM 2.5 with the MOUDI are available for the full study period. Seasonal variations in the concentrations are observed for all size cuts. Higher concentrations are observed during the summer and lower during the winter. Comparison between the PM 2.5 measurements by the MOUDI and other integrated PM samplers reveals good agreement. Good correlation is observed for PM 10 between the MOUDI and an integrated sampler but the MOUDI underestimates PM 10 by 20%. Bouncing of particles from higher stages of the MOUDI (>PM 2.5) is not a major problem because of the low concentrations of coarse particles in the area. The main cause of coarse particle losses appears to be losses to the wall of the MOUDI. Samples were collected on aluminum foils for analysis of carbonaceous material and on Teflon filters for analysis of particle mass and inorganic anions and cations. Daily samples were analyzed during the summer (July 2001) and the winter intensives (January 2002). During the summer around 50% of the organic material is lost from the aluminum foils as compared to a filter-based sampler. These losses are due to volatilization and bounce-off from the MOUDI stages. High nitrate losses from the MOUDI are also observed during the summer (above 70%). Good agreement between the gravimetrically determined mass and the sum of the masses of the individual compounds is obtained, if the lost mass from organics and the aerosol water content are included for the summer. For the winter no significant losses of material are detected and there exists reasonable agreement between the gravimetrical mass and the

  18. Size distribution of interplanetary iron and stony particles related with deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Matsuzaki, H.; Yamakoshi, K.

    1993-01-01

    To study origin and evolution of the interplanetary dust, it is very important to investigate the size distribution. Here the changes of the size distributions of meteoroid particles due to the ablative effects during atmospheric entry were investigated by numerical computer simulation. Using the results, the pre-atmospheric size distributions of the interplanetary dust particles could be estimated from that of ablated spherules taken from deep-sea sediments. We are now analyzing deep-sea spherules from some aspects and examining if we could get any information about the interplanetary dust.

  19. Inversion techniques for determining the droplet size distribution in clouds: numerical examination.

    PubMed

    Chow, L C; Tien, C L

    1976-02-01

    The Phillips-Twomey and Backus-Gilbert inversion techniques are applied to determine the size distribution of water droplets in clouds from light scattering data at backward angles. The data are generated numerically from the Mie scattering functions and an assumed cloud model. The size distribution is recovered from these data using the two inversion techniques and is compared with the assumed model. It is found that the Phillips-Twomey technique gives better agreement between the assumed and recovered size distributions than the Backus-Gilbert technique. Also, it is more stable to random errors artificially introduced into the scattering data.

  20. Deduction of aerosol size distribution from particle sampling by whisker collectors

    NASA Astrophysics Data System (ADS)

    Schäfer, H. J.; Pfeifer, H. J.

    1983-12-01

    A method of deducing airborne particle size distributions from the deposition on a collector is described. The method basically consists in collecting submicron-sized particles on whisker filters for subsequent electron-microscopic examination. The empirical size distributions on the collectors can be approximated by log-normal functions. Moreover, it has been found that the variation in particle distribution across a four-stage whisker filter can be interpreted on the basis of a simple model of the collection process. The effective absorption coefficient derived from this modeling is used to correct the empirical data for the effect of a selective collection characteristic.

  1. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  2. Computer Simulation of Random Packings for Self-Similar Particle Size Distributions in Soil and Granular Materials: Porosity and Pore Size Distribution

    NASA Astrophysics Data System (ADS)

    Martín, Miguel Angel; Muñoz, Francisco J.; Reyes, Miguel; Taguas, F. Javier

    2014-09-01

    A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.

  3. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  4. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  5. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  6. Influence of particle size on the distributions of liposomes to atherosclerotic lesions in mice.

    PubMed

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2006-01-01

    In order to confirm the efficacy of liposomes as a drug carrier for atherosclerotic therapy, the influence of particle size on the distribution of liposomes to atherosclerotic lesions in mice was investigated. In brief, liposomes of three different particle sizes (500, 200, and 70 nm) were prepared, and the uptake of liposomes by the macrophages and foam cells in vitro and the biodistributions of liposomes administered intravenously to atherogenic mice in vivo were examined. The uptake by the macrophages and foam cells increased with the increase in particle size. Although the elimination rate from the blood circulation and the hepatic and splenic distribution increased with the increase in particle size in atherogenic mice, the aortic distribution was independent of the particle size. The aortic distribution of 200 nm liposomes was the highest in comparison with the other sizes. Surprisingly, the aortic distribution of liposomes in vivo did not correspond with the uptake by macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.

  7. Modelling mass transport through a porous partition: Effect of pore size distribution

    NASA Astrophysics Data System (ADS)

    Khayet, Mohamed; Velázquez, Armando; Mengual, Juan I.

    2004-09-01

    Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated.

  8. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure

    PubMed Central

    Kozawa, Kathleen H.; Winer, Arthur M.; Fruin, Scott A.

    2013-01-01

    High ambient ultrafine particle (UFP) concentrations may play an important role in the adverse health effects associated with living near busy roadways. However, UFP size distributions change rapidly as vehicle emissions dilute and age. These size changes can influence UFP lung deposition rates and dose because deposition in the respiratory system is a strong function of particle size. Few studies to date have measured and characterized changes in near-road UFP size distributions in real-time, thus missing transient variations in size distribution due to short-term fluctuations in wind speed, direction, or particle dynamics. In this study we measured important wind direction effects on near-freeway UFP size distributions and gradients using a mobile platform with 5-s time resolution. Compared to more commonly measured perpendicular (downwind) conditions, parallel wind conditions appeared to promote formation of broader and larger size distributions of roughly one-half the particle concentration. Particles during more parallel wind conditions also changed less in size with downwind distance and the fraction of lung-deposited particle number was calculated to be 15% lower than for downwind conditions, giving a combined decrease of about 60%. In addition, a multivariate analysis of several variables found meteorology, particularly wind direction and temperature, to be important in predicting UFP concentrations within 150 m of a freeway (R2 = 0.46, p = 0.014). PMID:24415904

  9. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    SciTech Connect

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  10. Particle Size Distributions Measured in the Stratospheric Plumes of Three Rockets During the ACCENT Missions

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Brock, C. A.; Reeves, J. M.; Ross, M. N.; Schmid, O.; Toohey, D.; Wilson, J. C.

    2001-12-01

    The global impact of particles emitted by rocket engines on stratospheric ozone is not well understood, mainly due to the lack of comprehensive in situ measurements of the size distributions of these emitted particles. During the Atmospheric Chemistry of Combustion Emissions Near the Tropopause (ACCENT) missions in 1999, the NASA WB-57F aircraft carried the University of Denver N-MASS and FCAS instruments into the stratospheric plumes from three rockets. Size distributions of particles with diameters from 4 to approximately 2000 nm were calculated from the instrument measurements using numerical inversion techniques. The data have been averaged over 30-second intervals. The particle size distributions observed in all of the rocket plumes included a dominant mode near 60 nm diameter, probably composed of alumina particles. A smaller mode at approximately 25 nm, possibly composed of soot particles, was seen in only the plumes of rockets that used liquid oxygen and kerosene as a propellant. Aircraft exhaust emitted by the WB-57F was also sampled; the size distributions within these plumes are consistent with prior measurements in aircraft plumes. The size distributions for all rocket intercepts have been fitted to bimodal, lognormal distributions to provide input for global models of the stratosphere. Our data suggest that previous estimates of the solid rocket motor alumina size distributions may underestimate the alumina surface area emission index, and so underestimate the particle surface area available for heterogeneous chlorine activation reactions in the global stratosphere.

  11. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.

    PubMed

    Wang, M; Gordon, H R

    1995-10-20

    We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560

  12. A new stochastic algorithm for inversion of dust aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  13. Enhanced resolution particle size distributions by multiple angle photon correlation spectroscopy

    NASA Technical Reports Server (NTRS)

    Bott, Steven E.

    1989-01-01

    Photon correlation spectroscopy (PCS) has become a method of choice for measuring submicrometer particles. It is capable of rapid, accurate measurements of mean particle size. Since the measurements are nonperturbing, it is ideal for monitoring systems undergoing dynamic changes. Despite its widespread acceptance, the information content of PCS measurements for particle size distributions is low and provides limited resolution. A method is presented whereby PCS measurements made at several scattering angles plus the angular distribution of light scattered from the particles are combined in a single simultaneous analysis to effect an enhanced resolution particle size distribution. The efficacy of the method is assessed by recovering size distributions from computer simulated data and by comparisons of conventional PCS measurements of polystyrene spheres with those made by the new method.

  14. Development of a simplified optical technique for the simultaneous measurement of particle size distribution and velocity

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Existing techniques were surveyed, an experimental procedure was developed, a laboratory test model was fabricated, limited data were recovered for proof of principle, and the relationship between particle size distribution and amplitude measurements was illustrated in an effort to develop a low cost, simplified optical technique for measuring particle size distributions and velocities in fluidized bed combustors and gasifiers. A He-Ne laser illuminated Rochi Rulings (range 10 to 500 lines per inch). Various samples of known particle size distributions were passed through the fringe pattern produced by the rulings. A photomultiplier tube converted light from the fringe volume to an electrical signal which was recorded using an oscilloscope and camera. The signal amplitudes were correlated against the known particle size distributions. The correlation holds true for various samples.

  15. Particle size distribution measurements in a subscale motor for the Ariane 5 solid rocket booster

    NASA Astrophysics Data System (ADS)

    Traineau, J. C.; Kuentzmann, P.; Prevost, M.; Tarrin, P.; Delfour, A.

    1992-07-01

    An experimental determination of the combustion-chamber aluminum oxide particle-size distribution for the Ariane 5 Solid Rocket Booster is carried out. A subscale motor using a helium injection technique for quenching the reaction products is designed, manufactured and tested. A 30 percent helium-mass flow rate injection close to the head-end of the combustion chamber is found to give an exhaust aluminum oxide particle-size distribution representative of the combustion chamber distribution. A laser light-scattering technique and a particle-capturing technique are used and large particles found with both sizing techniques. A stretched particle size volume distribution with particle diameters ranging from 1 to 120 microns, with a maximum around 45 microns is demonstrated.

  16. PARTICLE SIZE DISTRIBUTIONS FROM SELECT RESIDENCES PARTICIPATING IN THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    Particle Size Distributions from Select Residences Participating in the NERL RTP PM Panel Study. Alan Vette, Ronald Williams, and Michael Riediker, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711; Jonathan Thornburg...

  17. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  18. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  19. Species-range size distributions: products of speciation, extinction and transformation

    PubMed Central

    Gaston, K. J.

    1998-01-01

    One basic summary of the spatial pattern of biodiversity across the surface of the Earth is provided by a species-range size distribution, the frequency distribution of the numbers of species exhibiting geographic ranges of different sizes. Although widely considered to be approximately lognormal, increasingly it appears that across a variety of groups of organisms this distribution systematically departs from such a form. Whatever its detailed shape, however, the distribution must arise as a product of three processes, speciation, extinction and transformation (the temporal dynamics of the range sizes of species during their life times). Considering the role potentially played by each of these processes necessitates drawing on information from a diverse array of research fields, and highlights the possible role of geographic range size as a common currency uniting them.

  20. Cluster mass fraction and size distribution determined by fs-time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2009-11-01

    Characterization of supersonic gas jets is important for accurate interpretation and control of laser-cluster experiments. While average size and total atomic density can be found by standard Rayleigh scatter and interferometry, cluster mass fraction and size distribution are usually difficult to measure. Here we determine the cluster fraction and the size distribution with fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The fs-time-resolved refractive index measured with frequency domain interferometer (FDI) shows different contributions from monomer plasma and cluster plasma in the time domain, enabling us to determine the cluster fraction. The fs-time-resolved absorption measured by a delayed probe shows the contribution from clusters of various sizes, allowing us to find the size distribution.

  1. Particle size distributions of currently used pesticides in a rural atmosphere of France

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Yahyaoui, Abderrazak; Colin, Patrice; Robin, Corine; Martinon, Laurent; Val, Stéphanie; Baeza-Squiban, Armelle; Mellouki, Abdelwahid; Yusà, Vicent

    2013-12-01

    This work presents first data on the particle size distributions of current-used pesticides in the atmosphere. Ambient air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Centre Region (France). Most pesticides were accumulated in the fine (0.1-1 μm) particle size fraction such as cyprodinil, pendimethalin, fenpropidin, fenpropimorph and spiroxamine. Other pesticides such as acetochlor and metolachlor presented a bimodal distribution with maximum concentrations in the ultrafine (0.03-0.1 μm)-coarse (1-10 μm) and in the ultrafine-fine size ranges, respectively. No pesticides were detected in the size fraction >10 μm.

  2. The number of alleles at a microsatellite defines the allele frequency spectrum and facilitates fast accurate estimation of theta.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2010-12-01

    Theoretical work focused on microsatellite variation has produced a number of important results, including the expected distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. However, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approximations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which we express as a function of θ, the population-scaled mutation rate, based on simulated data. Discovered relationships between θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ. The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the microsatellite frequency spectrum under evolutionary scenarios of interest may guide investigators to the use of relevant and sometimes novel summary statistics.

  3. The κ-generalized distribution: A new descriptive model for the size distribution of incomes

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G.

    2008-05-01

    This paper proposes the κ-generalized distribution as a model for describing the distribution and dispersion of income within a population. Formulas for the shape, moments and standard tools for inequality measurement-such as the Lorenz curve and the Gini coefficient-are given. A method for parameter estimation is also discussed. The model is shown to fit extremely well the data on personal income distribution in Australia and in the United States.

  4. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-09-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.

  5. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars

    PubMed Central

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-01-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9–9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that ‘Purple Straw’ and ‘Tohoku 118’ were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a. PMID:24273426

  6. Reconstruction of particle-size distributions from light-scattering patterns using three inversion methods.

    PubMed

    Vargas-Ubera, Javier; Aguilar, J Félix; Gale, David Michel

    2007-01-01

    By means of a numerical study we show particle-size distributions retrieved with the Chin-Shifrin, Phillips-Twomey, and singular value decomposition methods. Synthesized intensity data are generated using Mie theory, corresponding to unimodal normal, gamma, and lognormal distributions of spherical particles, covering the size parameter range from 1 to 250. Our results show the advantages and disadvantages of each method, as well as the range of applicability for the Fraunhofer approximation as compared to rigorous Mie theory.

  7. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones. PMID:27463039

  8. Quality of the log-geometric distribution extrapolation for smaller undiscovered oil and gas pool size

    USGS Publications Warehouse

    Chenglin, L.; Charpentier, R.R.

    2010-01-01

    The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.

  9. The magnetized sheath of a dusty plasma with grains size distribution

    SciTech Connect

    Ou, Jing Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.

  10. Narrow size distributed Ag nanoparticles grown by spin coating and thermal reduction: effect of processing parameters

    NASA Astrophysics Data System (ADS)

    Ansari, A. A.; Sartale, S. D.

    2016-08-01

    A simple method to grow uniform sized Ag nanoparticles with narrow size distribution on flat support (glass and Si substrates) via spin coating of Ag+ ions (AgNO3) solution followed by thermal reduction in H2 is presented. These grown nanoparticles can be used as model catalytic system to study size dependent oxygen reduction reaction (ORR) activity. Ag nanoparticles formation was confirmed by local surface plasmon resonance and x-ray photoelectron spectroscopy measurements. Influences of process parameters (revolution per minute (rpm), ramp and salt concentration) on grown Ag nanoparticles size, density and size uniformity are studied. With increase in rpm and ramp the size decreases and the particle number density increases, whereas the size dispersion improves. The catalytic activity of the grown Ag particles for ORR is studied and it is found that the catalytic performance is dependent on the size as well as the number density of the grown Ag nanoparticles.

  11. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a

  12. Polymorphic mountain whitefish (Prosopium williamsoni) in a coastal riverscape: size class assemblages, distribution, and habitat associations

    USGS Publications Warehouse

    Starr, James C.; Torgersen, Christian

    2015-01-01

    We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.

  13. A facile synthesis of Tenanoparticles with binary size distribution by green chemistry

    NASA Astrophysics Data System (ADS)

    He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E.; Dickerson, James H.

    2011-04-01

    Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated.Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated. Electronic supplementary information (ESI) available: Synthetic procedures, FTIR analysis, ED pattern, AFM image, and EPD current curve. See DOI: 10.1039/c1nr10025d

  14. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  15. Empirical evidence for multi-scaled controls on wildfire size distributions in California

    NASA Astrophysics Data System (ADS)

    Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.

    2014-12-01

    Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California

  16. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, J. W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-08-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in well controlled repeatable lab scale biomass fires for southwestern United States fuels with focus on chaparral. The combustion laboratory at the United States Department of Agriculture-Forest Service's Fire Science Laboratory (USDA-FSL), Missoula, MT provided a repeatable combustion and dilution environment ideal for measurements. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing mass size distribution from FMPS and APS measurement 51-68% of particle mass was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most fuels produced a unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using the slopes in MCE (Modified Combustion Efficiency) vs. geometric mean diameter than only using MCE values.

  17. Changes in Arctic Sea Ice Floe Size Distribution in the Marginal Ice Zone in a Thickness and Floe Size Distribution Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Hwang, P. B.; Schweiger, A. J. B.; Stark, M.; Steele, M.

    2015-12-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. We have developed a FSD theory [Zhang et al., 2015] that is coupled to the ITD theory of Thorndike et al. [1975] in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice opening, ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. It is also based on the assumption that floes of larger sizes are easier to break because they are subject to larger flexure-induced stresses and strains than smaller floes that are easier to ride with waves with little bending; larger floes also have higher areal coverages and therefore higher probabilities to break. These assumptions with corresponding formulations ensure that the simulated FSD follows a power law as observed by satellites and airborne surveys. The FSD theory has been tested in the Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS). The existing PIOMAS has 12 categories each for ice thickness, ice enthalpy, and snow depth. With the implementation of the FSD theory, PIOMAS is able to represent 12 categories of floe sizes ranging from 0.1 m to ~3000 m. It is found that the simulated 12-category FSD agrees reasonably well with FSD derived from SAR and MODIS images. In this study, we will

  18. Evaluation of eruptive energy of a pyroclastic deposit applying fractal geometry to fragment size distributions

    NASA Astrophysics Data System (ADS)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    Fractal fragmentation theory has been applied to characterize the particle size distribution of pyroclastic deposits generated by volcanic explosions. Recent works have demonstrated that fractal dimension on grain size distributions can be used as a proxy for estimating the energy associated with volcanic eruptions. In this work we seek to establish a preliminary analytical protocol that can be applied to better characterize volcanic fall deposits and derive the potential energy for fragmentation that was stored in the magma prior/during an explosive eruption. The methodology is based on two different techniques for determining the grain-size distribution of the pyroclastic samples: 1) dry manual sieving (particles larger than 297μm), and 2) automatic grain size analysis via a CamSizer-P4®device, the latter measure the distribution of projected area, obtaining a cumulative distribution based on volume fraction for particles up to 30mm. Size distribution data have been analyzed by applying the fractal fragmentation theory estimating the value of Df, i.e. the fractal dimension of fragmentation. In order to test our protocol we studied the Cretaio eruption, Ischia island, Italy. Results indicate that size distributions of pyroclastic fall deposits follow a fractal law, indicating that the fragmentation process of these deposits reflects a scale-invariant fragmentation mechanism. Matching the results from manual and automated techniques allows us to obtain a value of the "fragmentation energy" from the explosive eruptive events that generate the Cretaio deposits. We highlight the importance of these results, based on fractal statistics, as an additional volcanological tool for addressing volcanic risk based on the analyses of grain size distributions of natural pyroclastic deposits. Keywords: eruptive energy, fractal dimension of fragmentation, pyroclastic fallout.

  19. A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-01

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.

  20. Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kuder, Tristan Anselm; Laun, Frederik Bernd

    2015-08-01

    In medical imaging and porous media research, NMR diffusion measurements are extensively used to investigate the structure of diffusion restrictions such as cell membranes. Recently, several methods have been proposed to unambiguously determine the shape of arbitrary closed pores or cells filled with an NMR-visible medium by diffusion experiments. The first approach uses a combination of a long and a short diffusion-weighting gradient pulse, while the other techniques employ short gradient pulses only. While the eventual aim of these methods is to determine pore-size and shape distributions, the focus has been so far on identical pores. Thus, the aim of this work is to investigate the ability of these different methods to resolve pore-size and orientation distributions. Simulations were performed comparing the various pore imaging techniques employing different distributions of pore size and orientation and varying timing parameters. The long-narrow gradient profile is most advantageous to investigate pore distributions, because average pore images can be directly obtained. The short-gradient methods suppress larger pores or induce a considerable blurring. Moreover, pore-shape-specific artifacts occur; for example, the central part of a distribution of cylinders may be largely underestimated. Depending on the actual pore distribution, short-gradient methods may nonetheless yield good approximations of the average pore shape. Furthermore, the application of short-gradient methods can be advantageous to differentiate whether pore-size distributions or intensity distributions, e.g., due to surface relaxation, are predominant.

  1. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    SciTech Connect

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  2. The temperature and size distribution of large water clusters from a non-equilibrium model

    SciTech Connect

    Gimelshein, N.; Gimelshein, S.; Pradzynski, C. C.; Zeuch, T.; Buck, U.

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H{sub 2}O){sub n} clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.

  3. The CONTIN algorithm and its application to determine the size distribution of microgel suspensions

    SciTech Connect

    Scotti, A.; Liu, W.; Hyatt, J. S.; Fernandez-Nieves, A.; Herman, E. S.; Lyon, L. A.; Choi, H. S.; Kim, J. W.; Gasser, U.

    2015-06-21

    We review a powerful regularization method, known as CONTIN, for obtaining the size distribution of colloidal suspensions from dynamic light scattering data. We show that together with the so-called L-curve criterion for selecting the optimal regularization parameter, the method correctly describes the average size and size distribution of microgel suspensions independently characterized using small-angle neutron scattering. In contrast, we find that when using the default regularization process, where the regularizer is selected via the “probability to reject” method, the results are not as satisfactory.

  4. The temperature and size distribution of large water clusters from a non-equilibrium model.

    PubMed

    Gimelshein, N; Gimelshein, S; Pradzynski, C C; Zeuch, T; Buck, U

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H2O)n clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments. PMID:26133426

  5. The temperature and size distribution of large water clusters from a non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Gimelshein, N.; Gimelshein, S.; Pradzynski, C. C.; Zeuch, T.; Buck, U.

    2015-06-01

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H2O)n clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.

  6. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  7. The CONTIN algorithm and its application to determine the size distribution of microgel suspensions.

    PubMed

    Scotti, A; Liu, W; Hyatt, J S; Herman, E S; Choi, H S; Kim, J W; Lyon, L A; Gasser, U; Fernandez-Nieves, A

    2015-06-21

    We review a powerful regularization method, known as CONTIN, for obtaining the size distribution of colloidal suspensions from dynamic light scattering data. We show that together with the so-called L-curve criterion for selecting the optimal regularization parameter, the method correctly describes the average size and size distribution of microgel suspensions independently characterized using small-angle neutron scattering. In contrast, we find that when using the default regularization process, where the regularizer is selected via the "probability to reject" method, the results are not as satisfactory.

  8. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  9. ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. I. CLASSIFYING THE EVOLUTION OF SIZE DISTRIBUTION

    SciTech Connect

    Okuzumi, Satoshi; Sakagami, Masa-aki; Tanaka, Hidekazu; Takeuchi, Taku

    2011-04-20

    Collisional growth of submicron-sized dust grains into macroscopic aggregates is the first step of planet formation in protoplanetary disks. These grains are expected to carry nonzero negative charges in the weakly ionized disks, but its effect on their collisional growth has not been fully understood so far. In this paper, we investigate how the charging affects the evolution of the dust size distribution properly taking into account the charging mechanism in a weakly ionized gas as well as porosity evolution through low-energy collisions. To clarify the role of the size distribution, we divide our analysis into two steps. First, we analyze the collisional growth of charged aggregates assuming a monodisperse (i.e., narrow) size distribution. We show that the monodisperse growth stalls due to the electrostatic repulsion when a certain condition is met, as was already expected in our previous work. Second, we numerically simulate dust coagulation using Smoluchowski's method to see how the outcome changes when the size distribution is allowed to freely evolve. We find that, under certain conditions, the dust undergoes bimodal growth where only a limited number of aggregates continue to grow, carrying a major part of the dust mass in the system. This occurs because remaining small aggregates efficiently sweep up free electrons to prevent the larger aggregates from being strongly charged. We obtain a set of simple criteria that allows us to predict how the size distribution evolves for a given condition. In Paper II, we apply these criteria to dust growth in protoplanetary disks.

  10. Particle-size-distribution measurement using a Hankel transform of a Fraunhofer diffraction spectrum.

    PubMed

    Nakadate, S; Saito, H

    1983-11-01

    A new method for the measurement of the size distribution of circular particles by using a Fraunhofer diffraction pattern is proposed, which basically consists of performing the following two steps: (1) a Hankel transform of the radial spectral intensity that is diffracted from randomly distributed circular objects and (2) a calculation of a correlation between the Hankel-transformed function and a characteristic operator, such as a digital third-derivative operator. The method provides continuous size distribution of circular objects with high resolution.

  11. Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography.

    PubMed

    Stark, Scott C; Enquist, Brian J; Saleska, Scott R; Leitold, Veronika; Schietti, Juliana; Longo, Marcos; Alves, Luciana F; Camargo, Plinio B; Oliveira, Raimundo C

    2015-07-01

    Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change.

  12. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm. PMID:26890386

  13. Introduction of a nozzle throat diameter dependency into the SRM dust size distribution

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Wegener, P.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    2006-01-01

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers 1032 firings of solid rocket motors (SRM) with the associated generation of SRM slag and dust particles in its current version. The resulting dust population is a major contribution to the sub-millimetre size space debris environment in Earth orbit. For the modelling of each SRM dust release event a detailed knowledge of the particle size distribution is essential. However, the knowledge of the particle sizes after passing the nozzle throat is poor. The current dust implementation in the MASTER model assumes a fixed size distribution which is identically used for both large upper stages and small apogee motors. This assumption can lead to an over-representation of large dust particles in regions, where mainly apogee motors are used (i.e., Geostationary Earth Orbit) and an under-representation in lower altitudes, where large stages predominate. In this paper, a concept for the improvement of SRM dust size modelling is discussed. It will be shown that an introduction of a nozzle throat diameter dependency into the dust size distribution enables a more precise modelling of SRM dust release events. The improved SRM dust size distribution is going to be used by the MASTER-2005 space debris model which is currently under development by the Institute of Aerospace Systems and QinetiQ (UK) under ESA contract.

  14. Body size distributions signal a regime shift in a lake ecosystem.

    PubMed

    Spanbauer, Trisha L; Allen, Craig R; Angeler, David G; Eason, Tarsha; Fritz, Sherilyn C; Garmestani, Ahjond S; Nash, Kirsty L; Stone, Jeffery R; Stow, Craig A; Sundstrom, Shana M

    2016-06-29

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. PMID:27335415

  15. Particle size distribution and evolution in tablet structure during and after compaction.

    PubMed

    Fichtner, Frauke; Rasmuson, Ake; Alderborn, Göran

    2005-03-23

    The objective of this study was to investigate the effect of the distribution in size of free-flowing particles for the evolution in tablet structure and tablet strength. For sucrose and sodium chloride, three powders of different size distributions were prepared by mixing predetermined quantities of particle size fractions. For paracetamol, three batches with varying particle size distributions were prepared by crystallisation. The powders were formed into tablets. Tablet porosity and tensile strength were determined directly after compaction and after short-term storage at two different relative humidities. Tablets were also formed after admixture of a lubricant (magnesium stearate) and the tablet tensile strength was determined. For the test materials used in this study, the spread in particle size had no influence on the evolution in tablet porosity and tensile strength during compression. However, the spread in particle size had a significant and complex influence on the short-term post-compaction increase in tablet tensile strength. The effect of the spread was related to the instability mechanism and the presence of lubricant. It is concluded that the distribution in size of free-flowing particles is not critical for the tablet porosity but may give significant effects on tablet tensile strength due to a post-compaction reaction. PMID:15725568

  16. Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution

    SciTech Connect

    Arduini, R.F.; Minnis, P.; Smith, W.L.Jr.; Ayers, J.K.; Khaiyer, M.M.; Heck, P.

    2005-03-18

    Cloud reflectance models currently used in cloud property retrievals from satellites have been developed using size distributions defined by a set of fixed effective radii with a fixed effective variance. The satellite retrievals used for the Atmospheric Radiation Measurement (ARM) program assume droplet size distributions with an effective variance value of 0.10 (Minnis et al. 1998); the International Satellite Cloud Climatology Project uses 0.15 (Rossow and Schiffer 1999); and the Moderate Resolution Imaging Spectroradiometer (MODIS) team uses 0.13 (Nakajima and King 1990). These distributions are not necessarily representative of the actual sizes present in the clouds being observed. Because the assumed distributions can affect the reflectance patterns and near-infrared absorption, even for the same droplet effective radius reff, it is desirable to use the optimal size distributions in satellite retrievals of cloud properties. Collocated observations of the same clouds from different geostationary satellites, at different viewing angles, indicate that the current models may not be optimal (Ayers et al. 2005). Similarly, hour-to-hour variations in effective radius and optical depth reveal an unexplained dependence on scattering angle. To explore this issue, this paper examines the sensitivity of the cloud reflectance at 0.65 and 3.90-{micro}m to changes in the effective variance, or the spectral dispersion, of the modeled size distributions. The effects on the scattering phase functions and on the cloud reflectances are presented, as well as some resultant effects on the retrieved cloud properties.

  17. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    PubMed

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  18. Does a theoretical estimation of the dust size distribution at emission suggest more bioavailable iron deposition.

    SciTech Connect

    Ito, A; Kok, J; Feng, Y; Penner, J

    2012-01-01

    Global models have been used to deduce atmospheric iron supply to the ocean, but the uncertainty remains large. We used a global chemical transport model to investigate the effect of the estimated size distribution of dust on the bioavailable iron deposition. Simulations are performed with six different size distributions for dust aerosols at emission using similar aerosol optical depths (AODs) to constrain the total emission flux of dust. The global dust emission rate using a recent theoretical estimate for the dust size distribution at emission (2116 Tg yr{sup -1}) is about two times larger than the average of estimates using the other four empirical size distributions (1089 {+-} 469 Tg yr{sup -1}). In contrast to the large differences in total emissions, the emission of fine dust (diameter < 2.5 {mu}m) is relatively robust (176 {+-} 34 Tg yr{sup -1}), due to the strong constraint of AOD on fine dust emission. Our model results indicate that soluble iron (SFe) deposition is relatively invariant to the dust size distribution at emission in regions where most soluble iron is provided by acid mobilization of fine dust. In contrast, the use of the theoretical size distribution suggests a larger deposition of SFe (by a factor of 1.2 to 5) in regions where the concentration of acidic gases is insufficient to promote iron dissolution in dust particles, such as the South Atlantic. These results could have important implications for the projection of marine ecosystem feedbacks to climate change and highlight the necessity to improve the dust size distribution.

  19. Improved statistical characterization of particle-size distributions in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Huzurbazar, S.; Hajek, E.; Lynds, R.; Heller, P.; Mohrig, D.

    2007-12-01

    Measured particle-size distributions are commonly reduced to one characteristic value (e.g., median grain diameter) that is used in sediment transport modeling. While convenient, this approach cannot be used to explore the potential influence grain-size distributions may have on sediment transport and deposition. We statistically characterize grain-size distributions in samples of bed-material load, suspended load, and slackwater deposits from the sand-bedded Calamus, North Loup, and Niobrara rivers (Nebraska, USA). Transported sediment samples are best modeled with log-hyperbolic distributions, and slackwater deposits are bi- or multi-modal mixtures. Despite large overlaps in the grain sizes of bed-material-load and suspended-load samples, estimated parameters of fitted log-hyperbolic distributions show consistent differences between these samples across all rivers. Bed-material load samples have higher modes and positive (coarse-grained) asymmetry, whereas suspended load samples have lower modes and weaker asymmetry. In all three rivers, slackwater deposits contain the entire range of grain sizes present in suspended load, but with a significant component of very fine-grained (< 0.02 mm) material that is undetectable in suspended sediment samples. This suggests some degree of fractionated deposition of suspended sediment in areas of near-zero flow velocities. Ultimately, in order to explore the effect of grain-size distributions on sediment transport and river processes, these modeled distributions can be incorporated into a Bayesian hierarchical framework where standard sediment transport equations can be modeled in relation to probability-density particle curves for grain size.

  20. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  1. New Measurements of the Particle Size Distribution of Apollo 11 Lunar Soil 10084

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Cooper, B.L.; Riofrio, L.M.

    2009-01-01

    We have initiated a major new program to determine the grain size distribution of nearly all lunar soils collected in the Apollo program. Following the return of Apollo soil and core samples, a number of investigators including our own group performed grain size distribution studies and published the results [1-11]. Nearly all of these studies were done by sieving the samples, usually with a working fluid such as Freon(TradeMark) or water. We have measured the particle size distribution of lunar soil 10084,2005 in water, using a Microtrac(TradeMark) laser diffraction instrument. Details of our own sieving technique and protocol (also used in [11]). are given in [4]. While sieving usually produces accurate and reproducible results, it has disadvantages. It is very labor intensive and requires hours to days to perform properly. Even using automated sieve shaking devices, four or five days may be needed to sieve each sample, although multiple sieve stacks increases productivity. Second, sieving is subject to loss of grains through handling and weighing operations, and these losses are concentrated in the finest grain sizes. Loss from handling becomes a more acute problem when smaller amounts of material are used. While we were able to quantitatively sieve into 6 or 8 size fractions using starting soil masses as low as 50mg, attrition and handling problems limit the practicality of sieving smaller amounts. Third, sieving below 10 or 20microns is not practical because of the problems of grain loss, and smaller grains sticking to coarser grains. Sieving is completely impractical below about 5- 10microns. Consequently, sieving gives no information on the size distribution below approx.10 microns which includes the important submicrometer and nanoparticle size ranges. Finally, sieving creates a limited number of size bins and may therefore miss fine structure of the distribution which would be revealed by other methods that produce many smaller size bins.

  2. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yang, Shengli; Yan, Maodu

    2015-01-01

    studies demonstrate that particle size separation based on gravitational settling and detailed rock magnetic measurements of the resulting fractionated samples constitutes an effective approach to evaluating the relative contributions of pedogenic and detrital components in the loess and paleosol sequences on the Chinese Loess Plateau. So far, however, similar work has not been undertaken on the loess deposits in Central Asia. In this paper, 17 loess and paleosol samples from three representative loess sections in Central Asia were separated into four grain size fractions, and then systematic rock magnetic measurements were made on the fractions. Our results demonstrate that the content of the <4 μm fraction in the Central Asian loess deposits is relatively low and that the samples generally have a unimodal particle distribution with a peak in the medium-coarse silt range. We find no significant difference between the particle size distributions obtained by the laser diffraction and the pipette and wet sieving methods. Rock magnetic studies further demonstrate that the medium-coarse silt fraction (e.g., the 20-75 μm fraction) provides the main control on the magnetic properties of the loess and paleosol samples in Central Asia. The contribution of pedogenically produced superparamagnetic (SP) and stable single-domain (SD) magnetic particles to the bulk magnetic properties is very limited. In addition, the coarsest fraction (>75 μm) exhibits the minimum values of χ, χARM, and SIRM, demonstrating that the concentrations of ferrimagnetic grains are not positively correlated with the bulk particle size in the Central Asian loess deposits.

  3. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash

    SciTech Connect

    Wohletz, K.H. ); Sheridan, M.F. ); Brown, W.K. )

    1989-11-10

    The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: {ital n}({ital l})={ital kl}{sup {alpha}} exp(-{ital l}{beta}), where {ital n}({ital l}) represents the number of particles of diameter {ital l}, {ital l} is the normalized particle diameter, and {ital k}, {alpha}, and {beta} are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass {ital m}{prime}: {ital n}({ital x}, {ital m})={ital C} {integral}{integral} {ital n}({ital x}{prime}, {ital m}{prime}){ital p}({xi}) {ital dx}{prime} {ital dm}{prime}, where {ital x}{prime} denotes spatial location along a linear axis, {ital C} is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to {ital m}.

  4. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI

    PubMed Central

    Shemesh, Noam; Álvarez, Gonzalo A.; Frydman, Lucio

    2015-01-01

    Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems – ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE’s ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions – where the ground truth can be determined from ancillary microscopy – corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE’s potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220

  5. Inferring local competition intensity from patch size distributions: a test using biological soil crusts

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Dryland vegetation is inherently patchy. This patchiness goes on to impact ecology, hydrology, and biogeochemistry. Recently, researchers have proposed that dryland vegetation patch sizes follow a power law which is due to local plant facilitation. It is unknown what patch size distribution prevails when competition predominates over facilitation, or if such a pattern could be used to detect competition. We investigated this question in an alternative vegetation type, mosses and lichens of biological soil crusts, which exhibit a smaller scale patch-interpatch configuration. This micro-vegetation is characterized by competition for space. We proposed that multiplicative effects of genetics, environment and competition should result in a log-normal patch size distribution. When testing the prevalence of log-normal versus power law patch size distributions, we found that the log-normal was the better distribution in 53% of cases and a reasonable fit in 83%. In contrast, the power law was better in 39% of cases, and in 8% of instances both distributions fit equally well. We further hypothesized that the log-normal distribution parameters would be predictably influenced by competition strength. There was qualitative agreement between one of the distribution's parameters (μ) and a novel intransitive (lacking a 'best' competitor) competition index, suggesting that as intransitivity increases, patch sizes decrease. The correlation of μ with other competition indicators based on spatial segregation of species (the C-score) depended on aridity. In less arid sites, μ was negatively correlated with the C-score (suggesting smaller patches under stronger competition), while positive correlations (suggesting larger patches under stronger competition) were observed at more arid sites. We propose that this is due to an increasing prevalence of competition transitivity as aridity increases. These findings broaden the emerging theory surrounding dryland patch size distributions

  6. Distribution of cooperative unit size of amphiphilic molecules in the phase coexistence region in Langmuir monolayers.

    PubMed

    Hatta, E; Nishimura, T

    2013-02-01

    The dependence of the size of the cooperative unit (C.U.) of amphiphilic molecules on surface pressure (π) in the liquid expanded (LE)-liquid condensed (LC) phase coexistence region of Langmuir monolayers has been formulated and calculated using measured isotherm data. The C.U. size changes largely depending on the surface pressure in the coexistence region: these submicroscopic molecular aggregates are not static objects, but dynamic ones characterized by large fluctuations in size. It has been found that the C.U. size distribution can be a natural consequence of the significant change of monolayer compressibility, which reflects large molecular area density fluctuations, in the coexistence region.

  7. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele.

    PubMed

    Takeshima, S-N; Miyasaka, T; Matsumoto, Y; Xue, G; Diaz, V de la Barra; Rogberg-Muñoz, A; Giovambattista, G; Ortiz, M; Oltra, J; Kanemaki, M; Onuma, M; Aida, Y

    2015-01-01

    Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease.

  8. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  9. Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions

    USGS Publications Warehouse

    Rees, T.F.

    1990-01-01

    Photon correlation spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS. -from Author

  10. An estimate of field size distributions for selected sites in the major grain producing countries

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1977-01-01

    The field size distributions for the major grain producing countries of the World were estimated. LANDSAT-1 and 2 images were evaluated for two areas each in the United States, People's Republic of China, and the USSR. One scene each was evaluated for France, Canada, and India. Grid sampling was done for representative sub-samples of each image, measuring the long and short axes of each field; area was then calculated. Each of the resulting data sets was computer analyzed for their frequency distributions. Nearly all frequency distributions were highly peaked and skewed (shifted) towards small values, approaching that of either a Poisson or log-normal distribution. The data were normalized by a log transformation, creating a Gaussian distribution which has moments readily interpretable and useful for estimating the total population of fields. Resultant predictors of the field size estimates are discussed.

  11. Finite-size effects on return interval distributions for weakest-link-scaling systems.

    PubMed

    Hristopulos, Dionissios T; Petrakis, Manolis P; Kaniadakis, Giorgio

    2014-05-01

    The Weibull distribution is a commonly used model for the strength of brittle materials and earthquake return intervals. Deviations from Weibull scaling, however, have been observed in earthquake return intervals and the fracture strength of quasibrittle materials. We investigate weakest-link scaling in finite-size systems and deviations of empirical return interval distributions from the Weibull distribution function. Our analysis employs the ansatz that the survival probability function of a system with complex interactions among its units can be expressed as the product of the survival probability functions for an ensemble of representative volume elements (RVEs). We show that if the system comprises a finite number of RVEs, it obeys the κ-Weibull distribution. The upper tail of the κ-Weibull distribution declines as a power law in contrast with Weibull scaling. The hazard rate function of the κ-Weibull distribution decreases linearly after a waiting time τ(c) ∝ n(1/m), where m is the Weibull modulus and n is the system size in terms of representative volume elements. We conduct statistical analysis of experimental data and simulations which show that the κ Weibull provides competitive fits to the return interval distributions of seismic data and of avalanches in a fiber bundle model. In conclusion, using theoretical and statistical analysis of real and simulated data, we demonstrate that the κ-Weibull distribution is a useful model for extreme-event return intervals in finite-size systems. PMID:25353774

  12. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.

    PubMed

    Xu, Shanshan; Zong, Yujin; Li, Wusong; Zhang, Siyuan; Wan, Mingxi

    2014-05-01

    Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size

  13. Pore-size distribution in loamy soils: A comparison between microtomographic and capillarimetric determination methods

    NASA Astrophysics Data System (ADS)

    Shein, E. V.; Skvortsova, E. B.; Dembovetskii, A. V.; Abrosimov, K. N.; Il'in, L. I.; Shnyrev, N. A.

    2016-03-01

    Pore-size distribution in a soddy-podzolic silt loamy soil developing from mantle loesslike loam (Eutric Albic Retisol (Loamic, Cutanic)) was calculated from the water retention curve according to Jurin's equation and directly determined in microtomographic experiments. Rounded macropores with the diameter of their sections from 75 to 1000 μm predominate in horizontal sections if the studied soil samples. A larger part of the soil pores (>30-35%) belongs to micro- and nanopores, and they cannot be quantitatively determined by the tomographic method, because their sizes are smaller than the detection limit of the applied X-ray microtomography (8.75 μm per pixel). This leads to a significantly larger pore volume determined from the water retention curve in comparison with the "tomographic" pore volume. A comparative analysis of pore-size distribution curves obtained by these methods shows that the major regularities of the pore-size distribution in the range from 30 to 5000 μm are similar in both cases. Fine macropores and, partly, mesopores predominate. Common characteristics of the pore-size distribution curves obtained by these methods, including the coincidence of the peaks, attest to the validity of classical approaches, according to which the hydrology of soil pore space can be perceived as a physical model of cylindrical capillaries of different sizes with capillary-sorbed water.

  14. Size distribution of particles in Saturn’s rings from aggregation and fragmentation

    PubMed Central

    Brilliantov, Nikolai; Krapivsky, P. L.; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-01-01

    Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings. PMID:26183228

  15. Simulation of random packing of spherical particles with different size distributions

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Zhang, Yuwen

    2008-08-01

    A numerical model for a loose packing process of spherical particles is presented. The simulation model starts with randomly choosing a sphere according to a pregenerated continuous particle-size distribution, and then dropping the sphere into a dimension-specified box, and obtaining its final position by using dropping and rolling rules which are derived from a similar physical process of spheres dropping in the gravitational field to minimize its gravity potential. Effects of three different particle-size distributions on the packing structure were investigated. Analysis on the physical background of the powder-based manufacturing process is additionally applied to produce optimal packing parameters of bimodal and Gaussian distributions to improve the quality of the fabricated parts. The results showed that higher packing density can be obtained using bimodal size distribution with a particle-size ratio from 1.5 to 2.0 and the mixture composition around n 2: n 1=6:4. For particle size with a Gaussian distribution, the particle radii should be limited in a narrow range around 0.67 to 1.5.

  16. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  17. Determination of the pore size distribution and hydraulic properties from Nuclear Magnetic Resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura R.; Weihermüller, Lutz; Haber-Pohlmeier, Sabina; Stapf, Siegfried; Vereecken, Harry; Pohlmeier, Andreas

    2010-05-01

    Known pore size distributions can be directly linked to the water retention characteristic which is essential for the prognosis of water and solute movement through the material. In our study, we evaluated the feasibility to use Nuclear Magnetic Resonance (NMR) relaxometry measurements for the characterization of pore size distribution in four porous samples with different texture and composition. Therefore, NMR T2 and T1 relaxation measurements at 6.47 MHz were carried out for three model samples (medium sand; fine sand; and a homogenous sand / kaolin clay mixture) and a natural soil. To quantify the goodness of the approach, the NMR measurements were compared in terms of cumulated pore size distribution functions and mean pore diameter with the two classical techniques based on water retention and mercury porosimetry measurements. The results showed that T1 and T2 derived mean pore size diameters are in good agreement with each other but deviate from retention curve derived ones. This is especially the case for well sorted sands with n values > 2.7. For finer materials differences are less pronounced. A short study was performed to evaluate the influence of the variations observed in the pore diameter distributions on the hydraulic properties of the samples: θS, α, and n. In conclusion, NMR T1 and T2 relaxation measurements can be used to estimate pore size distribution, mean pore diameter, as well as the retention function and corresponding hydraulic properties.

  18. Aerosol Size Distribution Determined From Multiple Field-Of-View Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yabuki, M.; Tsuda, T.; Uesugi, T.

    2014-12-01

    Knowledge of aerosol size distribution is essential for its influence on atmosphere and human health, especially for small particles because they are able to penetrate lung tissues, thus increasing the risk of bronchitis or lung diseases. Lidar as an active optical remote sensing technique is effective for monitoring aerosols with high temporal and spatial variations. Particles with diameters comparable to the detecting light wavelength have been effectively detected by using UV, VIS, and near-IR wavelengths. However, to quantitatively estimate the shape of the particle size distribution, more information is required with respect to sub-micrometer and smaller particles. Conventional lidar employs tiny field-of-view (FOV) to detect single scatter reflected from aerosols in the direction opposite to incident light. However, the complicated reflection on the path of laser causes multiple scatter which contains also the size distribution information of aerosols. In this study, a UV Lidar with multiple FOV receiver was used for detecting such multiple scattering effects in order to obtain more quantitative information related to particle size distribution. The FOV of Lidar receiver was program controlled in a range from 0.1 mrad to 12.4 mrad. The pacific retrieval method for aerosol size distribution using this feature and field measurement results will be introduced in the presentation.

  19. Methods for obtaining true particle size distributions from cross section measurements

    SciTech Connect

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  20. Diel and interannual variation of size distribution of oceanic zooplanktonic biomass

    SciTech Connect

    Rodriguez, J.; Mullin, M.M.

    1986-02-01

    A negative temperature anomaly with an increase in primary production affected the size distribution of zooplanktonic biomass in the central gyre of the North Pacific Ocean, a very large, old oligotrophic, and highly diverse ecosystem with little seasonal change. Previous reports showed no effect of this anomaly on the species structure of the macrozooplanktonic community. Composite zooplankton samples from the euphotic zone for five cruises corresponding to the normal or steady state (two summers, two winters, and one spring) and one corresponding to the perturbation or anomaly (summer 1969) were size fractionated by filtration through a column with 4, 2, 1, 0.5, 0.3, and 0.183 mm mesh, after manual removal of organisms larger than approx. = 8 mm. Total biomass was higher during summer than during winter. Also, the size distributions of biomass were more similar between summers or winters of different years than between different seasons. Vertical migration of zooplankton causes the important scale of variability; the size-differential migration (larger size classes migrate more than smaller ones) has a seasonal pattern: during winter, biomass of all size classes increases nocturnally in the euphotic zone; during summer, the nocturnal increase of biomass is due almost exclusively to the largest size classes. The effects of the summer climatic anomaly were: increase of total biomass; elimination of diel variability in size distribution typical of summer steady state through enhanced migration of small animals, the resulting distributions being similar to the winter steady state with migration of all size categories; and increase in the dominance of the 0.5 -1.0 mm class.

  1. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes

    SciTech Connect

    Kleeman, M.J.; Schauer, J.J.; Cass, G.R.

    1999-10-15

    A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution at 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.

  2. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

    PubMed Central

    Schuck, P

    2000-01-01

    A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures. PMID:10692345

  3. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  4. Introduction of a Nozzle Throat Diameter Dependency into the SRM Dust Size Distribution

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Wegener, P.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    In the exhaust gas of SRM (Solid Rocket Motor) firings, a considerable amount of very small aluminium oxide (Al2O3) particles is generally included. In order to increase motor performance and to dampen burn instabilities, aluminium is used as an additive in the propellant. During the burn process this aluminium is transformed into Al2O3. A large number of small dust particles (< 1 μ m up to about 50 μ m) is generated continuously during a burn. At the end of a burn, a second group of much larger fragments from an Al2O3 slag pool clustering inside the motor leaves the nozzle. The ESA space debris population model MASTER-2001 considers 1,032 SRM firings with the associated generation of SRM slag and dust. The resulting Al2O3 population is a major contribution to the micron size space debris environment in Earth orbit. For the modelling of each SRM dust release event a detailed knowledge of the size distribution is essential. However, the knowledge of the particle size distribution after passing the nozzle throat is poor. The current dust implementation in the MASTER-2001 space debris model therefore assumes an average motor size, since information on the actual motor size is normally not available in common databases. Thus, a fixed distribution is identically used for large upper stages as well as small apogee motors. This assumption can lead to an over-representation of large dust in regions, where mainly apogee motors are used (i.e. GEO) and an under-representation in lower altitudes, where large stages predominate. In this paper, a concept for the improvement of SRM dust size modelling is discussed. It will be shown that an introduction of a nozzle throat diameter dependency into the dust size distribution could lead to a more precise modelling of SRM dust release events. Investigations showed that there is a good correlation between the propellant mass flow and the nozzle's throat diameter, which is in turn the determining term for the actual diameter

  5. High CYP2A6 Enzyme Activity as Measured by a Caffeine Test and Unique Distribution of CYP2A6 Variant Alleles in Ethiopian Population

    PubMed Central

    Djordjevic, Natasa; Carrillo, Juan Antonio; Makonnen, Eyasu; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2014-01-01

    Abstract CYP2A6 metabolizes clinically relevant drugs, including antiretroviral and antimalarial drugs of major public health importance for the African populations. CYP2A6 genotype–phenotype relationship in African populations, and implications of geographic differences on enzyme activity, remain to be investigated. We evaluated the influence of CYP2A6 genotype, geographical differences, gender, and cigarette smoking on enzyme activity, using caffeine as a probe in 100 healthy unrelated Ethiopians living in Ethiopia, and 72 living in Sweden. CYP2A6 phenotype was estimated by urinary 1,7-dimethyluric acid (17U)/1,7-dimethylxanthine or paraxanthine (17X) ratio. The frequencies of CYP2A6*1B, *1D, *2, *4, *9, and *1x2 in Ethiopians were 31.3, 29.4, 0.6, 0.6, 2.8, and 0.3%, respectively. The overall mean±SD for log 17U/17X was 0.12±0.24 and coefficient of variation 199%. No significant difference in the mean log 17U/17X ratio between Ethiopians living in Sweden versus Ethiopia was observed. Analysis of variance revealed CYP2A6 genotype (p=0.04, F=2.01) but not geographical differences, sex, or cigarette smoking as predictors of CYP2A6 activity. Importantly, the median (interquartile range) of 17U/17X ratio in Ethiopians 1.35 (0.99 to 1.84) was 3- and 11-fold higher than the previously reported value in Swedes 0.52 (0.27 to 1.00) and Koreans 0.13 (0.0 to 0.35), respectively (Djordjevic et al., 2013). Taken together, we report here the relevance of CYP2A6 genotype for enzyme activity in this Ethiopian sample, as well as high CYP2A6 activity and unique distribution of the CYP2A6 variant alleles in Ethiopians as compared other populations described hitherto. Because Omics biomarker research is rapidly accelerating in Africa, CYP2A6 pharmacogenetics and clinical pharmacology observations reported herein for the Ethiopian populations have clinical and biological importance to plan for future rational therapeutics efforts in the African continent as well as therapeutics

  6. Testing Hardy-Weinberg equilibrium on allelic data from VNTR loci

    SciTech Connect

    Geisser, S. ); Johnson, W. )

    1992-11-01

    Several methods for testing independence of pairs of alleles in a population that are obtained from a VNTR locus are presented. The authors assume an exchangeable quasi-continuous distribution of the fragment lengths used to measure the allelic pairs. Bivariate-estimated quantiles computed from the quantiles of the entire data set are then utilized for testing independence. These methods have the advantage of being minimally susceptible to the criticism of (a) the inability of a technology to measure to a few small-sized or rather large-sized fragments and (b) inadequate estimation of the homozygotic proportion. 6 refs., 3 tabs.

  7. Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Linkage disequilibrium (LD), the observed correlation between alleles at different loci in the genome, is a determinant parameter in many applications of molecular genetics. With the wider use of genomic technologies in animal breeding and animal genetics, it is worthwhile revising and improving the...

  8. Distribution of the CCR5delta32 allele (gene variant CCR5) in Rondônia, Western Amazonian region, Brazil

    PubMed Central

    de Farias, Josileide Duarte; Santos, Marlene Guimarães; de França, Andonai Krauze; Delani, Daniel; Tada, Mauro Shugiro; Casseb, Almeida Andrade; Simões, Aguinaldo Luiz; Engracia, Vera

    2012-01-01

    Since around 1723, on the occasion of its initial colonization by Europeans, Rondonia has received successive waves of immigrants. This has been further swelled by individuals from northeastern Brazil, who began entering at the beginning of the twentieth century. The ethnic composition varies across the state according to the various sites of settlement of each wave of immigrants. We analyzed the frequency of the CCR5Δ32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in five sample sets from the population. Four were collected in Porto Velho, the state capital and the site of several waves of migration. Of these, two, from the Hospital de Base were comprised of HB Mothers and HB Newborns presenting allele frequencies of 3.5% and 3.1%, respectively, a third from the peri-urban neighborhoods of Candelária/Bate-Estaca (1.8%), whereas a fourth, from the Research Center on Tropical Medicine/CEPEM (0.6%), was composed of malaria patients under treament. The fifth sample (3.4%) came from the inland Quilombola village of Pedras Negras. Two homozygous individuals (CCR5Δ32/CCR5Δ32) were detected among the HB Mother samples. The frequency of this allele was heterogeneous and higher where the European inflow was more pronounced. The presence of the allele in Pedras Negras revealed European miscegenation in a community largely comprising Quilombolas. PMID:22481870

  9. Size distribution of submarine landslides along the U.S. Atlantic margin

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, U.S.; Solow, A.R.; Andrews, B.D.

    2009-01-01

    Assessment of the probability for destructive landslide-generated tsunamis depends on the knowledge of the number, size, and frequency of large submarine landslides. This paper investigates the size distribution of submarine landslides along the U.S. Atlantic continental slope and rise using the size of the landslide source regions (landslide failure scars). Landslide scars along the margin identified in a detailed bathymetric Digital Elevation Model (DEM) have areas that range between 0.89??km2 and 2410??km2 and volumes between 0.002??km3 and 179??km3. The area to volume relationship of these failure scars is almost linear (inverse power-law exponent close to 1), suggesting a fairly uniform failure thickness of a few 10s of meters in each event, with only rare, deep excavating landslides. The cumulative volume distribution of the failure scars is very well described by a log-normal distribution rather than by an inverse power-law, the most commonly used distribution for both subaerial and submarine landslides. A log-normal distribution centered on a volume of 0.86??km3 may indicate that landslides preferentially mobilize a moderate amount of material (on the order of 1??km3), rather than large landslides or very small ones. Alternatively, the log-normal distribution may reflect an inverse power law distribution modified by a size-dependent probability of observing landslide scars in the bathymetry data. If the latter is the case, an inverse power-law distribution with an exponent of 1.3 ?? 0.3, modified by a size-dependent conditional probability of identifying more failure scars with increasing landslide size, fits the observed size distribution. This exponent value is similar to the predicted exponent of 1.2 ?? 0.3 for subaerial landslides in unconsolidated material. Both the log-normal and modified inverse power-law distributions of the observed failure scar volumes suggest that large landslides, which have the greatest potential to generate damaging tsunamis

  10. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Pajola, Maurizio; Vincent, Jean-Baptiste; Güttler, Carsten; Lee, Jui-Chi; Bertini, Ivano; Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Giacomini, Lorenza; Lucchetti, Alice; Barbieri, Cesare; Cremonese, Gabriele; Naletto, Giampiero; Pommerol, Antoine; El-Maarry, Mohamed R.; Besse, Sébastien; Küppers, Michael; La Forgia, Fiorangela; Lazzarin, Monica; Thomas, Nicholas; Auger, Anne-Thérèse; Sierks, Holger; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst U.; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria A.; Bertaux, Jean-Loup; Da Deppo, Vania; Davidsson, Björn; De Cecco, Mariolino; Debei, Stefano; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutierrez, Pedro J.; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kramm, J.-Rainer; Kürt, Ekkehard; Lara, Luisa M.; Lin, Zhong-Yi; Lopez Moreno, Jose J.; Magrin, Sara; Marchi, Simone; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Oklay, Nilda; Preusker, Frank; Scholten, Frank; Tubiana, Cecilia

    2015-11-01

    Aims: We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results: We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of

  11. Prediction of size distribution of Ag nanoparticles synthesized via gamma-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Liang, Jia-liang; Shen, Sheng-wen; Ye, Sheng-ying; Ye, Lü-meng

    2015-09-01

    The spherical shape Ag nanoparticles synthesized via gamma-ray radiolysis were observed with the transmission electron microscope (TEM). Diameters of Ag nanoparticles were measured from the TEM photographs. Statistical analysis showed that the particle diameter complied with a linear-converted Poisson distribution. The distribution parameter, which was the average of diameters, was related to the ultraviolet-visible spectrum peak position of the nanosilver collosol. An empirical equation was established to predicting size distribution of Ag nanoparticles with the peak position. Nanosilver of different sizes could be synthesized by adjusting the intensity of γ-irradiation, the kind and the addition amount of the stabilizing agent. Because particle size affects the physiochemical properties of nanosilver material, results of this paper would be of practical significance for the application of nanosilver.

  12. Size distributions and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059

    NASA Technical Reports Server (NTRS)

    Skinner, William R.; Leenhouts, James M.

    1993-01-01

    The CR2 chondrite Acfer 059 is unusual in that the original droplet shapes of metal chondrules are well preserved. We determined separate size distributions for metal chondrules and silicate chondrules; the two types are well sorted and have similar size distributions about their respective mean diameters of 0.74 mm and 1.44 mm. These mean values are aerodynamically equivalent for the contrasting densities, as shown by calculated terminal settling velocities in a model solar nebula. Aerodynamic equivalence and similarity of size distributions suggest that metal and silicate fractions experienced the same sorting process before they were accreted onto the parent body. These characteristics, together with depletion of iron in Acfer 059 and essentially all other chondrites relative to primitive CI compositions, strongly suggest that sorting in the solar nebula involved a radial aerodynamic component and that sorting and siderophile depletion in chondrites are closely related.

  13. Effect of rotational disruption on the size-frequency distribution of the Main Belt asteroid population

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.; Davis, Donald R.

    2014-03-01

    The size distribution of small asteroids in the Main Belt is assumed to be determined by an equilibrium between the creation of new bodies out of the impact debris of larger asteroids and the destruction of small asteroids by collisions with smaller projectiles. However, for a diameter less than 6 km, we find that YORP-induced rotational disruption significantly contributes to the erosion even exceeding the effects of collisional fragmentation. Including this additional grinding mechanism in a collision evolution model for the asteroid belt, we generate size-frequency distributions from either an accretional or an `Asteroids were born big' initial size-frequency distribution that are consistent with observations reported in Gladman et al. Rotational disruption is a new mechanism that must be included in all future collisional evolution models of asteroids.

  14. Distribution of MICB diversity in the Zhejiang Han population: PCR sequence-based typing for exons 2-6 and identification of five novel MICB alleles.

    PubMed

    Ying, Yanling; He, Yanmin; Tao, Sudan; Han, Zhedong; Wang, Wei; Chen, Nanying; He, Junjun; Zhang, Wei; He, Ji; Zhu, Faming; Lv, Hangjun

    2013-07-01

    The polymorphism of major histocompatibility complex class I chain-related gene B (MICB) and variations in MICB alleles in a variety of populations have been characterized using several genotyping approaches. In the present study, a novel polymerase chain reaction sequence-based typing (PCR-SBT) method was established for the genotyping of MICB exons 2-6, and the allelic frequency of MICB in the Zhejiang Han population was investigated. Among 400 unrelated healthy Han individuals from Zhejiang Province, China, a total of 20 MICB alleles were identified, of which MICB*005:02:01, MICB*002:01:01, and MICB*004:01:01 were the most predominant alleles, with frequencies of 0.57375, 0.1225, and 0.08375, respectively. Nine MICB alleles were detected on only one occasion, giving a frequency of 0.00125. Of the 118 distinct MICB ∼ HLA-B haplotypes identified, 42 showed significant linkage disequilibrium (P < 0.05). Haplotypes MICB*005:02:01 ∼ B*46:01, MICB*005:02:01 ∼ B*40:01, and MICB*008 ∼ B*58:01 were the most common haplotypes, with frequencies of 0.0978, 0.0761, and 0.0616, respectively. Five novel alleles, MICB*005:07, MICB*005:08, MICB*027, MICB*028, and MICB*029 were identified. Compared with the MICB*005:02:01 sequence, a G > A substitution was observed at nucleotide position 210 in MICB*005:07, and a 1,134 T > C substitution in MICB*005:08 and an 862 G > A substitution in MICB*027 were detected. In addition, it appears that MICB*028 probably arose from MICB*004:01:01 with an A to G substitution at position 1,147 in exon 6. MICB*029 had a G > T transversion at nucleotide position 730 in exon 4, compared with that of MICB*002:01:01. On the basis of the new PCR-SBT assay, these observed results demonstrated MICB allelic variations in the Zhejiang Han population.

  15. EVOLUTION OF SIZE DISTRIBUTION OF ICY GRAINS BY SUBLIMATION AND CONDENSATION

    SciTech Connect

    Kuroiwa, Takuto; Sirono, Sin-iti

    2011-09-20

    In the outer part of a protoplanetary disk, dust grains consist of silicate core covered by an ice mantle. A temporal heating event in the disk results in sublimation of the ice mantle. After the end of the heating event, as the temperature decreases, H{sub 2}O molecules recondense on the surface of the dust grain. Ultimately, the dust grain is covered by an ice mantle. Because the equilibrium vapor pressure on the grain surface decreases with the grain size, a large grain grows faster than a small grain. As a result, the size of an icy dust grain changes as a result of the heating event. The change in size also affects the mechanical properties of the dust aggregates formed by the icy grains. In this paper, we investigated the evolution of the size distribution of icy dust grains during sublimation and condensation. We found that the size evolution of icy grains can be divided into two stages. In the first stage, the icy grains grow through condensation of H{sub 2}O molecules. In the second stage, the size of grains changes further as H{sub 2}O molecules are transferred between icy grains while the surrounding gas condenses. The size distribution of the icy dust grains becomes bimodal, with a small number of relatively large grains and many small grains without an icy mantle. Possible effects of the size change on the evolution of icy dust aggregates are discussed.

  16. Bayesian inference on earthquake size distribution: a case study in Italy

    NASA Astrophysics Data System (ADS)

    Licia, Faenza; Carlo, Meletti; Laura, Sandri

    2010-05-01

    This paper is focused on the study of earthquake size statistical distribution by using Bayesian inference. The strategy consists in the definition of an a priori distribution based on instrumental seismicity, and modeled as a power law distribution. By usin