Science.gov

Sample records for allele specific amplification

  1. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    PubMed

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  2. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  3. Direct micro-haplotyping by multiple double PCR amplifications of specific alleles (MD-PASA)

    PubMed Central

    Eitan, Yuval; Kashi, Yechezkel

    2002-01-01

    Analysis of haplotypes is an important tool in population genetics, familial heredity and gene mapping. Determination of haplotypes of multiple single nucleotide polymorphisms (SNPs) or other simple mutations is time consuming and expensive when analyzing large populations, and often requires the help of computational and statistical procedures. Based on double PCR amplification of specific alleles, described previously, we have developed a simple, rapid and low-cost method for direct haplotyping of multiple SNPs and simple mutations found within relatively short specific regions or genes (micro-haplotypes). Using this method, it is possible to directly determine the physical linkage of multiple heterozygous alleles, by conducting a series of double allele-specific PCR amplification sets with simple analysis by gel electrophoresis. Application of the method requires prior information as to the sequence of the segment to be haplotyped, including the polymorphic sites. We applied the method to haplotyping of nine sites in the chicken HSP108 gene. One of the haplotypes in the population apparently arose by recombination between two existing haplotypes, and we were able to locate the point of recombination within a segment of 19 bp. We anticipate rapidly growing needs for SNP haplotyping in human (medical and pharmacogenetics), animal and plant genetics; in this context, the multiple double PCR amplifications of specific alleles (MD-PASA) method offers a useful haplotyping tool. PMID:12060700

  4. [Study on identification of cistanche hebra and its adulterants by PCR amplification of specific alleles based on ITS sequences].

    PubMed

    Li, Zhen-Hua; Long, Ping; Zou, De-Zhi; Li, Yue; Cui, Zhan-Hu; Li, Min-Hui

    2014-10-01

    To explore the new method of discriminating Cistanche deserticola, Cynomorium songaricum and Orobanche pycnostachya by using PCR amplification of specific alleles. 30 samples of the different C. deserticola, 21 samples of C. songaricum and O. pycnostachya were collected. The total DNA of the samples were extracted, the ITS sequences from C. deserticola, C. songaricum and O. pycnostachya were amplified by PCR and sequenced unidirectionally. These sequences were aligned by using ClustulW. Specific primer was designed according to the ITS sequences of specific alleles, and PCR reaction system was optimized. Additionally, compare with the identification of specific PCR method and DNA sequence analysis method. The result showed that the 331 bp identification band for C. deserticola and the adulterants not amplified bands by a single PCR reaction, which showed good identification ability to the three species. PCR amplification of specific alleles can be used to identify C. deserticola, C. songaricum and O. pycnostachya successfully.

  5. New primer for specific amplification of the CAG repeat in Huntington disease alleles

    SciTech Connect

    Bond, C.E.; Hodes, M.E.

    1994-09-01

    Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designing a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.

  6. Detection of mutation by allele-specific loop-mediated isothermal amplification (AS-LAMP).

    PubMed

    Aonuma, Hiroka; Badolo, Athanase; Okado, Kiyoshi; Kanuka, Hirotaka

    2013-01-01

    For effective control of pathogen-transmitting mosquitoes, precise surveillance data of mosquito distribution are essential. Recently, an increase of insecticide resistance due to the kdr mutation in Anopheles gambiae, a mosquito that transmits the malaria parasite, has been reported. With the aim of developing a simple and effective method for surveying resistant mosquitoes, LAMP was applied to the allele-specific detection of the kdr gene in An. gambiae. Allele-specific LAMP (AS-LAMP) method successfully distinguished the kdr homozygote from the heterozygote and the wild type. The robustness of AS-LAMP suggests its usefulness for routine identification of insects, not only mosquitoes but also other vectors and agricultural pests. Here we describe the method of AS-LAMP to detect mutation in Anopheles mosquitoes. PMID:24026691

  7. [Microchip electrophoresis coupled with multiplex allele-specific am-plification for typing multiple single nucleotide polymorphisms (SNPs) simultaneously].

    PubMed

    Wang, Wei-Peng; Zhou, Guo-Hua

    2009-02-01

    A new method of DNA adapter ligation-mediated allele-specific amplification (ALM-ASA) was developed for typing multiple single nucleotide polymorphisms (SNPs) on the platform of microchip electrophoresis. Using seven SNPs of 794C>T, 1274C>T, 2143T>C, 2766T>del, 3298G>A, 5200G>A, and 5277C>T in the interleukin 1B (IL1B) gene as a target object, a long DNA fragment containing the seven SNPs of interest was pre-amplified to enhance the specificity. The pre-amplified DNA fragment was digested by a restriction endonuclease to form sticky ends; and then the adapter was ligated to either end of the digested fragment. Using the adapter-ligated fragments as templates, a 7-plex allele-specific amplification was performed by 7 allele-specific primers and a universal primer in one tube. The allele-specific products amplified were separated by chip electrophoresis and the types of SNPs were easily discriminated by the product sizes. The seven SNPs in IL1B gene in 48 healthy Chinese were successfully typed by microchip electrophoresis and the results coincided with those by PCR-restriction fragment length polymorphism and sequencing method. The method established was accurate and can be used to type multiple SNPs simultaneously. In combination with microchip electrophoresis for readout, ALM-ASA assay can be used for fast SNP detection with a small amount of sample. Using self-prepared gel matrix and reused chips for analysis, the SNP can be typed at an ultra low cost.

  8. Advancing allele group-specific amplification of the complete HLA-C gene--isolation of novel alleles from three allele groups (C*04, C*07 and C*08).

    PubMed

    Cisneros, E; Martínez-Pomar, N; Vilches, M; Martín, P; de Pablo, R; Nuñez Del Prado, N; Nieto, A; Matamoros, N; Moraru, M; Vilches, C

    2013-10-01

    A variety of strategies have been designed for sequence-based HLA typing (SBT) and for the isolation of new human leucocyte antigen (HLA) alleles, but unambiguous characterization of complete genomic sequences remains a challenge. We recently reported a simple method for the group-specific amplification (GSA) and sequencing of a full-length C*04 genomic sequence in isolation from the accompanying allele. Here we build on this strategy and present homologous methods that enable the isolation of HLA-C alleles belonging to another two allele groups. Using this approach, which can be applied to sequence-based typing in some clinical settings, we have successfully characterized three novel HLA-C alleles (C*04:128, C*07:01:01:02, and C*08:62).

  9. Description of a novel HLA-B allele, B*5613, identified during HLA-typing using sequence-specific oligonucleotide hybridization and sequence-specific amplification.

    PubMed

    Hoppe, B; Heymann, G A; Schoenemann, C; Nagy, M; Kiesewetter, H; Salama, A

    2004-11-01

    Here, we report on the characterization of a novel human leukocyte antigen (HLA)-B allele, B*5613. The allele was identified in an adult male from North Africa who was suffering from sickle cell anemia. HLA-B*5613 most closely matches to B*5601 differing only by a substitution of three nucleotides of codon 180. Due to this substitution, low-resolution HLA-typing using sequence-specific oligonucleotide hybridization or amplification using sequence-specific primers gave inconclusive results. DNA sequencing confirmed a variation of codon 180 (CTG-->GAC) resulting in an amino acid substitution Leu156Asp. PMID:15496207

  10. Linear allele-specific long-range amplification: a novel method of long-range molecular haplotyping.

    PubMed

    Wu, Wei-Ming; Tsai, Hsiang-Ju; Pang, Jong-Hwei S; Wang, Tzu-Hao; Wang, Hsin-Shih; Hong, Hong-Shang; Lee, Yun-Shien

    2005-10-01

    Haplotypes have been repeatedly shown to be more powerful than collections of single-locus markers in gene-mapping studies. Various haplotyping methods including statistical estimation are employed but molecular haplotyping, the acquisition of information directly on physical DNA sequences, has been in demand for its accuracy and independence from family pedigrees. We investigated the allelic specificity of long-range PCR, which was successful for long-range haplotyping in recent reports, and found problems of initial mispriming and crossover amplification significantly confounded its application. Based on these observations, we designed a novel method based on linear amplification of a hemizygous DNA segment with a single phosphorothioate-modified oligonucleotide. Our results revealed, with a single nucleotide polymorphism as the discriminative marker, downstream haplotypes of 14-15 kb DNA segment could be confidently scored. With two rounds of the method and five single nucleotide polymorphisms, molecular haplotypes of 29.3 kb spanning the HCR and CDSN genes, two genes associated with the susceptibility of psoriasis, of 11 members, belonging to a CEPH family, were revealed. Clear Mendelian segregation of 35 highly heterozygous SNPs confirmed the accuracy of the method. Problems of low specificity associated with long-range PCR were not observed. The simplicity, along with long-sequence accessibility and feasibility of a single nucleotide difference as the discriminative marker indicated our method holds promise for future gene-mapping studies.

  11. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA.

    PubMed

    Billard, A; Laval, V; Fillinger, S; Leroux, P; Lachaise, H; Beffa, R; Debieu, D

    2012-02-01

    The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.

  12. [Detection of JAK2V617F mutation rate by real-time fluorescent quantitative PCR using allele specific primer and TaqMan-MGB probe for dual inhibiting amplification of wild type alleles].

    PubMed

    Liang, Guo-Wei; Shao, Dong-Hua; He, Mei-Ling; Cao, Qing-Yun

    2012-12-01

    This study was purposed to develop a real-time PCR assay for sensitive quantification of JAK2V617F allele burden in peripheral blood and to evaluate the clinical value of this method. Both allele-specific mutant reverse primer and wild-type TaqMan-MGB probe were used for dual-inhibiting amplification of wild-type alleles in a real-time PCR, and then the JAK2V617F mutant alleles were amplified specially. The standard curve for quantification of JAK2V617F was established by percentages of JAK2V617F alleles with threshold cycle (Ct) values in a real-time PCR. Furthermore, 89 apparent healthy donors were tested by this method. The results showed that the quantitative lower limit of this method for JAK2V617F was 0.1%, and the intra- and inter-assay average variability for quantifying percentage of JAK2V617F in total DNA was 4.1% and 6.1%, respectively. Two JAK2V617F-positive individuals were identified (the percentage of JAK2V617F alleles were 0.64% and 0.98%, respectively) using this method in blood from 89 apparently healthy donors. It is concluded that the developed method with highly sensitive and reproducible quantification of JAK2V617F mutant burden can be used clinically for diagnosis and evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms. Moreover, this technique can be also used for quantitative detection of variety of single nucleotide mutation.

  13. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  14. Whole Genome Amplification of Plasma-Circulating DNA Enables Expanded Screening for Allelic Imbalance in Plasma

    PubMed Central

    Li, Jin; Harris, Lyndsay; Mamon, Harvey; Kulke, Matthew H.; Liu, Wei-Hua; Zhu, Penny; Mike Makrigiorgos, G.

    2006-01-01

    Apoptotic and necrotic tumor cells release DNA into plasma, providing an accessible tumor biomarker. Tumor-released plasma-circulating DNA can be screened for tumor-specific genetic changes, including mutation, methylation, or allelic imbalance. However, technical problems relating to the quantity and quality of DNA collected from plasma hinder downstream genetic screening and reduce biomarker detection sensitivity. Here, we present a new methodology, blunt-end ligation-mediated whole genome amplification (BL-WGA), that efficiently amplifies small apoptotic fragments (<200 bp) as well as intermediate and large necrotic fragments (>5 kb) and enables reliable high-throughput analysis of plasma-circulating DNA. In a single-tube reaction, purified double-stranded DNA was blunted with T4 DNA polymerase, self-ligated or cross-ligated with T4 DNA ligase and amplified via random primer-initiated multiple displacement amplification. Using plasma DNA from breast cancer patients and normal controls, we demonstrate that BL-WGA amplified the plasma-circulating genome by ∼1000-fold. Of 25 informative polymorphic sites screened via polymerase chain reaction-denaturating high-performance liquid chromatography, 24 (95%) were correctly determined by BL-WGA to be allelic retention or imbalance compared to 44% by multiple displacement amplification. By enabling target magnification and application of high-throughput genome analysis, BL-WGA improves sensitivity for detection of circulating tumor-specific biomarkers from bodily fluids or for recovery of nucleic acids from suboptimally stored specimens. PMID:16436631

  15. Allelic variation contributes to bacterial host specificity.

    PubMed

    Yue, Min; Han, Xiangan; De Masi, Leon; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S; Fraser, George P; Zhao, Shaohua; McDermott, Patrick F; Weill, François-Xavier; Mainil, Jacques G; Arze, Cesar; Fricke, W Florian; Edwards, Robert A; Brisson, Dustin; Zhang, Nancy R; Rankin, Shelley C; Schifferli, Dieter M

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  16. Allelic variation contributes to bacterial host specificity

    SciTech Connect

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

  17. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; et al

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  18. Allelic variation contributes to bacterial host specificity

    PubMed Central

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  19. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  20. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  1. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  2. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  3. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  4. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles.

    PubMed

    Brunner, Susanne; Hurni, Severine; Streckeisen, Philipp; Mayr, Gabriele; Albrecht, Mario; Yahiaoui, Nabila; Keller, Beat

    2010-11-01

    Some plant resistance genes occur as allelic series, with each member conferring specific resistance against a subset of pathogen races. In wheat, there are 17 alleles of the Pm3 gene. They encode nucleotide-binding (NB-ARC) and leucine-rich-repeat (LRR) domain proteins, which mediate resistance to distinct race spectra of powdery mildew. It is not known if specificities from different alleles can be combined to create resistance genes with broader specificity. Here, we used an approach based on avirulence analysis of pathogen populations to characterize the molecular basis of Pm3 recognition spectra. A large survey of mildew races for avirulence on the Pm3 alleles revealed that Pm3a has a resistance spectrum that completely contains that of Pm3f, but also extends towards additional races. The same is true for the Pm3b and Pm3c gene pair. The molecular analysis of these allelic pairs revealed a role of the NB-ARC protein domain in the efficiency of effector-dependent resistance. Analysis of the wild-type and chimeric Pm3 alleles identified single residues in the C-terminal LRR motifs as the main determinant of allele specificity. Variable residues of the N-terminal LRRs are necessary, but not sufficient, to confer resistance specificity. Based on these data, we constructed a chimeric Pm3 gene by intragenic allele pyramiding of Pm3d and Pm3e that showed the combined resistance specificity and, thus, a broader recognition spectrum compared with the parental alleles. Our findings support a model of stepwise evolution of Pm3 recognition specificities.

  5. Enhancing allele-specific PCR for specifically detecting short deletion and insertion DNA mutations.

    PubMed

    Wang, Yiran; Rollin, Joseph A; Zhang, Y-H Percival

    2010-02-01

    Allele-specific PCR (AS-PCR) has been widely used for the detection of single nucleotide polymorphism. But there are some challenges in using AS-PCR for specifically detecting DNA variations with short deletions or insertions. The challenges are associated with designing selective allele-specific primers as well as the specificity of AS-PCR in distinguishing some types of single base-pair mismatches. In order to address such problems and enhance the applicability of AS-PCR, a general primer design method was developed to create a multiple base-pair mismatch between the primer 3'-terminus and the template DNA. This approach can destabilize the primer-template complex more efficiently than does a single base-pair mismatch, and can dramatically increase the specificity of AS-PCR. As a proof-of-principle demonstration, the method of primer design was applied in colony PCR for identifying plasmid DNA deletion or insertion mutants after site-directed mutagenesis. As anticipated, multiple base-pair mismatches achieved much more specific PCR amplification than single base-pair mismatches. Therefore, with the proposed primer design method, the detection of short nucleotide deletion and insertion mutations becomes simple, accurate and more reliable.

  6. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  7. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  8. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  9. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  10. Allele-Specific DNA Methylation Detection by Pyrosequencing®.

    PubMed

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide information on the methylation status of individual alleles of genes. This information may be of importance in many situations. In particular, in cancer both alleles of tumour suppressor genes generally need to be inactivated for a phenotypic effect to be observed. Here, we present a simple and cost-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon. PMID:26103906

  11. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  12. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR. PMID:12470637

  13. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  14. Specific HLA-DQB and HLA-DRB1 alleles confer susceptibility to pemphigus vulgaris.

    PubMed Central

    Scharf, S J; Freidmann, A; Steinman, L; Brautbar, C; Erlich, H A

    1989-01-01

    The autoimmune dermatologic disease pemphigus vulgaris (PV) is associated with the serotypes HLA-DR4 and HLA-DRw6. Based on nucleotide sequence and oligonucleotide probe analysis of enzymatically amplified DNA encoding HLA-DR beta chain (HLA-DRB) and HLA-DQ beta chain (HLA-DQB; henceforth HLA is omitted from designations), we showed previously that the DR4 susceptibility was associated with the Dw10 DRB1 allele [encoding the mixed lymphocyte culture (MLC)-defined Dw10 specificity]. The DRw6 susceptibility similarly was shown to be associated with a rare DQB allele (DQB1.3), which differed from another nonsusceptible allele by only a valine-to-aspartic acid substitution at position 57. Given the linkage disequilibrium that characterizes HLA haplotypes, it is difficult to assign disease susceptibility to a specific locus rather than to a closely linked gene(s) on the same haplotype. To address this problem, we have analyzed all of the polymorphic loci of the class II HLA region (DRB1, DRB3, DQA, DQB, and DPB) on the DRw6 haplotypes in patients and controls. In 22 PV patients, 4 different DRw6 haplotypes were found that encode the same DQ beta chain (DQB1.3) but contained silent nucleotide differences at the DQB locus as well as coding sequence differences in the DQA and DRB loci. These results, obtained by using a method for allele-specific polymerase chain reaction amplification, strongly support the hypothesis that the allele DQB1.3 confers susceptibility. This DQB allele is correlated with the MLC-defined Dw9 specificity and is associated with two different DRB1 alleles (the common "6A" associated with DRw13 and the rare "6B" associated with DRw14). Since 86% (19 of 22) of DRw6+ patients contain the DQB1.3 allele (vs. 3% of controls), whereas 64% (14 of 22) contain the DRB1 allele 6B (vs. 6% of the controls), we conclude that most of the DRw6 susceptibility to PV can be accounted for by the DQ beta chain. Images PMID:2503828

  15. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  16. Identification of new primer binding site mutations at TH01 and D13S317 loci and determination of their corresponding STR alleles by allele-specific PCR.

    PubMed

    Li, Fengrui; Xuan, Jinfeng; Xing, Jiaxin; Ding, Mei; Wang, Baojie; Pang, Hao

    2014-01-01

    Several commercial multiplex PCR kits for the amplification of short tandem repeat (STR) loci have been extensively applied in forensic genetics. Consequently, large numbers of samples have been genotyped, and the number of discordant genotypes observed has also increased. We observed allele dropout with two novel alleles at the STR loci TH01 and D13S317 during paternity testing using the AmpFℓSTR Identifiler PCR Amplification Kit. The lost alleles reappeared when alternative PCR primer pairs were used. A sequence analysis revealed a G-to-A substitution 82 bases downstream of the last TCAT motif of the repeat region at the TH01 locus (GenBank accession: D00269) and a G-to-T substitution 90 bases upstream of the first TATC motif of the repeat region at the D13S317 locus (GenBank accession: G09017). The frequencies of these two point mutations were subsequently investigated in the Chinese population using sequence-specific primer PCR (SSP-PCR), but neither of these mutations was detected in any of the samples tested. In addition, the DNA samples in which the mutations were identified were amplified to type the point mutations by SSP-PCR to determine the corresponding STR alleles at the two loci. Subsequently, the amplified PCR products with different point mutations and STR repeat numbers were directly sequenced because this strategy overcomes the appearance overlapping peaks generated by different STR alleles and accurately characterizes genotypes. Thus, our findings not only provide useful information for DNA databases and forensic identification but also establish an effective strategy for typing STR alleles with primer binding site mutations.

  17. Extensive allele-specific translational regulation in hybrid mice.

    PubMed

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-08-07

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.

  18. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  19. Improved loop-mediated isothermal amplification for HLA-DRB1 genotyping using RecA and a restriction enzyme for enhanced amplification specificity.

    PubMed

    Mitsunaga, Shigeki; Shimizu, Sayoko; Okudaira, Yuko; Oka, Akira; Tanaka, Masafumi; Kimura, Minoru; Kulski, Jerzy K; Inoue, Ituro; Inoko, Hidetoshi

    2013-06-01

    Our aim was to test and develop the use of loop-mediated isothermal amplification (LAMP) for HLA-DRB1 genotyping. Initially, we found that the conventional LAMP protocols produced non-specific and variable amplification results depending on the sample DNA conditions. Experiments with different concentrations of DNase in the reaction mixture with and without T4 DNA ligase-treated samples suggested that the strand displacement activity of DNA polymerase in LAMP, at least in part, started from randomly existing nicks because T4 DNA ligase treatment of sample DNA resulted in no amplification. Such non-specific amplification due to the randomly existing nicks was improved specifically by the addition of RecA of Escherichia coli and a restriction enzyme, for example, PvuII, to the reaction mixture. We applied the modified LAMP (mLAMP) (1) to detect specific HLA-DRB1 alleles by using only specific primers for amplification or (2) for genotyping in multiple samples with a multi-probe typing system. In the latter case, HLA-DRB1 genotyping was developed by combining the mLAMP with amplicon capture using polymorphic region-specific probes fixed onto the bottom of the wells of a 96-well plate and the captured amplicons visualized as a black spot at the bottom of the well. The multi-probe human leukocyte antigen (HLA) typing method and the specific HLA allele detection method could be applied for point-of-care testing due to no requirement for specific and expensive instruments.

  20. Genomic landscape of human allele-specific DNA methylation.

    PubMed

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J; Smith, Andrew D

    2012-05-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  1. Genomic landscape of human allele-specific DNA methylation

    PubMed Central

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J.; Smith, Andrew D.

    2012-01-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  2. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  3. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  4. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant. PMID:7895166

  5. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant.

  6. Allele-specific chemical genetics: concept, strategies, and applications.

    PubMed

    Islam, Kabirul

    2015-02-20

    The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.

  7. Polymorphism analysis of Chinese Theileria sergenti using allele-specific polymerase chain reaction of the major piroplasm surface protein gene.

    PubMed

    Liu, Ai Hong; Guan, Gui Quan; Liu, Jun Long; Liu, Zhi Jie; Leblanc, Neil; Li, You Quan; Gao, Jin Liang; Ma, Mi Ling; Niu, Qing Li; Ren, Qiao Yun; Bai, Qi; Yin, Hong; Luo, Jian Xun

    2011-02-01

    Theileria sergenti is a tick-borne parasite found in many parts of the world. The major piroplasm surface protein (MPSP), a conserved protein in all Theileria species, has been used as a marker for epidemiological and phylogenetic studies of benign Theileria species. In this study, Chinese species of T. sergenti were characterized by allele-specific polymerase chain reaction (PCR) and DNA sequence analysis of the MPSP gene. Using universal or allele-specific primer sets for PCR amplification of the MPSP gene, 98 of 288 cattle blood samples, collected from 6 provinces in China, were found to be positive. Among the positive samples, only 3 allelic MPSP gene types (Chitose [C]-, Ikeda [I]-, and buffeli [B]-type) were successfully amplified. Moreover, the results revealed that the majority of the parasites sampled in this study were C- and I-type (prevalence of 84 and 69%, respectively), whereas the B-type was less common (prevalence of 36%). Co-infections with C-, I-, and B-type T. sergenti also were found. An additional known allele, Thai-type, was not detected. Phylogenetic analysis based on the MPSP gene sequences, including 3 standard stocks generated in the laboratory ( T. sergenti Wenchuan, T. sergenti Ningxian, and T. sergenti Liaoyang), revealed that the isolates of Chinese sergenti were comprised of at least 4 allelic MPSP gene types, i.e., C-, I-, B1-, and B2-type, and these parasites with 6 MPSP types 1-5 and 7 were present in China.

  8. Allele-specific rpoB PCR assays for detection of rifampin-resistant Mycobacterium tuberculosis in sputum smears.

    PubMed

    Mokrousov, Igor; Otten, Tatiana; Vyshnevskiy, Boris; Narvskaya, Olga

    2003-07-01

    We describe an allele-specific PCR assay to detect mutations in three codons of the rpoB gene (516, 526, and 531) in Mycobacterium tuberculosis strains; mutations in these codons are reported to account for majority of M. tuberculosis clinical isolates resistant to rifampin (RIF), a marker of multidrug-resistant tuberculosis (MDR-TB). Three different allele-specific PCRs are carried out either directly with purified DNA (single-step multiplex allele-specific PCR), or with preamplified rpoB fragment (nested allele-specific PCR [NAS-PCR]). The method was optimized and validated following analysis of 36 strains with known rpoB sequence. A retrospective analysis of the 287 DNA preparations from epidemiologically unlinked RIF-resistant clinical strains from Russia, collected from 1996 to 2002, revealed that 247 (86.1%) of them harbored a mutation in one of the targeted rpoB codons. A prospective study of microscopy-positive consecutive sputum samples from new and chronic TB patients validated the method for direct analysis of DNA extracted from sputum smears. The potential of the NAS-PCR to control for false-negative results due to lack of amplification was proven especially useful in the study of these samples. The developed rpoB-PCR assay can be used in clinical laboratories to detect RIF-resistant and hence MDR M. tuberculosis in the regions with high burdens of the MDR-TB. PMID:12821473

  9. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela.

    PubMed

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W; Escalante, Ananias A; Udhayakumar, Venkatachalam

    2010-04-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: S(tct)VMNT (91%) and S(agt)VMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites.

  10. DQB1*06:02 allele specific expression varies by allelic dosage, not narcolepsy status

    PubMed Central

    lachmi, Karin Weiner; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single allele HLA associations. In this study, we explored genome wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and found the largest differences between the groups to be in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65 fold) and protein (1.59 fold) could be demonstrated independent of the disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes. PMID:22326585

  11. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status.

    PubMed

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-04-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65-fold) and protein (1.59-fold) could be demonstrated independent of disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes.

  12. [Evaluation of minimal residual disease using allele (mutation) -specific PCR].

    PubMed

    Matsuda, Kazuyuki

    2014-06-01

    For patients with hematological malignancies, monitoring minimal residual disease (MRD) provides useful information to evaluate the therapeutic response and risk of relapse. The currently available quantitative MRD assays are fluorescence in situ hybridization of chromosomal aberrations, multiparameter flow cytometry of leukemia-associated immunophenotypes, and quantitative polymerase chain reaction (qPCR) analysis of fusion genes, immunoglobulin/T-cell receptor gene rearrangements, genetic alterations, or over-expressed genes. Single nucleotide mutations associated with leukemogenesis can be considered as applicable MRD markers. Allele-specific qPCR (AS-qPCR) using primers including mismatched bases and locked nucleic acids (LNA) can quantify not only the insertion and duplication of several nucleotides, but also single nucleotide mutation in the presence of an excess amount of wild-type nucleotides. The AS-qPCR for analyzing single nucleotide mutations contributes to the monitoring of MRD in patients without recurrent fusion genes throughout the clinical course and, thus, broadens the spectrum of patients in whom MRD can be monitored. In addition to the evaluation of MRD, AS-qPCR can provide insight into the development of leukemia and the sequential acquisition of gene mutations.

  13. Evidence that selected amplification of a bacterial lac frameshift allele stimulates Lac(+) reversion (adaptive mutation) with or without general hypermutability.

    PubMed Central

    Slechta, E Susan; Liu, Jing; Andersson, Dan I; Roth, John R

    2002-01-01

    In the genetic system of Cairns and Foster, a nongrowing population of an E. coli lac frameshift mutant appears to specifically accumulate Lac(+) revertants when starved on medium including lactose (adaptive mutation). This behavior has been attributed to stress-induced general mutagenesis in a subpopulation of starved cells (the hypermutable state model). We have suggested that, on the contrary, stress has no direct effect on mutability but favors only growth of cells that amplify their leaky mutant lac region (the amplification mutagenesis model). Selection enhances reversion primarily by increasing the mutant lac copy number within each developing clone on the selection plate. The observed general mutagenesis is attributed to a side effect of growth with an amplification-induction of SOS by DNA fragments released from a tandem array of lac copies. Here we show that the S. enterica version of the Cairns system shows SOS-dependent general mutagenesis and behaves in every way like the original E. coli system. In both systems, lac revertants are mutagenized during selection. Eliminating the 35-fold increase in mutation rate reduces revertant number only 2- to 4-fold. This discrepancy is due to continued growth of amplification cells until some clones manage to revert without mutagenesis solely by increasing their lac copy number. Reversion in the absence of mutagenesis is still dependent on RecA function, as expected if it depends on lac amplification (a recombination-dependent process). These observations support the amplification mutagenesis model. PMID:12136002

  14. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  15. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris.

    PubMed

    Amarasinghe, Harindra E; Toghill, Bradley J; Nathanael, Despina; Mallon, Eamonn B

    2015-01-01

    Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  16. Amplification refractory mutation system-PCR is essential for the detection of chimaeras with a minor allele population: a case report.

    PubMed

    Won, Eun Jeong; Park, Hye Ryoen; Park, Tae Sung; Oh, Seung Hwan; Shin, Myung Geun; Shin, Jong Hee; Suh, Soon Pal; Ryang, Dong Wook; Park, Jong Tae; Cho, Duck

    2013-05-01

    Blood chimaera is a rare but important issue for immunohaematology laboratories. Several molecular approaches, such as ABO genotyping, human leucocyte antigen (HLA) typing and DNA short tandem repeat (STR) analysis, have been used to identify chimaerism. Unfortunately, the minor allele population can be overlooked by PCR-based methods, which preferentially amplify the major allele population. A case with AweakB (AwB), demonstrating a mixed-field pattern, was sent to our laboratory for further evaluation. Direct sequencing of ABO exons 6 and 7 revealed a B101/O02 genotype. Analysis of the 12 STR loci and HLA typing did not provide any evidence of chimaerism. However, amplification refractory mutation system (ARMS)-PCR identified the minor A102 allele in addition to B101/O02. Three alleles of the chimaera were confirmed by cloning and sequencing. Thus, ARMS-PCR is essential, especially in the case of a chimaera with a minor allele population.

  17. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients.

    PubMed

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-12-22

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAF(V600E) and BRAF(V600K) mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method.

  18. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  19. Impriniting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching

    SciTech Connect

    Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. )

    1993-07-01

    Genomic imprinting and monoallelic gene expression appear to play a role in human genetic disease and tumorigenesis. The human H19 gene, at chromosome 11p15, has previously been shown to be monoallelically expressed. Since CpG methylation has been implicated in imprinting, the authors analyzed methylation of H19 DNA. In fetal and adult organs the transcriptionally silent H19 allele was extensively hypermethylated through the entire gene and its promoter, and, consistent with a functional role for DNA methylation, expression of an H19 promoter-reporter construct was inhibited by in vitro methylation. Gynogenetic ovarian teratomas were found to contain only hypomethylated H19 DNA, suggesting that the expressed H19 allele might be maternal. This was confirmed by analysis of 11p15 polymorphisms in a patient with Wilms tumor. The tumor had lost the maternal 11p15, and H19 expression in the normal kidney was exclusively from this allele. Imprinting of human H19 appears to be susceptible to tissue-specific modulation in somatic development; in one individual, cerebellar cells were found to express only the otherwise silent allele. Implications of these findings for the role of DNA methylation in imprinting and for H19 as a candidate imprinted tumor-suppressor gene are discussed. 57 refs., 7 figs.

  20. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing.

    PubMed

    Shen, Ronglai; Seshan, Venkatraman E

    2016-09-19

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of 'actionable' mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel.

  1. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing

    PubMed Central

    Shen, Ronglai; Seshan, Venkatraman E.

    2016-01-01

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of ‘actionable’ mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel. PMID:27270079

  2. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing.

    PubMed

    Shen, Ronglai; Seshan, Venkatraman E

    2016-09-19

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of 'actionable' mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel. PMID:27270079

  3. A computational workflow to identify allele-specific expression and epigenetic modification in maize.

    PubMed

    Wei, Xiaoxing; Wang, Xiangfeng

    2013-08-01

    Allele-specific expression refers to the preferential expression of one of the two alleles in a diploid genome, which has been thought largely attributable to the associated cis-element variation and allele-specific epigenetic modification patterns. Allele-specific expression may contribute to the heterosis (or hybrid vigor) effect in hybrid plants that are produced from crosses of closely-related species, subspecies and/or inbred lines. In this study, using Illumina high-throughput sequencing of maize transcriptomics, chromatic H3K27me3 histone modification and DNA methylation data, we developed a new computational framework to identify allele-specifically expressed genes by simultaneously tracking allele-specific gene expression patterns and the epigenetic modification landscape in the seedling tissues of hybrid maize. This approach relies on detecting nucleotide polymorphisms and any genomic structural variation between two parental genomes in order to distinguish paternally or maternally derived sequencing reads. This computational pipeline also incorporates a modified Chi-square test to statistically identify allele-specific gene expression and epigenetic modification based on the Poisson distribution.

  4. Self-(in)compatibility inheritance and allele-specific marker development in yellow mustard (Sinapis alba).

    PubMed

    Zeng, Fangqin; Cheng, Bifang

    2014-01-01

    Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F2 populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F2 populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program.

  5. 5' and 3' untranslated regions contribute to the differential expression of specific HLA-A alleles.

    PubMed

    René, Céline; Lozano, Claire; Villalba, Martin; Eliaou, Jean-François

    2015-12-01

    In hematopoietic stem cell transplantation (HSCT), when no HLA full-matched donor is available, alternative donors could include one HLA-mismatched donor. Recently, the low expressed HLA-C alleles have been identified as permissive mismatches for the best donor choice. Concerning HLA-A, the degree of variability of expression is poorly understood. Here, we evaluated HLA-A expression in healthy individuals carrying HLA-A*02 allele in different genotypes using flow cytometry and allele-specific quantitative RT-PCR. While an interindividual variability of HLA-A*02 cell surface expression, not due to the allele associated, was observed, no difference of the mRNA expression level was shown, suggesting the involvement of the posttranscriptional regulation. The results of qRT-PCR analyses exhibit a differential expression of HLA-A alleles with HLA-A*02 as the strongest expressed allele independently of the second allele. The associated non-HLA-A*02 alleles were differentially expressed, particularly the HLA-A*31 and HLA-A*33 alleles (strong expression) and the HLA-A*29 (low expression). The presence of specific polymorphisms in the 5' and 3' untranslated regions of the HLA-A*31 and HLA-A*33 alleles could contribute to this high level of expression. As previously described for HLA-C, low-expressed HLA-A alleles, such as HLA-A*29, could be considered as a permissive mismatch, although this needs to be confirmed by clinical studies.

  6. Allele-specific PCR for the beta-tubulin codon 200 TTC/TAC polymorphism using single adult and larval small strongyle (Cyathostominae) stages.

    PubMed

    von Samson-Himmelstjerna, G; Pape, M; von Witzendorff, C; Schnieder, T

    2002-04-01

    It has been shown that benzimidazole (BZ) resistance in sheep gastrointestinal nematodes is linked with an increase in beta-tubulin codon 200 tyrosine-expressing alleles in the resistant parasite populations. Here, an allele-specific PCR has been developed for the discrimination of the TAC/TTC polymorphism in the beta-tubulin 200 codon of small strongyles. One reverse primer was used in 2 separate amplifications with 1 of 2 forward primers that differed only in their final 3' nucleotide. The primers flank a facultative intron/exon. Therefore, the amplified fragments are either 251 or 308 bp in size, depending on the presence or absence of the intron in individual worms. Amplification of genomic DNA isolated from single adult small strongyles from a set of 7 species consistently generated allele-specific products. Three worms each of the following species were used: Cylicocyclus nassatus, Cylicocyclus insigne, Cylicocyclus elongatus, Cylicocyclus radiatus, Cyathostomum pateratum, Cyathostomum catinatum, and Cyathostomum coronatum. PCR with DNA isolated from single larvae also reproducibly generated specific fragments. This method might be applied for the future assessment of allele frequencies in susceptible and resistant populations to further investigate the mechanism of BZ-resistance in small strongyles. PMID:12053994

  7. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.

    PubMed

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-04-18

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org).

  8. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  9. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria.

    PubMed

    Lage, Melissa D; Pittman, Adrianne M C; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.

  10. S-genotype identification based on allele-specific PCR in Japanese pear

    PubMed Central

    Nashima, Kenji; Terakami, Shingo; Nishio, Sogo; Kunihisa, Miyuki; Nishitani, Chikako; Saito, Toshihiro; Yamamoto, Toshiya

    2015-01-01

    Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1–S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1–S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs. PMID:26175617

  11. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers

    PubMed Central

    Groner, William D.; Christy, Megan E.; Kreiner, Catherine M.; Liljegren, Sarah J.

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  12. Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    PubMed Central

    Perez-Losada, Jesus; Wu, Di; DelRosario, Reyno; Balmain, Allan; Mao, Jian-Hua

    2012-01-01

    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility. PMID:22348067

  13. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  14. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  15. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  16. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping

    PubMed Central

    Lee, Han B.; Schwab, Tanya L.; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L.; Cervera, Roberto Lopez; McNulty, Melissa S.; Bostwick, Hannah S.; Clark, Karl J.

    2016-01-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98–100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  17. Amplification of target-specific, ligation-dependent circular probe.

    PubMed

    Zhang, D Y; Brandwein, M; Hsuih, T C; Li, H

    1998-05-12

    We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes 'locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to 'rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein-Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a

  18. Amplification of target-specific, ligation-dependent circular probe.

    PubMed

    Zhang, D Y; Brandwein, M; Hsuih, T C; Li, H

    1998-05-12

    We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes 'locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to 'rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein-Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a

  19. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    PubMed

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques. PMID:24705376

  20. Enhanced Specificity of TPMT*2 Genotyping Using Unidirectional Wild-Type and Mutant Allele-Specific Scorpion Primers in a Single Tube

    PubMed Central

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques. PMID:24705376

  1. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  2. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  3. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays

    PubMed Central

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-01-01

    Motivation: Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. Results: The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. Availability: The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementaruy information: Supplementary data are available at Bioinformatics online. PMID:20529889

  4. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes

    PubMed Central

    Krueger, Felix; Andrews, Simon R.

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  5. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    PubMed

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  6. Epidemiological survey of Theileria parasite infection of cattle in Northeast China by allele-specific PCR.

    PubMed

    Yu, Longzheng; Zhang, Shoufa; Liang, Wanfeng; Jin, Chunmei; Jia, Lijun; Luo, Yuzi; Li, Yan; Cao, Shinuo; Yamagishi, Junya; Nishikawa, Yoshifumi; Kawano, Suguru; Fujisaki, Kozo; Xuan, Xuenan

    2011-11-01

    An epidemiological survey on a Theileria parasite infection of cattle in Northeast China was carried out using allele-specific PCR and DNA sequence analysis of the major piroplasm surface protein (MPSP) gene. The results showed that 14 of 104 blood samples were positive for Theileria by PCR. Among the positive cases, co-infection with various combinations of C- and I-type parasites was detected in 12 samples; no B- and Thai-type parasites were detected by allele-specific PCR. Phylogenetic analysis based on the MPSP gene sequences revealed that Theileria parasites with the MPSP types 1, 2, and 4 were distributed in Northeast China.

  7. Detection of new HLA-DPB1 alleles generated by interallelic gene conversion using PCR amplification of DPB1 second exon sequences from sperm

    SciTech Connect

    Erlich, H.; Zangenberg, G.; Bugawan, T.

    1994-09-01

    The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified from pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.

  8. Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2.

    PubMed

    Redis, Roxana S; Vela, Luz E; Lu, Weiqin; Ferreira de Oliveira, Juliana; Ivan, Cristina; Rodriguez-Aguayo, Cristian; Adamoski, Douglas; Pasculli, Barbara; Taguchi, Ayumu; Chen, Yunyun; Fernandez, Agustin F; Valledor, Luis; Van Roosbroeck, Katrien; Chang, Samuel; Shah, Maitri; Kinnebrew, Garrett; Han, Leng; Atlasi, Yaser; Cheung, Lawrence H; Huang, Gilbert Y; Monroig, Paloma; Ramirez, Marc S; Catela Ivkovic, Tina; Van, Long; Ling, Hui; Gafà, Roberta; Kapitanovic, Sanja; Lanza, Giovanni; Bankson, James A; Huang, Peng; Lai, Stephen Y; Bast, Robert C; Rosenblum, Michael G; Radovich, Milan; Ivan, Mircea; Bartholomeusz, Geoffrey; Liang, Han; Fraga, Mario F; Widger, William R; Hanash, Samir; Berindan-Neagoe, Ioana; Lopez-Berestein, Gabriel; Ambrosio, Andre L B; Gomes Dias, Sandra M; Calin, George A

    2016-02-18

    Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA. PMID:26853146

  9. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  10. Site-specific in situ amplification of the integrated polyomavirus genome: a case for a context-specific over-replication model of gene amplification.

    PubMed

    Syu, L J; Fluck, M M

    1997-08-01

    The fate of the genome of the polyoma (Py) tumor virus following integration in the chromosomes of transformed rat FR3T3 cells was re-examined. The viral sequences were integrated at a single transformant-specific chromosomal site in each of 22 transformants tested. In situ amplification of the viral sequences was observed in 24 of 34 transformants analyzed. Large T antigen, the unique viral function involved in initiating DNA replication from the viral origin, was essential for the amplification process. There was an absolute requirement for a reiteration of viral sequences and the extent of the reiteration affected the degree of amplification. The reiteration may be important for homologous recombination-mediated resolution of in situ amplified sequences. Among 11 transformants harboring a 1 to 2 kb repeat, the degree of amplification was transformant-specific and varied over a wide range. At the high end of the spectrum, the genome copy number increased 1300-fold at steady state, while at the low end, amplification was below twofold. Some aspect of the host chromatin at the site integration that affected viral gene expression, also directly or indirectly modulated the amplification. Use of high-resolution electrophoresis for the analysis of the integrated amplified sequences revealed a recurring novel pattern, consisting of a ladder with numerous bands separated by a constant distance approximately the size of the Py genome. We suggest that this pattern was generated by conversion of the amplified viral genomes to head to tail linear arrays with cell to cell variations in the number of genome repeats at single, transformant-specific, chromosomal sites. In light of the known "out of schedule" firing of the Py origin, we propose an "onion skin" structure intermediate and present a homologous recombination model for the conversion from onion skins to linear arrays. The relevance of the in situ amplification of the Py genome to cellular gene amplification is

  11. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  12. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections. PMID:26407876

  13. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    PubMed

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. PMID:27480981

  14. Allele loss on chromosomes 10 and 17p and epidermal growth factor receptor gene amplification in human malignant astrocytoma related to prognosis.

    PubMed Central

    Leenstra, S.; Bijlsma, E. K.; Troost, D.; Oosting, J.; Westerveld, A.; Bosch, D. A.; Hulsebos, T. J.

    1994-01-01

    Patients with high-grade astrocytomas have a poor prognosis. However, considerable variation exists within this group of patients with respect to post-operative survival. In order to determine whether genetic alterations might be of help in subdividing this group, we used allele loss on chromosomes 10 and 17p and epidermal growth factor receptor (EGFR) gene amplification in the tumours as genetic parameters and determined their prognostic value. A series of 47 malignant (grade III and grade IV) tumours were genetically characterised, and four types of tumours were found. Type 1 tumours had loss of heterozygosity on chromosome arm 17p (LOH 17p) as the sole genetic alteration. Patients with this type of tumour were relatively young (mean age 39 years) and had a median survival period of 17 months. Type 2 tumours displayed only allele loss on chromosome 10 (LOH 10), type 3 tumours had LOH 10 + LOH 17p and type 4 tumours contained LOH 10 + EGFR gene amplification. Patients with types 2, 3 and 4 tumours were older (mean ages 59, 65 and 54 years respectively) and had a shorter survival (median duration 6, 3 and 2 months respectively) than type 1 patients. Multivariate analysis indicated that the genetic subdivision was a significant prognostic variable. In this study, age proved to be of minor importance with regard to survival. Our study revealed a predominance of frontally located tumours in patients with type 1 tumours, i.e. with LOH 17p only. Images Figure 2 PMID:7917918

  15. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline

    PubMed Central

    Schwarz, Flavio; Springer, Stevan A.; Altheide, Tasha K.; Varki, Nissi M.; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer’s dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer’s disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  16. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline.

    PubMed

    Schwarz, Flavio; Springer, Stevan A; Altheide, Tasha K; Varki, Nissi M; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  17. Extracellular Superoxide Dismutase Polymorphism in Mice: Allele- Specific Effects on Phenotype

    PubMed Central

    Jun, Sujung; Pierce, Anson; Dory, Ladislav

    2010-01-01

    Extracellular superoxide dismutase (ecSOD) protects the extracellular matrix (ECM) from oxidative stress. We previously reported a new allele for ecSOD, expressed in 129P3/J mice (129), which differs from the wild-type (wt), expressed in C57BL/6J and other strains, by two amino acid substitutions and a 10 bp deletion in the 3' UTR of the mRNA [1]. The newly discovered allele is associated with a phenotype of significantly increased circulating and heparin-releasable enzyme activities and levels. In order to examine the properties of the two forms of ecSOD in an identical environment we generated, by extensive backcrossing of ecSOD heterozygous progeny to C57BL/6J females, a congenic C57 strain with the 129 (or wt) allele of ecSOD. These mice are homozygous for nearly 5,000 SNPs across all chromosomes, as determined by Affymetrix Parallele Mouse 5K SNP panel. The present study describes the generation of the congenic mice (genetically >99.8 % identical) and their ecSOD phenotype. The congenic mice plasma ecSOD activities before and after heparin administration recapitulate the differences reported in the founder mice. Tissue enzyme distribution is similar in both congenic groups, although the 129 allele is associated with higher levels of enzyme expression despite lower levels of enzyme mRNA. In these characteristics the phenotype is also allele driven, with little impact by the rest of the genome. The congenic mice carrying the 129 allele have mRNA levels that are in between those found in the founder 129P3/J and C57BL/6J strains. We conclude that the ecSOD phenotype in most aspects of enzyme expression is allele- driven, with the exception of tissue mRNA levels, where a significant contribution by the surrounding (host) genome is observed. These results also suggest potential allele-specific differences in the regulation of ecSOD synthesis and intracellular processing/secretion of ecSOD, independent of the genotype context. Most importantly, the congenic mice

  18. Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu; Xu, Yanfeng; Huang, Lan; Jones, Evan C; Zhang, Lianfeng; Clark, Richard A; Roop, Dennis R; Qin, Chuan; Chen, Jiang

    2016-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele-specific small interfering RNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific short hairpin RNA (shRNA) persistently suppressed this phenotype. The phenotypic correction was associated with a significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of mutant keratin genes. PMID:26763422

  19. Extensive allele-specific translational regulation in hybrid mice

    PubMed Central

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-01-01

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression. PMID:26253569

  20. Genome-wide survey of allele-specific splicing in humans

    PubMed Central

    Nembaware, Victoria; Lupindo, Bukiwe; Schouest, Katherine; Spillane, Charles; Scheffler, Konrad; Seoighe, Cathal

    2008-01-01

    Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST) and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array data, including several

  1. High-speed droplet-allele-specific polymerase chain reaction for genotyping of single nucleotide polymorphisms.

    PubMed

    Matsuda, Kazuyuki; Honda, Takayuki

    2015-01-01

    Single nucleotide alternations such as single nucleotide polymorphisms (SNPs) or single nucleotide mutations are useful genetic markers for molecular diagnosis, prognosis, drug response, and predisposition to diseases. Rapid identification of SNPs or mutations is clinically important, especially for determining drug responses and selection of molecular-targeted therapy. Here, we describe a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) by using our droplet-PCR machine (droplet-AS-PCR).

  2. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity.

    PubMed

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R; Bartom, Elizabeth T; Gao, Xin; Smith, Edwin R; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  3. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity

    PubMed Central

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R.; Bartom, Elizabeth T.; Gao, Xin; Smith, Edwin R.; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  4. Survey of benign Theileria parasites of cattle and buffaloes in Thailand using allele-specific polymerase chain reaction of major piroplasm surface protein gene.

    PubMed

    Sarataphan, Nopporn; Kakuda, Tsutomu; Chansiri, Kosum; Onuma, Misao

    2003-01-01

    During a year from 1999 to 2000, a total of 247 blood samples were collected from 214 cattle and 33 water buffaloes in 16 distinct geographical locations of Thailand and analyzed by allele-specific PCR amplification of major piroplasm surface protein (MPSP) genes of benign Theileria parasites. Four allelic MPSP gene types were determined namely C-type, I-type, B-type and Thai-type, which were originally designated from Japanese Theileria orientalis (Chitose, Ikeda), Australian T. buffeli (Warwick) and Thai T. sp. (Kamphaeng Saen), respectively. Only two allelic MPSP gene types were successively amplified from 204 (82.6%) blood samples. Among positive cases, 138 (67.6%) and 17 (8.3%) samples contained either Thai-type or C-type parasites, respectively, while 49 (24%) samples contained both types. However, nucleotide sequences of MPSP genes of Thai T. sp. amplified by C-type specific primers revealed higher (96.3%) similarity to Indonesian T. sp. rather than (87.8% similarity) to Japanese T. orientalis (Chitose) designated as C-type.

  5. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus

    PubMed Central

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes. PMID:27465215

  6. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  7. Strand Invasion Based Amplification (SIBA®): A Novel Isothermal DNA Amplification Technology Demonstrating High Specificity and Sensitivity for a Single Molecule of Target Analyte

    PubMed Central

    Hoser, Mark J.; Mansukoski, Hannu K.; Morrical, Scott W.; Eboigbodin, Kevin E.

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2′-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella. PMID:25419812

  8. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  9. Efficient and allele-specific genome editing of disease loci in human iPSCs.

    PubMed

    Smith, Cory; Abalde-Atristain, Leire; He, Chaoxia; Brodsky, Brett R; Braunstein, Evan M; Chaudhari, Pooja; Jang, Yoon-Young; Cheng, Linzhao; Ye, Zhaohui

    2015-03-01

    Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption.

  10. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection

    PubMed Central

    2016-01-01

    We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer. PMID:27713932

  11. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts

    PubMed Central

    Scholefield, Janine; Watson, Lauren; Smith, Danielle; Greenberg, Jacquie; Wood, Matthew JA

    2014-01-01

    Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases. PMID:24667781

  12. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts.

    PubMed

    Scholefield, Janine; Watson, Lauren; Smith, Danielle; Greenberg, Jacquie; Wood, Matthew J A

    2014-12-01

    Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases.

  13. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  14. From genes to phenotypes - evaluation of two methods for the SNP analysis in archaeological remains: pyrosequencing and competitive allele specific PCR (KASPar).

    PubMed

    Pruvost, Melanie; Reissmann, Monika; Benecke, Norbert; Ludwig, Arne

    2012-01-20

    The amplification length of the DNA fragments is one major limitation of most paleogenetic analyses. Routinely, only fragments below 200 bp can be amplified, significantly reducing the content of genetic information. Although overlapping PCR strategies and next generation sequencing techniques have strongly improved data mining recently, these methods are still expensive and time consuming. In contrast, SNP analyses are easy to handle, fast and cheap. In this study, we compare two methods of SNP detection as to efficiency, cost and reliability for their use in ancient DNA applications: pyrosequencing and competitive allele specific PCR (KASPar). Our sample set consisted of 16 horse bones from two Scythian graves (600-800 BC). In conclusion, both approaches produced reliable results for most allelic patterns. But an indel of 11 bp (ASIP) could not be detected in the KASPar approach and produced problems in the pyrosequencing method (70% success rate). In such cases, we recommend checking allelic distribution using a gel approach or capillary sequencing. Overall, in comparison with the traditional mode of ancient DNA investigations (PCR, cloning, capillary sequencing), both approaches are superior for SNP analyses especially of large sample sets.

  15. Comparative analysis of type 2 diabetes-associated SNP alleles identifies allele-specific DNA-binding proteins for the KCNQ1 locus.

    PubMed

    Hiramoto, Masaki; Udagawa, Haruhide; Watanabe, Atsushi; Miyazawa, Keisuke; Ishibashi, Naoko; Kawaguchi, Miho; Uebanso, Takashi; Nishimura, Wataru; Nammo, Takao; Yasuda, Kazuki

    2015-07-01

    Although recent genome-wide association studies (GWAS) have been extremely successful, it remains a big challenge to functionally annotate disease‑associated single nucleotide polymorphisms (SNPs), as the majority of these SNPs are located in non‑coding regions of the genome. In this study, we described a novel strategy for identifying the proteins that bind to the SNP‑containing locus in an allele‑specific manner and successfully applied this method to SNPs in the type 2 diabetes mellitus susceptibility gene, potassium voltage‑gated channel, KQT‑like subfamily Q, member 1 (KCNQ1). DNA fragments encompassing SNPs, and risk or non‑risk alleles were immobilized onto the novel nanobeads and DNA‑binding proteins were purified from the nuclear extracts of pancreatic β cells using these DNA‑immobilized nanobeads. Comparative analysis of the allele-specific DNA-binding proteins indicated that the affinities of several proteins for the examined SNPs differed between the alleles. Nuclear transcription factor Y (NF‑Y) specifically bound the non‑risk allele of the SNP rs2074196 region and stimulated the transcriptional activity of an artificial promoter containing SNP rs2074196 in an allele‑specific manner. These results suggest that SNP rs2074196 modulates the affinity of the locus for NF‑Y and possibly induces subsequent changes in gene expression. The findings of this study indicate that our comparative method using novel nanobeads is effective for the identification of allele‑specific DNA‑binding proteins, which may provide important clues for the functional impact of disease‑associated non‑coding SNPs.

  16. D9S1120, a simple STR with a common Native American-specific allele: forensic optimization, locus characterization and allele frequency studies.

    PubMed

    Phillips, C; Rodriguez, A; Mosquera-Miguel, A; Fondevila, M; Porras-Hurtado, L; Rondon, F; Salas, A; Carracedo, A; Lareu, M V

    2008-12-01

    The simple tetrameric STR D9S1120 exhibits a common population-specific allele of 9 repeats (9RA) reported to have an average frequency of 0.36 in Native Americans from both North and South of the continent. Apart from the presence of 9RA in two northeast Siberian populations, D9S1120 shows variability exclusive to, and universal in all American populations studied to date. This STR therefore provides an informative forensic marker applicable in countries with significant proportions of Native American populations or ancestry. We have re-designed PCR primers that reduce the amplified product sizes reported in NCBI UniSTS by more than a third and have characterized the repeat structure of D9S1120. The 9RA allele shares the same repeat structure as the majority of other D9S1120 alleles and so originates from a slippage-diminution mutation rather than an independent deletion. We confirm the previously reported allele frequencies from a range of populations indicating a global heterozygosity range for D9S1120 of 66-75% and estimate the proportion of Native American-diagnostic genotypes to average 53%, underlining the potential usefulness of this STR in both forensic identification and in population genetics studies of the Americas.

  17. Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles.

    PubMed

    Bunce, M; Welsh, K I

    1994-01-01

    Detection of HLA-C antigens by complement mediated cytotoxicity using human alloantisera is often difficult. Between 20 to 40% of individuals in every race have undetectable HLA-C locus antigens and 9 out of the 29 sequenced HLA-C alleles so far published encode serologically undetected antigens. In addition, HLA-C molecules are expressed at the cell surface at about 10% of the levels of HLA-A and HLA-B. Recently, amplification of DNA using sequence-specific primers (PCR-SSP) has proved a reliable and rapid method for typing HLA-DR, HLA-DQA and HLA-DQB genes. PCR-SSP takes two hours to perform and is therefore suitable for the genotyping of cadaveric donors. We have designed a set of primers which will positively identify the HLA-C alleles corresponding to the serologically defined series HLA-Cw1, Cw2, Cw3, Cw4, Cw5, Cw6, Cw7 and Cw8. The serologically undetectable alleles have also been detected in groups according to sequence homology. In addition, three new unsequenced variants have been identified. DNA samples from 56 International Histocompatibility Workshop reference cell lines and 103 control individuals have been typed by the HLA-C PCR-SSP technique. 4/56 cell line types and 11/103 normal control individuals types were discrepant with the reported serological types. All combinations of serologically detectable and most of the serologically blank HLA-C antigens can be readily identified. DNA typing for HLA-Cw by PCR-SSP can take as little as 130 minutes from start to finish, including DNA preparation.

  18. In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

    PubMed Central

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD. PMID:25101598

  19. Allele-specific RNAi Mitigates Phenotypic Progression in a Transgenic Model of Alzheimer's Disease

    PubMed Central

    Rodríguez-Lebrón, Edgardo; Gouvion, Cynthia M; Moore, Steven A; Davidson, Beverly L; Paulson, Henry L

    2009-01-01

    Despite recent advances suggesting new therapeutic targets, Alzheimer's disease (AD) remains incurable. Aberrant production and accumulation of the Aβ peptide resulting from altered processing of the amyloid precursor protein (APP) is central to the pathogenesis of disease, particularly in dominantly inherited forms of AD. Thus, modulating the production of APP is a potential route to effective AD therapy. Here, we describe the successful use of an allele-specific RNA interference (RNAi) approach targeting the Swedish variant of APP (APPsw) in a transgenic mouse model of AD. Using recombinant adeno-associated virus (rAAV), we delivered an anti-APPsw short-hairpin RNA (shRNA) to the hippocampus of AD transgenic mice (APP/PS1). In short- and long-term transduction experiments, reduced levels of APPsw transprotein were observed throughout targeted regions of the hippocampus while levels of wild-type murine APP remained unaltered. Moreover, intracellular production of transfer RNA (tRNA)-valine promoter–driven shRNAs did not lead to detectable neuronal toxicity. Finally, long-term bilateral hippocampal expression of anti-APPsw shRNA mitigated abnormal behaviors in this mouse model of AD. The difference in phenotype progression was associated with reduced levels of soluble Aβ but not with a reduced number of amyloid plaques. Our results support the development of allele-specific RNAi strategies to treat familial AD and other dominantly inherited neurodegenerative diseases. PMID:19532137

  20. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  1. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  2. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    PubMed

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction.

  3. Cross-kingdom amplification using Bacteria-specific primers: Complications for studies of coral microbial ecology

    USGS Publications Warehouse

    Galkiewicz, J.P.; Kellogg, C.A.

    2008-01-01

    PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.

  4. Utilizing ethnic-specific differences in minor allele frequency to recategorize reported pathogenic deafness variants.

    PubMed

    Shearer, A Eliot; Eppsteiner, Robert W; Booth, Kevin T; Ephraim, Sean S; Gurrola, José; Simpson, Allen; Black-Ziegelbein, E Ann; Joshi, Swati; Ravi, Harini; Giuffre, Angelica C; Happe, Scott; Hildebrand, Michael S; Azaiez, Hela; Bayazit, Yildirim A; Erdal, Mehmet Emin; Lopez-Escamez, Jose A; Gazquez, Irene; Tamayo, Marta L; Gelvez, Nancy Y; Leal, Greizy Lopez; Jalas, Chaim; Ekstein, Josef; Yang, Tao; Usami, Shin-ichi; Kahrizi, Kimia; Bazazzadegan, Niloofar; Najmabadi, Hossein; Scheetz, Todd E; Braun, Terry A; Casavant, Thomas L; LeProust, Emily M; Smith, Richard J H

    2014-10-01

    Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness. PMID:25262649

  5. Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt ( Triticum spelta L.).

    PubMed

    Blatter, Robert H. E.; Jacomet, Stefanie; Schlumbaum, Angela

    2002-02-01

    A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt ( Triticum spelta L.) and an approximately 250 year-old bread wheat ( Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta'Oberkulmer.' The alleles from the historical bread wheat were most similar to those of modern T. aestivumcultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt.

  6. DNA detection on transistor arrays following mutation-specific enzymatic amplification

    NASA Astrophysics Data System (ADS)

    Pouthas, F.; Gentil, C.; Côte, D.; Bockelmann, U.

    2004-03-01

    An integrated array of silicon field-effect transistor structures is used for electronic detection of label-free DNA. Measurements of the dc current-voltage characteristics of the transistors gives us access to reproducible detection of single- and double-stranded DNA, locally adsorbed on the surface of the device. We combine this approach with allele-specific polymerase chain reaction, to test for the 35delG mutation, a frequent mutation related to prelingual nonsyndromic deafness.

  7. A specific HLA-DP beta allele is associated with pauciarticular juvenile rheumatoid arthritis but not adult rheumatoid arthritis.

    PubMed Central

    Begovich, A B; Bugawan, T L; Nepom, B S; Klitz, W; Nepom, G T; Erlich, H A

    1989-01-01

    Nonradioactive sequence-specific oligonucleotide probes specific for the HLA-DP beta locus have been used in a simple dot-blot format to type samples amplified by the polymerase chain reaction from 44 patients with pauciarticular juvenile rheumatoid arthritis, 32 patients with adult rheumatoid arthritis, and 50 random controls. The sequences of four new DP beta alleles derived from these patients and controls are reported, bringing the total number of alleles identified thus far to 19. The DPB2.1 allele is significantly increased in juvenile rheumatoid arthritis patients over controls; this allele is not increased in patients with adult rheumatoid arthritis. The association of juvenile rheumatoid arthritis with the DPB2.1 allele is independent of linkage with previously defined HLA-D region markers of disease. Analysis of the DPB2.1 sequence shows that it differs from the nonsusceptible DPB4.2 allele by only 1 amino acid at position 69 in the beta 1 domain. PMID:2512583

  8. A hypervariable STR polymorphism in the CFI gene: southern origin of East Asian-specific group H alleles.

    PubMed

    Yuasa, Isao; Jin, Feng; Harihara, Shinji; Matsusue, Aya; Fujihara, Junko; Takeshita, Haruo; Akane, Atsushi; Umetsu, Kazuo; Saitou, Naruya; Chattopadhyay, Prasanta K

    2013-09-01

    Previous studies of four populations revealed that a hypervariable short tandem repeat (iSTR) in intron 7 of the human complement factor I (CFI) gene on chromosome 4q was unique, with 17 possible East Asian-specific group H alleles observed at relatively high frequencies. To develop a deeper anthropological and forensic understanding of iSTR, 1161 additional individuals from 11 Asian populations were investigated. Group H alleles of iSTR and c.1217A allele of a SNP in exon 11 of the CFI gene were associated with each other and were almost entirely confined to East Asian populations. Han Chinese in Changsha, southern China, showed the highest frequency for East Asian-specific group H alleles (0.201) among 15 populations. Group H alleles were observed to decrease gradually from south to north in 11 East Asian populations. This expansion of group H alleles provides evidence that southern China and Southeast Asia are a hotspot of Asian diversity and a genetic reservoir of Asians after they entered East Asia. The expected heterozygosity values of iSTR ranged from 0.927 in Thais to 0.874 in Oroqens, higher than those of an STR in the fibrinogen alpha chain (FGA) gene on chromosome 4q. Thus, iSTR is a useful marker for anthropological and forensic genetics.

  9. PCR amplification of species-specific DNA sequences can distinguish among Phytophthora species.

    PubMed Central

    Ersek, T; Schoelz, J E; English, J T

    1994-01-01

    We used PCR to differentiate species in the genus Phytophthora, which contains a group of devastating plant pathogenic fungi. We focused on Phytophthora parasitica, a species that can infect solanaceous plants such as tomato, and on Phytophthora citrophthora, which is primarily a citrus pathogen. Oligonucleotide primers were derived from sequences of a 1,300-bp P. parasitica-specific DNA segment and of an 800-bp P. citrophthora-specific segment. Under optimal conditions, the primers developed for P. parasitica specifically amplified a 1,000-bp sequence of DNA from isolates of P. parasitica. Primers for P. citrophthora similarly and specifically amplified a 650-bp sequence of DNA from isolates of P. citrophthora. Detectable amplification of these specific DNA sequences required picogram quantities of chromosomal DNA. Neither pair of primers amplified these sequences with DNAs from other species of Phytophthora or from the related genus Pythium. DNAs from P. parasitica and P. citrophthora growing in infected tomato stem tissue were amplified as distinctly as DNAs from axenic cultures of each fungal species. This is the first report on PCR-driven amplification with Phytophthora species-specific primers. Images PMID:8074533

  10. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi

    PubMed Central

    Kaulich, Manuel; Lee, Yeon J.; Lönn, Peter; Springer, Aaron D.; Meade, Bryan R.; Dowdy, Steven F.

    2015-01-01

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. PMID:25586224

  11. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements.

    PubMed Central

    Chopra, S; Athma, P; Peterson, T

    1996-01-01

    The maize P gene is a transcriptional regulator of genes encoding enzymes for flavonoid biosynthesis in the pathway leading to the production of a red phlobaphene pigment. Multiple alleles of the P gene confer distinct patterns of pigmentation to specific floral organs, such as the kernel pericarp and cob tissues. To determine the basis of allele-specific pigmentation, we have characterized the gene products and transcript accumulation patterns of the P-wr allele, which specifies colorless pericarps and red cob tissues. RNA transcripts of P-wr are present in colorless pericarps as well as in the colored cob tissues; however, the expression of P-wr in pericarp does not induce the accumulation of transcripts from the C2 and A1 genes, which encode enzymes for flavonoid pigment biosynthesis. The coding sequences of P-wr were compared with the P-rr allele, which specifies red pericarp and red cob. The P-wr and P-rr cDNA sequences are very similar in their 5' regions. There are only two nucleotide changes that result in amino acid differences; both are outside of the Myb-homologous DNA binding domain. In contrast, the 3' coding region of P-rr is replaced by a unique 210-bp sequence in P-wr. The predicted P-wr protein has a C-terminal sequence resembling a cysteine-containing metal binding domain that is not present in the P-rr protein. These results indicate that the differential pericarp pigmentation specified by the P-rr and P-wr alleles does not result from an absence of P-wr transcripts in pericarps. Rather, the allele-specific patterns of P-rr and P-wr pigmentation may be associated with structural differences in the proteins encoded by each allele. PMID:8768374

  12. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model.

    PubMed

    Millett, B P; Bradeen, J M

    2007-02-01

    Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. PMID:17177064

  13. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  14. Allele-specific analysis of DNA replication origins in mammalian cells.

    PubMed

    Bartholdy, Boris; Mukhopadhyay, Rituparna; Lajugie, Julien; Aladjem, Mirit I; Bouhassira, Eric E

    2015-05-19

    The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity.

  15. Allele-Specific Methylation Occurs at Genetic Variants Associated with Complex Disease

    PubMed Central

    Hutchinson, John N.; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T.; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results. PMID:24911414

  16. Allele-specific methylation occurs at genetic variants associated with complex disease.

    PubMed

    Hutchinson, John N; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results.

  17. The allele-specific suppressor sup-39 alters use of cryptic splice sites in Caenorhabditis elegans.

    PubMed Central

    Roller, A B; Hoffman, D C; Zahler, A M

    2000-01-01

    Mutations in the Caenorhabditis elegans sup-39 gene cause allele-specific suppression of the uncoordination defect of unc-73(e936). e936 is a point mutation that changes the canonical G at the 5' end of intron 16 to a U. This mutation activates three splice donors, two of which define introns beginning with the canonical GU. Use of these two cryptic splice sites causes loss of reading frame; interestingly these messages are not substrates for nonsense-mediated decay. The third splice donor, used in 10% of steady-state e936 messages, is the mutated splice donor at the wild-type position, which defines an intron beginning with UU. In the presence of a sup-39 mutation, these same three splice donors are used, but the ratio of messages produced by splicing at these sites changes. The percentage of unc-73(e936) messages containing the wild-type splice junction is increased to 33% with a corresponding increase in the level of UNC-73 protein. This sup-39-induced change was also observed when the e936 mutant intron region was inserted into a heterologous splicing reporter construct transfected into worms. Experiments with splicing reporter constructs showed that the degree of 5' splice site match to the splicing consensus sequence can strongly influence cryptic splice site choice. We propose that mutant SUP-39 is a new type of informational suppressor that alters the use of weak splice donors. PMID:10757761

  18. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  19. Assessing allele-specific expression across multiple tissues from RNA-seq read data

    PubMed Central

    Pirinen, Matti; Lappalainen, Tuuli; Zaitlen, Noah A.; Dermitzakis, Emmanouil T.; Donnelly, Peter; McCarthy, Mark I.; Rivas, Manuel A.

    2015-01-01

    Motivation: RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. Results: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally. Availability and implementation: http://www.well.ox.ac.uk/~rivas/mamba/. R-sources and data examples http://www.iki.fi/mpirinen/ Contact: matti.pirinen@helsinki.fi or rivas@well.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25819081

  20. Allele Specific Expression of MICA Variants in Human Fibroblasts Suggests a Pathogenic Mechanism.

    PubMed

    Shi, Chunhua; Li, Hongye; Couturier, Jacob P; Yang, Karen; Guo, Xinjian; He, Dongyi; Lewis, Dorothy E; Zhou, Xiaodong

    2015-01-01

    The major histocompatibility complex class I chain-related gene A (MICA) is involved in immune responses of both nature killer (NK) cells and subsets of T cells with its receptor NKG2D. MICA is highly polymorphic in sequence which leads to MICA protein variants with distinct features. Specific polymorphisms of MICA have been associated with inflammatory diseases, including ankylosing spondylitis (AS), ulcerative colitis (UC) and Behçet's disease. Studies herein characterize expression features of three MICA variants including MICA*008, a common variant in general population, and *MICA*007 and *019, which are associated with susceptibility to inflammatory diseases. MICA*019 was highly expressed on the surface of fibroblasts whereas expression of MICA*007 was the lowest in the culture supernatant. MICA*008 had low cell surface expression but was the only MICA allele in which exosomal material was detected. Surface or membrane-bound MICA activates NKG2D-mediated cytotoxicity, whereas soluble and exosomal MICAs down-regulate NKG2D. Therefore, comparisons of these three MICA variants in fibroblasts provides insight into understanding how MICA associated immune responses could be regulated to influence levels of inflammation.

  1. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

    PubMed

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2013-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  2. Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease.

    PubMed

    Matera, Ivana; Musso, Marco; Griseri, Paola; Rusmini, Marta; Di Duca, Marco; So, Man-Ting; Mavilio, Domenico; Miao, Xiaoping; Tam, Paul Hk; Ravazzolo, Roberto; Ceccherini, Isabella; Garcia-Barcelo, Merce

    2013-05-01

    RET common variants are associated with Hirschsprung disease (HSCR; colon aganglionosis), a congenital defect of the enteric nervous system. We analyzed a well-known HSCR-associated RET haplotype that encompasses linked alleles in coding and noncoding/regulatory sequences. This risk haplotype correlates with reduced level of RET expression when compared with the wild-type counterpart. As allele-specific expression (ASE) contributes to phenotypic variability in health and disease, we investigated whether RET ASE could contribute to the overall reduction of RET mRNA detected in carriers. We tested heterozygous neuroblastoma cell lines, ganglionic gut tissues (18 HSCR and 14 non-HSCR individuals) and peripheral blood mononuclear cells (PBMCs; 16 HSCR and 14 non-HSCR individuals). Analysis of the data generated by SNaPshot and Pyrosequencing revealed that the RET risk haplotype is significantly more expressed in gut than in PBMCs (P = 0.0045). No ASE difference was detected between patients and controls, irrespective of the sample type. Comparison of total RET expression levels between gut samples with and without ASE, correlated reduced RET expression with preferential transcription from the RET risk haplotype. Nonrandom RET ASE occurs in ganglionic gut regardless of the disease status. RET ASE should not be excluded as a disease mechanism acting during development.

  3. Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains.

    PubMed

    Popesco, Magdalena C; Maclaren, Erik J; Hopkins, Janet; Dumas, Laura; Cox, Michael; Meltesen, Lynne; McGavran, Loris; Wyckoff, Gerald J; Sikela, James M

    2006-09-01

    Extreme gene duplication is a major source of evolutionary novelty. A genome-wide survey of gene copy number variation among human and great ape lineages revealed that the most striking human lineage-specific amplification was due to an unknown gene, MGC8902, which is predicted to encode multiple copies of a protein domain of unknown function (DUF1220). Sequences encoding these domains are virtually all primate-specific, show signs of positive selection, and are increasingly amplified generally as a function of a species' evolutionary proximity to humans, where the greatest number of copies (212) is found. DUF1220 domains are highly expressed in brain regions associated with higher cognitive function, and in brain show neuron-specific expression preferentially in cell bodies and dendrites. PMID:16946073

  4. Characterization and machine learning prediction of allele-specific DNA methylation.

    PubMed

    He, Jianlin; Sun, Ming-an; Wang, Zhong; Wang, Qianfei; Li, Qing; Xie, Hehuang

    2015-12-01

    A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events.

  5. Allele-specific transcription factor binding to common and rare variants associated with disease and gene expression.

    PubMed

    Cavalli, Marco; Pan, Gang; Nord, Helena; Wallerman, Ola; Wallén Arzt, Emelie; Berggren, Olof; Elvers, Ingegerd; Eloranta, Maija-Leena; Rönnblom, Lars; Lindblad Toh, Kerstin; Wadelius, Claes

    2016-05-01

    Genome-wide association studies (GWAS) have identified a large number of disease-associated SNPs, but in few cases the functional variant and the gene it controls have been identified. To systematically identify candidate regulatory variants, we sequenced ENCODE cell lines and used public ChIP-seq data to look for transcription factors binding preferentially to one allele. We found 9962 candidate regulatory SNPs, of which 16 % were rare and showed evidence of larger functional effect than common ones. Functionally rare variants may explain divergent GWAS results between populations and are candidates for a partial explanation of the missing heritability. The majority of allele-specific variants (96 %) were specific to a cell type. Furthermore, by examining GWAS loci we found >400 allele-specific candidate SNPs, 141 of which were highly relevant in our cell types. Functionally validated SNPs support identification of an SNP in SYNGR1 which may expose to the risk of rheumatoid arthritis and primary biliary cirrhosis, as well as an SNP in the last intron of COG6 exposing to the risk of psoriasis. We propose that by repeating the ChIP-seq experiments of 20 selected transcription factors in three to ten people, the most common polymorphisms can be interrogated for allele-specific binding. Our strategy may help to remove the current bottleneck in functional annotation of the genome. PMID:26993500

  6. Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis.

    PubMed

    Jie, Qi; Shupeng, Gai; Jixiang, Zhang; Manru, Gu; Huairui, Shu

    2005-08-01

    A cDNA of 417 bp encoding an S-RNase gene, named PA S3, was isolated from apricot, Prunus aremeniaca. Nine S-alleles, S1-S9, were recognized by S-allele-specific PCR and confirmed by Southern blot analysis using PA S3 as probe. The S-genotypes of the six cultivars were determined and the results of self- and cross-pollination tests among the six cultivars were consistent with the predicted S-haplotypes by PCR analysis.

  7. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids1[OPEN

    PubMed Central

    2016-01-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  8. Paternal-specific S-allele transmission in sweet cherry (Prunus avium L.): the potential for sexual selection.

    PubMed

    Hedhly, A; Wünsch, A; Kartal, Ö; Herrero, M; Hormaza, J I

    2016-03-01

    Homomorphic self-incompatibility is a well-studied example of a physiological process that is thought to increase population diversity and reduce the expression of inbreeding depression. Whereas theoretical models predict the presence of a large number of S-haplotypes with equal frequencies at equilibrium, unequal allele frequencies have been repeatedly reported and attributed to sampling effects, population structure, demographic perturbation, sheltered deleterious mutations or selection pressure on linked genes. However, it is unclear to what extent unequal segregations are the results of gametophytic or sexual selection. Although these two forces are difficult to disentangle, testing S-alleles in the offspring of controlled crosses provides an opportunity to separate these two phenomena. In this work, segregation and transmission of S-alleles have been characterized in progenies of mixed donors and fully compatible pollinations under field conditions in Prunus avium. Seed set patterns and pollen performance have also been characterized. The results reveal paternal-specific distorted transmission of S-alleles in most of the crosses. Interestingly, S-allele segregation within any given paternal or maternal S-locus was random. Observations on pollen germination, pollen tube growth rate, pollen tube cohort size, seed set dynamics and transmission patterns strongly suggest post-pollination, prezygotic sexual selection, with male-male competition as the most likely mechanism. According to these results, post-pollination sexual selection takes precedence over frequency-dependent selection in explaining unequal S-haplotype frequencies.

  9. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers.

    PubMed

    Polegri, Livia; Calderini, Ornella; Arcioni, Sergio; Pupilli, Fulvio

    2010-06-01

    Apomixis is defined as clonal reproduction by seed. A comparative transcriptomic analysis was undertaken between apomictic and sexual genotypes of Paspalum simplex Morong to identify apomixis-related polymorphisms at the level of mRNA. cDNA-AFLP (amplified fragment length polymorphism) profiling of apomictic and sexual flowers at several stages of development yielded 202 amplicons that showed several kinds of expression specificities. Among these, the large majority consisted of amplicons that were present only in specific stages of development of the apomictic flowers. Ten percent of polymorphic amplicons were present with almost identical intensity in all stages of the apomictic flowers and never in the sexual flowers. Reverse transcription-PCR (RT-PCR) and Southern analyses of these amplicons showed that they belong to constitutively expressed alleles that are specifically present on the apomixis-controlling locus of P. simplex. The most frequent biological functions inferred from the sequence homology of the apomixis-linked alleles were related to signal transduction and nucleic acid/protein-binding activities. Most of these apomixis-linked alleles showed nonsense and frameshift mutations, revealing their probable pseudogene nature. None of the amplicons that were present only in specific stages of development of the apomictic flowers co-segregated with apomixis, indicating they did not originate from additional apomictic alleles but more probably from differential regulation of the same allele in apomictic and sexual flowers. The molecular functions inferred from sequence analysis of these latter amplicons were related to seed storage protein and regulatory genes of various types. The results are discussed regarding the possible role in apomictic reproduction of the differentially expressed genes in relation to their specificity of expression and inferred molecular functions.

  10. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction.

    PubMed Central

    Newman, P J; Gorski, J; White, G C; Gidwitz, S; Cretney, C J; Aster, R H

    1988-01-01

    Human platelets are derived from megakaryocytes as anucleate cells, and thus contain only vestigial amounts of RNA capable of being transcribed into protein. This has greatly hampered efforts to study directly platelet-specific gene products and their associated polymorphisms. In this report, we describe direct amplification, using the polymerase chain reaction, of platelet-derived mRNA in amounts sufficient to permit detailed analysis, such as restriction mapping and nucleotide sequencing. The ability to generate large amounts of cDNA from platelet-specific mRNA sequences should make possible direct molecular characterization of normal platelet proteins, and facilitate the investigation of a wide variety of inherited platelet disorders. Images PMID:3403726

  11. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene.

  12. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  13. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories.

  14. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. PMID:26115609

  15. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients.

    PubMed

    Sata, Hiroshi; Shibayama, Hirohiko; Maeda, Ikuhiro; Habuchi, Yoko; Nakatani, Eiji; Fukushima, Kentaro; Fujita, Jiro; Ezoe, Sachiko; Tadokoro, Seiji; Maeda, Tetsuo; Mizuki, Masao; Kosugi, Satoru; Nakagawa, Masashi; Ueda, Shuji; Iida, Masato; Tokumine, Yukihiro; Azenishi, Yasuhiko; Mitsui, Hideki; Oritani, Kenji; Kanakura, Yuzuru

    2015-05-01

    Quantitative polymerase chain reaction (PCR) with patient-specific, allele-specific oligonucleotide (ASO) primers for individual immunoglobulin H VDJ region (ASO-PCR) amplification was performed using several sources of clinical material, including mRNA from peripheral blood cells (PBMNCs), whole bone marrow cells (BMMNCs), and the CD20+ CD38- B-cell population in bone marrow, as well as cell-free DNA from the sera of patients with multiple myeloma (MM). We designed the ASO primers and produced sufficient PCR fragments to evaluate tumor burden in 20 of 30 bone marrow samples at diagnosis. Polymerase chain reaction amplification efficiency depended on primer sequences because the production of ASO-PCR fragments did not correlate with serum M-protein levels. However, the ASO-PCR levels in BMMNCs showed statistically significant correlations with those in PBMNCs and CD20+ CD38- B-cells. The good association between the BMMNC and PBMNC data indicated that PBMNCs could be a suitable source for monitoring minimal residual disease (MRD). In the case of cell-free DNA, ASO-PCR levels showed a unique pattern and remained high even after treatment. Because the sequence information for each ASO-PCR product was identical to the original, the cell-free DNA might also be useful for evaluating MRD. Moreover, the ASO-PCR products were clearly detected in 17 of 22 mRNA samples from CD20+ CD38- populations, suggesting that MM clones might exist in relatively earlier stages of B cells than in plasma cells. Thus, ASO-PCR analysis using various clinical materials is useful for detecting MRD in MM patients as well as for clarifying MM pathogenesis. PMID:25591497

  16. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients.

    PubMed

    Sata, Hiroshi; Shibayama, Hirohiko; Maeda, Ikuhiro; Habuchi, Yoko; Nakatani, Eiji; Fukushima, Kentaro; Fujita, Jiro; Ezoe, Sachiko; Tadokoro, Seiji; Maeda, Tetsuo; Mizuki, Masao; Kosugi, Satoru; Nakagawa, Masashi; Ueda, Shuji; Iida, Masato; Tokumine, Yukihiro; Azenishi, Yasuhiko; Mitsui, Hideki; Oritani, Kenji; Kanakura, Yuzuru

    2015-05-01

    Quantitative polymerase chain reaction (PCR) with patient-specific, allele-specific oligonucleotide (ASO) primers for individual immunoglobulin H VDJ region (ASO-PCR) amplification was performed using several sources of clinical material, including mRNA from peripheral blood cells (PBMNCs), whole bone marrow cells (BMMNCs), and the CD20+ CD38- B-cell population in bone marrow, as well as cell-free DNA from the sera of patients with multiple myeloma (MM). We designed the ASO primers and produced sufficient PCR fragments to evaluate tumor burden in 20 of 30 bone marrow samples at diagnosis. Polymerase chain reaction amplification efficiency depended on primer sequences because the production of ASO-PCR fragments did not correlate with serum M-protein levels. However, the ASO-PCR levels in BMMNCs showed statistically significant correlations with those in PBMNCs and CD20+ CD38- B-cells. The good association between the BMMNC and PBMNC data indicated that PBMNCs could be a suitable source for monitoring minimal residual disease (MRD). In the case of cell-free DNA, ASO-PCR levels showed a unique pattern and remained high even after treatment. Because the sequence information for each ASO-PCR product was identical to the original, the cell-free DNA might also be useful for evaluating MRD. Moreover, the ASO-PCR products were clearly detected in 17 of 22 mRNA samples from CD20+ CD38- populations, suggesting that MM clones might exist in relatively earlier stages of B cells than in plasma cells. Thus, ASO-PCR analysis using various clinical materials is useful for detecting MRD in MM patients as well as for clarifying MM pathogenesis.

  17. Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA.

    PubMed

    Li, Ni; Jablonowski, Carolyn; Jin, Hailing; Zhong, Wenwan

    2009-06-15

    Noncoding small RNAs play diverse, important biological roles through gene expression regulation. However, their low expression levels make it difficult to identify new small RNA species and study their functions, calling for the development of detection schemes with higher simplicity, sensitivity, and specificity. Herein, we reported a straightforward assay that combined the stand-alone rolling circle amplification (RCA) with capillary electrophoresis (CE) for specific and sensitive detection of small RNAs in biological samples. In order to enhance the overall reaction efficiency and simplify the procedure, RCA was not preceded with ligation, and a preformed circular probe was employed as the template for the target small RNA-primed isothermal amplification. The long RCA product was digested and analyzed by CE. Two DNA polymerases, the Phi29 and Bst, were compared for their detection performance. Bst is superior in the aspects of specificity, procedure simplicity, and reproducibility, while Phi29 leads to a 5-fold lower detection limit and is able to detect as low as 35 amol of the target small RNA. Coamplification of an internal standard with the target and employment of the RNase A digestion step allow accurate and reproducible quantification of low amounts of small RNA targets spiked into hundreds of nanograms of the plant total RNA extract with a recovery below 110% using either enzyme. Our assay can be adapted to a capillary array system for high-throughput screening of small RNA expression in biological samples. Also, the one-step isothermal process has the potential to conveniently amplify a very limited amount of the RNA samples, e.g., RNA extracted from only a few cells, inside the capillary column or on a microchip.

  18. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous. PMID:12296957

  19. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous.

  20. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia

    PubMed Central

    Wang, Xu; Clark, Andrew G.

    2016-01-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  1. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia.

    PubMed

    Wang, Xu; Werren, John H; Clark, Andrew G

    2016-07-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  2. Different aubergine alleles confirm the specificity of different RNAi pathways in Drosophila melanogaster.

    PubMed

    Specchia, Valeria; Bozzetti, Maria Pia

    2009-01-01

    The crystal-Stellate system is one of the best-known examples of heterochromatin-euchromatin interaction. The components of this system are homologous repetitive sequences clustered in three regions: 12E1 and h27 on the X and h11 on the Y. The symptom of a disrupted crystal-Stellate interaction is the presence of crystals in the spermatocytes of males lacking the crystal region. Stellate silencing is based on the RNAi process. Many modifiers of this system have been isolated and many of these are involved in RNAi. One of these modifiers is aubergine(sting); this is a "gain of function" allele in somatic tissues. Here we report the different behavior of two aubergine alleles with respect to the RNAi pathway: aub(sting) and a "loss of function" heteroallelic combination aub(HN)/aub(QC42). An increased amount of Aub interferes with the correct functioning of the somatic yellow hairpin RNAi, whereas the Aub reduction does not. We also demonstrate the different behavior of these alleles on the I transposon silencing in ovaries. Intriguingly, neither of these aubergine alleles silence the Stellate locus. We can conclude that the crystal-Stellate system reveals different RNAi pathways even though much still remains to be done to completely explain the molecular bases of the crystal-Stellate interaction. PMID:19242123

  3. Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations.

    PubMed

    Sun, Chang; Southard, Catherine; Witonsky, David B; Kittler, Ralf; Di Rienzo, Anna

    2010-10-01

    The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation.

  4. Allele-Specific PCR Method Based on pncA and oxyR Sequences for Distinguishing Mycobacterium bovis from Mycobacterium tuberculosis: Intraspecific M. bovis pncA Sequence Polymorphism

    PubMed Central

    de los Monteros, Luz Elena Espinosa; Galán, Juan Carlos; Gutiérrez, Montserrat; Samper, Sofía; García Marín, Juan F.; Martín, Carlos; Domínguez, Lucas; de Rafael, Luis; Baquero, Fernando; Gómez-Mampaso, Enrique; Blázquez, Jesús

    1998-01-01

    An allele-specific amplification method based on two genetic polymorphisms to differentiate Mycobacterium tuberculosis from Mycobacterium bovis was tested. Based on the differences found at position 169 in the pncA genes from M. tuberculosis and M. bovis, a PCR system which was able to differentiate most of the 237 M. tuberculosis complex isolates tested in one of the two species was developed. All 121 M. tuberculosis strains showed the expected base (cytosine) at position 169. Most of the M. bovis isolates had a guanine at the cited position. Nevertheless, 18 of the 116 M. bovis isolates, all of them goat isolates, showed the pncA polymorphism specific to M. tuberculosis. These results suggest that goat M. bovis may be the nicotinamidase-missing link at the origin of the M. tuberculosis species. Based on the polymorphism found at position 285 in the oxyR gene, the same system was used to differentiate M. tuberculosis from M. bovis. In this case, DNAs from all 121 M. tuberculosis isolates had the expected base (guanine) at this position. In addition, all 116 M. bovis isolates, including those from goats, showed the identical polymorphism (adenine). The oxyR allele-specific amplification method can differentiate M. bovis from M. tuberculosis, is rapid (results can be obtained in less than 3 h), and is easy to perform. PMID:9431955

  5. Specific amplification by PCR of rearranged genomic variable regions of immunoglobulin genes from mouse hybridoma cells.

    PubMed

    Berdoz, J; Monath, T P; Kraehenbuhl, J P

    1995-04-01

    We have designed a novel strategy for the isolation of the rearranged genomic fragments encoding the L-VH-D-JH and L-V kappa/lambda-J kappa/lambda regions of mouse immunoglobulin genes. This strategy is based on the PCR amplification of genomic DNA from mouse hybridomas using multiple specific primers chosen in the 5'-untranslated region and in the intron downstream of the rearranged JH/J kappa/lambda sequences. Variable regions with intact coding sequences, including full-length leader peptides (L) can be obtained without previous DNA sequencing. Our strategy is based on a genomic template that produces fragments that do not need to be adapted for recombinant antibody expression, thus facilitating the generation of chimeric and isotype-switched immunoglobulins.

  6. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    PubMed Central

    Wright, Sarah M.; Woo, Yong H.; Alley, Travis L.; Shirley, Bobbi-Jo; Akeson, Ellen C.; Snow, Kathy J.; Maas, Sarah A.; Elwell, Rachel L.; Foreman, Oded; Mills, Kevin D.

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now demonstrate that specific DNA double strand breaks, occurring within a narrow segment of Igh are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Eμ are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability, and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors. PMID:19435904

  7. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes.

    PubMed

    Wright, Sarah M; Woo, Yong H; Alley, Travis L; Shirley, Bobbi-Jo; Akeson, Ellen C; Snow, Kathy J; Maas, Sarah A; Elwell, Rachel L; Foreman, Oded; Mills, Kevin D

    2009-05-15

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.

  8. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant

    PubMed Central

    Ginart, Paul; Kalish, Jennifer M.; Jiang, Connie L.; Yu, Alice C.; Bartolomei, Marisa S.; Raj, Arjun

    2016-01-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders. PMID:26944681

  9. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    PubMed

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  10. A modified approach to identification of the sickle cell anemia mutation by means of allele-specific polymerase chain reaction.

    PubMed

    Birikh, K R; Plutalov, O V; Schwartz, E I; Devi, P S; Berlin, Y A

    1992-01-01

    The allele-specific PCR approach has been modified by introducing a second mismatch at the 3'-penultimate link of the primer and used to identify the sickle cell anemia mutation (A-->T transversion in the sixth codon of the human beta-globin gene causing Glu-->Val substitution in the protein), thus obviating the problem of an interpretationally ambiguous 3'-terminal mismatch including T residue. PMID:1301951

  11. A modified approach to identification of the sickle cell anemia mutation by means of allele-specific polymerase chain reaction.

    PubMed

    Birikh, K R; Plutalov, O V; Schwartz, E I; Devi, P S; Berlin, Y A

    1992-01-01

    The allele-specific PCR approach has been modified by introducing a second mismatch at the 3'-penultimate link of the primer and used to identify the sickle cell anemia mutation (A-->T transversion in the sixth codon of the human beta-globin gene causing Glu-->Val substitution in the protein), thus obviating the problem of an interpretationally ambiguous 3'-terminal mismatch including T residue.

  12. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  13. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  14. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  15. Meat Species Identification using Loop-mediated Isothermal Amplification Assay Targeting Species-specific Mitochondrial DNA

    PubMed Central

    2014-01-01

    Meat source fraud and adulteration scandals have led to consumer demands for accurate meat identification methods. Nucleotide amplification assays have been proposed as an alternative method to protein-based assays for meat identification. In this study, we designed Loop-mediated isothermal amplification (LAMP) assays targeting species-specific mitochondrial DNA to identify and discriminate eight meat species; cattle, pig, horse, goat, sheep, chicken, duck, and turkey. The LAMP primer sets were designed and the target genes were discriminated according to their unique annealing temperature generated by annealing curve analysis. Their unique annealing temperatures were found to be 85.56±0.07℃ for cattle, 84.96±0.08℃ for pig, and 85.99±0.05℃ for horse in the BSE-LAMP set (Bos taurus, Sus scrofa domesticus and Equus caballus); 84.91±0.11℃ for goat and 83.90±0.11℃ for sheep in the CO-LAMP set (Capra hircus and Ovis aries); and 86.31±0.23℃ for chicken, 88.66±0.12℃ for duck, and 84.49±0.08℃ for turkey in the GAM-LAMP set (Gallus gallus, Anas platyrhynchos and Meleagris gallopavo). No cross-reactivity was observed in each set. The limits of detection (LODs) of the LAMP assays in raw and cooked meat were determined from 10 pg/μL to 100 fg/μL levels, and LODs in raw and cooked meat admixtures were determined from 0.01% to 0.0001% levels. The assays were performed within 30 min and showed greater sensitivity than that of the PCR assays. These novel LAMP assays provide a simple, rapid, accurate, and sensitive technology for discrimination of eight meat species. PMID:26761677

  16. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis.

  17. Dr(a-) polymorphism of decay accelerating factor. Biochemical, functional, and molecular characterization and production of allele-specific transfectants.

    PubMed Central

    Lublin, D M; Thompson, E S; Green, A M; Levene, C; Telen, M J

    1991-01-01

    The Dra antigen belongs to the Cromer-related blood group system, a series of antigens on decay accelerating factor (DAF), a glycosyl-phosphatidylinositol-anchored membrane protein that protects host cells from complement-mediated damage. We studied the rare inherited Dr(a-) phenotype to ascertain the associated biochemical and functional changes in DAF and to characterize the basis for this polymorphism. Radioimmunoassay assay and flow cytometric analysis of Dr(a-) erythrocytes demonstrated 40% of normal surface expression of DAF but normal levels of several other glycosyl-phosphatidylinositol-anchored proteins, distinguishing this phenotype from that of paroxysmal nocturnal hemoglobinuria. Western blots confirmed this reduced DAF expression and indicated a slightly faster mobility of the molecule on SDS-PAGE. Despite the reduced DAF expression, Dr(a-) erythrocytes functioned normally in the complement lysis sensitivity assay. Utilization of the polymerase chain reaction to amplify mononuclear cell genomic DNA from three unrelated Dr(a-) individuals demonstrated that a point mutation underlies the Dr(a-) phenotype: a C to T change in nucleotide 649 resulting in a serine165 to leucine change. This defines the Drb allele of DAF, which can be distinguished from Dra by a Taq I restriction fragment length polymorphism. We created transfected Chinese hamster ovary cell lines expressing either the Dra or the Drb allelic form of DAF. These allele-specific transfectants were tested by inhibition of hemagglutination or flow cytometry and confirmed the specificity of anti-Dra alloantisera. The allele-specific transfectants could form the basis of a new serological approach to immunohematology. Images PMID:1710232

  18. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  19. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Sawant, Rupa R; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-07-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell-specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle- and laser pulse-induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2-6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity. PMID:24880615

  20. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-01-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell–specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle– and laser pulse–induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2–6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity. PMID:24880615

  1. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene

    PubMed Central

    Yan, Rengna; Lai, Shanshan; Yang, Yang; Shi, Hongfei; Cai, Zhenming; Sorrentino, Vincenzo; Du, Hong; Chen, Huimei

    2016-01-01

    Genome-wide association studies have identified Ankyrin-1 (ANK1) as a common type 2 diabetes (T2D) susceptibility locus. However, the underlying causal variants and functional mechanisms remain unknown. We screened for 8 tag single nucleotide polymorphisms (SNPs) in ANK1 between 2 case-control studies. Genotype analysis revealed significant associations of 3 SNPs, rs508419 (first identified here), rs515071, and rs516946 with T2D (P < 0.001). These SNPs were in linkage disequilibrium (r2 > 0.80); subsequent analysis indicated that the CCC haplotype associated with increased T2D susceptibility (OR 1.447, P < 0.001). Further mapping showed that rs508419 resides in the muscle-specific ANK1 gene promoter. Allele-specific mRNA and protein level measurements confirmed association of the C allele with increased small ANK1 (sAnk1) expression in human skeletal muscle (P = 0.018 and P < 0.001, respectively). Luciferase assays showed increased rs508419-C allele transcriptional activity in murine skeletal muscle C2C12 myoblasts, and electrophoretic mobility-shift assays demonstrated altered rs508419 DNA-protein complex formation. Glucose uptake was decreased with excess sAnk1 expression upon insulin stimulation. Thus, the ANK1 rs508419-C T2D-risk allele alters DNA-protein complex binding leading to increased promoter activity and sAnk1 expression; thus, increased sAnk1 expression in skeletal muscle might contribute to T2D susceptibility. PMID:27121283

  2. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines

    PubMed Central

    Yang, Jin; Li, Yao; Chan, Lawrence; Tsai, Yi-Ting; Wu, Wen-Hsuan; Nguyen, Huy V.; Hsu, Chun-Wei; Li, Xiaorong; Brown, Lewis M.; Egli, Dieter; Sparrow, Janet R.; Tsang, Stephen H.

    2014-01-01

    While the past decade has seen great progress in mapping loci for common diseases, studying how these risk alleles lead to pathology remains a challenge. Age-related macular degeneration (AMD) affects 9 million older Americans, and is characterized by the loss of the retinal pigment epithelium (RPE). Although the closely linked genome-wide association studies ARMS2/HTRA1 genes, located at the chromosome 10q26 locus, are strongly associated with the risk of AMD, their downstream targets are unknown. Low population frequencies of risk alleles in tissue banks make it impractical to study their function in cells derived from autopsied tissue. Moreover, autopsy eyes from end-stage AMD patients, where age-related RPE atrophy and fibrosis are already present, cannot be used to determine how abnormal ARMS2/HTRA1 expression can initiate RPE pathology. Instead, induced pluripotent stem (iPS) cell-derived RPE from patients provides us with earlier stage AMD patient-specific cells and allows us to analyze the underlying mechanisms at this critical time point. An unbiased proteome screen of A2E-aged patient-specific iPS-derived RPE cell lines identified superoxide dismutase 2 (SOD2)-mediated antioxidative defense in the genetic allele's susceptibility of AMD. The AMD-associated risk haplotype (T-in/del-A) impairs the ability of the RPE to defend against aging-related oxidative stress. SOD2 defense is impaired in RPE homozygous for the risk haplotype (T-in/del-A; T-in/del-A), while the effect was less pronounced in RPE homozygous for the protective haplotype (G–Wt–G; G–Wt–G). ARMS2/HTRA1 risk alleles decrease SOD2 defense, making RPE more susceptible to oxidative damage and thereby contributing to AMD pathogenesis. PMID:24497574

  3. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1.

    PubMed

    Minocha, Shilpi; Sung, Tzu-Ling; Villeneuve, Dominic; Lammers, Fabienne; Herr, Winship

    2016-04-01

    Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

  4. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  5. An allele-specific PCR system for rapid detection and discrimination of the CYP2C19∗4A, ∗4B, and ∗17 alleles: implications for clopidogrel response testing.

    PubMed

    Scott, Stuart A; Tan, Qian; Baber, Usman; Yang, Yao; Martis, Suparna; Bander, Jeffrey; Kornreich, Ruth; Hulot, Jean-Sébastien; Desnick, Robert J

    2013-11-01

    CYP2C19 is involved in the metabolism of clinically relevant drugs, including the antiplatelet prodrug clopidogrel, which has prompted interest in clinical CYP2C19 genotyping. The CYP2C19∗4B allele is defined by both gain-of-function [c.-806C>T (∗17)] and loss-of-function [c.1A>G (∗4)] variants on the same haplotype; however, current genotyping and sequencing assays are unable to determine the phase of these variants. Thus, the aim of this study was to develop an assay that could rapidly detect and discriminate the related ∗4A, ∗4B, and ∗17 alleles. An allele-specific PCR assay, composed of four unique primer mixes that specifically interrogate the defining ∗17 and ∗4 variants, was developed by using samples (n = 20) with known genotypes, including the ∗4A, ∗4B, and/or ∗17 alleles. The assay was validated by testing 135 blinded samples, and the results were correlated with CYP2C19 genotyping and allele-specific cloning/sequencing. Importantly, among the six ∗4 carriers in the validation cohort, after allele-specific PCR testing both samples with a ∗1/∗4 genotype were reclassified to ∗1/∗4A, all three samples with a ∗4/∗17 genotype were reclassified to ∗1/∗4B, and a sample with a ∗4/∗17/∗17 genotype was reclassified to ∗4B/∗17. In conclusion, this rapid and robust allele-specific PCR assay can refine CYP2C19 genotyping and metabolizer phenotype classification by determining the phase of the defining ∗17 and ∗4 variants, which may have utility when testing CYP2C19 for clopidogrel response.

  6. Production of dumbbell probe through hairpin cleavage-ligation and increasing RCA sensitivity and specificity by circle to circle amplification

    PubMed Central

    Wei, Hua; Tang, Suming; Hu, Tianyu; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Dumbbell probe (DP) attracts increasing interests in rolling circle amplification (RCA). A universal DP production method through cleavage-ligation of hairpin was proposed and optimized. The production is characterized by restriction endonuclease (RE)-induced cleavage ends ligation. It has the advantage of phosphorylation-free, splint-free and purification-free. To optimize designing, we found that the position of RE cleavage sequence in the stem and the primer position in the loop affected the formation and amplification of DP obviously. Both sticky and blunt ends cleaved by RE produce DP efficiently. Moreover, we introduced this DP into circle to circle (C2C) RCA based on the same cleavage-ligation principle, and acquired high sensitivity. By combining a two-ligation design and the C2C strategy, specificity for detecting let-7 family members was increased extremely. Furthermore, coreaction of different steps facilitated convenient formation and amplification process of DP. PMID:27385060

  7. Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis.

    PubMed Central

    Del Portillo, P; Murillo, L A; Patarroyo, M E

    1991-01-01

    In recent work, a species-specific Mycobacterium tuberculosis DNA fragment was cloned and sequenced. On the basis of its nucleotide sequence, two oligonucleotides were synthesized and used as primers for polymerase chain reaction (PCR) amplification. A 396-bp fragment was specifically amplified from the M. tuberculosis genome. No amplification was observed from any of 10 different mycobacterial strains, included those belonging to the M. tuberculosis complex. Neither was this fragment amplified from genomes of humans or different species of clinically important bacteria. The PCR product was detected by dot blot hybridization even when as little as 10 fg of purified M. tuberculosis DNA was used. This amplification method was subsequently used to detect and identify bacilli in different clinical samples, such as sputum, urine, and cerebrospinal fluid. A good correlation was observed between the results obtained with the PCR method that we describe and other diagnostic tests currently used. Thus, PCR amplification of this genomic fragment is proposed as a specific, rapid, and sensitive test for the diagnosis of infection with M. tuberculosis. Images PMID:1939567

  8. Evaluation of sequence-specific priming and real-time polymerase chain reaction assays for detecting HLA-B*51 alleles confirmed by sequence-based typing.

    PubMed

    Park, Y; Kim, Y S; Kim, S I; Kim, H; Kim, H S

    2012-10-01

    The human leukocyte antigen (HLA)-B*51 genotype is one of the well-known genetic factors associated with the development of Behcet's disease. We evaluated three sequence-specific priming (SSP) assays and one real-time PCR assay for detecting HLA-B*51 alleles using 93 whole blood samples, which were genotyped by high-resolution sequence-based typing (SBT). All HLA-B*51 alleles determined by SBT were detected by the four evaluated assays, and the results for all HLA-B alleles other than HLA-B*51 were negative on all assays. Thus, all HLA-B51 tests showed 100% sensitivity and 100% specificity for detecting HLA-B*51 alleles. The three SSP assays and the real-time PCR test for HLA-B*51 genotyping are simple, but reliable for detecting HLA-B*51 alleles in clinical laboratories.

  9. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  10. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities

    PubMed Central

    Iyer, Swathi V.; Parrales, Alejandro; Begani, Priya; Narkar, Akshay; Adhikari, Amit S.; Martinez, Luis A.; Iwakuma, Tomoo

    2016-01-01

    Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies. PMID:26700961

  11. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products.

    PubMed

    Toubanaki, Dimitra K; Athanasiou, Evita; Karagouni, Evdokia

    2016-08-01

    Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity. PMID:27255490

  12. Development of a Novel Allele-Specific PCR Method for Rapid Assessment of Nervous Necrosis Virus Genotypes.

    PubMed

    Toubanaki, Dimitra K; Margaroni, Maritsa; Karagouni, Evdokia

    2015-11-01

    Viral nervous necrosis infections are causing severe problems on aquaculture industry due to ecological and economic impacts. Their causal agent is nervous necrosis virus or nodavirus, which has been classified into four genotypes. Different genotypes correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostic reagents requires analysis of the genetic variation. The development and validation of a polymerase chain reaction amplification (PCR)-based methodology for nodavirus genotype assessment in a simple and robust format is described. Degenerate external primers and two genotype-specific internal primers were utilized for simultaneous amplification of nodavirus products in a single PCR. A first set of cycles produced a long PCR product, defined by the outer primers, and the internal primers amplified short DNA fragments specific for each genotype in lower annealing temperature. Detection was based on the size of the short products. Nodavirus infected and healthy samples were analyzed and none of the non-infected samples showed any bands, while all infected samples were positive. The proposed method can be performed within 4 h and consumes standard PCR and electrophoresis reagents, with costs lower than 2€ per sample. Tetra-primer PCR is a suitable alternative for virus sequencing in medium scale research laboratories and farming facilities. PMID:26210900

  13. Development of a Novel Allele-Specific PCR Method for Rapid Assessment of Nervous Necrosis Virus Genotypes.

    PubMed

    Toubanaki, Dimitra K; Margaroni, Maritsa; Karagouni, Evdokia

    2015-11-01

    Viral nervous necrosis infections are causing severe problems on aquaculture industry due to ecological and economic impacts. Their causal agent is nervous necrosis virus or nodavirus, which has been classified into four genotypes. Different genotypes correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostic reagents requires analysis of the genetic variation. The development and validation of a polymerase chain reaction amplification (PCR)-based methodology for nodavirus genotype assessment in a simple and robust format is described. Degenerate external primers and two genotype-specific internal primers were utilized for simultaneous amplification of nodavirus products in a single PCR. A first set of cycles produced a long PCR product, defined by the outer primers, and the internal primers amplified short DNA fragments specific for each genotype in lower annealing temperature. Detection was based on the size of the short products. Nodavirus infected and healthy samples were analyzed and none of the non-infected samples showed any bands, while all infected samples were positive. The proposed method can be performed within 4 h and consumes standard PCR and electrophoresis reagents, with costs lower than 2€ per sample. Tetra-primer PCR is a suitable alternative for virus sequencing in medium scale research laboratories and farming facilities.

  14. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  15. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    PubMed

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles.

  16. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity

    PubMed Central

    Novelli, F; Lena, A M; Panatta, E; Nasser, W; Shalom-Feuerstein, R; Candi, E; Melino, G

    2016-01-01

    EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients. PMID:27195674

  17. A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect

    PubMed Central

    Hsu, Chia-Hao; Lin, Ji-Sheng; Po Lai, Keng; Li, Jing-Woei; Chan, Ting-Fung; You, May-Su; Tse, William Ka Fai; Jiang, Yun-Jin

    2015-01-01

    mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp. PMID:26039894

  18. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  19. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chain reaction.

    PubMed

    Huang, Yong; Zhu, Jing; Li, Guiyin; Chen, Zhencheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2013-04-15

    In this work, we developed an electrochemical detection method based on allele-specific polymerase chain reaction (AS-PCR) and surface hybridization assay technique for the point mutation detection. A high-fidelity Vent(R)™(exo⁻) DNA polymerase, which eliminated the 3'→5' proofreading exonuclease activity by genetical engineering, was used to discriminate and extend the detection probe that perfectly matched with mutant target DNA and generate a redox-active DNA replica which folded into a molecular beacon structure by intramolecular hybridization. After hybridized with capture probe modified on gold electrode by self-assembly reaction, the redox tags can be closed to electrode, resulting in a substantial current with the maximized sensitivity for point mutation analysis. However, when there is an allele mismatch in the wild target DNA, and so no the redox-active replica DNA can be obtained. In this case, no remarkable current signal can be trigged. The proposed approach has been successfully implemented for the identification of single base mutation at the -28 position in human β-globin gene with a detection limit of 0.5 fM, demonstrating that this method provides a highly specific, sensitive and cost-efficient approach for point mutation detection.

  20. Specific HLA-DRB and -DQB Alleles and Haplotypes Confer Disease Susceptibility or Resistance in Bahraini Type 1 Diabetes Patients

    PubMed Central

    Al-Harbi, Einas M.; Abbassi, Abdul-Jabbar; Tamim, Hala; al-Jenaidi, Fayza; Kooheji, Mariam; Kamal, Madeeha; al-Mahroos, Salwa; al-Nasir, Faisal; Motala, Ayesha A.; Almawi, Wassim Y.

    2004-01-01

    Insofar as genetic susceptibility to type 1 diabetes is associated with HLA class II genes, with certain allelic combinations conferring disease susceptibility or resistance, this study assessed the distributions of HLA-DR and -DQ among 107 unrelated patients with type 1 diabetes and 88 healthy controls from Bahrain, all of Arab origin. The HLA-DRB and -DQB genotypes were determined by PCR-sequence-specific priming. The following alleles showed the strongest association with type 1 diabetes among patients versus controls according to their frequencies: DRB1*030101 (0.430 versus 0.097; P < 0.001), DRB1*040101 (0.243 versus 0.034; P < 0.001), DQB1*0201 (0.467 versus 0.193; P < 0.001), and DQB1*0302 (0.229 versus 0.091; P < 0.001). When the frequencies of alleles in controls were compared to those in patients, negative associations were seen for DRB1*100101 (0.085 versus 0.014; P < 0.001), DRB1*110101 (0.210 versus 0.060; P < 0.001), DQB1*030101 (0.170 versus 0.075; P = 0.006), and DQB1*050101 (0.335 versus 0.121; P < 0.001). In addition, the DRB1*030101-DQB1*0201 (70.1 versus 22.7%; P < 0.001) and DRB1*030101-DQB1*0302 (21.5 versus 0.0%; P < 0.001) genotypes were more prevalent among patients, thereby conferring disease susceptibility, whereas the DRB1*100101-DQB1*050101 (20.5 versus 2.8%; P < 0.001), DRB1*110101-DQB1*030101 (28.4 versus 8.4%; P < 0.001), and DRB1*110101-DQB1*050101 (30.7 versus 0.9%; P < 0.001) genotypes were more prevalent among controls, thus assigning a protective role. These results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with type 1 diabetes and may underline several characteristics that distinguish Bahraini patients from other Caucasians patients. PMID:15013978

  1. Specific HLA-DRB and -DQB alleles and haplotypes confer disease susceptibility or resistance in Bahraini type 1 diabetes patients.

    PubMed

    Al-Harbi, Einas M; Abbassi, Abdul-Jabbar; Tamim, Hala; al-Jenaidi, Fayza; Kooheji, Mariam; Kamal, Madeeha; al-Mahroos, Salwa; al-Nasir, Faisal; Motala, Ayesha A; Almawi, Wassim Y

    2004-03-01

    Insofar as genetic susceptibility to type 1 diabetes is associated with HLA class II genes, with certain allelic combinations conferring disease susceptibility or resistance, this study assessed the distributions of HLA-DR and -DQ among 107 unrelated patients with type 1 diabetes and 88 healthy controls from Bahrain, all of Arab origin. The HLA-DRB and -DQB genotypes were determined by PCR-sequence-specific priming. The following alleles showed the strongest association with type 1 diabetes among patients versus controls according to their frequencies: DRB1*030101 (0.430 versus 0.097; P < 0.001), DRB1*040101 (0.243 versus 0.034; P < 0.001), DQB1*0201 (0.467 versus 0.193; P < 0.001), and DQB1*0302 (0.229 versus 0.091; P < 0.001). When the frequencies of alleles in controls were compared to those in patients, negative associations were seen for DRB1*100101 (0.085 versus 0.014; P < 0.001), DRB1*110101 (0.210 versus 0.060; P < 0.001), DQB1*030101 (0.170 versus 0.075; P = 0.006), and DQB1*050101 (0.335 versus 0.121; P < 0.001). In addition, the DRB1*030101-DQB1*0201 (70.1 versus 22.7%; P < 0.001) and DRB1*030101-DQB1*0302 (21.5 versus 0.0%; P < 0.001) genotypes were more prevalent among patients, thereby conferring disease susceptibility, whereas the DRB1*100101-DQB1*050101 (20.5 versus 2.8%; P < 0.001), DRB1*110101-DQB1*030101 (28.4 versus 8.4%; P < 0.001), and DRB1*110101-DQB1*050101 (30.7 versus 0.9%; P < 0.001) genotypes were more prevalent among controls, thus assigning a protective role. These results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with type 1 diabetes and may underline several characteristics that distinguish Bahraini patients from other Caucasians patients.

  2. Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in alpha-spectrin-deficient red cells.

    PubMed

    Robledo, Raymond F; Lambert, Amy J; Birkenmeier, Connie S; Cirlan, Marius V; Cirlan, Andreea Flavia M; Campagna, Dean R; Lux, Samuel E; Peters, Luanne L

    2010-03-01

    Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3.

  3. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification.

    PubMed

    Yin, Bin-Cheng; Liu, Yu-Qiang; Ye, Bang-Ce

    2012-03-21

    Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescent form. Herein, we take advantage of the duplex-specific nuclease (DSN) to create a new signal-amplifying mechanism, duplex-specific nuclease signal amplification (DSNSA), to increase the detection sensitivity of molecular beacons (Taqman probes). DSN nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, thus, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules. We further demonstrate the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples. Our experimental results showed a quantitative measurement of sequence-specific miRNAs with the detection limit in the femtomolar range, nearly 5 orders of magnitude lower than that of conventional molecular beacons. This amplification strategy also demonstrated a high selectivity for discriminating differences between miRNA family members. Considering the superior sensitivity and specificity, as well as the multiplex and simple-to-implement features, this method promises a great potential of becoming a routine tool for simultaneously quantitative analysis of multiple miRNAs in tissues or cells, and supplies valuable information for biomedical research and clinical early diagnosis.

  4. Human Platelet Antigen Alleles in 998 Taiwanese Blood Donors Determined by Sequence-Specific Primer Polymerase Chain Reaction

    PubMed Central

    Burnouf, Thierry; Chen, Jen-Wei; Lin, Liang-In

    2013-01-01

    Polymorphism of human platelet antigens (HPAs) leads to alloimmunizations and immune-mediated platelet disorders including fetal-neonatal alloimmune thrombocytopenia (FNAIT), posttransfusion purpura (PTP), and platelet transfusion refractoriness (PTR). HPA typing and knowledge of antigen frequency in a population are important in particular for the provision of HPA-matched blood components for patients with PTR. We have performed allele genotyping for HPA-1 through -6 and -15 among 998 platelet donors from 6 blood centers in Taiwan using sequence-specific primer polymerase chain reaction. The HPA allele frequency was 99.55, and 0.45% for HPA-1a and -1b; 96.49, and 3.51% for HPA-2a and -2b; 55.81, and 44.19% for HPA-3a and -3b; 99.75, and 0.25% for HPA-4a and -4b; 98.50, and 1.50% for HPA-5a and -5b; 97.75 and 2.25% for HPA-6a and -6b; 53.71 and 46.29% for HPA-15a and -15b. HPA-15b and HPA-3a, may be considered the most important, followed by HPA-2, -6, -1, -5, and -4 systems, as a cause of FNAIT, PTP, and PTR based on allele frequency. HPA-4b and HPA-5b role cannot be excluded based on their immunogenicity. A larger-scale study will now be conducted to confirm these hypotheses and to establish an apheresis donor database for the procurement of HPA-matched apheresis platelets for patients with PTR. PMID:23865077

  5. A novel one cycle allele specific primer extension--molecular beacon displacement method for DNA point mutation detection with improved specificity.

    PubMed

    Li, Xiaomin; Huang, Yong; Guan, Yuan; Zhao, Meiping; Li, Yuanzong

    2007-02-12

    We report here a new method for the real-time detection of DNA point mutations with molecular beacon as the fluorescence tracer and 3' (exo-) Bst DNA polymerase large fragment as the polymerase. The method is based on the mechanism of allele specific primer extension-strand displacement (ASPE-SD). To improve the specificity of the method only one cycle of the allele specific polymerase chain reaction (PCR) was used that could largely eliminate the non-specific reactions between the primers and template of the "wrong" genotype. At first, the primer and molecular beacon both hybridize to the DNA template, and the molecular beacon emits intensive fluorescence. The role of 3' exonuclease excision of Bst DNA polymerase large fragment is utilized for primer extension. When 3'-termini matches its corresponding template, the primer would efficiently extend and replace the molecular beacon that would simultaneously return to its closed form leading to the quenching of the fluorescence. However, when 3'-termini of the primer mismatches its corresponding template primer extension and molecular beacon displacement would not happen and fluorescence of the hybridized molecular beacon holds the line without fluorescence quenching. This approach was fully demonstrated in synthetic template systems and applied to detect point mutation at codon 259, a possible point mutation site in exon 7 of p53 gene, obtained from human genomic DNA samples with unambiguous differentiation power.

  6. Initiation of earthquake-induced slope failure: influence of topographical and other site specific amplification effects

    NASA Astrophysics Data System (ADS)

    Havenith, H.-B.; Vanini, M.; Jongmans, D.; Faccioli, E.

    Increased structural damage caused byearthquakes on hilltops and along ridgeshas often been related to amplification ofground motion due to the presence oftopography. However, comparison betweenobservations and numerical modeling hasshown that amplification is only partlydependent on the prominent surfacemorphology. Strong effects are also inducedby soft layers, such as weathered rockmaterial or colluvium, covering thetopographies.Numerous seismically triggered landslidesare reported to occur in the same materialsthat are likely to amplify ground motions.Therefore, it can be suspected that groundmotion dynamics significantly contribute tothe observed slopes failures. Thispotential relationship is the subject ofthe present case study, the Ananevorockslide in the northeastern Tien Shanmountains. The survey included geophysicalprospecting, earthquake recordings andstructural analyses of the rock fabric. Onthe basis of the field data, observedamplification effects could be related tothe local geological conditions andparticularly to the surface morphology andto the presence of low-velocity layers -deeply weathered rocks - on the top of thebedrock. Surface layer- andtopography-dependent amplification has alsobeen studied numerically by 2D and 3Dfinite element modeling of ground motiondynamics. The present paper focuses onadditional effects that may be induced bythe presence of a fault zone and of thelandslide scarp. Further, observed andcomputed ground motion dynamics areconnected with slope failuresusceptibility: 2D numerical simulationsreveal that strain localization is closelyrelated to wave amplification in surficiallow-velocity layers, particularly belowconvex surface morphologies.

  7. Evaluation of bias associated with high-multiplex, target-specific pre-amplification

    PubMed Central

    Okino, Steven T.; Kong, Michelle; Sarras, Haya; Wang, Yan

    2015-01-01

    We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step). Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments. PMID:27077043

  8. Evaluation of bias associated with high-multiplex, target-specific pre-amplification.

    PubMed

    Okino, Steven T; Kong, Michelle; Sarras, Haya; Wang, Yan

    2016-01-01

    We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step). Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments.

  9. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  10. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle.

    PubMed

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  11. Bivariate segmentation of SNP-array data for allele-specific copy number analysis in tumour samples

    PubMed Central

    2013-01-01

    Background SNP arrays output two signals that reflect the total genomic copy number (LRR) and the allelic ratio (BAF), which in combination allow the characterisation of allele-specific copy numbers (ASCNs). While methods based on hidden Markov models (HMMs) have been extended from array comparative genomic hybridisation (aCGH) to jointly handle the two signals, only one method based on change-point detection, ASCAT, performs bivariate segmentation. Results In the present work, we introduce a generic framework for bivariate segmentation of SNP array data for ASCN analysis. For the matter, we discuss the characteristics of the typically applied BAF transformation and how they affect segmentation, introduce concepts of multivariate time series analysis that are of concern in this field and discuss the appropriate formulation of the problem. The framework is implemented in a method named CnaStruct, the bivariate form of the structural change model (SCM), which has been successfully applied to transcriptome mapping and aCGH. Conclusions On a comprehensive synthetic dataset, we show that CnaStruct outperforms the segmentation of existing ASCN analysis methods. Furthermore, CnaStruct can be integrated into the workflows of several ASCN analysis tools in order to improve their performance, specially on tumour samples highly contaminated by normal cells. PMID:23497144

  12. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  13. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers.

    PubMed

    Pedersen, Lasse Eggers; Jungersen, Gregers; Sorensen, Maria Rathmann; Ho, Chak-Sum; Vadekær, Dorte Fink

    2014-12-15

    The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination.

  14. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat

    PubMed Central

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472

  15. Loop mediated isothermal amplification of 5.8S rDNA for specific detection of Tritrichomonas foetus.

    PubMed

    Oyhenart, Jorge; Martínez, Florencia; Ramírez, Rosana; Fort, Marcelo; Breccia, Javier D

    2013-03-31

    Tritrichomonas foetus is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to infertility and abortion. A test based on loop mediated isothermal amplification (LAMP) targeting the 5.8S rDNA subunit was designed for the specific identification of T. foetus. The LAMP assay was validated using 28 T. foetus and 35 non-T. foetus trichomonads strains. It did not exhibit cross-reaction with closely related parasites commonly found in smegma cultures like Tetratrichomonas spp. and Pentatrichomonas hominis. Bovine smegma did not show interferences for the detection of the parasite and, the sensitivity of the method (4×10(3) CFU/mL, approximately 10 cells/reaction) was slightly higher than that found for PCR amplification with TFR3 and TFR4 primers. The LAMP approach has potential applications for diagnosis and control of T. foetus and, practical use for low skill operators in rural areas.

  16. [Diagnostics of phytopathogen fungi Septoria tritici and Stagonospora nodorum by fluorescent amplification-based specific hybridization (FLASH) PCR].

    PubMed

    Abramova, S L; Riazantsev, D Iu; Voinova, T M; Zavriev, S K

    2008-01-01

    A PCR system in the fluorescent amplification-based specific hybridization (FLASH) format was developed for the detection and identification of two important wheat pathogenic fungi Septoria tritici (teleomorph of Mycosphaerella graminicola and Stagonospora nodorum (teleomorph of Phaeosphaeria nodorum), which cause spots on leaves and glumes, respectively. The pathogen detection system is based on the amplification of a genome fragment in the internal transcribed spacer 1 (ITS 1) region and a site encoding the 5.8S ribosomal RNA. The forward primers to ITS1 and a universal reverse primer and a Beacon type probe to the 5.8S ribosomal RNA region were chosen to provide the detection of the products in the FLASH format. This system was tested on different isolates of the pathogens, and on infected soil, leaf, and seed samples.

  17. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.

    PubMed

    Xu, Guojie; Wang, Xueyong; Liu, Chunsheng; Li, Weidong; Wei, Shengli; Liu, Ying; Cheng, Xiaoli; Liu, Juan

    2013-02-01

    Rhubarb (official Da-huang) is an important medicinal herb in Asia. Many adulterants of official Da-huang have been discovered in Chinese markets in recent years, which has resulted in adverse effects in medicinal treatment. Here, novel molecular markers based on a short maturase K (matK) gene were developed for authenticating official Da-huang. This study showed that all the species from official Da-huang were clustered together in one clade in the polygenetic trees based on short matK. Two highly conserved single nucleotide polymorphisms of short matK were mined in the species from official Da-huang. Based on these polymophisms, four improved specific primers of official Da-huang were successfully developed that generated reproducible specific bands. These results suggest that the short matK sequence can be considered as a favorable candidate for distinguishing official Da-huang from its adulterants. The established multiplex allele-specific PCR was determined to be simple and accurate and may serve as a preferable tool for authentication of official Da-huang. In addition, we suggest that short-sized specific bands be developed to authenticate materials used in traditional Chinese medicine.

  18. Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens.

    PubMed

    Beck-Engeser, G B; Monach, P A; Mumberg, D; Yang, F; Wanderling, S; Schreiber, K; Espinosa, R; Le Beau, M M; Meredith, S C; Schreiber, H

    2001-08-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4(+) T cell-recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light-induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4(+) T cell-recognized antigen. Thus, for both L9 and L26 genes, we observe "two hit" kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth.

  19. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  20. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  1. An African ancestry-specific allele of CTLA4 confers protection against rheumatoid arthritis in African Americans.

    PubMed

    Kelley, James M; Hughes, Laura B; Faggard, Jeffrey D; Danila, Maria I; Crawford, Monica H; Edberg, Yuanqing; Padilla, Miguel A; Tiwari, Hemant K; Westfall, Andrew O; Alarcón, Graciela S; Conn, Doyt L; Jonas, Beth L; Callahan, Leigh F; Smith, Edwin A; Brasington, Richard D; Allison, David B; Kimberly, Robert P; Moreland, Larry W; Edberg, Jeffrey C; Bridges, S Louis

    2009-03-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA4) is a negative regulator of T-cell proliferation. Polymorphisms in CTLA4 have been inconsistently associated with susceptibility to rheumatoid arthritis (RA) in populations of European ancestry but have not been examined in African Americans. The prevalence of RA in most populations of European and Asian ancestry is approximately 1.0%; RA is purportedly less common in black Africans, with little known about its prevalence in African Americans. We sought to determine if CTLA4 polymorphisms are associated with RA in African Americans. We performed a 2-stage analysis of 12 haplotype tagging single nucleotide polymorphisms (SNPs) across CTLA4 in a total of 505 African American RA patients and 712 African American controls using Illumina and TaqMan platforms. The minor allele (G) of the rs231778 SNP was 0.054 in RA patients, compared to 0.209 in controls (4.462 x 10(-26), Fisher's exact). The presence of the G allele was associated with a substantially reduced odds ratio (OR) of having RA (AG+GG genotypes vs. AA genotype, OR 0.19, 95% CI: 0.13-0.26, p = 2.4 x 10(-28), Fisher's exact), suggesting a protective effect. This SNP is polymorphic in the African population (minor allele frequency [MAF] 0.09 in the Yoruba population), but is very rare in other groups (MAF = 0.002 in 530 Caucasians genotyped for this study). Markers associated with RA in populations of European ancestry (rs3087243 [+60C/T] and rs231775 [+49A/G]) were not replicated in African Americans. We found no confounding of association for rs231778 after stratifying for the HLA-DRB1 shared epitope, presence of anti-cyclic citrullinated peptide antibody, or degree of admixture from the European population. An African ancestry-specific genetic variant of CTLA4 appears to be associated with protection from RA in African Americans. This finding may explain, in part, the relatively low prevalence of RA in black African populations.

  2. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    PubMed

    Perry, John R B; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coviello, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davey Smith, George; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco E J; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D P; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth J F; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K

    2014-10-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  3. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche

    PubMed Central

    Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F

    2014-01-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  4. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    PubMed

    Perry, John R B; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coviello, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davey Smith, George; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco E J; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D P; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth J F; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K

    2014-10-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.

  5. A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression

    PubMed Central

    Warburton, Alix; Breen, Gerome; Bubb, Vivien J.; Quinn, John P.

    2016-01-01

    Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterized an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk. PMID:26429811

  6. Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds.

    PubMed

    Wu, Huayu; Gaur, Uma; Mekchay, Supamit; Peng, Xianwen; Li, Lianghua; Sun, Hua; Song, Zhongxu; Dong, Binke; Li, Mingbo; Wimmers, Klaus; Ponsuksili, Siriluck; Li, Kui; Mei, Shuqi; Liu, Guisheng

    2015-11-01

    Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.

  7. Identification and Evolution of Functional Alleles of the Previously Described Pollen Specific Myrosinase Pseudogene AtTGG6 in Arabidopsis thaliana

    PubMed Central

    Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming

    2016-01-01

    Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes. PMID:26907263

  8. HLA-DRB1 and HLA-DQB1 allele associations in an Albanian patient population with rheumatoid arthritis: correlations with the specific autoantibody markers and inter-population DRB1 allele frequency variability.

    PubMed

    Prifti-Kurti, Margarita; Nunes, José Manuel; Shyti, Erkena; Ylli, Zamira; Sanchez-Mazas, Alicia; Sulcebe, Genc

    2014-08-01

    The prevalence of rheumatoid arthritis and its specific autoantibodies varies in different populations. This variability depends on the genetic polymorphism of the immune response genes among which the HLA system plays a major role. In this context, we studied the HLA-DRB1 and HLA-DQB1 first-level allele frequencies in 100 Albanian patients with rheumatoid arthritis (RA), and taking into account their rheumatoid factor (RF) and anticitrullinated peptide antibodies (ACPA) serologic subgroups, we compared them with the respective frequencies in a population of 191 Albanian individuals without known pathology. No differences were found between the controls and the RA patient group as a whole, but three statistically significant differences were found: an increase in DRB1*04 among ACPA+, RF+ and ACPA+/RF+ patients, a significant decrease in DRB1*11 among ACPA+/RF+ and also a decrease in DRB1*13 among RF+ patient subgroups. Comparing allele frequencies of putatively associated RA alleles in different European populations revealed a significant negative correlation between the RA predisposing DRB1*04 and protective DRB1*11 allele frequencies. A statistically significant correlation was also found between RA prevalence rates and DRB1*04 as well as DRB1*11 frequencies. The relatively low frequencies of DRB1*04 and high DRB1*11 in the Albanian population might explain the rather low positivity rate of ACPA and RF antibodies among the Albanian RA patients. These specific association patterns suggest that this first study of RA in an Albanian population should be followed up to include second level or higher definition of HLA alleles and to compare RA patterns among European populations.

  9. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  10. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene

    SciTech Connect

    Wilson, R.C.; Wei, J.Q.; Cheng, K.C.

    1995-05-01

    Rapid DNA analysis based on allele-specific polymerase chain reaction (PCR) using mutation site-specific primers was developed to detect mutations in the CYP21 gene known to cause steroid 21-hydroxylase deficiency. In contrast to the previous method, in which PCR of genomic DNA was followed by dot blot analysis with radio active probes and multiple rounds of stripping and reprobing for each of the 8 most common mutation sites, the results using this new method were immediately visualized after the PCR run by ethidium bromide-stained agarose gel electrophoresis. Using allele-specific PCR, mutation(s) were identified on 148 affected chromosomes out of 160 tested. Although mutation(s) were identified on only one chromosome of 11 of these patients, their parents showed a consistent pattern on DNA analysis. The only exception was that in one family, in which the parents each had a detectable mutation, a mutation was detected on only one allele of the patient. Most likely there is a mutation in the patient`s other allele that could have arisen de novo or was inherited from the parent and was not evident in the transmitting parent`s phenotype. When compared with the dot blot procedure, allele-specific PCR is more rapid, less labor-intensive, and avoids the use of radioactivity. 26 refs., 3 figs., 2 tabs.

  11. Phenotypic effect of substitution of allelic variants for a histone H1 subtype specific for growing tissues in the garden pea (Pisum sativum L.).

    PubMed

    Bogdanova, Vera S; Kosterin, Oleg E; Berdnikov, Vladimir A

    2007-05-01

    In pea, subtype H1-7 of histone H1 is specific for young actively growing tissues and disappears from chromatin of mature tissues. We sequenced the alleles coding for three main variants, numbered according to the increase of the electrophoretic mobility. Allele 1 differs from the most common allele 2 by eight nucleotide substitutions, two of them associated with amino acid replacements, His->Tyr in the globular domain and Ala->Val in the C-terminal domain. Allele 3 differs from alleles 1 and 2 by a 24-bp deletion in the part coding for the C-terminal domain. In three greenhouse experiments, we compared quantitative traits in nearly isogenic lines differing by these H1-7 variants. In experiment 1, three lines bearing either of the three allelic variants were compared, the other experiments involved pairs of lines bearing variants 1 and 3. In all experiments, statistically significant differences between the lines were registered, mostly related to the plant size. The most prominent effect was associated with plant growth dynamics. Plants of line 3, carrying the 8-amino acid deletion in histone H1-7, on average grew slower. In two experiments, the differences of the mean stem length persisted throughout plant growth while in experiment 2 differences disappeared upon maturity. The H1-7 subtype is supposed to be related to maintenance of chromatin state characteristic for cell growth and division. PMID:16900316

  12. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-01-01

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  13. Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization.

    PubMed

    Ho, M S; Barr, B C; Marsh, A E; Anderson, M L; Rowe, J D; Tarantal, A F; Hendrickx, A G; Sverlow, K; Dubey, J P; Conrad, P A

    1996-05-01

    Neospora is a newly recognized genus of pathogenic coccidia, closely related to Toxoplasma gondii, that can cause abortion or congenital disease in a variety of domestic animal hosts. On the basis of the small-subunit rRNA gene sequences of Neospora spp. and other apicomplexa coccidia, oligonucleotide primers COC-1 and COC-2 were used for PCR amplification of conserved sequences of approximately 300 bp in size. A Neospora-specific chemiluminescent probe hybridized to Southern blots of amplification products from Neospora DNA but not to Southern blots with amplified DNA from the other coccidian parasites tested. A Toxoplasma-specific probe whose sequence differed from that of the probe for Neospora spp. by a single base pair was used to distinguish these parasites by specific Southern blot hybridization. The PCR system detected as few as one Neospora tachyzoite in the culture medium or five tachyzoites in samples of whole blood or amniotic fluid spiked with Neospora parasites. In addition, Neospora PCR products were successfully amplified from whole blood and amniotic fluid samples of experimentally infected bovine and rhesus macaque fetuses. These results indicate that this PCR and probe hybridization system could be a valuable adjunct to serology and immunohistochemistry for the diagnosis of Neospora infections in bovine or primate fetuses.

  14. Rapid detection of human rotavirus using NSP4 gene specific reverse transcription loop-mediated isothermal amplification assay.

    PubMed

    Malik, Yashpal Singh; Sharma, Kuldeep; Kumar, Naveen; Shivachandra, Sathish B; Rawat, Vinita; Rakholia, Ritu; Ranjan, Rajeev; Ganesh, Balasubramanian; Parida, Manmohan

    2013-09-01

    The seasonal outbreaks of human rotavirus (RV) infection occur every winter. Most patients are diagnosed clinically by a rapid latex agglutination detection kit or polymerase chain reaction assays for RV from stool samples, but some problems have been reported on the specificity and sensitivity of such rapid detection assays. To ratify these issues, a sensitive, specific, simple, and rapid nucleic acid based diagnostic method is expected to be introduced and the reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the RV in human stool samples by incubation at 60 °C for 1 h and amplification was confirmed by electrophoretic laddering, restriction enzyme digestion, and hydroxynapthol blue discoloration. The assay established in this study was found to detect only the RVs and no cross-reaction with other viruses, demonstrating its high specificity. By using serial samples dilution as template, the detection limit of LAMP was 10 times more than that of PCR. The results showed the potential clinical feasibility of RT-LAMP as a useful diagnostic tool for the detection of RV with high sensitivity in comparison to conventional RT-PCR.

  15. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum.

    PubMed

    Yeam, Inhwa; Kang, Byoung-Cheorl; Lindeman, Wouter; Frantz, James D; Faber, Nanne; Jahn, Molly M

    2005-12-01

    Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 (1), and pvr1 (2). These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.

  16. Gender verification in sports by PCR amplification of SRY and DYZ1 Y chromosome specific sequences: presence of DYZ1 repeat in female athletes.

    PubMed Central

    Serrat, A; García de Herreros, A

    1996-01-01

    OBJECTIVE: To perform genetic sex typing during the Barcelona Olympic Games using polymerase chain reaction (PCR) amplification of Y chromosome specific sequences. METHODS: The assay consisted of the amplification of a specific sequence corresponding to the repeat DYZ1 element from buccal smears samples of 2406 female competitors. Positive samples were reanalysed for the presence of another Y chromosome specific gene, SRY. RESULTS: The expression of these two elements did not always correlate; six samples were found where the presence of DYZ1 but not SRY was detected. This presence of DYZ1 sequence in female athletes is higher than in unselected females, where no DYZ1 amplification was observed in any of the 1629 samples analysed. CONCLUSIONS: Amplification of DYZ1 repeat should not be used as the only index for determining genetic sex, at least in sporting events. Images Figure 2 Figure 4 PMID:9015592

  17. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction

    SciTech Connect

    Day, D.J.; Barany, F.; Speiser, P.W.

    1995-09-01

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia, an inherited inability to synthesize cortisol that occurs in 1 in 10,000-15,000 births. Affected females are born with ambiguous genitalia, a condition that can be ameliorated by administering dexamethasone to the mother for most of gestation. Prenatal diagnosis is required for accurate treatment of affected females as well as for genetic counseling purposes. Approximately 95% of mutations causing this disorder result from recombinations between the gene encoding the 21-hydroxylase enzyme (CYP21) and a linked, highly homologous pseudogene (CYP21P). Approximately 20% of these mutations are gene deletions, and the remainder are gene conversions that transfer any of nine deleterious mutations from the CYP21P pseudogene to CYP21. We describe a methodology for genetic diagnosis of 21-hydroxylase deficiency that utilizes gene-specific PCR amplification in conjunction with thermostable DNA ligase to discriminate single nucleotide variations in a multiplexed ligation detection assay. The assay has been designed to be used with either fluorescent or radioactive detection of ligation products by electrophoresis on denaturing acrylamide gels and is readily adaptable for use in other disease systems. 30 refs., 5 figs.

  18. Early Embryogenesis-Specific Expression of the Rice Transposon Ping Enhances Amplification of the MITE mPing

    PubMed Central

    Teramoto, Shota; Tsukiyama, Takuji; Okumoto, Yutaka; Tanisaka, Takatoshi

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are numerically predominant transposable elements in the rice genome, and their activities have influenced the evolution of genes. Very little is known about how MITEs can rapidly amplify to thousands in the genome. The rice MITE mPing is quiescent in most cultivars under natural growth conditions, although it is activated by various stresses, such as tissue culture, gamma-ray irradiation, and high hydrostatic pressure. Exceptionally in the temperate japonica rice strain EG4 (cultivar Gimbozu), mPing has reached over 1000 copies in the genome, and is amplifying owing to its active transposition even under natural growth conditions. Being the only active MITE, mPing in EG4 is an appropriate material to study how MITEs amplify in the genome. Here, we provide important findings regarding the transposition and amplification of mPing in EG4. Transposon display of mPing using various tissues of a single EG4 plant revealed that most de novo mPing insertions arise in embryogenesis during the period from 3 to 5 days after pollination (DAP), and a large majority of these insertions are transmissible to the next generation. Locus-specific PCR showed that mPing excisions and insertions arose at the same time (3 to 5 DAP). Moreover, expression analysis and in situ hybridization analysis revealed that Ping, an autonomous partner for mPing, was markedly up-regulated in the 3 DAP embryo of EG4, whereas such up-regulation of Ping was not observed in the mPing-inactive cultivar Nipponbare. These results demonstrate that the early embryogenesis-specific expression of Ping is responsible for the successful amplification of mPing in EG4. This study helps not only to elucidate the whole mechanism of mPing amplification but also to further understand the contribution of MITEs to genome evolution. PMID:24921928

  19. Allele-specific germ cell epimutation in the spacer promoter of the 45S ribosomal RNA gene after Cr(III) exposure

    SciTech Connect

    Shiao, Y.-H. . E-mail: shiao@mail.ncifrcf.gov; Crawford, Erik B.; Anderson, Lucy M.; Patel, Pritesh; Ko, Kinarm

    2005-06-15

    Paternal exposure of mice to Cr(III) causes increased tumor risk in offspring; an epigenetic mechanism has been hypothesized. Representational difference analysis of gene methylation in sperm revealed hypomethylation in the 45S ribosomal RNA (rRNA) gene after Cr(III) exposure, compared with controls. The most striking effects were seen in the rRNA spacer promoter, a region in the intergenic region of rRNA gene clusters that can influence transcription. Methylation of the rRNA spacer promoter has not been studied heretofore. Sperm DNAs from Cr(III)-treated and control mice were modified by the bisulfite method followed by PCR amplification of the spacer promoter, including 27 CpG sites. Cloning and dideoxy sequencing identified sequence variants (T or G at base -2214) in the spacer promoter. The T allele had less DNA methylation than the G allele in control mice (17 of 17 clones vs. 42 of 72 clones, P = 0.0004). In spite of diversity of sperm DNA methylation patterns, the DNA clones from Cr(III)-exposed mice had fewer methylated CpG sites, by an average of 19% (P < 0.0001). This difference was limited to the G allele. The pyrosequencing technique was applied to quantify the percentage of methylation directly from amplified PCR products. Strikingly, for nine CpG sites including the spacer promoter core region, hypomethylation was highly significant in the Cr(III)-treated group (paired T test, P < 0.0001). Thus, one allele of the 45S rRNA spacer promoter is hypomethylated in sperm germ cells after Cr(III) exposure. This epimutation may lead to increase of tumor risk in the offspring.

  20. Pathway Analysis Using Information from Allele-Specific Gene Methylation in Genome-Wide Association Studies for Bipolar Disorder

    PubMed Central

    Chuang, Li-Chung; Kao, Chung-Feng; Shih, Wei-Liang; Kuo, Po-Hsiu

    2013-01-01

    Bipolar disorder (BPD) is a complex psychiatric trait with high heritability. Despite efforts through conducting genome-wide association (GWA) studies, the success of identifying susceptibility loci for BPD has been limited, which is partially attributed to the complex nature of its pathogenesis. Pathway-based analytic strategy is a powerful tool to explore joint effects of gene sets within specific biological pathways. Additionally, to incorporate other aspects of genomic data into pathway analysis may further enhance our understanding for the underlying mechanisms for BPD. Patterns of DNA methylation play important roles in regulating gene expression and function. A commonly observed phenomenon, allele-specific methylation (ASM) describes the associations between genetic variants and DNA methylation patterns. The present study aimed to identify biological pathways that are involve in the pathogenesis of BPD while incorporating brain specific ASM information in pathway analysis using two large-scale GWA datasets in Caucasian populations. A weighting scheme was adopted to take ASM information into consideration for each pathway. After multiple testing corrections, we identified 88 and 15 enriched pathways for their biological relevance for BPD in the Genetic Association Information Network (GAIN) and the Wellcome Trust Case Control Consortium dataset, respectively. Many of these pathways were significant only when applying the weighting scheme. Three ion channel related pathways were consistently identified in both datasets. Results in the GAIN dataset also suggest for the roles of extracellular matrix in brain for BPD. Findings from Gene Ontology (GO) analysis exhibited functional enrichment among genes of non-GO pathways in activity of gated channel, transporter, and neurotransmitter receptor. We demonstrated that integrating different data sources with pathway analysis provides an avenue to identify promising and novel biological pathways for exploring the

  1. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  2. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia.

    PubMed

    Wang, Yang; Cao, Yanfei; Huang, Xiaoye; Yu, Tao; Wei, Zhiyun; McGrath, John; Xu, Fei; Bi, Yan; Li, Xingwang; Yang, Fengping; Li, Weidong; Zou, Xia; Peng, Zhihai; Xiao, Yanzeng; Zhang, Yan; He, Lin; He, Guang

    2016-01-01

    Evidence has indicated that the incidence of colorectal cancer (CRC) among schizophrenia is lower than normal. To explore this potential protective effect, we employed an innovative strategy combining association study with allele-specific expression (ASE) analysis in MCC gene. We first genotyped four polymorphisms within MCC in 312 CRC patients, 270 schizophrenia patients and 270 controls. Using the MassArray technique, we performed ASE measurements in a second sample series consisting of 50 sporadic CRC patients, 50 schizophrenia patients and 52 controls. Rs2227947 showed significant differences between schizophrenia cases and controls, and haplotype analysis reported some significant discrepancies among these three subject groups. ASE values of rs2227948 and rs2227947 presented consistently differences between CRC (or schizophrenia) patients and controls. Of the three groups, highest frequencies of ASE in MCC were concordantly found in CRC group, whereas lowest frequencies of ASE were observed in schizophrenia group. Similar trends were confirmed in both haplotype frequencies and ASE frequencies (i.e. CRC > control > schizophrenia). We provide a first indication that MCC might confer alterative genetic susceptibility to CRC in individuals with schizophrenia promising to shed more light on the relationship between schizophrenia and cancer progression. PMID:27226254

  3. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese

    PubMed Central

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-01-01

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5’ end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels. PMID:26568273

  4. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese.

    PubMed

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-11-16

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5' end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels.

  5. Development of a rapid and specific loop-mediated isothermal amplification detection method that targets Marek's disease virus meq gene.

    PubMed

    Wei, Xiuying; Shi, Xingming; Zhao, Yan; Zhang, Jing; Wang, Mei; Liu, Changjun; Cui, Hongyu; Hu, Shunlei; Quan, Yanming; Chen, Hongyan; Wang, Yunfeng

    2012-08-01

    A rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) method was developed and evaluated for the detection of Marek's disease virus (MDV) by amplification of conserved MDV meq gene sequences. LAMP is an innovative technique that allows the rapid detection of targeted nucleic acid sequences under isothermal conditions without the need for complex instrumentation. In this study, meq gene sequences were amplified successfully from different MDV strains by LAMP within 60min and no cross-reactivity was observed in a panel of related viruses that were associated with diseases of chickens. The detection limit of LAMP was 3.2 copies/million cells compared with 320 copies/million cells required for conventional PCR. Positive detection rates were assessed using either LAMP or PCR by examination of feather follicles that were collected from chickens infected experimentally with either strain J-1 (n=20) or strain Md5 (n=17), In addition to these samples, three isolates that were suspected to have been infected in the clinic were also tested. Results showed that the positive detection rate for LAMP was 95% (38/40), compared with 87.5% (35/40) and 90% (38/40) for strains J-1 and Md5 by PCR, respectively. These results indicated that the LAMP assay was more sensitive, rapid and specific than conventional PCR for the detection of MDV. This easy-to-perform technique will be useful for the detection of MDV and will aid in the establishment of disease control protocols.

  6. Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Xu, Wei; Guo, Yuna; Huang, Jiadong

    2015-05-14

    A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported. This work is the first time that target-aptamer binding triggered quadratic recycling amplification has been utilized for electrochemical detection of antibiotics.

  7. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  8. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  9. Simultaneous Detection of Major Drug Resistance Mutations of HIV-1 Subtype B Viruses from Dried Blood Spot Specimens by Multiplex Allele-Specific Assay.

    PubMed

    Zhang, Guoqing; Cai, Fangping; de Rivera, Ivette Lorenzana; Zhou, Zhiyong; Zhang, Jing; Nkengasong, John; Gao, Feng; Yang, Chunfu

    2016-01-01

    A multiplex allele-specific (MAS) assay has been developed for the detection of HIV-1 subtype C drug resistance mutations (DRMs). We have optimized the MAS assay to determine subtype B DRMs in dried blood spots (DBS) collected from patients on antiretroviral therapy. The new assay accurately detected DRMs, including low-abundance mutations that were often missed by Sanger sequencing. PMID:26560533

  10. Neuromuscular symptoms in a patient with familial pseudohypoparathyroidism type Ib diagnosed by methylation-specific multiplex ligation-dependent probe amplification.

    PubMed

    Nagasaki, Keisuke; Tsuchiya, Shuichi; Saitoh, Akihiko; Ogata, Tsutomu; Fukami, Maki

    2013-01-01

    Pseudohypoparathyroidism type Ib (PHP-Ib) is a rare genetic disorder characterized by hypocalcemia and hyperphosphatemia due to imprinting defects in the maternally derived GNAS allele. Patients with PHP-Ib are usually identified by tetany, convulsions, and/or muscle cramps, whereas a substantial fraction of patients remain asymptomatic and are identified by familial studies. Although previous studies on patients with primary hypoparathyroidism have indicated that hypocalcemia can be associated with various neuromuscular abnormalities, such clinical features have been rarely described in patients with PHP-Ib. Here, we report a 12-year-old male patient with familial PHP-Ib and unique neuromuscular symptoms. The patient presented with general fatigue, steppage gait, and myalgia. Physical examinations revealed muscular weakness and atrophies in the lower legs, a shortening of the bilateral Achilles' tendons and absence of deep tendon reflexes. Laboratory tests showed hypocalcemia, hyperphosphatemia, elevated serum intact PTH level, and impaired responses of urinary phosphate and cyclic AMP in an Ellsworth-Howard test, in addition to an elevated serum creatine kinase level. Clinical features of the patient were significantly improved after 1 month of treatment with alfacalcidol and calcium. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and subsequent PCR analyses identified a methylation defect at exon A/B of GNAS and a microdeletion involving exons 4-6 of the GNAS neighboring gene STX16 in the patient and in his asymptomatic brother. The results suggest that various neuromuscular features probably associated with hypocalcemia can be the first symptoms of PHP-Ib, and that MS-MLPA serves as a powerful tool for screening of GNAS abnormalities in patients with atypical manifestations.

  11. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. PMID:26783342

  12. Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA.

    PubMed

    Watanabe, Ken; Akutsu, Tomoko; Takamura, Ayari; Sakurada, Koichi

    2016-09-01

    The identification of blood samples obtained from crime scenes has been an important step in forensic investigation. Recently, a novel approach using the blood-specific methylated CpG site cg06379435 has been reported. In this study, we developed a real-time polymerase-chain-reaction-based method that can simply and rapidly quantitate the methylation ratio of cg06379435 and its neighboring CpGs and set the threshold ratios for blood identification by analyzing various body fluid samples. Blood identification using the thresholds was successfully performed in the analysis of a small amount (1ng) of DNA from blood and various aged blood samples, including 29-year-old stains. We also demonstrated a test for allele-specific blood identification from a mixed DNA sample by bisulfite sequencing analysis of these CpG sites and their neighboring single nucleotide polymorphism, rs7359943 (A/G), which is of relevance in cases where mixed samples are obtained from crime scenes. The stability of DNA methylation in aged samples and the usefulness of neighboring genetic information shown in this study suggest that DNA-methylation-based body fluid identification will play a major role in future forensic investigations. PMID:27591539

  13. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence.

    PubMed

    Balko, Justin M; Schwarz, Luis J; Luo, Na; Estrada, Mónica V; Giltnane, Jennifer M; Dávila-González, Daniel; Wang, Kai; Sánchez, Violeta; Dean, Phillip T; Combs, Susan E; Hicks, Donna; Pinto, Joseph A; Landis, Melissa D; Doimi, Franco D; Yelensky, Roman; Miller, Vincent A; Stephens, Phillip J; Rimm, David L; Gómez, Henry; Chang, Jenny C; Sanders, Melinda E; Cook, Rebecca S; Arteaga, Carlos L

    2016-04-13

    Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors. PMID:27075627

  14. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence.

    PubMed

    Balko, Justin M; Schwarz, Luis J; Luo, Na; Estrada, Mónica V; Giltnane, Jennifer M; Dávila-González, Daniel; Wang, Kai; Sánchez, Violeta; Dean, Phillip T; Combs, Susan E; Hicks, Donna; Pinto, Joseph A; Landis, Melissa D; Doimi, Franco D; Yelensky, Roman; Miller, Vincent A; Stephens, Phillip J; Rimm, David L; Gómez, Henry; Chang, Jenny C; Sanders, Melinda E; Cook, Rebecca S; Arteaga, Carlos L

    2016-04-13

    Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.

  15. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    PubMed Central

    Bolduc, Véronique; Zou, Yaqun; Ko, Dayoung; Bönnemann, Carsten G

    2014-01-01

    Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA) oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT) construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies. PMID:24518369

  16. Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids☆

    PubMed Central

    Shen, Yingjia; Catchen, Julian; Garcia, Tzintzuni; Amores, Angel; Beldroth, Ion; Wagner, Jonathon R; Zhang, Ziping; Postlethwait, John; Warren, Wes; Schartl, Manfred; Walter, Ronald B.

    2011-01-01

    Variations in gene expression are essential for the evolution of novel phenotypes and for speciation. Studying allelic specific gene expression (ASGE) within interspecies hybrids provides a unique opportunity to reveal underlying mechanisms of genetic variation. Using Xiphophorus interspecies hybrid fishes and high-throughput next generation sequencing technology, we were able to assess variations between two closely related vertebrate species, X. maculatus and X. couchianus, and their F1 interspecies hybrids. We constructed transcriptome-wide SNP polymorphism sets between two highly inbred X. maculatus lines (JP 163 A and B), and between X. maculatus and a second species, X. couchianus. The X. maculatus JP 163 A and B parental lines have been separated in the laboratory for ≈ 70 years and we were able to identify SNPs at a resolution of 1 SNP per 49 kb of transcriptome. In contrast, SNP polymorphisms between X. couchianus and X. maculatus species, which diverged ≈ 5–10 million years ago, were identified about every 700 bp. Using 6,524 transcripts with identified SNPs between the two parental species (X. maculatus and X. couchianus), we mapped RNA-seq reads to determine ASGE within F1 interspecies hybrids. We developed an in silico X. couchianus transcriptome by replacing 90,788 SNP bases for X. maculatus transcriptome with the consensus X. couchianus SNP bases and provide evidence that this procedure overcomes read mapping biases. Employment of the insilico reference transcriptome and tolerating 5 mismatches during read mapping allow direct assessment of ASGE in the F1 interspecies hybrids. Overall, these results show that Xiphophorus is a tractable vertebrate experimental model to investigate how genetic variations that occur during speciation may affect gene interactions and the regulation of gene expression. PMID:21466860

  17. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  18. Genome-wide Association Study of Subtype-Specific Epithelial Ovarian Cancer Risk Alleles Using Pooled DNA

    PubMed Central

    Earp, Madalene A.; Kelemen, Linda E.; Magliocco, Anthony M.; Swenerton, Kenneth D.; Chenevix–Trench, Georgia; Lu, Yi; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Fasching, Peter A.; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Lambrechts, Sandrina; Doherty, Jennifer A.; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Friel, Grace; Moysich, Kirsten B.; Odunsi, Kunle; Sucheston-Campbell, Lara; Lurie, Galina; Goodman, Marc T.; Carney, Michael E.; Thompson, Pamela J.; Runnebaum, Ingo B.; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M.; Butzow, Ralf; Bunker, Clareann H.; Modugno, Francesmary; Edwards, Robert P.; Ness, Roberta B.; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjær, Susanne K.; Høgdall, Claus K.; Høgdall, Estrid; Lundvall, Lene; Sellers, Thomas A.; Fridley, Brooke L.; Goode, Ellen L.; Cunningham, Julie M.; Vierkant, Robert A.; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; Southey, Melissa C.; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A.T.; Levine, Douglas A.; Bisogna, Maria; Schildkraut, Joellen M.; Iversen, Edwin S.; Weber, Rachel Palmieri; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Poole, Elizabeth M.; Tworoger, Shelley S.; Bandera, Elisa V.; Chandran, Urmila; Orlow, Irene; Olson, Sara H.; Wik, Elisabeth; Salvesen, Helga B.; Bjorge, Line; Halle, Mari K.; van Altena, Anne M.; Aben, Katja K.H.; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Pejovic, Tanja; Bean, Yukie T.; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia–Closas, Montserrat; Dicks, Ed; Dennis, Joe; Easton, Douglas F.; Song, Honglin; Tyrer, Jonathan P.; Pharoah, Paul D. P.; Eccles, Diana; Campbell, Ian G.; Whittemore, Alice S.; McGuire, Valerie; Sieh, Weiva; Rothstein, Joseph H.; Flanagan, James M.; Paul, James; Brown, Robert; Phelan, Catherine M.; Risch, Harvey A.; McLaughlin, John R.; Narod, Steven A.; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Gayther, Simon A.; Ramus, Susan J.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz M; Kupryjanczyk, Jolanta; Cook, Linda S.; Le, Nhu D.; Brooks–Wilson, Angela

    2014-01-01

    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by pooling genomic DNA from 545 cases and 398 controls of European descent, and testing for allelic associations. We evaluated for replication 188 variants from the GWAS (56 variants for mucinous, 55 for endometrioid and clear cell, 53 for low malignant potential (LMP) serous, and 24 for invasive serous EOC), selected using pre-defined criteria. Genotypes from 13,188 cases and 23,164 controls of European descent were used to perform unconditional logistic regression under the log-additive genetic model; odds ratios (OR) and 95% confidence intervals are reported. Nine variants tagging 6 loci were associated with subtype-specific EOC risk at P<0.05, and had an OR that agreed in direction of effect with the GWAS results. Several of these variants are in or near genes with a biological rationale for conferring EOC risk, including ZFP36L1 and RAD51B for mucinous EOC (rs17106154, OR=1.17, P=0.029, n=1,483 cases), GRB10 for endometrioid and clear cell EOC (rs2190503, P=0.014, n=2,903 cases), and C22orf26/BPIL2 for LMP serous EOC (rs9609538, OR=0.86, P=0.0043, n=892 cases). In analyses that included the 75 GWAS samples, the association between rs9609538 (OR=0.84, P=0.0007) and LMP serous EOC risk remained statistically significant at P<0.0012 adjusted for multiple testing. Replication in additional samples will be important to verify these results for the less-common EOC subtypes. PMID:24190013

  19. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression

    PubMed Central

    Vecellio, Matteo; Roberts, Amity R; Cohen, Carla J; Cortes, Adrian; Knight, Julian C; Bowness, Paul; Wordsworth, B Paul

    2016-01-01

    Objectives To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). Methods We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. Results The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10−14) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 ‘G’ allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk ‘A’ allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). Conclusion We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS. PMID:26452539

  20. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella.

    PubMed

    Rahn, K; De Grandis, S A; Clarke, R C; McEwen, S A; Galán, J E; Ginocchio, C; Curtiss, R; Gyles, C L

    1992-08-01

    Amplification of nucleotide sequences within the invA gene of Salmonella typhimurium was evaluated as a means of detecting Salmonella. A collection of 630 strains of Salmonella comprising over 100 serovars, including the 20 most prevalent serovars isolated from animals and humans in Canada, was examined. Controls consisted of 142 non-Salmonella strains comprising 21 genera of bacteria. Cultures were screened by inoculating a single colony of bacteria directly into a polymerase chain reaction (PCR) mixture which contained a pair of primers specific for the invA gene. The specific PCR product was a 284 bp DNA fragment which was visualized in 2% agarose gels. With the exception of two S. litchfield and two S. senftenberg strains, all Salmonella strains were detected. In contrast, none of the non-Salmonella strains yielded the specific amplification product. Non-specific amplification of a few non-Salmonella strains resulted in a product that was distinctly different in size from the specific 284 bp product. Specificity of amplification was further confirmed by demonstration of hybridization of a 32P-labelled invA gene fragment only to the specific 284 bp product. The detection of 99.4% of Salmonella strains tested and the failure to specifically amplify DNA from non-Salmonella strains confirm that the invA gene contains sequences unique to Salmonella and demonstrate that this gene is a suitable PCR target, with potential diagnostic applications.

  1. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  2. Highly specific transgene expression mediated by a complex adenovirus vector incorporating a prostate-specific amplification feedback loop

    PubMed Central

    Woraratanadharm, Jan; Rubinchik, Semyon; Yu, Hong; Fan, Fan; Morrow, Scotty M.; Dong., John Y.

    2007-01-01

    Summary Development of novel therapeutic agents is needed to address the problems of locally recurrent, metastatic, and advanced hormone-refractory prostate cancer. We have constructed a novel complex adenovirus (Ad) vector regulation system that incorporates both the prostate-specific ARR2PB promoter and a positive feedback loop using the TRE promoter to enhance gene expression. This regulation strategy involves the incorporation of the TRE upstream of the prostate-specific ARR2PB promoter to enhance its activity with Tet-regulation. The expressions of both GFP and tTA were placed under the control of these TRE-ARR2PB promoters, so that in the cells of prostate origin, a positive feedback loop would be generated. This design greatly enhanced GFP reporter expression in prostate cancer cells, while retaining tight control of expression in non-prostate cancer cells, even at MOI as high as 1000. This novel positive feedback loop with prostate specificity (PFLPS) regulation system we have developed may have broad applications for expressing not only high levels of toxic proteins in cancer cells but alternatively could be manipulated to regulate essential genes in a highly efficient conditionally replicative adenovirus (CRAd) vector specifically directed to prostate cancer cells. The PFLPS regulation system, therefore, serves as a promising new approach in the development of both a specific and effective vector for cancer gene therapy. PMID:15229631

  3. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover

    PubMed Central

    2013-01-01

    Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for

  4. Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA.

    PubMed

    Earp, Madalene A; Kelemen, Linda E; Magliocco, Anthony M; Swenerton, Kenneth D; Chenevix-Trench, Georgia; Lu, Yi; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Fasching, Peter A; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Lambrechts, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Friel, Grace; Moysich, Kirsten B; Odunsi, Kunle; Sucheston-Campbell, Lara; Lurie, Galina; Goodman, Marc T; Carney, Michael E; Thompson, Pamela J; Runnebaum, Ingo B; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M; Butzow, Ralf; Bunker, Clareann H; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjær, Susanne K; Høgdall, Claus K; Høgdall, Estrid; Lundvall, Lene; Sellers, Thomas A; Fridley, Brooke L; Goode, Ellen L; Cunningham, Julie M; Vierkant, Robert A; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; Southey, Melissa C; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A T; Levine, Douglas A; Bisogna, Maria; Schildkraut, Joellen M; Iversen, Edwin S; Weber, Rachel Palmieri; Berchuck, Andrew; Cramer, Daniel W; Terry, Kathryn L; Poole, Elizabeth M; Tworoger, Shelley S; Bandera, Elisa V; Chandran, Urmila; Orlow, Irene; Olson, Sara H; Wik, Elisabeth; Salvesen, Helga B; Bjorge, Line; Halle, Mari K; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie T; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Wentzensen, Nicolas; Brinton, Louise A; Lissowska, Jolanta; Garcia-Closas, Montserrat; Dicks, Ed; Dennis, Joe; Easton, Douglas F; Song, Honglin; Tyrer, Jonathan P; Pharoah, Paul D P; Eccles, Diana; Campbell, Ian G; Whittemore, Alice S; McGuire, Valerie; Sieh, Weiva; Rothstein, Joseph H; Flanagan, James M; Paul, James; Brown, Robert; Phelan, Catherine M; Risch, Harvey A; McLaughlin, John R; Narod, Steven A; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Gayther, Simon A; Ramus, Susan J; Wu, Anna H; Pearce, Celeste L; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz M; Kupryjanczyk, Jolanta; Cook, Linda S; Le, Nhu D; Brooks-Wilson, Angela

    2014-05-01

    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by pooling genomic DNA from 545 cases and 398 controls of European descent, and testing for allelic associations. We evaluated for replication 188 variants from the GWAS [56 variants for mucinous, 55 for endometrioid and clear cell, 53 for low-malignant potential (LMP) serous, and 24 for invasive serous EOC], selected using pre-defined criteria. Genotypes from 13,188 cases and 23,164 controls of European descent were used to perform unconditional logistic regression under the log-additive genetic model; odds ratios (OR) and 95 % confidence intervals are reported. Nine variants tagging six loci were associated with subtype-specific EOC risk at P < 0.05, and had an OR that agreed in direction of effect with the GWAS results. Several of these variants are in or near genes with a biological rationale for conferring EOC risk, including ZFP36L1 and RAD51B for mucinous EOC (rs17106154, OR = 1.17, P = 0.029, n = 1,483 cases), GRB10 for endometrioid and clear cell EOC (rs2190503, P = 0.014, n = 2,903 cases), and C22orf26/BPIL2 for LMP serous EOC (rs9609538, OR = 0.86, P = 0.0043, n = 892 cases). In analyses that included the 75 GWAS samples, the association between rs9609538 (OR = 0.84, P = 0.0007) and LMP serous EOC risk remained statistically significant at P < 0.0012 adjusted for multiple testing. Replication in additional samples will be important to verify these results for the less-common EOC subtypes. PMID:24190013

  5. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  6. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay.

    PubMed

    Kang, Sung-Il; Her, Moon; Kim, Ji-Yeon; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Jung, Suk Chan

    2015-06-01

    A rapid and accurate diagnosis of brucellosis is required to reduce and prevent the spread of disease among animals and the risk of transfer to humans. In this study, a Brucella abortus-specific (Ba) LAMP assay was developed, that had six primers designed from the BruAb2_0168 region of chromosome I. The specificity of this LAMP assay was confirmed with Brucella reference strains, B. abortus vaccine strains, B. abortus isolates and phylogenetically or serologically related strains. The detection limit of target DNA was up to 20 fg/μl within 60 min. The sensitivity of the new LAMP assay was equal to or slightly higher than other PCR based assays. Moreover, this Ba-LAMP assay could specifically amplify all B. abortus biovars compared to previous PCR assays. To our knowledge, this is the first report of specific detection of B. abortus using a LAMP assay. The Ba-LAMP assay can offer a rapid, sensitive and accurate diagnosis of bovine brucellosis in the field.

  7. Multiplexed, ligation-dependent probe amplification for rapid and inexpensive HLA-DQB1 allelotyping

    PubMed Central

    Akers, Nicholas K.; Curry, John D.; Smith, Martyn T.; Bracci, Paige M.; Skibola, Christine F.

    2012-01-01

    Many effective options exist to accurately type DNA for HLA alleles. However, most of the existing methods are excessively costly in terms of overall monetary costs, DNA requirements, and proprietary software. We present a novel assay able to resolve heterozygous HLA-DQB1 allelotypes at two digits, with even greater specificity for the HLA-DQB1*06 allele family, by using the multiplexed ligation-dependent probe amplification (MLPA) technology. This assay provides more specific allele data than genome-wide analysis and is more affordable than sequencing, making it a useful intermediate for researchers seeking to accurately allelotype human DNA samples. PMID:21762399

  8. A Panel of Artificial APCs Expressing Prevalent HLA Alleles Permits Generation of Cytotoxic T Cells Specific for Both Dominant and Subdominant Viral Epitopes for Adoptive Therapy1

    PubMed Central

    Hasan, Aisha N.; Kollen, Wouter J.; Trivedi, Deepa; Selvakumar, Annamalai; Dupont, Bo; Sadelain, Michel; O'Reilly, Richard J.

    2009-01-01

    Adoptive transfer of virus-specific T cells can treat infections complicating allogeneic hematopoietic cell transplants. However, autologous antigen-presenting cells (APCs) are often limited in supply. Here, we describe a panel of artificial APCs (AAPCs) consisting of murine 3T3 cells transduced to express human B7.1, ICAM-1 and LFA-3 that each stably express one of a series of 6 common HLA class I alleles. In comparative analyses, T cells sensitized with AAPCs expressing a shared HLA allele or autologous APCs loaded with a pool of 15-mers spanning the sequence of CMVpp65 produced similar yields of HLA-restricted CMVpp65 specific T cells; significantly higher yields could be achieved by sensitization with AAPCs transduced to express the CMVpp65 protein. T cells generated were CD8+, IFNγ+ and exhibited HLA-restricted CMVpp65 specific cytotoxicity. T cells sensitized with either peptide-loaded or transduced AAPCs recognized epitopes presented by each HLA allele known to be immunogenic in man. Sensitization with AAPCs also permitted expansion of IFNγ+ cytotoxic effector cells against subdominant epitopes that were either absent or in low frequencies in T cells sensitized with autologous APCs. This replenishable panel of AAPCs can be used for immediate sensitization and expansion of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. It may be of particular value for recipients of transplants from HLA disparate donors. PMID:19635907

  9. Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species

    PubMed Central

    2010-01-01

    Background Genotype analysis using multiple single nucleotide polymorphisms (SNPs) is a useful but labor-intensive or high-cost procedure in plant research. Here we describe an alternative genotyping method that is suited to multi-sample or multi-locus SNP genotyping and does not require electrophoresis or specialized equipment. Results We have developed a simple method for multi-sample or multi-locus SNP genotyping using allele-specific primers (ASP). More specifically, we (1) improved the design of allele-specific primers, (2) established a method to detect PCR products optically without electrophoresis, and (3) standardized PCR conditions for parallel genomic assay using various allele-specific primers. As an illustration of multi-sample SNP genotyping using ASP, we mapped the locus for lodging resistance in a typhoon (lrt5). Additionally, we successfully tested multi-locus ASP-PCR analysis using 96 SNPs located throughout the genomes of rice (Oryza sativa) cultivars 'Koshihikari' and 'Kasalath', and demonstrated its applicability to other diverse cultivars/subspecies, including wild rice (O. rufipogon). Conclusion Our ASP methodology allows characterization of SNPs genotypes without electrophoresis, expensive probes or specialized equipment, and is highly versatile due to the flexibility in the design of primers. The method could be established easily in any molecular biology laboratory, and is applicable to diverse organisms. PMID:20409329

  10. Efficient and Specific Detection of Salmonella in Food Samples Using a stn-Based Loop-Mediated Isothermal Amplification Method

    PubMed Central

    Srisawat, Mevaree; Panbangred, Watanalai

    2015-01-01

    The Salmonella enterotoxin (stn) gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity. PMID:26543859

  11. HLA-B*27 typing by sequence specific amplification without DNA extraction.

    PubMed

    Sayer, D C; Cassell, H S; Christiansen, F T

    1999-10-01

    HLA-B27 appears to play a direct role in the pathogenesis of ankylosing spondylitis and almost all patients with this disease have HLA-B27. Therefore, a diagnosis of ankylosing spondylitis can virtually be excluded in the absence of HLA-B27. Many techniques have been used for HLA-B*27 typing. Of these, molecular methods are the most sensitive and specific but require extracted DNA as the testing material. A technique where HLA-B*27 is amplified directly from whole blood using sequence specific primers has been developed. This technique uses small sample volumes, is not restricted by choice of anticoagulant or sample age up to at least six weeks, and can be applied to other clinical polymerase chain reaction based procedures.

  12. CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation

    PubMed Central

    Ortiz-Estevez, Maria; Aramburu, Ander; Bengtsson, Henrik; Neuvial, Pierre; Rubio, Angel

    2012-01-01

    Summary: CalMaTe calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina. Availability: The method is available on CRAN (http://cran.r-project.org/) in the open-source R package calmate, which also includes an add-on to the Aroma Project framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22576175

  13. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  14. Detection and identification of Entamoeba gingivalis by specific amplification of rRNA gene.

    PubMed

    Kikuta, N; Yamamoto, A; Goto, N

    1996-12-01

    A pair of oligonucleotide primers were designed from the nucleotide sequence of the gene encoding the small subunit ribosomal RNA (SrRNA) of the oral protozoan parasite Entamoeba gingivalis. The primers amplified a 1.4-kb DNA fragment by polymerase chain reaction and were specific for Entamoeba gingivalis but not for other protozoa, oral protists and bacteria, or human leukocytes. With this method, the DNA from as few as 30 cells of Entamoeba gingivalis could be detected. These results suggest that this approach is applicable to the detection and identification of Entamoeba gingivalis in the human oral cavity.

  15. PCR amplification of the hrcV gene through specific primers for detecting Pseudomonas syringae pathovars.

    PubMed

    Vaseghi, Akbar; Bakhshinejad, Babak; Safaie, Naser; Parchin, Reza Ashrafi; Sadeghizadeh, Majid

    2014-02-01

    Pseudomonas syringae pathovars are important pathogens among phytopathogenic bacteria causing a variety of diseases in plants. These pathogens can rapidly disseminate in a large area leading to infection and destruction of plants. To prevent the incidence of the bacteria, appropriate detection methods should be employed. Routinely serological tests, being time-consuming and costly, are exploited to detect these pathogens in plants, soil, water and other resources. Over the recent years, DNA-based detection approaches which are stable, rapid, specific and reliable have been developed and sequence analysis of various genes are widely utilized to identify different strains of P. syringe. However, the greatest limitation of these genes is inability to detect numerous pathovars of P. syringae. Herein, by using bioinformatic analysis, we found the hrcV gene located at pathogenicity islands of bacterial genome with the potential of being used as a new marker for phylogenetic detection of numerous pathovars of P. syringae. Following design of specific primers to hrcV, we amplified a 440 bp fragment. Of 13 assayed pathovars, 11 were detected. Also, through experimental procedures and bioinformatic analysis it was revealed that the designed primers have the capacity to detect 19 pathovars. Our findings suggest that hrcV could be used as a gene with the merit of detecting more pathovars of P. syringae in comparison with other genes used frequently for detection purposes.

  16. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

  17. Artificial antigen presenting cells that express prevalent HLA alleles: A step towards the broad application of antigen-specific adoptive cell therapies.

    PubMed

    Hasan, Aisha N; Selvakumar, Annamalai; Doubrovina, Ekaterina; Riviere, Isabelle; Sadelain, Michel W; O'Reilly, Richard J

    2009-12-01

    The artificial antigen-presenting cells (AAPCs) described in this review were generated to facilitate the production of virus-specific T-cells for the treatment of infections in patients after bone marrow transplant. These AAPCs consist of murine 3T3 cells genetically modified to express critical human molecules needed for T-cell stimulation, such as the co-stimulatory molecules B7.1, ICAM-1, and LFA-3 and one of a series of 6 common HLA class I alleles. When T-cells were sensitized against cytomegalovirus (CMV) using AAPCs that express a shared HLA allele or using autologous antigen-presenting cells (APCs) loaded with the CMVpp65 antigen, they were activated and expanded to become HLA-restricted CMVpp65-specific T-cells. These T-cells demonstrated functional activity in vitro against CMV by producing IFN-gamma and inducing CMVpp65-specific cytotoxicity. T-cells sensitized with AAPCs recognized antigenic epitopes presented by each HLA allele known to be immunogenic in Man. Sensitization with AAPCs also permitted expansion of IFN-gamma+ cytotoxic T-cells against subdominant epitopes that were not effectively recognized by T-cells sensitized with autologous APCs. This panel of AAPCs provides a source of immediately accessible, standardizable, and replenishable "off the shelf" cellular reagents with the potential to make adoptive immunotherapy widely available for the treatment of lethal infections, cancer, and autoimmune diseases. PMID:20040272

  18. Study of gene-specific DNA repair in the comet assay with padlock probes and rolling circle amplification.

    PubMed

    Henriksson, Sara; Shaposhnikov, Sergey; Nilsson, Mats; Collins, Andrew

    2011-04-25

    We used padlock probes to study the rate of gene specific repair of three genes, OGG1 (8-oxoguanine-DNA glycosylase-1), XPD (xeroderma pigmentosum group D), and HPRT (hypoxanthine-guanine phosphoribosyltransferase) in human lymphocytes, in relation to the repair rate of Alu repeats and total genomic DNA. Padlock probes offer highly specific detection of short target sequences by combining detection by ligation and signal amplification. In this approach only genes in sequences containing strand breaks, which become single-stranded in the tail, are available for hybridisation. Thus the total number of signals from the padlock probes per comet gives a direct measure of the amount of damage (strand-breaks) present and allows the repair process to be monitored. This method could provide insights on the organisation of genomic DNA in the comet tail. Alu repeat containing DNA was repaired rapidly in comparison with total genomic DNA, and the studied genes were generally repaired more rapidly than the Alu repeats.

  19. Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification.

    PubMed

    Wu, Zai-Sheng; Zhou, Hui; Zhang, Songbai; Shen, Guoli; Yu, Ruqin

    2010-03-15

    A reusable aptameric recognition system was described for the electrochemical detection of the protein PDGF-BB based on the target binding-induced rolling circle amplification (RCA). A complementary DNA (CDNA), linear padlock probe, and primer probe were utilized to introduce a RCA process into the aptamer-target binding event while a new aptamer was elegantly designed via lengthening the original aptamer by the complement to the CDNA. The aptameric sensing system facilitates the integration of multiple functional elements into a signaling scheme: a unique electrochemical technique, an attractive RCA process, reversible DNA hybridization, and desirable aptameric target recognition. This RCA-based electrochemical recognition system not only exhibits excellent performance (e.g., a detection limit of 6.3 x 10(-11) M, a linear dynamic range of 2 orders of magnitude, high specificity, and satisfactory repeatability) but also overcomes the limitations associated with conventional aptameric biosensors (e.g., dependence of signaling target binding on specific aptamer sequence or requirement of sandwich assays for two or more binding sites per target molecule). A recovery test demonstrated the feasibility of the developed target protein assay. Given the attractive characteristics, this aptameric recognition platform is expected to be a candidate for the detection of proteins and other ligands of interest in both fundamental and applied research.

  20. Haplotyping using a combination of polymerase chain reaction-single-strand conformational polymorphism analysis and haplotype-specific PCR amplification.

    PubMed

    Zhou, Huitong; Li, Shaobin; Liu, Xiu; Wang, Jiqing; Luo, Yuzhu; Hickford, Jon G H

    2014-12-01

    A single nucleotide polymorphism (SNP) may have an impact on phenotype, but it may also be influenced by multiple SNPs within a gene; hence, the haplotype or phase of multiple SNPs needs to be known. Various methods for haplotyping SNPs have been proposed, but a simple and cost-effective method is currently unavailable. Here we describe a haplotyping approach using two simple techniques: polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and haplotype-specific PCR. In this approach, individual regions of a gene are analyzed by PCR-SSCP to identify variation that defines sub-haplotypes, and then extended haplotypes are assembled from the sub-haplotypes either directly or with the additional use of haplotype-specific PCR amplification. We demonstrate the utility of this approach by haplotyping ovine FABP4 across two variable regions that contain seven SNPs and one indel. The simplicity of this approach makes it suitable for large-scale studies and/or diagnostic screening.

  1. Development of a Melting Curve-Based Allele-Specific PCR of Apolipoprotein E (APOE) Genotyping Method for Genomic DNA, Guthrie Blood Spot, and Whole Blood.

    PubMed

    Chen, Chia-Hsiang

    2016-01-01

    Genetic polymorphisms of apolipoprotein E (APOE) are associated with various health conditions and diseases, such as Alzheimer's disease, cardiovascular diseases, type 2 diabetes, etc. Hence, genotyping of APOE has broad applications in biomedical research and clinical settings, particularly in the era of precision medicine. The study aimed to develop a convenient and accurate method with flexible throughput to genotype the APOE polymorphisms. A melting curve-based allele-specific PCR method was developed to genotype two single nucleotide polymorphisms (SNPs) of APOE, i.e. rs429358 at codon 112 and rs7412 at codon 158. These two SNPs determine the genotype of APOE2, E3, and E4. PCR-based Sanger sequencing was used as the reference method for APOE genotyping. A 100% concordance rate was obtained in 300 subjects between the melting curve-based allele-specific PCR method and the Sanger sequencing method. This method was applied to a genetic association analysis of APOE and schizophrenia consisting of 711 patients with schizophrenia and 665 control subjects from Taiwan. However, no significant differences in the allele and genotype frequencies were detected between these two groups. Further experiments showed that DNA dissolved from blood collected on Guthrie filter paper and total blood cell lysate without DNA extraction can be used in the melting curve-based allele-specific PCR method. Thus, we suggest that this is a fast, accurate and robust APOE genotyping method with a flexible throughput and suitable for DNA template from different preparations. This convenient method shall meet the different needs of various research and clinical laboratories. PMID:27078154

  2. Detection of Q Fever Specific Antibodies Using Recombinant Antigen in ELISA with Peroxidase Based Signal Amplification

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Glennon, Erin; Ching, Wei-Mei

    2014-01-01

    Currently, the accepted method for Q fever serodiagnosis is indirect immunofluorescent antibody assay (IFA) using the whole cell antigen. In this study, we prepared the recombinant antigen of the 27-kDa outer membrane protein (Com1) which has been shown to be recognized by Q fever patient sera. The performance of recombinant Com1 was evaluated in ELISA by IFA confirmed serum samples. Due to the low titers of IgG and IgM in Q fever patients, the standard ELISA signals were further amplified by using biotinylated anti-human IgG or IgM plus streptavidin-HRP polymer. The modified ELISA can detect 88% (29 out of 33) of Q fever patient sera collected from Marines deployed to Iraq. Less than 5% (5 out of 156) of the sera from patients with other febrile diseases reacted with the Com1. These results suggest that the modified ELISA using Com1 may have the potential to improve the detection of Q fever specific antibodies. PMID:26904739

  3. Simultaneous Detection of Major Drug Resistance Mutations in the Protease and Reverse Transcriptase Genes for HIV-1 Subtype C by Use of a Multiplex Allele-Specific Assay

    PubMed Central

    Zhang, Guoqing; Cai, Fangping; Zhou, Zhiyong; DeVos, Joshua; Wagar, Nick; Diallo, Karidia; Zulu, Isaac; Wadonda-Kabondo, Nellie; Stringer, Jeffrey S. A.; Weidle, Paul J.; Ndongmo, Clement B.; Sikazwe, Izukanji; Sarr, Abdoulaye; Kagoli, Matthew; Nkengasong, John

    2013-01-01

    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring. PMID:23985909

  4. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  5. [The Use of Specific DNA Markers for the Identification of Alleles of the FAD3 Genes in Rape (Brassica napus L.)].

    PubMed

    Lemesh, V A; Mozgova, G V; Grushetskaya, Z E; Sidorenko, E V; Pilyuk, Ya E; Bakanovskaya, A V

    2015-08-01

    A search was conducted for the alleles responsible for the quality of food-grade rapeseed oil in a collection of 21 samples of spring and winter oilseed rape of Belarusian and Russian breeding. We also developed A- and C-gene-specific DNA markers to assess the genomic polymorphisms of rape for FAD3 genes and selected plants with a low content of linolenic acid for use in the selection process. The development of a method for identifying FAD3 alleles, which control the level of linolenic acid in rapeseed oil, as well as of the design for new dCAPS markers, enabled the identification of plants homozygous for individual FAD3A and/or FAD3C genes in the F2-generation. These plants are currently involved in the selection process of new varieties with a reduced content of linolenic acid in rapeseed oil. PMID:26601489

  6. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring.

  7. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  8. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia

    PubMed Central

    Veronese, A; Pepe, F; Chiacchia, J; Pagotto, S; Lanuti, P; Veschi, S; Di Marco, M; D'Argenio, A; Innocenti, I; Vannata, B; Autore, F; Marchisio, M; Wernicke, D; Verginelli, F; Leone, G; Rassenti, L Z; Kipps, T J; Mariani-Costantini, R; Laurenti, L; Croce, C M; Visone, R

    2015-01-01

    Deregulation of the miR-15a/16-1 cluster has a key role in the pathogenesis of chronic lymphocytic leukemia (CLL), a clinically heterogeneous disease with indolent and aggressive forms. The miR-15a/16-1 locus is located at 13q14, the most frequently deleted region in CLL. Starting from functional investigations of a rare SNP upstream the miR cluster, we identified a novel allele-specific mechanism that exploits a cryptic activator region to recruit the RNA polymerase III for miR-15a/16-1 transcription. This regulation of the miR-15a/16- locus is independent of the DLEU2 host gene, which is often transcribed monoallellically by RPII. We found that normally one allele of miR-15a/16-1 is transcribed by RNAPII, the other one by RNAPIII. In our subset of CLL patients harboring 13q14 deletions, exclusive RNA polymerase III (RPIII)-driven transcription of the miR-15a/16-1 was the consequence of loss of the RPII-regulated allele and correlated with high expression of the poor prognostic marker ZAP70 (P=0.019). Thus, our findings point to a novel biological process, characterized by double allele-specific transcriptional regulation of the miR-15a/16-1 locus by alternative mechanisms. Differential usage of these mechanisms may distinguish at onset aggressive from indolent forms of CLL. This provides a basis for the clinical heterogeneity of the CLL patients carrying 13q14 deletions. PMID:24732594

  9. Loop-Mediated Isothermal Amplification of Specific Endoglucanase Gene Sequence for Detection of the Bacterial Wilt Pathogen Ralstonia solanacearum

    PubMed Central

    Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  10. Signal amplification strategy for sensitive immunoassay of prostate specific antigen (PSA) based on ferrocene incorporated polystyrene spheres.

    PubMed

    Ding, Lu; You, Jinmao; Kong, Rongmei; Qu, Fengli

    2013-09-01

    A new kind of signal amplification strategy based on ferrocene (Fc) incorporated polystyrene spheres (PS-Fc) was proposed. The synthesized PS-Fc displayed narrow size distribution and good stability. PS-Fc was applied as label to develop immunosensors for prostate specific antigen (PSA) after the typical sandwich immunoreaction by linking anti-PSA antibody (Ab2) onto PS-Fc. After the fabrication of the immunosensor, tetrahydrofuran (THF) was dropped to dissolve PS and release the contained Fc for the following stripping voltammetric detection. PS-Fc as a new electrochemical label prevented the leakage of Fc and greatly amplified the immunosensor signal. In addition, the good biocompatibility of PS could maintain the bioactivity of the antibodies. The response current was linear to the logarithm of PSA concentration in the range from 0.01 ng mL(-1) to 20 ng mL(-1) with a detection limit of 1 pg mL(-1). The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results.

  11. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification.

    PubMed

    Zhao, Bin; Song, Jirui; Guan, Yifu

    2015-02-01

    Rolling circle amplification (RCA) is a new method based on virus DNA reproduction, which has been widely used in the field of miRNA detection. However, discrimination of highly homologous miRNAs is a bottleneck in the research of miRNA. In this study, the RCA process was creatively used to conduct the discrimination of miRNAs. Results showed that T4 RNA ligase 2 could reach the highest circularization efficiency during the RCA process with higher specificity. By using RCA technology, a member of highly homologous miRNAs, let-7, could be discriminated at the amount of 2.5 fmol. This sensitivity could not be achieved by using traditional reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. In addition, detection of miRNAs by using RCA could reach the amount limit of fmol with a good linearity. Optimal RCA technology used in this study is better than RT-qPCR in discriminating highly homologous family miRNAs. Results from this study can promote the applications of RCA in clinical diagnosis, environment protection, health care, disease inspection and prevention, and national security.

  12. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Lenarčič, Rok; Morisset, Dany; Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  13. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata.

    PubMed

    Hoareau, T B; Boissin, E

    2010-11-01

    Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.

  14. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification.

    PubMed

    Luo, Caihui; Tang, Hua; Cheng, Wei; Yan, Li; Zhang, Decai; Ju, Huangxian; Ding, Shijia

    2013-10-15

    A specific and sensitive methodology was developed successfully for quantitative detection of Enterobacteriaceae bacteria by integrating Exonuclease III-assisted target recycling amplification with a simple electrochemical DNA biosensor. After target DNA hybridizes with capture DNA, Exonuclease III can selectively digest the capture DNA, which releases the target to undergo a new hybridization and cleavage cycle on sensor surface, leading to a successful target recycling. Finally, the left capture DNA is recognized by detection probe to produce the detectable signal, which decreases with the increasing target DNA concentration. Under the optimal conditions, the proposed strategy could detect target DNA down to 8.7 fM with a linear range from 0.01 pM to 1 nM, showing high sensitivity. Meanwhile, the sensing strategy was successfully used for detection of Enterobacteriaceae bacteria down to 40 CFU mL⁻¹ in milk samples. This strategy presented a simple, rapid and sensitive platform for Enterobacteriaceae bacteria detection and would become a versatile and powerful tool for food safety, biothreat detection and environmental monitoring.

  15. Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression.

    PubMed

    Melas, P A; Lennartsson, A; Vakifahmetoglu-Norberg, H; Wei, Y; Åberg, E; Werme, M; Rogdaki, M; Mannervik, M; Wegener, G; Brené, S; Mathé, A A; Lavebratt, C

    2013-05-07

    Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant.

  16. [Specific features of gene amplification on the long arm of chromosome 17 in different molecular genetic subtypes of breast cancer].

    PubMed

    Zavalishina, L E; Danilova, N V; Matsionis, A E; Pavlenko, I A

    2014-01-01

    The frequency of gene amplification and coamplification of HER2/neu, TOP2A and the centromeric region of chromosome 17 (CEP17) was examined in 265 breast cancer (BC) cases belonging to different molecular genetic subgroups. Luminal B breast cancer was found to be characterized by the increased probability of coamplifications (CEP17 and HER/neu, HER2/neu, and TOP2A) on chromosome 17. At the same time, the amplification of just three loci on one chromosome is a rare event and encountered in 17% of luminal B breast cancer cases (or 1.1% of all BC cases). That of HER2/neu in conjunction with elevated CEP17 count is statistically significantly more rarely accompanied by deletion of TOP2A rather than its amplification. The findings suggest that there are different amplification mechanisms in different BC molecular genetic subgroups. PMID:25051718

  17. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  18. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  19. A multiplex allele-specific real-time polymerase chain reaction assay for HLA-B*13:01 genotyping in four Chinese populations.

    PubMed

    Liu, Z; Chen, G; Kang, X; Han, M; Chen, R; Chen, C; Wang, H

    2016-10-01

    Human leukocyte antigen HLA-B*13:01 is identified currently as a marker of individual susceptibility to drug-induced hypersensitivity reaction, such as dapsone-induced hypersensitivity reactions (DIHRs) and trichloroethylene-induced dermatitis. Therefore, screening for the HLA-B*13:01 allele can assist clinics in identifying patients at risk of developing DIHRs. By combining the allele-specific primers with TaqMan probes, we established a single tube, triplex real-time PCR to detect HLA-B*13:01. The reliability of this assay was validated by the comparison of genotyping results with those by sequence-based typing (SBT). With this assay, the distribution of HLA-B*13:01 in a total of 350 blood samples from four ethnic groups: Han, Tibetan, Uighur, and Buyei were determined. A 100% concordance was observed between the results with the established real-time PCR and SBT in 100 samples. The detection limit of this assay was 0.016 ng genomic DNA. The prevalence of HLA-B*13:01 carriers were 11%, 8%, 1%, and 2% in the Buyei (n = 100), Northern Han (n = 100), Tibetan (n = 100), and Uighur (n = 50) populations, respectively. The multiplex real-time PCR assay provided a fast and reliable method for accurate detection of HLA-B*13:01 allele prior to dapsone administration in clinical practice and onset of the reaction after exposure to trichloroethylene.

  20. Allele-specific recognition by LILRB3 and LILRA6 of a cytokeratin 8 - associated ligand on necrotic glandular epithelial cells

    PubMed Central

    López-Álvarez, María R.; Jahnke, Martin; Russell, Alasdair I.; Radjabova, Valeria; Trowsdale, Alice R.Z.; Trowsdale, John

    2016-01-01

    The LILRs are a family of receptors that regulate the activities of myelomonocytic cells. We found that specific allelic variants of two related members of the LILR family, LILRB3 and LILRA6, interact with a ligand exposed on necrotic glandular epithelial cells. The extracellular domains of LILRB3 and LILRA6 are very similar and their genes are highly polymorphic. A commonly occurring allele, LILRB3*12, displayed particularly strong binding of these necrotic cells and further screening of the products of LILRB3 alleles identified motifs that correlated with binding. Immunoprecipitation of the ligand from epithelial cell lysates using recombinant LILRB3*12, identified cytokeratins 8, 18 and 19. Purified proteins obtained from epithelial cell lysates, using anti-cytokeratin 8 antibodies, were able to activate LILRB3*12 reporter cells. Knock-down of cytokeratin 8 in epithelial cells abrogated expression of the LILRB3 ligand, while staining with recombinant LILRB3*12 showed co-localisation with cytokeratin 8 and 18 in permeabilised breast cancer cells. Necrosis is a common feature of tumours. The finding of a necrosis-associated ligand for these two receptors raises the possibility of a novel interaction that alters immune responses within the tumour microenvironment. Since LILRB3 and LILRA6 genes are highly polymorphic the interaction may influence an individual's immune response to tumours. PMID:26769854

  1. A Multiplex Allele Specific Polymerase Chain Reaction (MAS-PCR) for the Detection of Factor V Leiden and Prothrombin G20210A

    PubMed Central

    Bagheri, Morteza; Rad, Isa Abdi

    2011-01-01

    ABSTRACT Introduction: In order to determine the frequencies of factor V Leiden and prothrombin G20210A point mutations in the Iranian population with Azeri Turkish origin. Material and methods: 120 unrelated individuals from general population randomly selected and were examined for factor V Leiden and prothrombin G20210A mutations using a multiplex allele specific polymerase chain reaction (MAS-PCR) assay Outcomes: The frequency of prothrombin G20210A mutation was 2.08%, which means 5 chromosomes out of 240 chromosomes had prothrombin G20210A mutation. The distribution of prothrombin 20210 GG, GA, AA genotypes and prothrombin 20210A allele were 37(92.5%), 3(7.5%), 0(0%) and 3(3.75%) in males and 78(97.5%), 2(2.5%), 0(0%) and 2(1.25%) in females, respectively. Factor V Leiden was not found in our tested group (zero chromosomes out of 240 chromosomes). Analysis of the observed frequencies in the studied groups indicates that there is no statistically significant difference between females and males, regarding prothrombin G20210A mutation (p value>0.05). Conclusions: This is the first study in its own kind in this population and implies that the frequency of Factor V Leiden G1691A (R506Q, FV-Leiden) allele is extremely low but the prothrombin G20210A mutation is more frequent in the tested group. PMID:21977183

  2. A simple and rapid method for HLA-DQA1 genotyping by digestion of PCR-amplified DNA with allele specific restriction endonucleases.

    PubMed

    Maeda, M; Murayama, N; Ishii, H; Uryu, N; Ota, M; Tsuji, K; Inoko, H

    1989-11-01

    The second exon of the HLA-DQA1 genes was selectively amplified from genomic DNAs of 72 HLA-homozygous B cell lines by the polymerase chain reaction (PCR). Amplified DNAs were digested with HaeIII, Ddel, ScrFI, FokI and RsaI, which recognize allelic sequence variations in the polymorphic segments of the DQA1 second exon, and then subjected to electrophoresis in polyacrylamide gels. Eight different polymorphic patterns of restriction fragments were obtained, and seven were identical to patterns predicted from the known DNA sequences, correlating with each HLA-DQw type defined by serological typing. The remaining one pattern cannot be explained from the sequence data, suggesting the presence of a novel DQA1 allele at the nucleotide level. This PCR-RFLP method provides a simple and rapid technique for accurate definition of the HLA-DQ types at the nucleotide level, eliminating the need for radioisotope as well as allele specific oligonucleotide probes and can be extended and applied to HLA-DR, -Dw DP typing. PMID:2576477

  3. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis.

    PubMed

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F; Ramroop, Johnny; Kellner, Stefanie M; Benton, Matthew A; Govind, Shubha; Dedon, Peter C; Sternglanz, Rolf; Lai, Eric C

    2015-12-01

    N(6)-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon-codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease.

  4. Asymmetric exponential amplification reaction on a toehold/biotin featured template: an ultrasensitive and specific strategy for isothermal microRNAs analysis

    PubMed Central

    Chen, Jun; Zhou, Xueqing; Ma, Yingjun; Lin, Xiulian; Dai, Zong; Zou, Xiaoyong

    2016-01-01

    The sensitive and specific analysis of microRNAs (miRNAs) without using a thermal cycler instrument is significant and would greatly facilitate biological research and disease diagnostics. Although exponential amplification reaction (EXPAR) is the most attractive strategy for the isothermal analysis of miRNAs, its intrinsic limitations of detection efficiency and inevitable non-specific amplification critically restrict its use in analytical sensitivity and specificity. Here, we present a novel asymmetric EXPAR based on a new biotin/toehold featured template. A biotin tag was used to reduce the melting temperature of the primer/template duplex at the 5′ terminus of the template, and a toehold exchange structure acted as a filter to suppress the non-specific trigger of EXPAR. The asymmetric EXPAR exhibited great improvements in amplification efficiency and specificity as well as a dramatic extension of dynamic range. The limit of detection for the let-7a analysis was decreased to 6.02 copies (0.01 zmol), and the dynamic range was extended to 10 orders of magnitude. The strategy enabled the sensitive and accurate analysis of let-7a miRNA in human cancer tissues with clearly better precision than both standard EXPAR and RT-qPCR. Asymmetric EXPAR is expected to have an important impact on the development of simple and rapid molecular diagnostic applications for short oligonucleotides. PMID:27257058

  5. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    PubMed

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  6. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  7. A new PCR method: one primer amplification of PCR-CTPP products.

    PubMed

    Yin, Guang; Mitsuda, Yoko; Ezaki, Takayuki; Hamajima, Nobuyuki

    2012-10-01

    Polymerase chain reaction with confronting two-pair primers (PCR-CTPP) is a convenient method for genotyping single nucleotide polymorphisms, saving time, and costs. It uses four primers for PCR; F1 and R1 for one allele, and F2 and R2 for the other allele, by which three different sizes of DNA are amplified; between F1 and R1, between F2 and R2, and between F1 and R2. To date, we have applied PCR-CTPP successfully for genotyping more than 60 polymorphisms. However, it is not rare that PCR does not produce balanced amplification of allele specific bands. Accordingly, the method was modified by attaching a common sequence at the 5' end of two-pair primers and adding another primer with the common sequence in PCR, in total five different primers in a tube for PCR. The modification allowed one primer amplification for the products of initial PCR with confronting two-pair primers, named as one primer amplification of PCR-CTPP products (OPA-CTPP). This article demonstrates an example for an A/G polymorphism of paraoxonase 1 (PON1) Gln192Arg (rs662). PCR-CTPP failed clear genotyping for the polymorphism, while OPA-CTPP successfully produced PCR products corresponding to the allele. The present example indicated that the OPA-CTPP would be useful in the case that PCR-CTPP failed to produce balanced PCR products specific to each allele.

  8. Transcriptome and allele specificity associated with a 3BL locus for Fusarium crown rot resistance in bread wheat.

    PubMed

    Ma, Jian; Stiller, Jiri; Zhao, Qiang; Feng, Qi; Cavanagh, Colin; Wang, Penghao; Gardiner, Donald; Choulet, Frédéric; Feuillet, Catherine; Zheng, You-Liang; Wei, Yuming; Yan, Guijun; Han, Bin; Manners, John M; Liu, Chunji

    2014-01-01

    Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL. PMID:25405461

  9. Reliable and fast allele-specific extension of 3'-LNA modified oligonucleotides covalently immobilized on a plastic base, combined with biotin-dUTP mediated optical detection.

    PubMed

    Michikawa, Yuichi; Fujimoto, Kentaro; Kinoshita, Kenji; Kawai, Seiko; Sugahara, Keisuke; Suga, Tomo; Otsuka, Yoshimi; Fujiwara, Kazuhiko; Iwakawa, Mayumi; Imai, Takashi

    2006-12-01

    In the present work, a convenient microarray SNP typing system has been developed using a plastic base that covalently immobilizes amino-modified oligonucleotides. Reliable SNP allele discrimination was achieved by using allelic specificity-enhanced enzymatic extension of immobilized oligonucleotide primer, with a locked nucleic acid (LNA) modification at the SNP-discriminating 3'-end nucleotide. Incorporation of multiple biotin-dUTP molecules during primer extension, followed by binding of alkaline phosphatase-conjugated streptavidin, allowed optical detection of the genotyping results through precipitation of colored alkaline phosphatase substrates onto the surface of the plastic base. Notably, rapid primer extension was demonstrated without a preliminary annealing step of double-stranded template DNA, allowing overall processes to be performed within a couple of hours. Simultaneous evaluation of three SNPs in the genes TGFB1, SOD2 and APEX1, previously investigated for association with radiation sensitivity, in 25 individuals has shown perfect assignment with data obtained by another established technique (MassARRAY system).

  10. High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids, and allotetraploids.

    PubMed

    Ng, Danny W-K; Shi, Xiaoli; Nah, Gyoungju; Chen, Z Jeffrey

    2014-01-01

    With the next generation sequencing technology, RNA-Seq (RNA sequencing) becomes one of the most powerful tools in quantification of global transcriptomes, discovery of new transcripts and alternative isoforms, as well as detection of single nucleotide polymorphisms (SNPs). RNA-Seq is advantageous over hybridization-based gene quantification methods: (1) it does not require prior information about genomic sequences, (2) it avoids high background problem caused by cross-hybridization, and (3) it is highly sensitive and avoids background and saturation of signals; and finally it is capable of detecting allelic expression differences in hybrids and allopolyploids. We used the RNA-Seq method to determine the genome-wide transcriptome changes in Arabidopsis allotetraploids and their parents, A. thaliana and A. arenosa. The use of this approach allows us to quantify transcriptome from these species and more importantly, to identify allelic or homoeologous-specific gene expression that plays a role in morphological evolution of allopolyploids. The computational pipelines developed are also applicable to the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data in Arabidopsis-related species, hybrids, and allopolyploids. Comparative analysis of RNA-Seq and ChIP-Seq data will allow us to determine the effects of chromatin modifications on nonadditive gene expression in hybrids and allopolyploids.

  11. Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater's prairie-chicken.

    PubMed

    Bateson, Zachary W; Hammerly, Susan C; Johnson, Jeff A; Morrow, Michael E; Whittingham, Linda A; Dunn, Peter O

    2016-10-01

    The negative effects of inbreeding on fitness are serious concerns for populations of endangered species. Reduced fitness has been associated with lower genome-wide heterozygosity and immune gene diversity in the wild; however, it is rare that both types of genetic measures are included in the same study. Thus, it is often unclear whether the variation in fitness is due to the general effects of inbreeding, immunity-related genes or both. Here, we tested whether genome-wide heterozygosity (20 990 SNPs) and diversity at nine immune genes were better predictors of two measures of fitness (immune response and survival) in the endangered Attwater's prairie-chicken (Tympanuchus cupido attwateri). We found that postrelease survival of captive-bred birds was related to alleles of the innate (Toll-like receptors, TLRs) and adaptive (major histocompatibility complex, MHC) immune systems, but not to genome-wide heterozygosity. Likewise, we found that the immune response at the time of release was related to TLR and MHC alleles, and not to genome-wide heterozygosity. Overall, this study demonstrates that immune genes may serve as important genetic markers when monitoring fitness in inbred populations and that in some populations specific functional genes may be better predictors of fitness than genome-wide heterozygosity.

  12. Allelic loss in colorectal carcinoma

    SciTech Connect

    Kern, S.E.; Fearon, E.R.; Tersmette, K.W.F.; Enterline, J.P.; Vogelstein, B.; Hamilton, S.R. ); Leppert, M.; Nakamura, Yusuke; White, R. )

    1989-06-02

    Clinical and pathological associations with molecular genetic alterations were studied in colorectal carcinomas from 83 patients. Fractional allelic loss, a measure of allelic deletions throughout the genome, and allelic deletions of specific chromosomal arms (the short arm of 17 and long arm of 18) each provided independent prognostic information by multivariate analysis when considered individually with Dukes' classification. Distant metastasis was significantly associated with high fractional allelic loss and with deletions of 17p and 18q. Mutations of ras proto-oncogenes and deletions of 5q had no prognostic importance. Statistically significant associations were also found between allelic losses and a family history of cancer, left-sided tumor location, and absence of extracellular tumor mucin. Allelic deletion analysis thus identified subsets of colorectal carcinoma with increased predilection for distant metastasis and cancer-related death. Further studies may define a subset of genetic alterations that can be used clinically to help assess prognosis.

  13. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism.

    PubMed

    Dykxhoorn, Derek M; Schlehuber, Lisa D; London, Irving M; Lieberman, Judy

    2006-04-11

    A single nucleotide polymorphism (SNP) in the sickle beta-globin gene (beta(S)) leads to sickle cell anemia. Sickling increases sharply with deoxy sickle Hb concentration and decreases with increasing fetal gamma-globin concentration. Measures that decrease sickle Hb concentration should have an antisickling effect. RNA interference (RNAi) uses small interfering (si)RNAs for sequence-specific gene silencing. A beta(S) siRNA with position 10 of the guide strand designed to align with the targeted beta(S) SNP specifically silences beta(S) gene expression without affecting the expression of the gamma-globin or normal beta-globin (beta(A)) genes. Silencing is increased by altering the 5' end of the siRNA antisense (guide) strand to enhance its binding to the RNA-induced silencing complex (RISC). Specific beta(S) silencing was demonstrated by using a luciferase reporter and full-length beta(S) cDNA transfected into HeLa cells and mouse erythroleukemia cells, where it was expressed in the context of the endogenous beta-globin gene promoter and the locus control region enhancers. When this strategy was used to target beta(E), silencing was not limited to the mutant gene but also targeted the normal beta(A) gene. siRNAs, mismatched with their target at position 10, guided mRNA cleavage in all cases except when two bulky purines were aligned. The specific silencing of the beta(S)-globin gene, as compared with beta(E), as well as studies of silencing SNP mutants in other diseases, indicates that siRNAs developed to target a disease-causing SNP will be specific if the mutant residue is a pyrimidine and the normal residue is a purine.

  14. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers.

    PubMed

    Huang, Jun-Fu; Zhao, Na; Xu, Han-Qing; Xia, Han; Wei, Kun; Fu, Wei-Ling; Huang, Qing

    2016-10-01

    MicroRNAs (miRNAs) are currently considered as potential biomarkers for various human diseases. In the present study, miRNA-triggered real-time fluorescent isothermal reaction with exponential amplification (ReFIRE) with or without Thermus aquaticus MutS (Taq MutS) was developed to analyze miRNAs using DNA polymerase, a nicking endonuclease, and fluorescently labeled primers. In the absence of Taq MutS, the ReFIRE system permitted the detection of 100 ymol of targeted miRNA in 80 min. However, this system enabled limited differentiation between homologous miRNA family members. Upon addition of Taq MutS to the ReFIRE system, non-specific amplification generated from the mishybridization between primers and primer dimers or primers and the template duplex was eliminated. The addition of Taq MutS enabled the ultrasensitive detection of as little as 10 ymol of targeted miRNAs in 50 min, which corresponds to less than 10 copies of miRNAs in a total volume of 20 μl. Additionally, the assay exhibited a dynamic range of up to 12 orders of magnitude. The ReFIRE system also showed high specificity, enabling differentiation between homologous miRNA family members exhibiting only single-base differences. The sensitivity, specificity, and dynamic range associated with this system were greater than most currently available miRNA isothermal amplification assays. Moreover, when target-specific primers were labeled with different fluorescent reporters, multiplex analysis was easily performed in a single tube, permitting accurate normalization of miRNA expression. This simple, fast, ultrasensitive, highly specific, and easy-to-multiplex method could significantly contribute to research investigations pertaining to the biological roles of miRNA, as well as clinical diagnosis of various diseases that involve miRNA disruptions. Graphical Abstract The principle of ReFIRE system.

  15. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers.

    PubMed

    Huang, Jun-Fu; Zhao, Na; Xu, Han-Qing; Xia, Han; Wei, Kun; Fu, Wei-Ling; Huang, Qing

    2016-10-01

    MicroRNAs (miRNAs) are currently considered as potential biomarkers for various human diseases. In the present study, miRNA-triggered real-time fluorescent isothermal reaction with exponential amplification (ReFIRE) with or without Thermus aquaticus MutS (Taq MutS) was developed to analyze miRNAs using DNA polymerase, a nicking endonuclease, and fluorescently labeled primers. In the absence of Taq MutS, the ReFIRE system permitted the detection of 100 ymol of targeted miRNA in 80 min. However, this system enabled limited differentiation between homologous miRNA family members. Upon addition of Taq MutS to the ReFIRE system, non-specific amplification generated from the mishybridization between primers and primer dimers or primers and the template duplex was eliminated. The addition of Taq MutS enabled the ultrasensitive detection of as little as 10 ymol of targeted miRNAs in 50 min, which corresponds to less than 10 copies of miRNAs in a total volume of 20 μl. Additionally, the assay exhibited a dynamic range of up to 12 orders of magnitude. The ReFIRE system also showed high specificity, enabling differentiation between homologous miRNA family members exhibiting only single-base differences. The sensitivity, specificity, and dynamic range associated with this system were greater than most currently available miRNA isothermal amplification assays. Moreover, when target-specific primers were labeled with different fluorescent reporters, multiplex analysis was easily performed in a single tube, permitting accurate normalization of miRNA expression. This simple, fast, ultrasensitive, highly specific, and easy-to-multiplex method could significantly contribute to research investigations pertaining to the biological roles of miRNA, as well as clinical diagnosis of various diseases that involve miRNA disruptions. Graphical Abstract The principle of ReFIRE system. PMID:27485624

  16. Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage.

    PubMed

    Lagarrigue, Sandrine; Martin, Lisa; Hormozdiari, Farhad; Roux, Pierre-François; Pan, Calvin; van Nas, Atila; Demeure, Olivier; Cantor, Rita; Ghazalpour, Anatole; Eskin, Eleazar; Lusis, Aldons J

    2013-11-01

    We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data.

  17. A Double-Hybridization Approach for the Transcription- and Amplification-Free Detection of Specific mRNA on a Microarray.

    PubMed

    Haider, Michaela; Haselgrübler, Thomas; Sonnleitner, Alois; Aberger, Fritz; Hesse, Jan

    2016-01-01

    A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length. PMID:27600071

  18. Sex determination in cattle based on simultaneous amplification of a new male-specific DNA sequence and an autosomal locus using the same primers.

    PubMed

    Weikard, R; Kühn, C; Brunner, R M; Roschlau, D; Pitra, C; Laurent, P; Schwerin, M

    2001-09-01

    A PCR-based method for sex determination of bovine DNA samples and embryo biopsies is presented. Using only one primer pair both the male-specific sequence FBNY (127 bp) and a sex-independent control PCR-fragment, the microsatellite marker FBN17 (136-140 bp) are generated in the same PCR reaction. Synteny mapping assigned the male-specific sequence to bovine chromosome Y (BTA Y), whereas FBN17 was mapped to bovine chromosome 2. Localisation of FBNY on BTA Y was confirmed by fluorescence in hybridisation of two BAC clones containing the male-specific sequence. There was no amplification of the male-specific target sequence FBNY in sheep, pig, goat, mice, man, and several wild species of the tribe Bovini. The bovine male-specific fragment was detected in dilutions containing as little as 10 pg genomic DNA and in blastomeres from embryo biopsies. The PCR assay presented here does require neither restriction endonuclease digestion of the PCR product nor additional nested PCR steps. Owing to the advantage of parallel amplification of the autosomal locus FBN17 no additional control fragment is necessary to detect PCR failure. The results of sex determination in embryo biopsies using FBNY were in agreement with the outcome from a reference assay used in commercial breeding programs. PMID:11550263

  19. A Double-Hybridization Approach for the Transcription- and Amplification-Free Detection of Specific mRNA on a Microarray

    PubMed Central

    Haider, Michaela; Haselgrübler, Thomas; Sonnleitner, Alois; Aberger, Fritz; Hesse, Jan

    2016-01-01

    A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length. PMID:27600071

  20. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    PubMed Central

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  1. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways.

    PubMed

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Svatoš, Aleš; Doubský, Jan; Schneeberger, Korbinian; Weigel, Detlef; Bednarek, Paweł; Schulze-Lefert, Paul

    2015-07-01

    Arabidopsis (Arabidopsis thaliana) penetration (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-D-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes.

  2. Collagen Specific T-Cell Repertoire and HLA-DR Alleles: Biomarkers of Active Refractory Rheumatoid Arthritis

    PubMed Central

    Di Sante, Gabriele; Tolusso, Barbara; Fedele, Anna Laura; Gremese, Elisa; Alivernini, Stefano; Nicolò, Chiara; Ria, Francesco; Ferraccioli, Gianfranco

    2015-01-01

    Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04–04, 04–01 and 04–11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients. PMID:26844284

  3. Collagen Specific T-Cell Repertoire and HLA-DR Alleles: Biomarkers of Active Refractory Rheumatoid Arthritis.

    PubMed

    Di Sante, Gabriele; Tolusso, Barbara; Fedele, Anna Laura; Gremese, Elisa; Alivernini, Stefano; Nicolò, Chiara; Ria, Francesco; Ferraccioli, Gianfranco

    2015-12-01

    Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04-04, 04-01 and 04-11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients.

  4. Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium.

    PubMed

    Dubrana, K; Le Mouël, A; Amar, L

    1997-06-15

    Ciliated protozoa undergo thousands of site-specific DNA deletion events during the programmed development of micronuclear genomes to macronuclear genomes. Two deletion elements, W1 and W2, were identified in the Paramecium primaurelia wild-type 156 strain. Here, we report the characterization of both elements in wild-type strain 168 and show that they display variant deletion patterns when compared with those of strain 156. The W1 ( 168 ) element is defective for deletion. The W2 ( 168 ) element is excised utilizing two alternative boundaries on one side, both are different from the boundary utilized to excise the W2156 element. By crossing the 156 and 168 strains, we demonstrate that the definition of all deletion endpoints are each controlled by cis -acting determinant(s) rather than by strain-specific trans-acting factor(s). Sequence comparison of all deleted DNA segments indicates that the 5'-TA-3'terminal sequence is strictly required at their ends. Furthermore the identity of the first eight base pairs of these ends to a previously established consensus sequence correlates with the frequency of the corresponding deletion events. Our data implies the existence of an adaptive convergent evolution of these Paramecium deleted DNA segment end sequences. PMID:9171098

  5. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  6. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  7. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies.

    PubMed

    Rachel, Rivka A; Yamamoto, Erin A; Dewanjee, Mrinal K; May-Simera, Helen L; Sergeev, Yuri V; Hackett, Alice N; Pohida, Katherine; Munasinghe, Jeeva; Gotoh, Norimoto; Wickstead, Bill; Fariss, Robert N; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2015-07-01

    Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies. PMID:25859007

  8. Strongly structured DNA sequences as targets for genosensing: sensing phase design and coupling to PCR amplification for a highly specific 33-mer gliadin DNA fragment.

    PubMed

    Martín-Fernández, Begoña; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús; Frutos-Cabanillas, Gloria; de-los-Santos-Álvarez, Noemí; López-Ruiz, Beatriz

    2014-10-15

    Electrochemical genosensors are becoming cost-effective miniaturizable alternatives to real-time PCR (RT-PCR) methods for the detection of sequence-specific DNA fragments. We report on the rapid detection of PCR amplicons without the need of purification or strand separation. A challenging target sequence for both PCR amplification and electrochemical detection allowed us to address some difficulties associated to hybridization on electrode surfaces. The target was a highly specific oligonucleotide sequence of wheat encoding the most immunogenic peptide of gliadin that triggers the immune response of celiac disease (CD), the 33-mer. With a sandwich assay format and a rational design of the capture and tagged-signaling probes the problems posed by the strong secondary structure of the target and complementary probes were alleviated. Using a binary self-assembled monolayer and enzymatic amplification, a limit of detection of 0.3 nM was obtained. The genosensor did not respond to other gluten-containing cereals such as rye and barley. Coupling to PCR to analyze wheat flour samples required tailoring both the capture and signaling probes. This is the first time that deleterious steric hindrance from long single-stranded regions adjacent to the electrode surface is reported for relatively short amplicons (less than 200 bp). The importance of the location of the recognition site within the DNA sequence is discussed. Since the selected gene fragment contains several repetitions of short sequences, a careful optimization of the PCR conditions had to be performed to circumvent the amplification of non-specific fragments from wheat flour.

  9. Parental Allele-Specific Chromatin Configuration in a Boundary–Imprinting-Control Element Upstream of the Mouse H19 Gene

    PubMed Central

    Khosla, Sanjeev; Aitchison, Alan; Gregory, Richard; Allen, Nicholas D.; Feil, Robert

    1999-01-01

    The mouse H19 gene is expressed from the maternal chromosome exclusively. A 2-kb region at 2 to 4 kb upstream of H19 is paternally methylated throughout development, and these sequences are necessary for the imprinted expression of both H19 and the 5′-neighboring Igf2 gene. In particular, on the maternal chromosome this element appears to insulate the Igf2 gene from enhancers located downstream of H19. We analyzed the chromatin organization of this element by assaying its sensitivity to nucleases in nuclei. Six DNase I hypersensitive sites (HS sites) were detected on the unmethylated maternal chromosome exclusively, the two most prominent of which mapped 2.25 and 2.75 kb 5′ to the H19 transcription initiation site. Five of the maternal HS sites were present in expressing and nonexpressing tissues and in embryonic stem (ES) cells. They seem, therefore, to reflect the maternal origin of the chromosome rather than the expression of H19. A sixth maternal HS site, at 3.45 kb upstream of H19, was detected in ES cells only. The nucleosomal organization of this element was analyzed in tissues and ES cells by micrococcal nuclease digestion. Specifically on the maternal chromosome, an unusual and strong banding pattern was obtained, suggestive of a nonnucleosomal organization. From our studies, it appears that the unusual chromatin organization with the presence of HS sites (maternal chromosome) and DNA methylation (paternal chromosome) in this element are mutually exclusive and reflect alternate epigenetic states. In addition, our data suggest that nonhistone proteins are associated with the maternal chromosome and that these might be involved in its boundary function. PMID:10082521

  10. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles.

    PubMed

    Pembleton, Luke W; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C; Forster, John W; Cogan, Noel O I

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25-0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  11. Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5' Hypersensitive Site 4-Locus Control Region.

    PubMed

    Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam

    2016-08-01

    In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies. PMID:27492765

  12. RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations

    PubMed Central

    Bell, Graeme D.M.; Kane, Nolan C.; Rieseberg, Loren H.; Adams, Keith L.

    2013-01-01

    Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations. PMID:23677938

  13. A novel method for diagnosis of smear-negative tuberculosis patients by combining a random unbiased Phi29 amplification with a specific real-time PCR.

    PubMed

    Pang, Yu; Lu, Jie; Yang, Jian; Wang, Yufeng; Cohen, Chad; Ni, Xin; Zhao, Yanlin

    2015-07-01

    In this study, we develop a novel method for diagnosis of smear-negative tuberculosis patients by performing a random unbiased Phi29 amplification prior to the use of a specific real-time PCR. The limit of detection (LOD) of the conventional real-time PCR was 100 colony-forming units (CFU) of MTB genome/reaction, while the REPLI real-time PCR assay could detect 0.4 CFU/reaction. In comparison with the conventional real-time PCR, REPLI real-time PCR shows better sensitivity for the detection of smear-negative tuberculosis (P = 0.015).

  14. Detecting Allelic Expression Imbalance at Candidate Genes Using 5' Exonuclease Genotyping Technology.

    PubMed

    Gahan, Jillian M; Byrne, Mikaela M; Hill, Matthew; Quinn, Emma M; Murphy, Ross T; Anney, Richard J L; Ryan, Anthony W

    2015-01-01

    Genetic variation along the length of a chromosome can influence the transcription of a gene. In a heterozygous individual, this may lead to one chromosome producing different levels of RNA, compared to its paired chromosome, for a given gene. Allelic differences in gene expression can offer insight into the role of variation in transcription, and subsequently infer a route to conferring disease risk. This phenomenon is known as allele expression imbalance or AEI, which may be assayed using a PCR-based method that includes the quantification of the relative dosage of each allele (e.g., 5' exonuclease assays, TaqMan™). Importantly, in heterozygous individuals the resolution of expression imbalance is performed within a controlled system; the comparison of the alternate allele is reported relative to the wild-type, as the experiment can be performed within a single sample, controlled for background genetic information. Alternative methods for the detection of AEI include Primer-extension MALDI-TOF (Sequenom MassARRAY(®)), Next-Generation Sequencing, and SNP genotyping arrays. Here we present the methods used for the TaqMan™ approach and include a description of the SNP identification, allele-specific PCR, and analytic methods to convert allele amplification metrics to relative allele dosage.

  15. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring. PMID:27506343

  16. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.

  17. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs. PMID:25582179

  18. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  19. Identification of the new HLA-DRB1{sup *}0812 allele detected by sequencing based typing

    SciTech Connect

    Versluis, L.F.; Zwan, A.W. van der; Tilanus, M.G.J.; Savelkoul, P.H.M.; Berg-Loonen, E.M. van den

    1996-12-31

    HLA-DRB typing by polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing based typing (SBT) was studied within the framework of the Antigen and Haplotype Society 11 and the Sequencing Based Typing Component of the Twelfth International HLA workshop. Sequencing was performed as described by McGinnis and co-workers in 1995 on coded samples, including most DR2 subtypes, resulting in high resolution HLA-DR typing. Sequences were compared with a database containing 107 DRB1, four DRB3, and five DRB5 alleles in a similar way as described for HLA-DPB. One sample showed a new DR8 sequence, indicating the presence of a new allele. This individual (4390) is of Indonesian origin. The specific amplification of the DR8 allele and subsequent sequencing resulted in a sequence which did not match the database and new polymorphism was identified. The complementary strand was sequenced and confirmed the presence of a new DRB1 allele. Cloning and subsequent sequencing of the polymerase chain reaction fragment resulted in confirmation of the direct sequence data. Later this variant was officially named DRB1{sup *}0812. The complete nucleotide sequence of exon 2 of this new allele is shown. This allele differs from DRB1{sup *}0810 by one nucleotide at codon 85, resulting in an alanine (GTT), whereas DRB1{sup *}0810 carries a valine (GCT). 5 refs., 1 fig.

  20. Concordance between allele-specific PCR and ultra-deep pyrosequencing for the detection of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations

    PubMed Central

    Hunt, Gillian M; Morris, Lynn; Moorthy, Anitha; Coovadia, Ashraf; Abrams, Elaine J; Strehlau, Renate; Kuhn, Louise; Persaud, Deborah

    2014-01-01

    Recent advances in genotyping technologies have allowed for detection of HIV-1 drug resistance mutations present at low levels. The presence and percentage of Y181C and K103N drug-resistant variants in the blood of 105 subtype C HIV-infected infants who failed single-dose nevirapine prophylaxis for HIV transmission were compared using two highly sensitive genotyping methods, allele-specific PCR (AS-PCR) and ultra-deep pyrosequencing. Significant correlations in detection between both methods were found for both Y181C (correlation coefficients of 0.94 [95% CI 0.91-0.96]) and K103N (0.89 [95% CI 0.84 – 0.92]) mutations. The majority of discordant specimens (3/5 Y181C and 8/11 K103N) had wild-type variants when population sequencing was used, but mutant variants were detectable at very low levels (≤5%) with either assay. This difference is most likely due to stochastic variations in the appearance of mutant variants. Overall, both AS-PCR and ultra-deep pyrosequencing methods have proven to be sensitive and accurate, and may confidently be used where feasible. PMID:25034127

  1. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    SciTech Connect

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.

  2. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    DOE PAGES

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; et al

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

  3. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    PubMed Central

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-01-01

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (∼36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo. PMID:26370782

  4. Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

    PubMed Central

    Schrumpf, Melanie; Talebian Yazdi, Mehrdad; Ruano, Dina; Forte, Giusi I.; Nederlof, Petra M.; Veselic, Maud; Rabe, Klaus F.; Annema, Jouke T.; Smit, Vincent; Morreau, Hans; van Wezel, Tom

    2011-01-01

    Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and histological material was available. We demonstrated that these standard molecular techniques can be accurately applied on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling can be reliably performed on fine needle cytology aspirates from NSCLC patients. PMID:21408138

  5. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.).

    PubMed

    Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling

    2014-06-01

    Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants.

  6. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins.

    PubMed

    Tang, Jin-Bao; Tang, Ying; Yang, Hong-Ming

    2015-02-15

    Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag-BirA system. Through the high streptavidin (SA)-biotin interaction, the divalent biotinylated APs were clustered in the SA-biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ-AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for the ZZ protein.

  7. An improved assay for the determination of Huntington`s disease allele size

    SciTech Connect

    Reeves, C.; Klinger, K.; Miller, G.

    1994-09-01

    The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra- or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.

  8. Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

    PubMed Central

    Lewis, Jennifer D.; Wu, Ronald

    2010-01-01

    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a. PMID:20368970

  9. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    PubMed

    Wu, Ying; Waite, Lindsay L; Jackson, Anne U; Sheu, Wayne H-H; Buyske, Steven; Absher, Devin; Arnett, Donna K; Boerwinkle, Eric; Bonnycastle, Lori L; Carty, Cara L; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C; Dumitrescu, Logan; Eaton, Charles B; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E; Hindorff, Lucia A; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L; Narisu, Narisu; Robinson, Jennifer G; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M; Adair, Linda S; Ballantyne, Christie M; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S; Duggan, David; Feranil, Alan B; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C; Hveem, Kristian; Juang, Jyh-Ming J; Kesäniemi, Antero Y; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lee, I-Te; Leppert, Mark F; Matise, Tara C; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Boehnke, Michael; Haiman, Christopher A; Chen, Yii-Der I; Kooperberg, Charles; Assimes, Themistocles L; Crawford, Dana C; Hsiung, Chao A; North, Kari E; Mohlke, Karen L

    2013-03-01

    Genome-wide association studies (GWAS) have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4) in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291

  10. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that polymorphisms associated with transcriptional regulation are critical for viral disease resistance was tested by selecting birds using SNPs exhibiting allele-specific expression (ASE) in response to viral challenge. Analysis indicates ASE markers account for 83% of the disease re...

  11. Allele-specific marker development and selection efficiencies for both flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes in soybean subgenus soja.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-06-01

    Color is one of the phenotypic markers mostly used to study soybean (Glycine max L. Merr.) genetic, molecular and biochemical processes. Two P450-dependent mono-oxygenases, flavonoid 3'-hydroxylase (F3'H; EC1.14.3.21) and flavonoid 3',5'-hydroxylase (F3'5'H, EC1.14.13.88), both catalyzing the hydroxylation of the B-ring in flavonoids, play an important role in coloration. Previous studies showed that the T locus was a gene encoding F3'H and the W1 locus co-segregated with a gene encoding F3'5'H in soybean. These two genetic loci have identified to control seed coat, flower and pubescence colors. However, the allelic distributions of both F3'H and F3'5'H genes in soybean were unknown. In this study, three novel alleles were identified (two of four alleles for GmF3'H and one of three alleles for GmF3'5'H). A set of gene-tagged markers was developed and verified based on the sequence diversity of all seven alleles. Furthermore, the markers were used to analyze soybean accessions including 170 cultivated soybeans (G. max) from a mini core collection and 102 wild soybeans (G. soja). For both F3'H and F3'5'H, the marker selection efficiencies for pubescence color and flower color were determined. The results showed that one GmF3'H allele explained 92.2 % of the variation in tawny and two gmf3'h alleles explained 63.8 % of the variation in gray pubescence colors. In addition, two GmF3'5'H alleles and one gmF3'5'h allele explained 94.0 % of the variation in purple and 75.3 % in white flowers, respectively. By the combination of the two loci, seed coat color was determined. In total, 90.9 % of accessions possessing both the gmf3'h-b and gmf3'5'h alleles had yellow seed coats. Therefore, seed coat colors are controlled by more than two loci.

  12. A new DRB1 allele (DRB1*0811) identified in Native Americans

    SciTech Connect

    McAuley, J.D.; Williams, T.M.; Wu, J.; Foutz, T.; Troup, G.M.

    1994-12-31

    A novel DRB1 allele was identified in a potential bone marrow transplantation recipient and her father. Both are Native Americans of Navajo descent. Class II serologic typing of the patient demonstrated the presence of DR8, DR14, DR52, and DQ3. Sequence specific polymerase chain reaction (PCR) amplification of genomic DNA was consistent with the DRB1 alleles *08 and *14. Direct DNA sequencing of PCR products prepared from genomic DNA demonstrated that the patient`s class II alleles included the novel allele, DRB1*1402, DRB3*0101, DQB1*0301, and DQB1*0402. Analysis of the siblings and the father of this individual revealed that the new allele was transmitted on the haplotype A2, Cw7, B39, DQB1*0402, while the DRB1*1402 allele was transmitted on the haplotype A24, Cw4, B35, DRB3*0101, DQB1*0301. 4 refs., 1 fig., 1 tab.

  13. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  14. CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fragaria x ananassa Duch.) cultivars, and their disomic inheritance.

    PubMed

    Kunihisa, M; Fukino, N; Matsumoto, S

    2005-05-01

    Cleavage amplified polymorphic sequence (CAPS) markers of strawberry (Fragaria x ananassa Duch.) can be useful for identifying mislabeled or patent-infringing cultivars in the marketplace. However, CAPS markers in octoploid strawberry tend to give unclear bands because multiple homologous sites are simultaneously amplified by the non-selective PCR. To overcome this problem, we used "cluster-specific amplification" based on the nucleotide sequences of PCR products and were able to improve the band clarity of 18 CAPS markers. By analyzing the marker segregation ratio, we demonstrated that 13 clarified markers were derived from single diploid loci that were transmitted to progeny in a manner consistent with Mendelian inheritance. We discuss the genomic structure of octoploid strawberry from the viewpoint of cluster and segregation analysis and suggest that it comprises independent genomes. We tested the utility of all of the markers we developed for cultivar identification and confirmed their ability to distinguish among 64 strawberry cultivars.

  15. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    PubMed Central

    Wang, Deguo; Liu, Yanhong

    2015-01-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  16. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-06-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  17. Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner

    PubMed Central

    Amin, Ahmad S.; Giudicessi, John R.; Tijsen, Anke J.; Spanjaart, Anne M.; Reckman, Yolan J.; Klemens, Christine A.; Tanck, Michael W.; Kapplinger, Jamie D.; Hofman, Nynke; Sinner, Moritz F.; Müller, Martina; Wijnen, Wino J.; Tan, Hanno L.; Bezzina, Connie R.; Creemers, Esther E.; Wilde, Arthur A. M.; Ackerman, Michael J.; Pinto, Yigal M.

    2012-01-01

    Aims Heterozygous mutations in KCNQ1 cause type 1 long QT syndrome (LQT1), a disease characterized by prolonged heart rate-corrected QT interval (QTc) and life-threatening arrhythmias. It is unknown why disease penetrance and expressivity is so variable between individuals hosting identical mutations. We aimed to study whether this can be explained by single nucleotide polymorphisms (SNPs) in KCNQ1's 3′ untranslated region (3′UTR). Methods and results This study was performed in 84 LQT1 patients from the Academic Medical Center in Amsterdam and validated in 84 LQT1 patients from the Mayo Clinic in Rochester. All patients were genotyped for SNPs in KCNQ1's 3′UTR, and six SNPs were found. Single nucleotide polymorphisms rs2519184, rs8234, and rs10798 were associated in an allele-specific manner with QTc and symptom occurrence. Patients with the derived SNP variants on their mutated KCNQ1 allele had shorter QTc and fewer symptoms, while the opposite was also true: patients with the derived SNP variants on their normal KCNQ1 allele had significantly longer QTc and more symptoms. Luciferase reporter assays showed that the expression of KCNQ1's 3′UTR with the derived SNP variants was lower than the expression of the 3′UTR with the ancestral SNP variants. Conclusion Our data indicate that 3′UTR SNPs potently modify disease severity in LQT1. The allele-specific effects of the SNPs on disease severity and gene expression strongly suggest that they are functional variants that directly alter the expression of the allele on which they reside, and thereby influence the balance between proteins stemming from either the normal or the mutant KCNQ1 allele. PMID:22199116

  18. Rapid identification and fingerprinting of Candida krusei by PCR-based amplification of the species-specific repetitive polymorphic sequence CKRS-1.

    PubMed Central

    Carlotti, A; Chaib, F; Couble, A; Bourgeois, N; Blanchard, V; Villard, J

    1997-01-01

    A PCR method was developed to identify and fingerprint Candida krusei isolates simply and rapidly. The primer pair Arno1 and Arno2 was designed to amplify the polymorphic species-specific repetitive sequence CKRS-1 (C. krusei repeated sequence 1) that we identified in the nontranscribed intergenic regions (IGRs) of rRNA genes in C. krusei LMCK31. The specificity, sensitivity, reproducibility, and fingerprinting ability of the PCR assay were evaluated. Amplification products were obtained from all 131 C. krusei isolates studied. No other yeast species of medical importance (n = 26), including species similar to C. krusei, species of pathogenic filamentous fungi, or a variety of pathogenic bacteria, yielded a PCR product with these primers. This PCR assay allowed for the identification of C. krusei in less than 6 h. The PCR assay was sensitive enough to detect as little as 10 to 100 fg of C. krusei-purified DNA and proved to be reproducible. Since amplification products varied both in number and in molecular weight according to the strains, PCR patterns allowed strains to be distinguished. To ascertain the epidemiological usefulness of this PCR fingerprinting, the patterns of the 131 isolates were compared. A total of 95 types which corresponded to 95 independent strains were delineated (discriminatory power = 1 with n = 95). Comparison of the results of PCR fingerprinting and those of fingerprinting with the CkF1,2 probe showed that they concurred. In addition, this work yields insights into the mechanisms involved in generating polymorphisms in the IGRs of C. krusei. Since this method is simpler and faster than established identification and genotyping methods of this important pathogenic species, it is a critical improvement for clinical microbiology laboratories relevant not only to diagnosis but also to epidemiology. PMID:9163440

  19. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members.

    PubMed

    Wu, Wei; Baker, Michael E; Eraly, Satish A; Bush, Kevin T; Nigam, Sanjay K

    2009-07-01

    When the organic anion transporter Oat1 was first identified as NKT (Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. J Biol Chem 272: 6471-6478, 1997), it was argued that it, together with Oct1, may be part of a larger subfamily (now known as SLC22) involved in organic ion and xenobiotic transport. The least studied among SLC22 transporters are the so-called unknown substrate transporters (USTs). Here, five novel genes located in a cluster on mouse chromosome 19, immediately between Slc22a8 (Oat3)/Slc22a6 (Oat1) and Slc22a19 (Oat5), were identified as homologs of human USTs. These genes display preferential expression in liver and kidney, and one gene, AB056422, has several splicing variants with differential tissue expression and embryonic expression. Along with Slc22a6, Slc22a8, and Slc22a19, these Usts define the largest known cluster of mammalian Slc22 genes. Given the established functions of Oats, these genes may also be involved in organic anion transport. Usts have characteristic motifs and share a signature residue in the possible active site of transmembrane domain 7, a conserved, positively charged, amino acid, Arg356, possibly a site for interaction with organic anions. In certain species, Oat1 and Oat3 appeared to be highly conserved, whereas the Ust part of this cluster appeared to undergo repeated species-specific amplification, suggesting strong environmental selection pressure, and perhaps providing an explanation for copy number variation in the human locus. One Ust amplification in mouse appears to be recent. This cluster may be coordinately regulated and under selective pressure in a species-specific manner. PMID:19417012

  20. A simple, low-cost, and rapid device for a DNA methylation-specific amplification/detection system using a flexible plastic and silicon complex.

    PubMed

    Lee, Tae Yoon; Shin, Yong; Park, Mi Kyoung

    2014-11-01

    Abnormal DNA methylation has been associated with the development and progression of several human cancers and is a potential target for treatment. Thus, myriad technologies for the analysis of DNA methylation have been developed over the past few decades. However, most of these technologies are still far from ideal because they are time-consuming, labor-intensive, and complex, and there is the risk of contamination of samples. Here, we present an innovative DNA methylation-specific amplification/detection device for analysis of DNA methylation in cancer-related DNA biomarkers. The assay is based on a microfluidic system that is coupled to a flexible plastic-based on-chip endonuclease digestion device with optimized magnetic field effect and a methylation-specific isothermal solid-phase amplification/detection technique to allow a low-cost, simple, and rapid analysis of DNA methylation status in a label-free and real-time manner. This flexible plastic/silicon-based microfluidic device is relatively simple to fabricate with a flexible thin film and a magnet array by using a laser machine that can overcome the limitations of a PDMS-based microfluidic device. We demonstrated the ability of the methylation analysis based on the proposed flexible device to detect the methylated RARβ gene, which is a common DNA methylation biomarker in several human cancers. The simple platform detected the methylated gene in genomic DNA from human cancer cell lines within 65 min, whereas other methods required at least several hours. Therefore, this simple, low-cost, and rapid methylation analysis platform will be useful for the detection of DNA methylation in point-of-care applications.

  1. Proper Use of Allele-Specific Expression Improves Statistical Power for cis-eQTL Mapping with RNA-Seq Data

    PubMed Central

    HU, Yi-Juan; SUN, Wei; TZENG, Jung-Ying; PEROU, Charles M.

    2015-01-01

    Studies of expression quantitative trait loci (eQTLs) offer insight into the molecular mechanisms of loci that were found to be associated with complex diseases and the mechanisms can be classified into cis- and trans-acting regulation. At present, high-throughput RNA sequencing (RNA-seq) is rapidly replacing expression microarrays to assess gene expression abundance. Unlike microarrays that only measure the total expression of each gene, RNA-seq also provides information on allele-specific expression (ASE), which can be used to distinguish cis-eQTLs from trans-eQTLs and, more importantly, enhance cis-eQTL mapping. However, assessing the cis-effect of a candidate eQTL on a gene requires knowledge of the haplotypes connecting the candidate eQTL and the gene, which cannot be inferred with certainty. The existing two-stage approach that first phases the candidate eQTL against the gene and then treats the inferred phase as observed in the association analysis tends to attenuate the estimated cis-effect and reduce the power for detecting a cis-eQTL. In this article, we provide a maximum-likelihood framework for cis-eQTL mapping with RNA-seq data. Our approach integrates the inference of haplotypes and the association analysis into a single stage, and is thus unbiased and statistically powerful. We also develop a pipeline for performing a comprehensive scan of all local eQTLs for all genes in the genome by controlling for false discovery rate, and implement the methods in a computationally efficient software program. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to empirical breast cancer data from The Cancer Genome Atlas project. PMID:26568645

  2. Comparison of human platelet antigen (HPA)-1a typing by solid phase red cell adherence to HPA-1 allotypes determined by allele-specific restriction enzyme analysis.

    PubMed

    McGann, M J; Procter, J L; Honda, J; Matsuo, K; Stroncek, D F

    2000-01-01

    Phenotype results for human platelet antigen (HPA)-1 by Capture-P(R), (Immucor, Inc., Norcross, GA) solid phase red cell adherence (SPRCA) were compared to results of allele-specific restriction enzyme analysis (ASRA) for the determination of HPA-1 allotype. Because the expression of HPA-1a and HPA-1b is determined by a single nucleotide substitution of thymine --> cytosine at position 196 of the gene encoding membrane glycoprotein (GP)-IIIa, it is possible to distinguish the alternate forms of the gene using ASRA. Primers (5'- GCTCCAATGTACGGGGTAAACTC-3' and 5'-CAGACCTCCACCTTGTGCTCTATG- 3') were designed to amplify the region of DNA that contains the polymorphism and a restriction enzyme (Nci I) was used to cleave the DNA in a predictable manner. Platelet-rich plasma for immunophenotying and anticoagulated whole blood for DNA extraction were obtained from 159 platepheresis donors. Of 159 SPRCA tests, 138 were valid and 21 were invalid due to positive autologous controls. For 135 HPA-1a-positive and 2 HPA-1a-negative phenotype tests the DNA typing results correlated: 135 positive samples were either HPA-1a/a or HPA-1a/b and 2 negative samples were HPA-1b/b. One donor that typed as HPA-1b/b by ASRA had a positive result of 2+ on SPRCA. This donor had been previously typed by SPRCA as HPA-1a-negative and DNA typed as HPA-1b/b by our laboratory. Based on these findings results of = 3+ by SPRCA are interpreted as HPA-1a-positive for donor screening purposes. SPRCA test results of = 2+ are considered equivocal and the HPA-1 allotype is determined by ASRA. HPA-1a-negative donors by SPRCA must be confirmed as HPA-1b/b by ASRA prior to issue for a patient that requires HPA-1anegative platelets.

  3. Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: evidence for trans-specific evolution of alleles.

    PubMed

    Arden, B; Klein, J

    1982-04-01

    H-2 haplotypes were extracted from wild mice of three subspecies, Mus musculus domesticus, M. m. molossinus, and M. m. castaneus, that are known to have been separated from one another for some 1 to 2 million years. Serologically indistinguishable molecules controlled by some of the polymorphic H-2 loci were compared by tryptic peptide mapping, and the maps were found to be identical. In addition, a number of instances of biochemically indistinguishable H-2 molecules were found among wild mice and inbred strains of the M. m. domesticus subspecies. These findings suggest that some of the H-2 alleles have not altered for greater than 1 million years. To reconcile this apparent stability of H-2 genes with their extraordinary polymorphism (some 100 alleles at each of the polymorphic H-2 loci), it is proposed that the H-2 alleles evolve as if they were separate loci.

  4. Brief communication: Evolution of a specific O allele (O1vG542A) supports unique ancestry of Native Americans.

    PubMed

    Villanea, Fernando A; Bolnick, Deborah A; Monroe, Cara; Worl, Rosita; Cambra, Rosemary; Leventhal, Alan; Kemp, Brian M

    2013-08-01

    In this study, we explore the geographic and temporal distribution of a unique variant of the O blood group allele called O1v(G542A) , which has been shown to be shared among Native Americans but is rare in other populations. O1v(G542A) was previously reported in Native American populations in Mesoamerica and South America, and has been proposed as an ancestry informative marker. We investigated whether this allele is also found in the Tlingit and Haida, two contemporary indigenous populations from Alaska, and a pre-Columbian population from California. If O1v(G542A) is present in Na-Dene speakers (i.e., Tlingits), it would indicate that Na-Dene speaking groups share close ancestry with other Native American groups and support a Beringian origin of the allele, consistent with the Beringian Incubation Model. If O1v(G542A) is found in pre-Columbian populations, it would further support a Beringian origin of the allele, rather than a more recent introduction of the allele into the Americas via gene flow from one or more populations which have admixed with Native Americans over the past five centuries. We identified this allele in one Na-Dene population at a frequency of 0.11, and one ancient California population at a frequency of 0.20. Our results support a Beringian origin of O1v(G542A) , which is distributed today among all Native American groups that have been genotyped in appreciable numbers at this locus. This result is consistent with the hypothesis that Na-Dene and other Native American populations primarily derive their ancestry from a single source population. PMID:23868176

  5. Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA methyltransferase activity using exonuclease III-assisted target recycling amplification.

    PubMed

    Chen, Chun; Li, Baoxin

    2014-04-15

    Site-specific determination of DNA methylation and assay of MTase activity can be used for determining specific cancer types, providing insights into the mechanism of gene repression, and developing novel drugs to treat methylation-related diseases. Herein, we develop a simple and highly sensitive chemiluminescence (CL) biosensing platform for site-specific determination of DNA methylation using Exonuclease III (Exo III)-assisted target recycling signal amplification. After bisulfite treatment of mixture of methylated DNA and unmethylated DNA, methylated DNA can hybridize with fluorescein (FAM)-labeled probe DNA to form double-stranded DNA (dsDNA), removing the FAM-labeled probe DNA from the surface of grapheme oxide, and the chemiluminescence resonance energy transfer (CRET) sensing signal can be observed and then amplified using Exo III-based recycling strategy. The biosensing platform exhibits excellent high sensitivity, and it can ever distinguish as low as 0.002% methylation level from the mixture, which is superior to most currently reported methods used for DNA methylation assay. In addition, the proposed method can also be used to sensitively assay MTase activity with determination limit of 0.007 U/mL. This CL biosensing offers the advantages of being facile, sensitive, rapid and cost-effective. These features make the system promising for future use for early cancer diagnosis and discover of new anticancer drugs.

  6. Establishment and Application of a Loop-Mediated Isothermal Amplification Method for Simple, Specific, Sensitive and Rapid Detection of Toxoplasma gondii

    PubMed Central

    CAO, Lili; CHENG, Ronghua; YAO, Lin; YUAN, Shuxian; YAO, Xinhua

    2013-01-01

    ABSTRACT The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6 primers targeting a highly conserved region of the GRA1 gene was developed to diagnose Toxoplasma gondii. The reaction time of the LAMP assay was shortened to 30 min after optimizing the reaction system. The LAMP assay was found to be highly specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic protocol to quantitate T. gondii DNA and generated a log-linear regression plot by plotting the time-to-threshold values against genomic equivalent copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples obtained from 6 pig farms. The LAMP assay established in this study resulted in simple, specific, sensitive and rapid detection of T. gondii DNA and is expected to play an important role in clinical detection of T. gondii. PMID:23965849

  7. Single primer amplification reaction (SPAR) reveals inter- and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae).

    PubMed

    Sharma, Santosh Kumar; Kumaria, Suman; Tandon, Pramod; Rao, Satyawada Rama

    2011-09-01

    A total of 53 primers belonging to three SPAR methods, viz. RAPD, ISSR and DAMD, collectively produced 456 polymorphic amplicons with 96.6% polymorphism at inter-specific level in five species of Cymbidium, viz. C. aloifolium, C. mastersii, C. elegans, C. eburneum and C. tigrinum, whereas at intra-specific level, the observed polymorphism ranged from 51.2% to 77.1% among them. Three SPARs collectively revealed 25 unique species-specific amplicons; most of them were amplified with RAPD and DAMD primers besides few bands which were either missed (absent) or lost (heterozygosity). UPGMA clustering evidently distinguished the representatives of C. aloifolium and C. tigrinum, with distinct genetic distance, which may be due to their entirely different habitats as well as discrete morphological characteristics. Upon analysis of the data generated, all the three SPAR methods, either independently and/or in combination, revealed wide range of genetic variation between and within five species of Cymbidium. Comparison of matrix of individual SPAR method revealed that analysis of natural genetic variation using combination of SPAR methods, rather than an isolated approach, is highly effective. The critical analyses of the amplicon data are indicative of DAMD as the most powerful SPAR method by showing highest resolving power (Rp) followed by ISSR and RAPD. Alternatively, the total polymorphic information content was highest in case of RAPD followed by other two SPAR methods. Thus, the present investigation for the first time provides a valuable baseline data for genetic variation at inter- and intra-specific levels in horticultural Cymbidiums and also addresses conservation concerns.

  8. Search for mycobacteria in interstitial cystitis using mycobacteria-specific DNA probes with signal amplification by polymerase chain reaction.

    PubMed

    Hampson, S J; Christmas, T J; Moss, M T

    1993-09-01

    The aetiology of interstitial cystitis is not known. Various infective agents have been postulated and although recognised as perpetrators of chronic inflammatory conditions, mycobacteria have never been satisfactorily excluded from interstitial cystitis. If present in interstitial cystitis tissue, mycobacteria exist either in very small numbers or in forms which contemporary staining techniques fail to recognise. We used a polymerase chain reaction with mycobacteria-specific DNA probes and found no evidence of mycobacterial involvement in 8 cases of proven interstitial cystitis.

  9. Serologic and nucleotide sequencing analyses of a novel DR52-associated DRB1 allele with the DR 'NJ25' specificity, designated DRB1*1307.

    PubMed

    Kaneshige, T; Hashimoto, M; Matsumoto, Y; Kinoshita, T; Hirasawa, T; Uchida, K; Inoko, H

    1994-10-01

    A novel DR52-associated DRB1* allele, designated DRB1*1307, was encountered in the course of our HLA-DRB1 genotyping study in a Japanese population by PCR-RFLP. Comparison of the nucleotide sequence of its second exon with those of the other known DRB1 alleles revealed that DRB1*1307 was most similar to DRB1*1101, differing by two amino acid substitutions. From a family study, DRB1*1307 was found to segregate with a haplotype of DRB3*0202-DQA1*0501-DQB1*0301, which was also observed with DRB1*1101 in a Japanese population. DRB1*1307 was recognized in three of 652 healthy Japanese controls (gene frequency: 0.24%) with the same DR-DQ haplotype, indicating that DRB1*1307 arose from DRB1*1101 by a gene conversionlike event(s) and/or point mutations. Further, it was also observed that this allele had a strong linkage disequilibrium with HLA-B70 (p < 0.001). This new DRB1*1307 allele was serologically defined as DR 'NJ25,' and it gave an almost identical serologic pattern to DRB1*1406. On sequence comparison, however, no unique amino acid residues conserved in DRB1*1406 and DRB1*1307 but absent in all the other DRB1 alleles could be found, indicating that two amino acid changes at positions 47 and 58 abolished the reactivity against the DR11 antisera.

  10. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire

    PubMed Central

    1991-01-01

    We report here the first extensive study of a T cell repertoire for a class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the T cell receptors (TCRs) carried by 28 H-2Kd-restricted CTL clones specific for a single Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V alpha, J alpha, and J beta segments and aminoacid composition of the junctional regions. However, despite this extensive diversity, a high proportion of the TCRs contain the same V beta segment. These results are in contrast to most previously reported T cell responses towards class II MHC-peptide complexes, where the TCR repertoires appeared to be much more limited. In our study, the finding of a dominant V beta in the midst of otherwise highly diverse TCRs suggests the importance of the V beta segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As an additional finding, we observed that nearly all clones have rearranged both TCR alpha loci. Moreover, as many as one-third of the CTL clones that we analyzed apparently display two productive alpha rearrangements. This argues against a regulated model of sequential recombination at the alpha locus and consequently raises the question of whether allelic exclusion of the TCR alpha chain is achieved at all. PMID:1836010

  11. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7.

    PubMed

    Ravan, Hadi; Amandadi, Mojdeh; Sanadgol, Nima

    2016-02-01

    E. coli O157:H7 is one of the most important foodborne pathogen that causes some human illnesses such as bloody diarrhea, hemolytic-uremic syndrome, and kidney failure. We developed a loop-mediated isothermal amplification (LAMP) assay with six special primers that target a highly specific 299-bp region of the Z3276 gene for the detection of E. coli O157:H7. Among 117 bacterial strains tested in this study, positive results were only obtained from E. coli O157:H7 strains. The sensitivity level of the Z3276-LAMP assay was determined to be 5 CFU/reaction tube in pure bacterial culture. Moreover, the LAMP assay was successfully applied to artificially contaminated ground beef with a sensitivity level of 10(3) CFU/mL without pre-enrichment and 10 CFU/mL after a 4-h pre-enrichment. In conclusion, the present LAMP assay would be a useful and powerful tool for the rapid, sensitive, and specific diagnosis of E. coli O157:H7 strains in resource limited laboratories.

  12. Primitive Genepools of Asian Pears and Their Complex Hybrid Origins Inferred from Fluorescent Sequence-Specific Amplification Polymorphism (SSAP) Markers Based on LTR Retrotransposons

    PubMed Central

    Jiang, Shuang; Zheng, Xiaoyan; Yu, Peiyuan; Yue, Xiaoyan; Ahmed, Maqsood; Cai, Danying; Teng, Yuanwen

    2016-01-01

    Recent evidence indicated that interspecific hybridization was the major mode of evolution in Pyrus. The genetic relationships and origins of the Asian pear are still unclear because of frequent hybrid events, fast radial evolution, and lack of informative data. Here, we developed fluorescent sequence-specific amplification polymorphism (SSAP) markers with lots of informative sites and high polymorphism to analyze the population structure among 93 pear accessions, including nearly all species native to Asia. Results of a population structure analysis indicated that nearly all Asian pear species experienced hybridization, and originated from five primitive genepools. Four genepools corresponded to four primary Asian species: P. betulaefolia, P. pashia, P. pyrifolia, and P. ussuriensis. However, cultivars of P. ussuriensis were not monophyletic and introgression occurred from P. pyrifolia. The specific genepool detected in putative hybrids between occidental and oriental pears might be from occidental pears. The remaining species, including P. calleryana, P. xerophila, P. sinkiangensis, P. phaeocarpa, P. hondoensis, and P. hopeiensis in Asia, were inferred to be of hybrid origins and their possible genepools were identified. This study will be of great help for understanding the origin and evolution of Asian pears. PMID:26871452

  13. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction.

    PubMed

    Ma, Chao; Liu, Haiyun; Tian, Tian; Song, Xianrang; Yu, Jinghua; Yan, Mei

    2016-09-15

    A simple and rapid assay for the detection of peptides is designed based on the specific recognition of aptamer, the quenching effect of graphene oxide (GO) and the efficient signal amplification of hybrid chain reaction (HCR). In this assay, the hairpin structure of aptamer is opened after binding with targets, and the initiation sequence could be exposed to hairpin probe 1 (H1) to open its hairpin structure. Then the opened H1 will open the hairpin structure of hairpin probe 2 (H2), and in turn, the opened initiation sequence of H2 continues to open H1. As a result, the specific recognition of target and fluorescent signals are accumulated through the process in short 1h. Attentively, the aptamer can not only identify target peptides, but also initiate the HCR between H1 and H2. More importantly, the HCR is initiated only after the target recognition of aptamer. After HCR, the excess hairpin probes will be anchored on the GO surface, and the background is greatly reduced due to the quenching effect of GO. By using Mucin-1(MUC1) as a model peptide, the assay has a wide linear range as two orders of magnitude and the detection range is from 0.01 to 5nM with low detection limit of 3.33pM. Therefore, the simple and rapid detection of the target can be realized, and the novel assay has great potential in detecting various peptides and even cancer cells.

  14. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7.

    PubMed

    Ravan, Hadi; Amandadi, Mojdeh; Sanadgol, Nima

    2016-02-01

    E. coli O157:H7 is one of the most important foodborne pathogen that causes some human illnesses such as bloody diarrhea, hemolytic-uremic syndrome, and kidney failure. We developed a loop-mediated isothermal amplification (LAMP) assay with six special primers that target a highly specific 299-bp region of the Z3276 gene for the detection of E. coli O157:H7. Among 117 bacterial strains tested in this study, positive results were only obtained from E. coli O157:H7 strains. The sensitivity level of the Z3276-LAMP assay was determined to be 5 CFU/reaction tube in pure bacterial culture. Moreover, the LAMP assay was successfully applied to artificially contaminated ground beef with a sensitivity level of 10(3) CFU/mL without pre-enrichment and 10 CFU/mL after a 4-h pre-enrichment. In conclusion, the present LAMP assay would be a useful and powerful tool for the rapid, sensitive, and specific diagnosis of E. coli O157:H7 strains in resource limited laboratories. PMID:26724736

  15. Polymerase chain reaction (PCR) amplification demonstrates the absence of human T-cell lymphotrophic virus (HTLV)-I specific pol sequences in peripheral T-cell lymphomas.

    PubMed

    Henni, T; Divine, M; Gaulard, P; Haioun, C; Duc Dodon, M; Gourdin, M F; Desforges, L; Goossens, M; Reyes, F; Farcet, J P

    1990-09-01

    HTLV-I seronegative patients in nonendemic areas have been described with T-cell proliferations the DNA of which contains specific HTLV-I viral sequences. We have looked for the presence of HTLV-I DNA sequences in 27 HTLV-I seronegative patients with peripheral T-cell lymphomas, distinct from adult T-cell leukemia (ATL), and four HTLV-I seropositive patients, three with an ATL and one with a tropical spastic paraparesis. Using HTLV-I pol specific primers, the genomic DNA from peripheral blood mononuclear cells and lymph nodes massively infiltrated by tumor cells was analyzed by the enzymatic gene amplification procedure. In contrast to the peripheral blood lymphocytes from the four HTLV-I seropositive patients, the peripheral T-cell lymphoma samples did not harbor HTLV-I pol sequences. The data show that the detection of HTLV-I nucleotide sequences by the polymerase chain reaction correlates with serologic analysis in this series. PMID:2266151

  16. Discovery and characterization of RecA protein of thermophilic bacterium Thermus thermophilus MAT72 phage Tt72 that increases specificity of a PCR-based DNA amplification.

    PubMed

    Stefanska, Aleksandra; Kaczorowska, Anna-Karina; Plotka, Magdalena; Fridjonsson, Olafur H; Hreggvidsson, Gudmundur O; Hjorleifsdottir, Sigridur; Kristjansson, Jakob K; Dabrowski, Slawomir; Kaczorowski, Tadeusz

    2014-07-20

    The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E. coli RecA protein. When expressed in E. coli, the Tt72 recA gene did not confer the ability to complement the ultraviolet light (254nm) sensitivity of an E. coli recA mutant. Tt72 RecA protein has been purified with good yield to catalytic and electrophoretic homogeneity using a three-step chromatography procedure. Biochemical characterization indicated that the protein can pair and promote ATP-dependent strand exchange reaction resulting in formation of a heteroduplex DNA at 60°C under conditions otherwise optimal for E. coli RecA. When the Tt72 RecA protein was included in a standard PCR-based DNA amplification reaction, the specificity of the PCR assays was significantly improved by eliminating non-specific products.

  17. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction.

    PubMed

    Ma, Chao; Liu, Haiyun; Tian, Tian; Song, Xianrang; Yu, Jinghua; Yan, Mei

    2016-09-15

    A simple and rapid assay for the detection of peptides is designed based on the specific recognition of aptamer, the quenching effect of graphene oxide (GO) and the efficient signal amplification of hybrid chain reaction (HCR). In this assay, the hairpin structure of aptamer is opened after binding with targets, and the initiation sequence could be exposed to hairpin probe 1 (H1) to open its hairpin structure. Then the opened H1 will open the hairpin structure of hairpin probe 2 (H2), and in turn, the opened initiation sequence of H2 continues to open H1. As a result, the specific recognition of target and fluorescent signals are accumulated through the process in short 1h. Attentively, the aptamer can not only identify target peptides, but also initiate the HCR between H1 and H2. More importantly, the HCR is initiated only after the target recognition of aptamer. After HCR, the excess hairpin probes will be anchored on the GO surface, and the background is greatly reduced due to the quenching effect of GO. By using Mucin-1(MUC1) as a model peptide, the assay has a wide linear range as two orders of magnitude and the detection range is from 0.01 to 5nM with low detection limit of 3.33pM. Therefore, the simple and rapid detection of the target can be realized, and the novel assay has great potential in detecting various peptides and even cancer cells. PMID:27093485

  18. The SPANX gene family of cancer/testis-specific antigens: rapid evolution and amplification in African great apes and hominids.

    PubMed

    Kouprina, Natalay; Mullokandov, Michael; Rogozin, Igor B; Collins, N Keith; Solomon, Greg; Otstot, John; Risinger, John I; Koonin, Eugene V; Barrett, J Carl; Larionov, Vladimir

    2004-03-01

    Human sperm protein associated with the nucleus on the X chromosome (SPANX) genes comprise a gene family with five known members (SPANX-A1, -A2, -B, -C, and -D), encoding cancer/testis-specific antigens that are potential targets for cancer immunotherapy. These highly similar paralogous genes cluster on the X chromosome at Xq27. We isolated and sequenced primate genomic clones homologous to human SPANX. Analysis of these clones and search of the human genome sequence revealed an uncharacterized group of genes, SPANX-N, which are present in all primates as well as in mouse and rat. In humans, four SPANX-N genes comprise a series of tandem duplicates at Xq27; a fifth member of this subfamily is located at Xp11. Similarly to SPANX-A/D, human SPANX-N genes are expressed in normal testis and some melanoma cell lines; testis-specific expression of SPANX is also conserved in mouse. Analysis of the taxonomic distribution of the long and short forms of the intron indicates that SPANX-N is the ancestral form, from which the SPANX-A/D subfamily evolved in the common ancestor of the hominoid lineage. Strikingly, the coding sequences of the SPANX genes evolved much faster than the intron and the 5' untranslated region. There is a strong correlation between the rates of evolution of synonymous and nonsynonymous codon positions, both of which are accelerated 2-fold or more compared to the noncoding sequences. Thus, evolution of the SPANX family appears to have involved positive selection that affected not only the protein sequence but also the synonymous sites in the coding sequence.

  19. DNA typing for HLA class I alleles: I. Subsets of HLA-A2 and of -A28.

    PubMed

    Fernandez-Viña, M A; Falco, M; Sun, Y; Stastny, P

    1992-03-01

    A group of HLA-A locus alleles known to be comprised of approximately 14 closely related variants are collectively called HLA-A2 and -A28. Variations among these alleles are given by differences in only a few codons, and in the case of A*6901, elements of A*6801 (exons 1 and 2) and of A*0201 are combined. The purpose of these experiments was to determine the possibility of designing oligonucleotide probes to identify and develop a typing method for all or most of the A2 and A28 variants. Because the regions of interest are also shared by alleles of other groups, allele-specific or group-specific primers were needed to amplify only the alleles under study. HLA-A2-specific amplification of exon 2 and selective amplification of portions of exon 3 of the A2-A28 group were accomplished with sequence-specific primers and after appropriate adjustments of the PCR conditions. Hybridization patterns using products of four PCR reactions with our set of probes distinguished 11 alleles. Two other alleles might be recognized with the reagents used, but were not found in the panels in this study. A*0201 and A*0209, which are different in exon 4, were not resolved because exon 4 was not tested. A new variant of Aw68, defined by a hybridization pattern obtained with our probes, was different from A*6801 only in that it was negative with probe A6. It was called A*68.3. Population studies were performed in North American whites, blacks, and Indians and in a sample of subjects from North China. HLA-A*0201 was the most frequent allele. A*0202 was found only in blacks, and A*0203 and A*0207 were found only in Chinese. Among the A28-positive subjects, Caucasoids were predominantly A*6801 or A*68.3; A*6802 was the most frequent subtype in American blacks; among American Indians the predominant type was A*68.3. The two A28-positive Chinese subjects studied had A*6901. The results obtained demonstrate that DNA typing is an efficient method for determining these alleles. The methodology

  20. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients.

  1. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  2. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).

    PubMed Central

    Newton, C R; Graham, A; Heptinstall, L E; Powell, S J; Summers, C; Kalsheker, N; Smith, J C; Markham, A F

    1989-01-01

    We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products. Images PMID:2785681

  3. A Mutant S3 RNase of Petunia inflata Lacking RNase Activity Has an Allele-Specific Dominant Negative Effect on Self-Incompatibility Interactions.

    PubMed Central

    McCubbin, A. G.; Chung, Y. Y.; Kao, Th.

    1997-01-01

    Gametophytic self-incompatibility in the Solanaceae is controlled by a multiallelic locus called the S locus. Growth of pollen tubes in the pistil is inhibited when the pollen has one of the two S alleles carried by the pistil. The products of a number of pistil S alleles[mdash]S proteins or S RNases[mdash]have been identified, and their role in controlling the pistil's ability to reject self-pollen has been positively established. In contrast, the existence of pollen S allele products has so far been inferred entirely from genetic evidence. Here, we introduced a modified S3 gene of Petunia inflata encoding an S3 RNase lacking RNase activity into P. inflata plants of the S2S3 genotype to determine whether the production of the mutant protein, designated S3(H93R), would have any effect on the ability of the transgenic plants to reject S2 and S3 pollen. Analysis of the self-incompatibility behavior of 49 primary transgenic plants and the progeny of three plants (H30, H37, and H40) that produced S3(H93R) in addition to producing wild-type levels of endogenous S2 and S3 RNases revealed that S3(H93R) had a dominant negative effect on the function of the S3 RNase in rejecting self-pollen; however, it had no effect on the function of the S2 RNase. One likely explanation of the results is that S3(H93R) competes with the S3 RNase for binding to a common molecule, which is presumably the product of the pollen S3 allele. PMID:12237345

  4. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

    PubMed

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-09-15

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.

  5. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo

    PubMed Central

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-01-01

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR −129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that −129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with −129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than −129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo. PMID:26370050

  6. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  7. Specific amplification of gene encoding N-terminal region of catalase-peroxidase protein (KatG-N) for diagnosis of disseminated MAC disease in HIV patients.

    PubMed

    Latawa, Romica; Singh, Krishna Kumar; Wanchu, Ajay; Sethi, Sunil; Sharma, Kusum; Sharma, Aman; Laal, Suman; Verma, Indu

    2014-10-01

    Disseminated Mycobacterium avium-intracellulare complex (MAC) infection is considered as severe complication of advanced HIV/AIDS disease. Currently available various laboratory investigations have not only limited ability to discriminate between MAC infection and tuberculosis but are also laborious and time consuming. The aim of this study was, therefore, to design a molecular-based strategy for specific detection of MAC and its differentiation from Mycobacterium tuberculosis (M. tb) isolated from the blood specimens of HIV patients. A simple PCR was developed based on the amplification of 120-bp katG-N gene corresponding to the first 40 amino acids of N-terminal catalase-peroxidase (KatG) protein of Mycobacterium avium that shows only ~13% sequence homology by clustal W alignment to N-terminal region of M. tb KatG protein. This assay allowed the accurate and rapid detection of MAC bacteremia, distinguishing it from M. tb in a single PCR reaction without any need for sequencing or hybridization protocol to be performed thereafter. This study produced enough evidence that a significant proportion of Indian HIV patients have disseminated MAC bacteremia, suggesting the utility of M. avium katG-N gene PCR for early detection of MAC disease in HIV patients.

  8. Trichomonas vaginalis transcription-mediated amplification-based analyte-specific reagent and alternative target testing of primary clinical vaginal saline suspensions.

    PubMed

    Munson, Erik; Napierala, Maureen; Basile, Janice; Miller, Cheryl; Burtch, Jason; Hryciuk, Jeanne E; Schell, Ronald F

    2010-09-01

    Following wet mount analysis, 255 vaginal saline suspensions were aliquoted to lysis medium for transcription-mediated amplification (TMA)-based Trichomonas vaginalis analyte-specific reagent testing (ASR) (Gen-Probe, San Diego, CA). Specimens with visible T. vaginalis were then refrigerated, with additional aliquoting at later intervals. Twenty-four wet mount-positive specimens (9.4%) yielded a median luminescent value (x1000, relative light unit [RLU]) of 4736. In contrast, RLU ranged from 1 to 21 following ASR of 204 wet mount-negative specimens. Twenty-seven wet mount-negative specimens (10.5%) were positive by ASR and subsequently positive via T. vaginalis alternative target TMA (Gen-Probe). Discrepancies were additionally resolved by demonstration of T. vaginalis nucleic acid from a separate endocervical collection. T. vaginalis nucleic acid was detectable following prolonged storage, following minimal incubation in lysis medium, and from low-volume aliquots of sparsely populated specimens. T. vaginalis ASR adequately detects T. vaginalis from vaginal saline suspension aliquots, providing a simple specimen alternative for a highly sensitive laboratory diagnosis of trichomoniasis. PMID:20727473

  9. DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.

    PubMed

    Le Roux, Delphine; Root, Brian E; Reedy, Carmen R; Hickey, Jeffrey A; Scott, Orion N; Bienvenue, Joan M; Landers, James P; Chassagne, Luc; de Mazancourt, Philippe

    2014-08-19

    A system that automatically performs the PCR amplification and microchip electrophoretic (ME) separation for rapid forensic short tandem repeat (STR) forensic profiling in a single disposable plastic chip is demonstrated. The microchip subassays were optimized to deliver results comparable to conventional benchtop methods. The microchip process was accomplished in sub-90 min compared with >2.5 h for the conventional approach. An infrared laser with a noncontact temperature sensing system was optimized for a 45 min PCR compared with the conventional 90 min amplification time. The separation conditions were optimized using LPA-co-dihexylacrylamide block copolymers specifically designed for microchip separations to achieve accurate DNA size calling in an effective length of 7 cm in a plastic microchip. This effective separation length is less than half of other reports for integrated STR analysis and allows a compact, inexpensive microchip design. This separation quality was maintained when integrated with microchip PCR. Thirty samples were analyzed conventionally and then compared with data generated by the microfluidic chip system. The microfluidic system allele calling was 100% concordant with the conventional process. This study also investigated allelic ladder consistency over time. The PCR-ME genetic profiles were analyzed using binning palettes generated from two sets of allelic ladders run three and six months apart. Using these binning palettes, no allele calling errors were detected in the 30 samples demonstrating that a microfluidic platform can be highly consistent over long periods of time.

  10. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.

  11. Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR): a simple method for suppressing PCR amplification of specific DNA sequences using ORNs.

    PubMed

    Tanigawa, Naoki; Fujita, Toshitsugu; Fujii, Hodaka

    2014-01-01

    Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences without affecting amplification of control sequences lacking complementarity to the ORNs. ORNs were effective at very low concentrations, with IC50 values for ORN-mediated suppression on the order of 10 nM. DNA polymerases that retain 3'-5' exonuclease activity, such as KOD and Pfu polymerases, but not those that retain 5'-3' exonuclease activity, such as Taq polymerase, could be used for ORN-mediated suppression. ORN interference-PCR (ORNi-PCR) technology should be a useful tool for both molecular biology research and clinical diagnosis.

  12. Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy.

    PubMed

    Baumgartner, Matthias R; Dantas, M Fernanda; Suormala, Terttu; Almashanu, Shlomo; Giunta, Cecilia; Friebel, Dolores; Gebhardt, Boris; Fowler, Brian; Hoffmann, Georg F; Baumgartner, E Regula; Valle, David

    2004-11-01

    Deficiency of 3-methylcrotonyl-CoA carboxylase (MCC) results in elevated excretion of 3-methylcrotonylglycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA). MCC is a heteromeric mitochondrial enzyme comprising biotin-containing alpha subunits and smaller beta subunits, encoded by MCCA and MCCB, respectively. Mutations in these genes cause isolated MCC deficiency, an autosomal recessive disorder with a variable phenotype that ranges from severe neonatal to asymptomatic adult forms. No reported patients have responded to biotin therapy. Here, we describe two patients with a biochemical and, in one case, clinical phenotype of MCC deficiency, both of whom were responsive to biotin. The first patient presented at 3 months with seizures and progressive psychomotor retardation. Metabolic investigation at 2 years revealed elevated excretion of 3-MCG and 3-HIVA, suggesting MCC deficiency. High-dose biotin therapy was associated with a dramatic reduction in seizures, normalization of the electroencephalogram, and correction of the organic aciduria, within 4 weeks. MCC activity in fibroblasts was 25% of normal levels. The second patient, a newborn detected by tandem-mass-spectrometry newborn screening, displayed the same biochemical phenotype and remained asymptomatic with biotin up to the age of 18 months. In both patients, sequence analysis of the complete open reading frames of MCCA and MCCB revealed heterozygosity for MCCA-R385S and for the known polymorphic variant MCCA-P464H but revealed no other coding alterations. MCCA-R385S is unusual, in that it has a normal amount of MCC alpha protein but confers no MCC activity. We show that MCCA-R385S, but not other MCCA missense alleles, reduces the MCC activity of cotransfected MCCA-wild-type allele. Our results suggest that MCCA-R385S is a dominant negative allele and is biotin responsive in vivo.

  13. The Sensitivity and Specificity of Loop-Mediated Isothermal Amplification (LAMP) Assay for Tuberculosis Diagnosis in Adults with Chronic Cough in Malawi

    PubMed Central

    Nliwasa, Marriott; MacPherson, Peter; Chisala, Palesa; Kamdolozi, Mercy; Khundi, McEwen; Kaswaswa, Kruger; Mwapasa, Mphatso; Msefula, Chisomo; Sohn, Hojoon; Flach, Clare; Corbett, Elizabeth L.

    2016-01-01

    Background Current tuberculosis diagnostics lack sensitivity, and are expensive. Highly accurate, rapid and cheaper diagnostic tests are required for point of care use in low resource settings with high HIV prevalence. Objective To investigate the sensitivity and specificity, and cost of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough compared to Xpert® MTB/RIF, fluorescence smear microscopy. Methods Between October 2013 and March 2014, consecutive adults at a primary care clinic were screened for cough, offered HIV testing and assessed for tuberculosis using LAMP, Xpert® MTB/RIF and fluorescence smear microscopy. Sensitivity and specificity (with culture as reference standard), and costs were estimated. Results Of 273 adults recruited, 44.3% (121/273) were HIV-positive and 19.4% (53/273) had bacteriogically confirmed tuberculosis. The sensitivity of LAMP compared to culture was 65.0% (95% CI: 48.3% to 79.4%) with 100% (95% CI: 98.0% to 100%) specificity. The sensitivity of Xpert® MTB/RIF (77.5%, 95% CI: 61.5% to 89.2%) was similar to that of LAMP, p = 0.132. The sensitivity of concentrated fluorescence smear microscopy with routine double reading (87.5%, 95% CI: 73.2% to 95.8%) was higher than that of LAMP, p = 0.020. All three tests had high specificity. The lowest cost per test of LAMP was at batch size of 14 samples (US$ 9.98); this was lower than Xpert® MTB/RIF (US$ 13.38) but higher than fluorescence smear microscopy (US$ 0.65). Conclusion The sensitivity of LAMP was similar to Xpert® MTB/RIF but lower than fluorescence smear microscopy; all three tests had high specificity. These findings support the Malawi policy that recommends a combination of fluorescence smear microscopy and Xpert® MTB/RIF prioritised for people living with HIV, already found to be smear-negative, or being considered for retreatment of tuberculosis. PMID:27171380

  14. The -5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer.

    PubMed

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; Bryś, Magdalena

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the -5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region -5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the -5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that -5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer.

  15. Integration of multiple PCR amplification and DNA mutation analyses by using oligonucleotide microchip.

    SciTech Connect

    Tillib, S. V.; Strizhkov, B. N.; Mirzabekov, A. D.; Biochip Technology Center; Russian Academy of Sciences

    2001-05-01

    We have developed a method for parallel independent on-chip amplification and the following sequence variation analysis of multiple DNA regions directly using microchip with an array of nanoliter gel pads containing specific sets of tethered primers. The method has three key features. First, DNA to be amplified is enriched at gel pads by its hybridization with immobilized primers. Second, different sets of specific primers are immobilized within various gel pads, and primers are detached within gel pads just before polymerase chain reaction to enhance the amplification. A gel pad may contain an additional permanently immobilized dormant primer that is activated to carry out the allele-specific primer extension reaction to detect mutations. Third, multiple polymerase chain reactions are confined within nanoliter gel pads covered and separated from each other with mineral oil. The method was applied to simultaneously identify several abundant drug-resistant mutations in three genes of Mycobacterium tuberculosis.

  16. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses.

    PubMed

    Bihl, Florian; Frahm, Nicole; Di Giammarino, Loriana; Sidney, John; John, Mina; Yusim, Karina; Woodberry, Tonia; Sango, Kaori; Hewitt, Hannah S; Henry, Leah; Linde, Caitlyn H; Chisholm, John V; Zaman, Tauheed M; Pae, Eunice; Mallal, Simon; Walker, Bruce D; Sette, Alessandro; Korber, Bette T; Heckerman, David; Brander, Christian

    2006-04-01

    Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.

  17. The Septic Shock-associated IL-10 -1082 A>G Polymorphism Mediates Allele-specific Transcription via Poly ADP-ribose Polymerase 1 in Macrophages Engulfing Apoptotic Cells

    PubMed Central

    Kang, Xiaoyan; Kim, Ha-Jeong; Ramirez, Michelle; Salameh, Sarah; Ma, Xiaojing

    2013-01-01

    The biallelic Interleukin-10 single nucleotide polymorphism (SNP) at -1082 of the promoter region linked to individual variation in cytokine inducibility has been strongly implicated in several pathological conditions including the development of, and outcomes in, septic shock during pneumococcal infection, acute respiratory distress syndrome, and cardiac dysfunction. However, the molecular basis of the SNP-mediated variable IL-10 production levels has not been explored. Here we report that the -1082G>A alleles in the promoter region of the human IL-10 gene physically interact with a nuclear protein in an allele-specific manner that results in different levels of IL-10 transcription. This protein has been identified as poly ADP-ribose polymerase 1 (PARP-1). We show that PARP-1 acts as a transcription repressor, and its DNA-binding activity is strongly regulated in macrophages that engulf apoptotic cells but not stimulated with lippopolysaccharides. These findings unveil a novel role of PARP-1 in the regulation of IL-10 production in an allele-dependent way, which determines individual susceptibility to sepsis-induced inflammatory pathology and the immunological sequelae in a physiological process where clearance of infection-induced apoptotic cells by professional phagocytes triggers the cytokine synthesis. PMID:20181890

  18. Real-time loop-mediated isothermal amplification (LAMP) assay for group specific detection of important trichothecene producing Fusarium species in wheat.

    PubMed

    Denschlag, Carla; Rieder, Johann; Vogel, Rudi F; Niessen, Ludwig

    2014-05-01

    Trichothecene mycotoxins such as deoxynivaneol (DON), nivalenol (NIV) and T2-Toxin are produced by a variety of Fusarium spp. on cereals in the field and may be ingested by consumption of commodities and products made thereof. The toxins inhibit eukaryotic protein biosynthesis and may thus impair human and animal health. Aimed at rapid and sensitive detection of the most important trichothecene producing Fusarium spp. in a single analysis, a real-time duplex loop-mediated isothermal amplification (LAMP) assay was set up. Two sets of LAMP primers were designed independently to amplify a partial sequence of the tri6 gene in Fusarium (F.) graminearum and of the tri5 gene in Fusarium sporotrichioides, respectively. Each of the two sets detected a limited number of the established trichothecene producing Fusarium-species. However, combination of the two sets in one duplex assay enabled detection of F. graminearum, Fusarium culmorum, Fusarium cerealis, F. sporotrichioides, Fusarium langsethiae and Fusarium poae in a group specific manner. No cross reactions were detected with purified DNA from 127 other fungal species or with cereal DNA. To demonstrate the usefulness of the assay, 100 wheat samples collected from all over the German state of Bavaria were analyzed for the trichothecene mycotoxin DON by HPLC and for the presence of trichothecene producers by the new real-time duplex LAMP assay in parallel analyses. The LAMP assay showed positive results for all samples with a DON concentration exceeding 163ppb. The major advantage of the duplex LAMP assay is that the presence of six of the major trichothecene producing Fusarium spp. can be detected in a rapid and user-friendly manner with only one single assay. To our knowledge this is the first report of the use of a multiplex LAMP assay for fungal organisms.

  19. Hybrid Chirped Pulse Amplification

    SciTech Connect

    Jovanovic, I; Barty, C P J

    2002-05-07

    We present a novel chirped pulse amplification method which combines optical parametric amplification and laser amplification. We have demonstrated this hybrid CPA concept with a combination of beta-barium borate and Ti:sapphire. High-efficiency, multi-terawatt compatible amplification is achieved without gain narrowing and without electro-optic modulators using a simple commercial pump laser.

  20. Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans.

    PubMed

    Kim, Sunhong; Johnson, Wade; Chen, Changchun; Sewell, Aileen K; Byström, Anders S; Han, Min

    2010-08-01

    The elongator (ELP) complex consisting of Elp1-6p has been indicated to play roles in multiple cellular processes. In yeast, the ELP complex has been shown to genetically interact with Uba4p/Urm1p and Kti11-13p for a function in tRNA modification. Through a Caenorhabditis elegans genetic suppressor screen and positional cloning, we discovered that loss-of-function mutations of moc-3 and dph-3, orthologs of the yeast UBA4 and KTI11, respectively, effectively suppress the Multivulva (Muv) phenotype of the lin-1(e1275, R175Opal) mutation. These mutations do not suppress the Muv phenotype caused by other lin-1 alleles or by gain-of-function alleles of ras or raf that act upstream of lin-1. The suppression can also be reverted by RNA interference of lin-1. Furthermore, we showed that dph-3(lf) also suppressed the defect of lin-1(e1275) in promoting the expression of a downstream target (egl-17). These results indicate that suppression by the moc-3 and dph-3 mutations is due to the elevated activity of lin-1(e1275) itself rather than the altered activity of a factor downstream of lin-1. We further showed that loss-of-function mutations of urm-1 and elpc-1-4, the worm counterparts of URM1 and ELP complex components in yeast, also suppressed lin-1(e1275). We also confirmed that moc-3(lf) and dph-3(lf) have defects in tRNA modifications as do the mutants of their yeast orthologs. These results, together with the observation of a likely readthrough product from a lin-1(e1275)::gfp fusion transgene indicate that the aberrant tRNA modification led to failed recognition of a premature stop codon in lin-1(e1275). Our genetic data suggest that the functional interaction of moc-3/urm-1 and dph-3 with the ELP complex is an evolutionarily conserved mechanism involved in tRNA functions that are important for accurate translation. PMID:20479142

  1. Loop region-specific oligonucleotide probes for loop-mediated isothermal amplification-enzyme-linked immunosorbent assay truly minimize the instrument needed for detection process.

    PubMed

    Ravan, Hadi; Yazdanparast, Razieh

    2013-08-15

    Enteric fever represents a significant public health burden in less-developed countries. Therefore, there is a great need for developing an improved diagnostic tool adapted to the demands of poor-resource clinical laboratories in those countries. The current study has developed a reliable loop-mediated isothermal amplification (LAMP)-enzyme-linked immunosorbent assay (ELISA) for diagnosis of enteric fever with a minimal equipment dependency. The LAMP-ELISA assay involves direct incorporation of a labeled nucleotide into amplicons during the amplification of the SPA3440 gene, their hybridization to the unique tagged oligonucleotide probes during the LAMP reaction, and finally detection of labeled LAMP amplicons by immunoassay technology. Because the designed oligonucleotide probes target the single-stranded DNA segment within the LAMP amplicons, the probe hybridization stage is performed simultaneously with the amplification process. This novel probe design strategy allows both the amplification and hybridization stages to be performed simultaneously and isothermally in a water bath. Among the bacteria tested, positive results were observed only with enteric fever causative bacteria. The LAMP-ELISA assay was successfully applied to artificially contaminated blood samples with a detection limit of 10 colony-forming units (CFU)/ml, which was 100 times more sensitive than polymerase chain reaction (PCR) and turbidity assessment-based conventional LAMP methods. The new assay is considered to be an effective method for diagnosis of enteric fever.

  2. Lung Adenocarcinoma with EGFR Amplification has Distinct Clinicopathologic and Molecular Features in Never-Smokers

    PubMed Central

    Sholl, Lynette M.; Yeap, Beow Y.; Iafrate, A. John; Holmes-Tisch, Alison J.; Chou, Yi-Ping; Wu, Ming-Tsang; Goan, Yih-Gang; Su, Li; Benedittini, Elisa; Yu, Jian; Loda, Massimo; Jänne, Pasi A.; Christiani, David C.; Chirieac, Lucian R.

    2009-01-01

    In a subset of lung adenocarcinomas the epidermal growth factor receptor (EGFR) is activated by kinase domain mutations and/or gene amplification, but the interaction between the two types of abnormalities is complex and unclear. We selected to study 99 consecutive never-smoking women of East Asian origin with lung adenocarcinomas that were characterized by histologic subtype. We analyzed EGFR mutations by PCR-capillary sequencing, EGFR copy number abnormalities by fluorescence and chromogenic in situ hybridization and quantitative PCR, and EGFR expression by immunohistochemistry with both specific antibodies against exon 19 deletion-mutated EGFR and total EGFR. We compared molecular and clinicopathologic features with disease-free survival. Lung adenocarcinomas with EGFR amplification had significantly more EGFR exon 19 deletion mutations than adenocarcinomas with disomy, low and high polysomy (100% v 54%, P=0.009). EGFR amplification occurred invariably on the mutated and not the wildtype allele (median mutated:wildtype ratios 14.0 v .33, P=0.003), was associated with solid histology (P=0.008), and advanced clinical stage (P=0.009). EGFR amplification was focally distributed in lung cancer specimens, mostly in regions with solid histology. Patients with EGFR amplification had a significantly worse outcome in univariate analysis (median disease-free survival 16 v 31 months, P=0.01) and when adjusted for stage (P=0.027). Lung adenocarcinomas with EGFR amplification have a unique association with exon 19 deletion mutations and demonstrate distinct clinicopathologic features associated with a significantly worsened prognosis. In these cases, EGFR amplification is heterogeneously distributed, mostly in areas with a solid histology. PMID:19826035

  3. Sequence analysis of the fragile X trinucleotide repeat: Correlations with stability and haplotype and implications for the origin of fragile X alleles

    SciTech Connect

    Snow, K.; Tester, D.J.; Kruckeberg, K.E.; Thibodeau, S.N.

    1994-09-01

    Fragile X (FX) syndrome is associated with amplification of a CGG trinucleotide repeat in the 5{prime} untranslated region of the gene FMR-1. To address mechanism of instability and concern related to overlap between sizes of normal stable alleles and FX unstable alleles, we have sequenced 165 alleles to analyze patterns of AGG interruptions within the CGG repeat, and have typed the (CA)n at DXS548 for 204 chromosomes. Overall, our data is consistent with the idea that the length of uninterrupted CGG repeats determines instability. For 17 stably transmitted alleles with total repeat lengths between 33 and 51, the longest stretch of uninterrupted CGGs was 41. In contrast, for 13 premutation alleles, the shortest stretch of uninterrupted CGGs was 48, suggesting a threshold for expansion between 41 and 48 pure CGGs. For expansion from a premutation to a full mutation, the threshold appears to be {ge}70 uninterrupted repeats. Interestingly, an AGG was detected in some carriers of a full mutation. Comparison of the number of {open_quote}shadow bands{close_quote} in PCR products from similar size alleles with different AGG interruption patterns supports replication slippage as a potential mechanism, i.e. replication slippage occurs more readily as the length of pure repeat increases. Alleles with high total repeat lengths but up to 3 AGGs may be relatively protected against expansion, whereas smaller alleles with pure CGG sequence could be at higher risk for instability. Comparison of sequence data and DXS548 (CA)n data revealed specific sequence trends for each of the DXS548 alleles, explaining the previously reported haplotype association with FX. Incorporating these observations into models for the origin of FX alleles, we consider replication slippage, unequal crossover within the CGG repeat region, recombination between FMR-1 and DXS548, and loss of AGGs by A to C transversion.

  4. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  5. Quantifying the uncertainty in site amplification modeling and its effects on site-specific seismic-hazard estimation in the upper Mississippi embayment and adjacent areas

    USGS Publications Warehouse

    Cramer, C.H.

    2006-01-01

    The Mississippi embayment, located in the central United States, and its thick deposits of sediments (over 1 km in places) have a large effect on earthquake ground motions. Several previous studies have addressed how these thick sediments might modify probabilistic seismic-hazard maps. The high seismic hazard associated with the New Madrid seismic zone makes it particularly important to quantify the uncertainty in modeling site amplification to better represent earthquake hazard in seismic-hazard maps. The methodology of the Memphis urban seismic-hazard-mapping project (Cramer et al., 2004) is combined with the reference profile approach of Toro and Silva (2001) to better estimate seismic hazard in the Mississippi embayment. Improvements over previous approaches include using the 2002 national seismic-hazard model, fully probabilistic hazard calculations, calibration of site amplification with improved nonlinear soil-response estimates, and estimates of uncertainty. Comparisons are made with the results of several previous studies, and estimates of uncertainty inherent in site-amplification modeling for the upper Mississippi embayment are developed. I present new seismic-hazard maps for the upper Mississippi embayment with the effects of site geology incorporating these uncertainties.

  6. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4

    PubMed Central

    Williams, Corey L.; Pieczynski, Jay N.; Roszczynialski, Kelly N.; Covington, Jannese E.; Malarkey, Erik B.; Yoder, Bradley K.

    2016-01-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  7. One-Step Ligation on RNA Amplification for the Detection of Point Mutations.

    PubMed

    Zhang, Lei; Wang, Jingjing; Coetzer, Mia; Angione, Stephanie; Kantor, Rami; Tripathi, Anubhav

    2015-11-01

    The detection of point mutations is required in the diagnosis of many human diseases. The conformal specificity of DNA ligases was elegantly used to distinguish single-nucleotide mismatches. However, to detect point mutations in RNA retroviruses, conventional ligase-mediated approaches require the reverse transcription of viral genomes before separate ligation and amplification steps. We developed one-step ligation on RNA amplification (LRA) for the direct detection of RNA point mutations. The process combines the ligase-mediated joining of two oligonucleotides and subsequent hot start amplification into a single-tube reaction. We report that modifications to the structure of the oligonucleotide ligation probes improve the rate of ligation and the specificity of mutation detection on RNA. We applied LRA to the detection of a common, clinically relevant HIV-1 reverse transcriptase drug-resistant point mutation, K103N, and compared it with allele-specific PCR and pyrosequencing. LRA achieved a limit of specific quantitation of 1:100 (1%), and a limit of specific detection for mutant K103N RNA transcripts among excess wild-type strands of 1:10,000 (0.01%). LRA also exhibited good detection threshold of 5 × 10(2) copies/μL K103N RNA transcripts. LRA is a novel point mutation detection method, with potential utilization in HIV drug resistance detection and early diagnostics of genetic disorders associated with other infectious diseases and cancer. PMID:26322949

  8. A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation.

    PubMed

    Yan, Yurong; Shen, Bo; Wang, Hong; Sun, Xue; Cheng, Wei; Zhao, Hua; Ju, Huangxian; Ding, Shijia

    2015-08-21

    MicroRNAs are small regulatory molecules that can be used as potential biomarkers of clinical diagnosis, and efforts have been directed towards the development of a simple, rapid, and sequence-selective analysis of microRNAs. Here, we report a simple and versatile colorimetric strategy for ultrasensitive and specific determination of microRNAs based on molecular beacon initiated strand displacement amplification (SDA) and catalytic hairpin assembly (CHA) with DNAzyme formation. The presence of target microRNAs triggers strand displacement amplification to release nicking DNA triggers, which initiate CHA to produce large amounts of CHA products. Meanwhile, the numerous CHA products can combine with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, catalyzing a colorimetric reaction. Moreover, the purification of the SDA mixture has been developed for eliminating matrix interference to decrease nonspecific CHA products. Under the optimal conditions and using the promising amplification strategy, the established colorimetric nanomachine (biosensor) shows high sensitivity and selectivity in a dynamic response range from 5 fM to 5 nM with a detection limit as low as 1.7 fM (S/N = 3). In addition, a versatile colorimetric biosensor has been developed for detection of different miRNAs by only changing the miRNA-recognition domain of molecular beacon. Thus, this colorimetric biosensor may become a potential alternative tool for biomedical research and clinical molecular diagnostics.

  9. HLA-A, HLA-B, and HLA-DRB1 allele distribution in a large Armenian population sample.

    PubMed

    Matevosyan, L; Chattopadhyay, S; Madelian, V; Avagyan, S; Nazaretyan, M; Hyussian, A; Vardapetyan, E; Arutunyan, R; Jordan, F

    2011-07-01

    Human leukocyte antigen (HLA)-A, HLA-B, and HLA-DRB1 gene frequencies were investigated in 4279 unrelated Armenian bone marrow donors. HLA alleles were defined by using PCR amplification with sequence specific primers (PCR-SSP) high- and low-resolution kits. The aim of this study was to examine the HLA diversity at the high-resolution level in a large Armenian population sample, and to compare HLA allele group distribution in Armenian subpopulations. The most frequently observed alleles in the HLA class I were HLA-A*0201, A*0101, A*2402, A*0301, HLA-B*5101, HLA-B*3501, and B*4901. Among DRB1 alleles, high frequencies of DRB1*1104 and DRB1*1501 were observed, followed by DRB1*1101 and DRB1*1401. The most common three-locus haplotype found in the Armenian population was A*33-B*14-DRB1*01, followed by A*03-B*35-DRB1*01. Our results show a similar distribution of alleles in Armenian subpopulations from different countries, and from different regions of the Republics of Armenia and Karabagh. The low level of genetic distances between subpopulations indicates a high level of population homogeneity, and the genetic distances between Armenians and other populations show Armenians as a distinct ethnic group relative to others, reflecting the fact that Armenians have been an 'isolated population' throughout centuries. This study is the first comprehensive investigation of HLA-allele group distribution in a subset of Armenian populations, and the first to provide HLA-allele and haplotype frequencies at a high-resolution level. It is a valuable reference for organ transplantation and for future studies of HLA-associated diseases in Armenian populations.

  10. Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers.

    PubMed Central

    Cui, X F; Li, H H; Goradia, T M; Lange, K; Kazazian, H H; Galas, D; Arnheim, N

    1989-01-01

    The frequency of recombination between the G gamma-globin (HBG2) and parathyroid hormone (PTH) loci on the short arm of human chromosome 11 was estimated by typing greater than 700 single-sperm samples from two males. The sperm-typing technique employed involves the polymerase chain reaction and allele-specific oligonucleotide hybridization. Our maximum likelihood recombination fraction estimate of 0.16 (95%) confidence interval, 0.13-0.19) falls well within previous estimates based on family studies. With current technology and a sample size of 1000 sperm, recombination fractions down to approximately 0.009 can be estimated with statistical reliability; with a sample size of 5000 sperm, this value drops to about 0.004. Reasonable technological improvements could result in the detection of recombination frequencies less than 0.001. PMID:2574460

  11. MYCN Gene Amplification

    PubMed Central

    Yoshimoto, Maisa; Caminada de Toledo, Silvia Regina; Monteiro Caran, Eliana Maria; de Seixas, Maria Teresa; de Martino Lee, Maria Lucia; de Campos Vieira Abib, Simone; Vianna, Sonia Maria Rossi; Schettini, Sergio Thomaz; Anderson Duffles Andrade, Joyce

    1999-01-01

    Neuroblastoma is the second most common solid tumor occurring in children. Amplification of the MYCN oncogene is associated with poor prognosis. To identify neuroblastoma tumors with MYCN amplification, we studied the number of copies of MYCN in interphase cells by fluorescence in situ hybridization in 20 neuroblastoma patients. MYCN amplification appeared in 7 tumor specimens. Interphase and metaphase studies showed a tumor cell population with both forms of amplification, double minutes and homogeneously staining regions, in two patients. These patients showed a smaller tumor cell subpopulation with the presence of more than one homogeneously staining region, suggesting that gene amplification was undergoing karyotype evolution. PMID:10550298

  12. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells. PMID:27220309

  13. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells.

  14. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples.

    PubMed

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D'Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues.

  15. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID

  16. Identification of a 7-cM region of frequent allelic loss on chromosome band 16p13.3 that is specifically associated with anaplastic thyroid carcinoma.

    PubMed

    Kadota, M; Tamaki, Y; Sakita, I; Komoike, Y; Miyazaki, M; Ooka, M; Masuda, N; Fujiwara, Y; Ohnishi, T; Tomita, N; Sekimoto, M; Ohue, M; Ikeda, T; Kobayashi, T; Horii, A; Monden, M

    2000-01-01

    A total of 17 primary thyroid cancer specimens including seven anaplastic cancers, two papillary cancers adjacent to the anaplastic cancers, and eight papillary cancers were analyzed for loss of heterozygosity (LOH) on chromosome arm 16p. All tumors of anaplastic cancer showed LOHs at one or more loci, and a 7-cM region of the smallest deleted region was found on 16p13.3 between D16S423 and D16S406. This LOH was specifically found in the anaplastic cancer and not in the papillary thyroid cancer. Our present results suggest localization of the putative tumor suppressor gene on 16p13.3, which is likely to play an important role in the anaplastic transformation of thyroid cancer.

  17. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation

    PubMed Central

    Henning, Amanda N.; Haag, Jill D.; Smits, Bart M. G.; Gould, Michael N.

    2016-01-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman’s life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  18. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation.

    PubMed

    Henning, Amanda N; Haag, Jill D; Smits, Bart M G; Gould, Michael N

    2016-08-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman's life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  19. Allele-Specific Induction of IL-1β Expression by C/EBPβ and PU.1 Contributes to Increased Tuberculosis Susceptibility

    PubMed Central

    Zhang, Guoliang; Zhou, Boping; Li, Shaoyuan; Yue, Jun; Yang, Hui; Wen, Yuxin; Zhan, Senlin; Wang, Wenfei; Liao, Mingfeng; Zhang, Mingxia; Zeng, Gucheng; Feng, Carl G.; Sassetti, Christopher M.; Chen, Xinchun

    2014-01-01

    Mycobacterium tuberculosis infection is associated with a spectrum of clinical outcomes, from long-term latent infection to different manifestations of progressive disease. Pro-inflammatory pathways, such as those controlled by IL-1β, have the contrasting potential both to prevent disease by restricting bacterial replication, and to promote disease by inflicting tissue damage. Thus, the ultimate contribution of individual inflammatory pathways to the outcome of M. tuberculosis infection remains ambiguous. In this study, we identified a naturally-occurring polymorphism in the human IL1B promoter region, which alters the association of the C/EBPβ and PU.1 transcription factors and controls Mtb-induced IL-1β production. The high-IL-1β expressing genotype was associated with the development of active tuberculosis, the severity of pulmonary disease and poor treatment outcome in TB patients. Higher IL-1β expression did not suppress the activity of IFN-γ-producing T cells, but instead correlated with neutrophil accumulation in the lung. These observations support a specific role for IL-1β and granulocytic inflammation as a driver of TB disease progression in humans, and suggest novel strategies for the prevention and treatment of tuberculosis. PMID:25329476

  20. Digestion-ligation-amplification (DLA): a simple genome walking method to amplify unknown sequences flanking mutator (Mu) transposons and thereby facilitate gene cloning.

    PubMed

    Liu, Sanzhen; Hsia, An-Ping; Schnable, Patrick S

    2013-01-01

    Digestion-ligation-amplification (DLA), a novel PCR-based genome walking method, was developed to amplify unknown sequences flanking known sequences of interest. DLA specifically overcomes the problems associated with amplifying genomic sequences flanking high copy number transposons in large genomes. Two DLA-based strategies, MuClone and DLA-454, were developed to isolate Mu-tagged alleles. MuClone allows for the amplification of DNA flanking subsets of the numerous Mu transposons in the genome using unique three-nucleotide tags at the 3'-ends of primers, simplifying the identification of flanking sequences that co-segregate with mutant phenotypes caused by Mu insertions. DLA-454, which combines DLA with 454 pyrosequencing, permits the efficient amplification and sequencing of Mu flanking regions in a high-throughput manner.

  1. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism.

    PubMed

    Zou, Zhen; Qing, Zhihe; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Shi, Hui; Yang, Xue; Qing, Taiping; Yang, Xiaoxiao

    2014-07-01

    A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.

  2. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  3. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-01

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  4. Validation of a Multiplex Allele-Specific Polymerase Chain Reaction Assay for Detection of KRAS Gene Mutations in Formalin-Fixed, Paraffin-Embedded Tissues from Colorectal Cancer Patients

    PubMed Central

    Seekhuntod, Sirirat; Thavarungkul, Paninee; Chaichanawongsaroj, Nuntaree

    2016-01-01

    Background Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR) inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC). The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR) assay to detect KRAS mutations. Methods We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D). We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay. Results Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%), G12D (25.83%) and G12V (12.50%) in codon 12. Conclusion The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues. PMID:26812617

  5. Balanced amplification: a new mechanism of selective amplification of neural activity patterns.

    PubMed

    Murphy, Brendan K; Miller, Kenneth D

    2009-02-26

    In cerebral cortex, ongoing activity absent a stimulus can resemble stimulus-driven activity in size and structure. In particular, spontaneous activity in cat primary visual cortex (V1) has structure significantly correlated with evoked responses to oriented stimuli. This suggests that, from unstructured input, cortical circuits selectively amplify specific activity patterns. Current understanding of selective amplification involves elongation of a neural assembly's lifetime by mutual excitation among its neurons. We introduce a new mechanism for selective amplification without elongation of lifetime: "balanced amplification." Strong balanced amplification arises when feedback inhibition stabilizes strong recurrent excitation, a pattern likely to be typical of cortex. Thus, balanced amplification should ubiquitously contribute to cortical activity. Balanced amplification depends on the fact that individual neurons project only excitatory or only inhibitory synapses. This leads to a hidden feedforward connectivity between activity patterns. We show in a detailed biophysical model that this can explain the cat V1 observations.

  6. Evaluation of a new efficient procedure for single-nucleotide polymorphism genotyping: tetra-primer amplification refractory mutation system-polymerase chain reaction.

    PubMed

    Okayama, Naoko; Fujimura, Kozue; Nakamura, Junji; Suehiro, Yutaka; Hamanaka, Yuichiro; Hinoda, Yuji

    2004-01-01

    Tetra-primer amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) is a new efficient method for single-nucleotide polymorphism (SNP) genotyping. To determine the optimal conditions for ARMS-PCR we attempted to genotype ten SNPs. DNA was extracted from the peripheral blood of 168 unrelated healthy Japanese volunteers. Two problems inhibited uniform efficiency of the amplification of three bands. The first problem was the lower amplification efficiency of the shorter and allele-specific products compared with the largest product. This phenomenon was overcome by increasing the relative concentration of the inner primers. The second problem was non-specific amplification of the shorter products. To reduce the amplification of these non-specific bands, adjusting any one of the following PCR conditions was effective: i) reducing the ratio of the inner primer concentration relative to that of the outer primers; ii) increasing the annealing temperature for the initial 5-10 cycles; iii) hot start PCR. With these procedures all ten of the SNPs were successfully genotyped. Our present data may be useful in the further application of tetra-primer ARMS-PCR to SNP genotyping.

  7. Application of Legionella pneumophila-specific quantitative real-time PCR combined with direct amplification and sequence-based typing in the diagnosis and epidemiological investigation of Legionnaires' disease.

    PubMed

    Mentasti, M; Fry, N K; Afshar, B; Palepou-Foxley, C; Naik, F C; Harrison, T G

    2012-08-01

    The detection of Legionella pneumophila DNA in clinical specimens using quantitative real-time polymerase chain reaction (qPCR) combined with direct sequence-based typing (SBT) offers rapid confirmation and timely intervention in the investigation of cases of Legionnaires' disease (LD). We assessed the utility of a specific L. pneumophila qPCR assay targeting the macrophage infectivity potentiator (mip) gene and internal process control with three clinical specimen types from confirmed LD cases. The assay was completely specific for L. pneumophila, as demonstrated by positive results for 39/39 strains from all subspecies and 16 serogroups. No cross-reaction was observed with any of the 54 Legionella non-pneumophila (0/69 strains) or 21 non-Legionella (0/58 strains). All L. pneumophila culture-positive respiratory samples (81/81) were qPCR-positive. Of 80 culture-negative samples tested, 47 (58.8%) were qPCR-positive and none were inhibitory. PCR was significantly more sensitive than culture for samples taken ≤ 2 days of hospitalisation (94.7% vs. 79.6%), with the difference being even more marked for samples taken between 3 and 14 days (79.3% vs. 47.8%). Overall, the sensitivity of the qPCR was ∼30% greater than that of culture and direct typing on culture-negative PCR-positive samples resulted in full 7-allele profiles from 23/46, 5 to 6 alleles from 8/46 and ≥ 1 allele from 43/46 strains.

  8. PCR/oligonucleotide probe typing of HLA class II alleles in a Filipino population reveals an unusual distribution of HLA haplotypes

    SciTech Connect

    Bugawan, T.L.; Chang, J.D.; Erlich, H.A. ); Klitz, W. )

    1994-02-01

    The authors have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date, the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D[prime] = .41) with DPB 1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this populations. 30 refs., 2 figs., 6 tabs.

  9. Analysis of HLA-DQB and HLA-DPB alleles in Graves' disease by oligonucleotide probing of enzymatically amplified DNA.

    PubMed

    Weetman, A P; Zhang, L; Webb, S; Shine, B

    1990-07-01

    We have tested the possible association of HLA-DQB and HLA-DPB alleles with Graves' thyrotoxicosis, with or without severe ophthalmopathy, by polymerase chain amplification of genomic DNA and allele-specific oligonucleotide probing. There was no significantly abnormal distribution of DQB alleles compared to 50 control subjects except for a reduced prevalence of DQw 3.1 in the Graves' patients with severe ophthalmopathy (X2 = 6.23, P less than 0.02). HLA-DPB 2.1/8 was found in only 1 of 40 of these patients compared with 15 of the controls (X2 = 11.49, P less than 0.001). Ten of 48 patients with Graves' disease but without clinically significant eye involvement were HLA-DPB 2.1/8 positive, not significantly different from controls, but significantly different from the ophthalmopathy group (X2 = 6.70, P less than 0.01). The other DPB alleles in both groups of Graves' disease patients were the same as controls. These results suggest that HLA-DPB 2.1/8 may confer a protective effect in Graves' disease with respect to ophthalmopathy. PMID:2401099

  10. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclical amplification with beads (PMCAb)

    USGS Publications Warehouse

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/−mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  11. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb).

    PubMed

    Johnson, Chad J; Aiken, Judd M; McKenzie, Debbie; Samuel, Michael D; Pedersen, Joel A

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7 × 10(-13) dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536(+/-) mice) allowed detection of CWD agent from the 10(-6) dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 10(5). Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  12. Mapping the nicking efficiencies of nickase R.BbvCI for side-specific LNA-substituted substrates using rolling circle amplification

    PubMed Central

    Wei, Hua; Zhao, Guojie; Hu, Tianyu; Tang, Suming; Jiang, Jiquan; Hu, Bo; Guan, Yifu

    2016-01-01

    We used a novel asymmetric cleavage analysis method based on rolling circle amplification (RCA) to determine the effects of LNA modification of substrate on the two subunits of R.BbvCI cleavage. We designed two sets of cleavage circular substrates by using two different ligation strategies and analyzed the single strand cleavage efficiency affected by different modification positions both from the cleaved strands and the uncleaved strands. Results showed that the effects of LNA on cleavage rates of modified strands and unmodified strands were both site-dependent. The Nb.BbvCI and Nt.BbvCI were affected by LNA modification in different way. Most of the modification positions showed strong inhibition of both of these two nickases cleavage. However, the modification in T3 position of bottom strand hardly affected both of the two nickases activities. The results suggested an intimated interaction between the two subunits of R.BbvCI, and the T3 position in bottom strand might be a less tight position which was hard to be disturbed. PMID:27582033

  13. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization.

    PubMed

    Chen, Chun H; Cho, Sung H; Chiang, Hsin-I; Tsai, Frank; Zhang, Kun; Lo, Yu-Hwa

    2011-10-01

    When attempting to probe the genetic makeup of diverse bacterial communities that elude cell culturing, researchers face two primary challenges: isolation of rare bacteria from microbial samples and removal of contaminating cell-free DNA. We report a compact, low-cost, and high-performance microfabricated fluorescence-activated cell sorting (μFACS) technology in combination with a tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) to address these two challenges. The TSA-FISH protocol that was adapted for flow cytometry yields a 10-30-fold enhancement in fluorescence intensity over standard FISH methods. The μFACS technology, capable of enhancing its sensitivity by ~18 dB through signal processing, was able to enrich TSA-FISH-labeled E. coli cells by 223-fold. The μFACS technology was also used to remove contaminating cell-free DNA. After two rounds of sorting on E. coli mixed with λ-phage DNA (10 ng/μL), we demonstrated over 100,000-fold reduction in λ-DNA concentration. The integrated μFACS and TSA-FISH technologies provide a highly effective and low-cost solution for research on the genomic complexity of bacteria as well as single-cell genomic analysis of other sample types. PMID:21809842

  14. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel. PMID:26580967

  15. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel.

  16. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.

    PubMed

    Saiki, R K; Scharf, S; Faloona, F; Mullis, K B; Horn, G T; Erlich, H A; Arnheim, N

    1985-12-20

    Two new methods were used to establish a rapid and highly sensitive prenatal diagnostic test for sickle cell anemia. The first involves the primer-mediated enzymatic amplification of specific beta-globin target sequences in genomic DNA, resulting in the exponential increase (220,000 times) of target DNA copies. In the second technique, the presence of the beta A and beta S alleles is determined by restriction endonuclease digestion of an end-labeled oligonucleotide probe hybridized in solution to the amplified beta-globin sequences. The beta-globin genotype can be determined in less than 1 day on samples containing significantly less than 1 microgram of genomic DNA.

  17. Allelic Selection of Amplicons in Glioblastoma Revealed by Combining Somatic and Germline Analysis

    PubMed Central

    Wilkins, Katherine; Pe'er, Itsik; Freedman, Matthew L.

    2010-01-01

    Cancer is a disease driven by a combination of inherited risk alleles coupled with the acquisition of somatic mutations, including amplification and deletion of genomic DNA. Potential relationships between the inherited and somatic aspects of the disease have only rarely been examined on a genome-wide level. Applying a novel integrative analysis of SNP and copy number measurements, we queried the tumor and normal-tissue genomes of 178 glioblastoma patients from the Cancer Genome Atlas project for preferentially amplified alleles, under the hypothesis that oncogenic germline variants will be selectively amplified in the tumor environment. Selected alleles are revealed by allelic imbalance in amplification across samples. This general approach is based on genetic principles and provides a method for identifying important tumor-related alleles. We find that SNP alleles that are most significantly overrepresented in amplicons tend to occur in genes involved with regulation of kinase and transferase activity, and many of these genes are known contributors to gliomagenesis. The analysis also implicates variants in synapse genes. By incorporating gene expression data, we demonstrate synergy between preferential allelic amplification and expression in DOCK4 and EGFR. Our results support the notion that combining germline and tumor genetic data can identify regions relevant to cancer biology. PMID:20824129

  18. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification.

    PubMed

    Sun, Duanping; Lu, Jing; Zhong, Yuwen; Yu, Yanyan; Wang, Yu; Zhang, Beibei; Chen, Zuanguang

    2016-01-15

    Human cancer is becoming a leading cause of death in the world and the development of a straightforward strategy for early detection of cancer is urgently required. Herein, a sandwich-type electrochemical aptamer cytosensor was developed for detection of human liver hepatocellular carcinoma cells (HepG2) based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. The thiolated TLS11a aptamers were used as a selective bio-recognition element, attached to the gold nanoparticles (AuNPs) modified the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the G-quadruplex/hemin/aptamer complexes and horseradish peroxidase (HRP) immobilized on the surfaces of Au@Pd core-shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). After the target cells were captured, the hybrid nanoprobes were further assembled to form an aptamer-cell-nanoprobes sandwich-like system on the electrode surface. Then, hybrid Fe3O4/MnO2/Au@Pd nanoelectrocatalysts, G-quadruplex/hemin HRP-mimicking DNAzymes and the natural HRP enzyme efficiently catalyzed the oxidation of hydroquinone (HQ) with H2O2, amplifying the electrochemical signals and improving the detection sensitivity. This electrochemical cytosensor delivered a wide detection range of 1×10(2)-1×10(7)cellsmL(-1), high sensitivity with a low detection limit of 15cellsmL(-1), good selectivity and repeatability. Finally, an electrochemical reductive desorption method was performed to break gold-thiol bond and desorb the components on the AuNPs/GCE for regenerating the cytosensor. These results have demonstrated that the electrochemical cytosensor has the potential to be a feasible tool for cost-effective cancer cell detection in early cancer diagnosis.

  19. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    SciTech Connect

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  20. MYC amplification in multiple marker chromosomes and EZH2 microdeletion in a man with acute myeloid leukemia.

    PubMed

    Xiang, Zhifu; Abdallah, Al-Ola; Govindarajan, Rangaswamy; Mehta, Paulette; Emanuel, Peter D; Papenhausen, Peter; Schichman, Steven A

    2015-03-01

    The role of MYC and EZH2 in acute myeloid leukemia (AML) pathogenesis is poorly understood. Herein we present a case of AML with MYC amplification in marker chromosomes and a microdeletion of chromosome 7 below cytogenetic resolution. The karyotype of the patient's bone marrow aspirate showed three to five marker chromosomes in all dividing cells without other structural or numerical chromosomal abnormalities. Analysis by fluorescence in situ hybridization (FISH) with a probe specific for the human MYC gene revealed amplification of the oncogene localized to the marker chromosomes. Using whole genome single nucleotide polymorphism (SNP) microarray analysis, an approximately 4.4 Mb amplicon containing the MYC gene was identified with an estimated amplification of about 30 copies per leukemic cell and, thus, an average of about 8 copies per marker chromosome. A 6.4 Mb hemizygous microdeletion of chromosome 7 within band q36.1 was also found by SNP microarray analysis in a cellular-equivalent dosage of 50%. The microdeletion spans multiple genes, including EZH2, a gene with well-known cancer association. No mutation was found in the remaining EZH2 allele by next generation gene sequencing. The combination of MYC amplification and EZH2 deletion, which has not been described previously in AML, may suggest a synergistic role of the two oncogenes in the pathogenesis of the patient's acute leukemia.

  1. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches.

    PubMed

    Marmesat, Elena; Soriano, Laura; Mazzoni, Camila J; Sommer, Simone; Godoy, José A

    2016-01-01

    The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs) targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers) uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95), yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43), and revealed more alleles at a population level (13 vs 12). Finally, we could link each allele's amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications. PMID:27294261

  2. Construction of mutant alleles in Saccharomyces cerevisiae without cloning: overview and the delitto perfetto method.

    PubMed

    Moqtaderi, Zarmik; Geisberg, Joseph V

    2013-01-01

    Traditionally, methods for introducing specific new mutations at target loci in the yeast genome have involved the preparation of disruption or gene-replacement cassettes via multiple cloning steps. Sequences used for targeting these cassettes or integrating vectors are typically several hundred base pairs long. A variety of newer methods rely on the design of custom PCR oligonucleotides containing shorter sequence tails (∼50 nt) for targeting the locus of interest. These techniques obviate the need for cloning steps and allow construction of mutagenesis cassettes by PCR amplification. Such cassettes may be used for gene deletion, epitope tagging, or site-specific mutagenesis. The strategies differ in several ways, most notably with respect to whether they allow reuse of the selection marker and whether extra sequences are left behind near the target locus. This unit presents a summary of methods for targeted mutagenesis of Saccharomyces cerevisiae loci without cloning, including PCR-based allele replacement, delitto perfetto, and MIRAGE. Next, a protocol is provided for the delitto perfetto PCR- and oligonucleotide-based mutagenesis method, which offers particular advantages for generating several different mutant alleles of the same gene. PMID:24510296

  3. Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples.

    PubMed

    Junier, Pilar; Kim, Ok-Sun; Hadas, Ora; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-08-01

    The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (betaAOB) was evaluated. betaAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the betaAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations betaAMOf/betaAMOr, betaAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on betaAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.

  4. The frequency of the mitochondrial aldehyde dehydrogenase I2 (atypical) allele in Caucasian, Oriental and African black populations determined by the restriction profile of PCR-amplified DNA.

    PubMed

    Dandré, F; Cassaigne, A; Iron, A

    1995-06-01

    The aldehyde dehydrogenase I (ALDH I) gene codes for a mitochondrial enzyme which plays a major role in hepatic alcohol detoxication. It has been related to alcohol flushing in Orientals bearing the atypical ALDH I2 gene. The variant protein results from a lysine for glutamate substitution at position 487 (G-->A change in exon 12). A procedure for ALDH I2 detection consisting in a differentiation between the 'atypical' allele and the 'wild' allele has been improved through PCR and subsequent MboII digestion. Blood samples collected on anticoagulant or directly absorbed on blotting paper were used for DNA amplification in the presence of two specific oligonucleotidic primers, each one able to incorporate a restriction site in the amplimer. After MboII digestion, PCR products were separated by polyacrylamide gel electrophoresis and then visualized with ethidium bromide. This technique permits a rapid and non-radioactive detection of atypical ALDH I2 on a PCR product without the use of allele specific oligonucleotides. It was applied to the study of ALDH I2 allele frequency in random population samples of three ethnic groups: Caucasians, Orientals and African blacks.

  5. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  6. Trans allele methylation and paramutation-like effects in mice

    PubMed Central

    Herman, Herry; Lu, Michael; Anggraini, Melly; Sikora, Aimee; Chang, Yanjie; Yoon, Bong June; Soloway, Paul D

    2009-01-01

    In mammals, imprinted genes have parent-of-origin–specific patterns of DNA methylation that cause allele-specific expression. At Rasgrf1 (encoding RAS protein-specific guanine nucleotide-releasing factor 1), a repeated DNA element is needed to establish methylation and expression of the active paternal allele1. At Igf2r (encoding insulin-like growth factor 2 receptor), a sequence called region 2 is needed for methylation of the active maternal allele2,3. Here we show that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation and expression of the paternal copy of Rasgrf1, indicating that sequences that control methylation can function ectopically. Paternal transmission of the mutated allele also induced methylation and expression in trans of the normally unmethylated and silent wild-type maternal allele. Once activated, the wild-type maternal Rasgrf1 allele maintained its activated state in the next generation independently of the paternal allele. These results recapitulate in mice several features in common with paramutation described in plants4. PMID:12740578

  7. Development of loop-mediated isothermal amplification assay for specific and rapid detection of differential goat Pox virus and Sheep Pox virus

    PubMed Central

    2014-01-01

    Background Capripox viruses are economically important pathogens in goat and sheep producing areas of the world, with specific focus on goat pox virus (GTPV), sheep pox virus (SPPV) and the Lumpy Skin Disease virus (LSDV). Clinically, sheep pox and goat pox have the same symptoms and cannot be distinguished serologically. This presents a real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Capripox outbreaks. Results A LAMP method was developed for the specific differential detection of GTPV and SPPV using three sets of LAMP primers designed on the basis of ITR sequences. Reactions were performed at 62°C for either 45 or 60 min, and specificity confirmed by successful differential detection of several GTPV and SPPV isolates. No cross reactivity with Orf virus, foot-and-mouth disease virus (FMDV), A. marginale Lushi isolate, Mycoplasma mycoides subsp. capri, Chlamydophila psittaci, Theileria ovis, T. luwenshuni, T. uilenbergi or Babesia sp was noted. RFLP-PCR analysis of 135 preserved epidemic materials revealed 48 samples infected with goat pox and 87 infected with sheep pox, with LAMP test results showing a positive detection for all samples. When utilizing GTPV and SPPV genomic DNA, the universal LAMP primers (GSPV) and GTPV LAMP primers displayed a 100% detection rate; while the SPPV LAMP detection rate was 98.8%, consistent with the laboratory tested results. Conclusions In summary, the three sets of LAMP primers when combined provide an analytically robust method able to fully distinguish between GTPV and SPPV. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of GTPV and SPPV infections, with the potential to be standardized as a detection method for Capripox viruses in endemic areas. PMID:24438089

  8. Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax

    PubMed Central

    Talundzic, Eldin; Chenet, Stella M.; Goldman, Ira F.; Patel, Dhruviben S.; Nelson, Julia A.; Plucinski, Mateusz M.; Barnwell, John W.; Udhayakumar, Venkatachalam

    2015-01-01

    Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species. PMID:26292024

  9. Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

    PubMed

    Talundzic, Eldin; Chenet, Stella M; Goldman, Ira F; Patel, Dhruviben S; Nelson, Julia A; Plucinski, Mateusz M; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-01

    Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species. PMID:26292024

  10. Mutated tumor alleles are expressed according to their DNA frequency.

    PubMed

    Castle, John C; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-04-22

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency.

  11. Trypanosoma vivax: characterization of the spliced-leader gene of a Brazilian stock and species-specific detection by PCR amplification of an intergenic spacer sequence.

    PubMed

    Ventura, R M; Paiva, F; Silva, R A; Takeda, G F; Buck, G A; Teixeira, M M

    2001-09-01

    The sequence of the spliced-leader gene repeat of a Brazilian Trypanosoma vivax stock from cattle showed high similarity to sequences of West African T. vivax in both intron and intergenic sequences. This is the first evidence based on DNA sequences of close-relatedness between Brazilian and West African T. vivax stocks. A T. vivax-specific diagnostic PCR assay based on spliced-leader gene intergenic sequences was able to amplify DNA from T. vivax stocks from South America (Brazil, Bolivia, and Colombia) and West Africa. Species-specificity of this method was confirmed by results obtained by testing 15 other trypanosomes, including other species and subspecies that can also infect cattle. The PCR assay developed presented high sensitivity, detecting the DNA content of only one parasite and also revealing T. vivax infection in asymptomatic animals without detectable parasitemia by microhematocrit or in Giemsa-stained blood smears. Use of crude preparations from field-blood samples collected on both filter paper and glass slides as DNA template suggested that this method could be useful for the diagnosis of T. vivax in large epidemiological studies.

  12. Specific amplification of cDNA ends (SPACE): a new tool for the analysis of rare transcripts and its application for the promoter analysis of killer cell receptor genes.

    PubMed

    Radeloff, Britta; Nagler, Lydia; Zirra, Maja; Ziegler, Andreas; Volz, Armin

    2005-02-01

    The expression control of activating and inhibitory killer cell Ig-like receptors (KIR) on natural killer (NK) cells is highly relevant for the initiation of NK cell mediated cytolysis and cytokine secretion. Transcription start points of nine human KIR genes from two Caucasian donors and the NK cell line NK3.3 were investigated. To overcome sensitivity problems due to the low abundance of the respective transcripts, a novel protocol, specific amplification of cDNA ends (SPACE) with superior specificity and sensitivity was applied. A total of 235 individual SPACE clones resulting from different KIR genes were analysed and revealed a series of transcription start sites tightly clustered between 10 and 60 bp upstream of the start codon. The comparison of the adjacent putative promoter region of the human, chimpanzee and macaque KIR genes revealed a very high conservation for almost all of the KIR family members. An inter-gene and inter-species comparative approach revealed transcription factor binding sites at regions of maximal homology for all primate KIR genes analysed.

  13. Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml(-1) analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification.

    PubMed

    Kirimli, Ceyhun E; Shih, Wei-Heng; Shih, Wan Y

    2015-03-01

    We have examined in situ detection of hepatitis B virus 1762T/1764A double mutation (HBVDM) in urine using a (Pb(Mg(1/3)Nb(2/3))O3)(0.65)(PbTiO3)(0.35) (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 16-nucleotide (nt) probe DNA (pDNA) complementary to the HBVDM. The in situ mutation (MT) detection was carried out in a flow with the PEPS vertically situated at the center of the flow in a background of wild type (WT). For validation, this detection was followed by detection in the mixture of MT fluorescent reporter microspheres (FRMs) (MT FRMs) and WT FRMs that emitted different fluorescence colours and were designed to specifically bind to MT and WT, respectively. At 30 °C and 4 ml min(-1), a PEPS was shown to specifically detect HBVDM in situ with 60 copies ml(-1) analytical sensitivity in a background of clinically-relevant 250-fold more WT in 30 min without DNA isolation, amplification, or labelling as validated by the visualization of the captured MT FRMs and WT FRMs following FRM detection where the captured MT FRMs outnumbered the WT FRMs by a factor of 5 to 1. PMID:25599103

  14. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches

    PubMed Central

    Marmesat, Elena; Soriano, Laura; Mazzoni, Camila J.; Sommer, Simone

    2016-01-01

    The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs) targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers) uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95), yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 6