Science.gov

Sample records for allele specific polymerase

  1. High-speed droplet-allele-specific polymerase chain reaction for genotyping of single nucleotide polymorphisms.

    PubMed

    Matsuda, Kazuyuki; Honda, Takayuki

    2015-01-01

    Single nucleotide alternations such as single nucleotide polymorphisms (SNPs) or single nucleotide mutations are useful genetic markers for molecular diagnosis, prognosis, drug response, and predisposition to diseases. Rapid identification of SNPs or mutations is clinically important, especially for determining drug responses and selection of molecular-targeted therapy. Here, we describe a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) by using our droplet-PCR machine (droplet-AS-PCR).

  2. Polymorphism analysis of Chinese Theileria sergenti using allele-specific polymerase chain reaction of the major piroplasm surface protein gene.

    PubMed

    Liu, Ai Hong; Guan, Gui Quan; Liu, Jun Long; Liu, Zhi Jie; Leblanc, Neil; Li, You Quan; Gao, Jin Liang; Ma, Mi Ling; Niu, Qing Li; Ren, Qiao Yun; Bai, Qi; Yin, Hong; Luo, Jian Xun

    2011-02-01

    Theileria sergenti is a tick-borne parasite found in many parts of the world. The major piroplasm surface protein (MPSP), a conserved protein in all Theileria species, has been used as a marker for epidemiological and phylogenetic studies of benign Theileria species. In this study, Chinese species of T. sergenti were characterized by allele-specific polymerase chain reaction (PCR) and DNA sequence analysis of the MPSP gene. Using universal or allele-specific primer sets for PCR amplification of the MPSP gene, 98 of 288 cattle blood samples, collected from 6 provinces in China, were found to be positive. Among the positive samples, only 3 allelic MPSP gene types (Chitose [C]-, Ikeda [I]-, and buffeli [B]-type) were successfully amplified. Moreover, the results revealed that the majority of the parasites sampled in this study were C- and I-type (prevalence of 84 and 69%, respectively), whereas the B-type was less common (prevalence of 36%). Co-infections with C-, I-, and B-type T. sergenti also were found. An additional known allele, Thai-type, was not detected. Phylogenetic analysis based on the MPSP gene sequences, including 3 standard stocks generated in the laboratory ( T. sergenti Wenchuan, T. sergenti Ningxian, and T. sergenti Liaoyang), revealed that the isolates of Chinese sergenti were comprised of at least 4 allelic MPSP gene types, i.e., C-, I-, B1-, and B2-type, and these parasites with 6 MPSP types 1-5 and 7 were present in China.

  3. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chain reaction.

    PubMed

    Huang, Yong; Zhu, Jing; Li, Guiyin; Chen, Zhencheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2013-04-15

    In this work, we developed an electrochemical detection method based on allele-specific polymerase chain reaction (AS-PCR) and surface hybridization assay technique for the point mutation detection. A high-fidelity Vent(R)™(exo⁻) DNA polymerase, which eliminated the 3'→5' proofreading exonuclease activity by genetical engineering, was used to discriminate and extend the detection probe that perfectly matched with mutant target DNA and generate a redox-active DNA replica which folded into a molecular beacon structure by intramolecular hybridization. After hybridized with capture probe modified on gold electrode by self-assembly reaction, the redox tags can be closed to electrode, resulting in a substantial current with the maximized sensitivity for point mutation analysis. However, when there is an allele mismatch in the wild target DNA, and so no the redox-active replica DNA can be obtained. In this case, no remarkable current signal can be trigged. The proposed approach has been successfully implemented for the identification of single base mutation at the -28 position in human β-globin gene with a detection limit of 0.5 fM, demonstrating that this method provides a highly specific, sensitive and cost-efficient approach for point mutation detection.

  4. Human Platelet Antigen Alleles in 998 Taiwanese Blood Donors Determined by Sequence-Specific Primer Polymerase Chain Reaction

    PubMed Central

    Burnouf, Thierry; Chen, Jen-Wei; Lin, Liang-In

    2013-01-01

    Polymorphism of human platelet antigens (HPAs) leads to alloimmunizations and immune-mediated platelet disorders including fetal-neonatal alloimmune thrombocytopenia (FNAIT), posttransfusion purpura (PTP), and platelet transfusion refractoriness (PTR). HPA typing and knowledge of antigen frequency in a population are important in particular for the provision of HPA-matched blood components for patients with PTR. We have performed allele genotyping for HPA-1 through -6 and -15 among 998 platelet donors from 6 blood centers in Taiwan using sequence-specific primer polymerase chain reaction. The HPA allele frequency was 99.55, and 0.45% for HPA-1a and -1b; 96.49, and 3.51% for HPA-2a and -2b; 55.81, and 44.19% for HPA-3a and -3b; 99.75, and 0.25% for HPA-4a and -4b; 98.50, and 1.50% for HPA-5a and -5b; 97.75 and 2.25% for HPA-6a and -6b; 53.71 and 46.29% for HPA-15a and -15b. HPA-15b and HPA-3a, may be considered the most important, followed by HPA-2, -6, -1, -5, and -4 systems, as a cause of FNAIT, PTP, and PTR based on allele frequency. HPA-4b and HPA-5b role cannot be excluded based on their immunogenicity. A larger-scale study will now be conducted to confirm these hypotheses and to establish an apheresis donor database for the procurement of HPA-matched apheresis platelets for patients with PTR. PMID:23865077

  5. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  6. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene

    SciTech Connect

    Wilson, R.C.; Wei, J.Q.; Cheng, K.C.

    1995-05-01

    Rapid DNA analysis based on allele-specific polymerase chain reaction (PCR) using mutation site-specific primers was developed to detect mutations in the CYP21 gene known to cause steroid 21-hydroxylase deficiency. In contrast to the previous method, in which PCR of genomic DNA was followed by dot blot analysis with radio active probes and multiple rounds of stripping and reprobing for each of the 8 most common mutation sites, the results using this new method were immediately visualized after the PCR run by ethidium bromide-stained agarose gel electrophoresis. Using allele-specific PCR, mutation(s) were identified on 148 affected chromosomes out of 160 tested. Although mutation(s) were identified on only one chromosome of 11 of these patients, their parents showed a consistent pattern on DNA analysis. The only exception was that in one family, in which the parents each had a detectable mutation, a mutation was detected on only one allele of the patient. Most likely there is a mutation in the patient`s other allele that could have arisen de novo or was inherited from the parent and was not evident in the transmitting parent`s phenotype. When compared with the dot blot procedure, allele-specific PCR is more rapid, less labor-intensive, and avoids the use of radioactivity. 26 refs., 3 figs., 2 tabs.

  7. A modified approach to identification of the sickle cell anemia mutation by means of allele-specific polymerase chain reaction.

    PubMed

    Birikh, K R; Plutalov, O V; Schwartz, E I; Devi, P S; Berlin, Y A

    1992-01-01

    The allele-specific PCR approach has been modified by introducing a second mismatch at the 3'-penultimate link of the primer and used to identify the sickle cell anemia mutation (A-->T transversion in the sixth codon of the human beta-globin gene causing Glu-->Val substitution in the protein), thus obviating the problem of an interpretationally ambiguous 3'-terminal mismatch including T residue. PMID:1301951

  8. A modified approach to identification of the sickle cell anemia mutation by means of allele-specific polymerase chain reaction.

    PubMed

    Birikh, K R; Plutalov, O V; Schwartz, E I; Devi, P S; Berlin, Y A

    1992-01-01

    The allele-specific PCR approach has been modified by introducing a second mismatch at the 3'-penultimate link of the primer and used to identify the sickle cell anemia mutation (A-->T transversion in the sixth codon of the human beta-globin gene causing Glu-->Val substitution in the protein), thus obviating the problem of an interpretationally ambiguous 3'-terminal mismatch including T residue.

  9. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  10. A Multiplex Allele Specific Polymerase Chain Reaction (MAS-PCR) for the Detection of Factor V Leiden and Prothrombin G20210A

    PubMed Central

    Bagheri, Morteza; Rad, Isa Abdi

    2011-01-01

    ABSTRACT Introduction: In order to determine the frequencies of factor V Leiden and prothrombin G20210A point mutations in the Iranian population with Azeri Turkish origin. Material and methods: 120 unrelated individuals from general population randomly selected and were examined for factor V Leiden and prothrombin G20210A mutations using a multiplex allele specific polymerase chain reaction (MAS-PCR) assay Outcomes: The frequency of prothrombin G20210A mutation was 2.08%, which means 5 chromosomes out of 240 chromosomes had prothrombin G20210A mutation. The distribution of prothrombin 20210 GG, GA, AA genotypes and prothrombin 20210A allele were 37(92.5%), 3(7.5%), 0(0%) and 3(3.75%) in males and 78(97.5%), 2(2.5%), 0(0%) and 2(1.25%) in females, respectively. Factor V Leiden was not found in our tested group (zero chromosomes out of 240 chromosomes). Analysis of the observed frequencies in the studied groups indicates that there is no statistically significant difference between females and males, regarding prothrombin G20210A mutation (p value>0.05). Conclusions: This is the first study in its own kind in this population and implies that the frequency of Factor V Leiden G1691A (R506Q, FV-Leiden) allele is extremely low but the prothrombin G20210A mutation is more frequent in the tested group. PMID:21977183

  11. Allele-specific duplex polymerase chain reaction to differentiate Mycobacterium abscessus subspecies and to detect highly clarithromycin-resistant isolates.

    PubMed

    Kim, H Y; Lee, S Y; Kim, B J; Kook, Y H

    2016-01-01

    On the basis of the structural differences of erm, we used a duplex polymerase chain reaction (PCR) to differentiate Mycobacterium abscessus subsp. abscessus and subsp. massiliense isolates and to detect the point mutations of 23S rRNA gene that confer a high level of resistance to clarithromycin. Subsp. massiliense strains occupying almost half of the clinical isolates can be simply identified, and their clarithromycin susceptibility can be rapidly determined. PMID:27514964

  12. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients.

    PubMed

    Sata, Hiroshi; Shibayama, Hirohiko; Maeda, Ikuhiro; Habuchi, Yoko; Nakatani, Eiji; Fukushima, Kentaro; Fujita, Jiro; Ezoe, Sachiko; Tadokoro, Seiji; Maeda, Tetsuo; Mizuki, Masao; Kosugi, Satoru; Nakagawa, Masashi; Ueda, Shuji; Iida, Masato; Tokumine, Yukihiro; Azenishi, Yasuhiko; Mitsui, Hideki; Oritani, Kenji; Kanakura, Yuzuru

    2015-05-01

    Quantitative polymerase chain reaction (PCR) with patient-specific, allele-specific oligonucleotide (ASO) primers for individual immunoglobulin H VDJ region (ASO-PCR) amplification was performed using several sources of clinical material, including mRNA from peripheral blood cells (PBMNCs), whole bone marrow cells (BMMNCs), and the CD20+ CD38- B-cell population in bone marrow, as well as cell-free DNA from the sera of patients with multiple myeloma (MM). We designed the ASO primers and produced sufficient PCR fragments to evaluate tumor burden in 20 of 30 bone marrow samples at diagnosis. Polymerase chain reaction amplification efficiency depended on primer sequences because the production of ASO-PCR fragments did not correlate with serum M-protein levels. However, the ASO-PCR levels in BMMNCs showed statistically significant correlations with those in PBMNCs and CD20+ CD38- B-cells. The good association between the BMMNC and PBMNC data indicated that PBMNCs could be a suitable source for monitoring minimal residual disease (MRD). In the case of cell-free DNA, ASO-PCR levels showed a unique pattern and remained high even after treatment. Because the sequence information for each ASO-PCR product was identical to the original, the cell-free DNA might also be useful for evaluating MRD. Moreover, the ASO-PCR products were clearly detected in 17 of 22 mRNA samples from CD20+ CD38- populations, suggesting that MM clones might exist in relatively earlier stages of B cells than in plasma cells. Thus, ASO-PCR analysis using various clinical materials is useful for detecting MRD in MM patients as well as for clarifying MM pathogenesis. PMID:25591497

  13. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients.

    PubMed

    Sata, Hiroshi; Shibayama, Hirohiko; Maeda, Ikuhiro; Habuchi, Yoko; Nakatani, Eiji; Fukushima, Kentaro; Fujita, Jiro; Ezoe, Sachiko; Tadokoro, Seiji; Maeda, Tetsuo; Mizuki, Masao; Kosugi, Satoru; Nakagawa, Masashi; Ueda, Shuji; Iida, Masato; Tokumine, Yukihiro; Azenishi, Yasuhiko; Mitsui, Hideki; Oritani, Kenji; Kanakura, Yuzuru

    2015-05-01

    Quantitative polymerase chain reaction (PCR) with patient-specific, allele-specific oligonucleotide (ASO) primers for individual immunoglobulin H VDJ region (ASO-PCR) amplification was performed using several sources of clinical material, including mRNA from peripheral blood cells (PBMNCs), whole bone marrow cells (BMMNCs), and the CD20+ CD38- B-cell population in bone marrow, as well as cell-free DNA from the sera of patients with multiple myeloma (MM). We designed the ASO primers and produced sufficient PCR fragments to evaluate tumor burden in 20 of 30 bone marrow samples at diagnosis. Polymerase chain reaction amplification efficiency depended on primer sequences because the production of ASO-PCR fragments did not correlate with serum M-protein levels. However, the ASO-PCR levels in BMMNCs showed statistically significant correlations with those in PBMNCs and CD20+ CD38- B-cells. The good association between the BMMNC and PBMNC data indicated that PBMNCs could be a suitable source for monitoring minimal residual disease (MRD). In the case of cell-free DNA, ASO-PCR levels showed a unique pattern and remained high even after treatment. Because the sequence information for each ASO-PCR product was identical to the original, the cell-free DNA might also be useful for evaluating MRD. Moreover, the ASO-PCR products were clearly detected in 17 of 22 mRNA samples from CD20+ CD38- populations, suggesting that MM clones might exist in relatively earlier stages of B cells than in plasma cells. Thus, ASO-PCR analysis using various clinical materials is useful for detecting MRD in MM patients as well as for clarifying MM pathogenesis.

  14. Evaluation of sequence-specific priming and real-time polymerase chain reaction assays for detecting HLA-B*51 alleles confirmed by sequence-based typing.

    PubMed

    Park, Y; Kim, Y S; Kim, S I; Kim, H; Kim, H S

    2012-10-01

    The human leukocyte antigen (HLA)-B*51 genotype is one of the well-known genetic factors associated with the development of Behcet's disease. We evaluated three sequence-specific priming (SSP) assays and one real-time PCR assay for detecting HLA-B*51 alleles using 93 whole blood samples, which were genotyped by high-resolution sequence-based typing (SBT). All HLA-B*51 alleles determined by SBT were detected by the four evaluated assays, and the results for all HLA-B alleles other than HLA-B*51 were negative on all assays. Thus, all HLA-B51 tests showed 100% sensitivity and 100% specificity for detecting HLA-B*51 alleles. The three SSP assays and the real-time PCR test for HLA-B*51 genotyping are simple, but reliable for detecting HLA-B*51 alleles in clinical laboratories.

  15. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  16. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  17. Survey of benign Theileria parasites of cattle and buffaloes in Thailand using allele-specific polymerase chain reaction of major piroplasm surface protein gene.

    PubMed

    Sarataphan, Nopporn; Kakuda, Tsutomu; Chansiri, Kosum; Onuma, Misao

    2003-01-01

    During a year from 1999 to 2000, a total of 247 blood samples were collected from 214 cattle and 33 water buffaloes in 16 distinct geographical locations of Thailand and analyzed by allele-specific PCR amplification of major piroplasm surface protein (MPSP) genes of benign Theileria parasites. Four allelic MPSP gene types were determined namely C-type, I-type, B-type and Thai-type, which were originally designated from Japanese Theileria orientalis (Chitose, Ikeda), Australian T. buffeli (Warwick) and Thai T. sp. (Kamphaeng Saen), respectively. Only two allelic MPSP gene types were successively amplified from 204 (82.6%) blood samples. Among positive cases, 138 (67.6%) and 17 (8.3%) samples contained either Thai-type or C-type parasites, respectively, while 49 (24%) samples contained both types. However, nucleotide sequences of MPSP genes of Thai T. sp. amplified by C-type specific primers revealed higher (96.3%) similarity to Indonesian T. sp. rather than (87.8% similarity) to Japanese T. orientalis (Chitose) designated as C-type.

  18. A multiplex allele-specific real-time polymerase chain reaction assay for HLA-B*13:01 genotyping in four Chinese populations.

    PubMed

    Liu, Z; Chen, G; Kang, X; Han, M; Chen, R; Chen, C; Wang, H

    2016-10-01

    Human leukocyte antigen HLA-B*13:01 is identified currently as a marker of individual susceptibility to drug-induced hypersensitivity reaction, such as dapsone-induced hypersensitivity reactions (DIHRs) and trichloroethylene-induced dermatitis. Therefore, screening for the HLA-B*13:01 allele can assist clinics in identifying patients at risk of developing DIHRs. By combining the allele-specific primers with TaqMan probes, we established a single tube, triplex real-time PCR to detect HLA-B*13:01. The reliability of this assay was validated by the comparison of genotyping results with those by sequence-based typing (SBT). With this assay, the distribution of HLA-B*13:01 in a total of 350 blood samples from four ethnic groups: Han, Tibetan, Uighur, and Buyei were determined. A 100% concordance was observed between the results with the established real-time PCR and SBT in 100 samples. The detection limit of this assay was 0.016 ng genomic DNA. The prevalence of HLA-B*13:01 carriers were 11%, 8%, 1%, and 2% in the Buyei (n = 100), Northern Han (n = 100), Tibetan (n = 100), and Uighur (n = 50) populations, respectively. The multiplex real-time PCR assay provided a fast and reliable method for accurate detection of HLA-B*13:01 allele prior to dapsone administration in clinical practice and onset of the reaction after exposure to trichloroethylene.

  19. The Septic Shock-associated IL-10 -1082 A>G Polymorphism Mediates Allele-specific Transcription via Poly ADP-ribose Polymerase 1 in Macrophages Engulfing Apoptotic Cells

    PubMed Central

    Kang, Xiaoyan; Kim, Ha-Jeong; Ramirez, Michelle; Salameh, Sarah; Ma, Xiaojing

    2013-01-01

    The biallelic Interleukin-10 single nucleotide polymorphism (SNP) at -1082 of the promoter region linked to individual variation in cytokine inducibility has been strongly implicated in several pathological conditions including the development of, and outcomes in, septic shock during pneumococcal infection, acute respiratory distress syndrome, and cardiac dysfunction. However, the molecular basis of the SNP-mediated variable IL-10 production levels has not been explored. Here we report that the -1082G>A alleles in the promoter region of the human IL-10 gene physically interact with a nuclear protein in an allele-specific manner that results in different levels of IL-10 transcription. This protein has been identified as poly ADP-ribose polymerase 1 (PARP-1). We show that PARP-1 acts as a transcription repressor, and its DNA-binding activity is strongly regulated in macrophages that engulf apoptotic cells but not stimulated with lippopolysaccharides. These findings unveil a novel role of PARP-1 in the regulation of IL-10 production in an allele-dependent way, which determines individual susceptibility to sepsis-induced inflammatory pathology and the immunological sequelae in a physiological process where clearance of infection-induced apoptotic cells by professional phagocytes triggers the cytokine synthesis. PMID:20181890

  20. Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers.

    PubMed Central

    Cui, X F; Li, H H; Goradia, T M; Lange, K; Kazazian, H H; Galas, D; Arnheim, N

    1989-01-01

    The frequency of recombination between the G gamma-globin (HBG2) and parathyroid hormone (PTH) loci on the short arm of human chromosome 11 was estimated by typing greater than 700 single-sperm samples from two males. The sperm-typing technique employed involves the polymerase chain reaction and allele-specific oligonucleotide hybridization. Our maximum likelihood recombination fraction estimate of 0.16 (95%) confidence interval, 0.13-0.19) falls well within previous estimates based on family studies. With current technology and a sample size of 1000 sperm, recombination fractions down to approximately 0.009 can be estimated with statistical reliability; with a sample size of 5000 sperm, this value drops to about 0.004. Reasonable technological improvements could result in the detection of recombination frequencies less than 0.001. PMID:2574460

  1. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    PubMed

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  2. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  3. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  4. Allelic variation contributes to bacterial host specificity.

    PubMed

    Yue, Min; Han, Xiangan; De Masi, Leon; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S; Fraser, George P; Zhao, Shaohua; McDermott, Patrick F; Weill, François-Xavier; Mainil, Jacques G; Arze, Cesar; Fricke, W Florian; Edwards, Robert A; Brisson, Dustin; Zhang, Nancy R; Rankin, Shelley C; Schifferli, Dieter M

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  5. Allelic variation contributes to bacterial host specificity

    SciTech Connect

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

  6. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; et al

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  7. Allelic variation contributes to bacterial host specificity

    PubMed Central

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  8. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  9. Validation of a Multiplex Allele-Specific Polymerase Chain Reaction Assay for Detection of KRAS Gene Mutations in Formalin-Fixed, Paraffin-Embedded Tissues from Colorectal Cancer Patients

    PubMed Central

    Seekhuntod, Sirirat; Thavarungkul, Paninee; Chaichanawongsaroj, Nuntaree

    2016-01-01

    Background Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR) inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC). The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR) assay to detect KRAS mutations. Methods We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D). We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay. Results Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%), G12D (25.83%) and G12V (12.50%) in codon 12. Conclusion The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues. PMID:26812617

  10. Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype.

    PubMed Central

    Francesconi, S; Park, H; Wang, T S

    1993-01-01

    DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences. Images PMID:8367300

  11. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  12. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  13. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles.

    PubMed

    Brunner, Susanne; Hurni, Severine; Streckeisen, Philipp; Mayr, Gabriele; Albrecht, Mario; Yahiaoui, Nabila; Keller, Beat

    2010-11-01

    Some plant resistance genes occur as allelic series, with each member conferring specific resistance against a subset of pathogen races. In wheat, there are 17 alleles of the Pm3 gene. They encode nucleotide-binding (NB-ARC) and leucine-rich-repeat (LRR) domain proteins, which mediate resistance to distinct race spectra of powdery mildew. It is not known if specificities from different alleles can be combined to create resistance genes with broader specificity. Here, we used an approach based on avirulence analysis of pathogen populations to characterize the molecular basis of Pm3 recognition spectra. A large survey of mildew races for avirulence on the Pm3 alleles revealed that Pm3a has a resistance spectrum that completely contains that of Pm3f, but also extends towards additional races. The same is true for the Pm3b and Pm3c gene pair. The molecular analysis of these allelic pairs revealed a role of the NB-ARC protein domain in the efficiency of effector-dependent resistance. Analysis of the wild-type and chimeric Pm3 alleles identified single residues in the C-terminal LRR motifs as the main determinant of allele specificity. Variable residues of the N-terminal LRRs are necessary, but not sufficient, to confer resistance specificity. Based on these data, we constructed a chimeric Pm3 gene by intragenic allele pyramiding of Pm3d and Pm3e that showed the combined resistance specificity and, thus, a broader recognition spectrum compared with the parental alleles. Our findings support a model of stepwise evolution of Pm3 recognition specificities.

  14. [Evaluation of minimal residual disease using allele (mutation) -specific PCR].

    PubMed

    Matsuda, Kazuyuki

    2014-06-01

    For patients with hematological malignancies, monitoring minimal residual disease (MRD) provides useful information to evaluate the therapeutic response and risk of relapse. The currently available quantitative MRD assays are fluorescence in situ hybridization of chromosomal aberrations, multiparameter flow cytometry of leukemia-associated immunophenotypes, and quantitative polymerase chain reaction (qPCR) analysis of fusion genes, immunoglobulin/T-cell receptor gene rearrangements, genetic alterations, or over-expressed genes. Single nucleotide mutations associated with leukemogenesis can be considered as applicable MRD markers. Allele-specific qPCR (AS-qPCR) using primers including mismatched bases and locked nucleic acids (LNA) can quantify not only the insertion and duplication of several nucleotides, but also single nucleotide mutation in the presence of an excess amount of wild-type nucleotides. The AS-qPCR for analyzing single nucleotide mutations contributes to the monitoring of MRD in patients without recurrent fusion genes throughout the clinical course and, thus, broadens the spectrum of patients in whom MRD can be monitored. In addition to the evaluation of MRD, AS-qPCR can provide insight into the development of leukemia and the sequential acquisition of gene mutations.

  15. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  16. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  17. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping

    PubMed Central

    Lee, Han B.; Schwab, Tanya L.; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L.; Cervera, Roberto Lopez; McNulty, Melissa S.; Bostwick, Hannah S.; Clark, Karl J.

    2016-01-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98–100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  18. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  19. Allele-Specific DNA Methylation Detection by Pyrosequencing®.

    PubMed

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide information on the methylation status of individual alleles of genes. This information may be of importance in many situations. In particular, in cancer both alleles of tumour suppressor genes generally need to be inactivated for a phenotypic effect to be observed. Here, we present a simple and cost-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon. PMID:26103906

  20. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  1. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  2. Specific HLA-DQB and HLA-DRB1 alleles confer susceptibility to pemphigus vulgaris.

    PubMed Central

    Scharf, S J; Freidmann, A; Steinman, L; Brautbar, C; Erlich, H A

    1989-01-01

    The autoimmune dermatologic disease pemphigus vulgaris (PV) is associated with the serotypes HLA-DR4 and HLA-DRw6. Based on nucleotide sequence and oligonucleotide probe analysis of enzymatically amplified DNA encoding HLA-DR beta chain (HLA-DRB) and HLA-DQ beta chain (HLA-DQB; henceforth HLA is omitted from designations), we showed previously that the DR4 susceptibility was associated with the Dw10 DRB1 allele [encoding the mixed lymphocyte culture (MLC)-defined Dw10 specificity]. The DRw6 susceptibility similarly was shown to be associated with a rare DQB allele (DQB1.3), which differed from another nonsusceptible allele by only a valine-to-aspartic acid substitution at position 57. Given the linkage disequilibrium that characterizes HLA haplotypes, it is difficult to assign disease susceptibility to a specific locus rather than to a closely linked gene(s) on the same haplotype. To address this problem, we have analyzed all of the polymorphic loci of the class II HLA region (DRB1, DRB3, DQA, DQB, and DPB) on the DRw6 haplotypes in patients and controls. In 22 PV patients, 4 different DRw6 haplotypes were found that encode the same DQ beta chain (DQB1.3) but contained silent nucleotide differences at the DQB locus as well as coding sequence differences in the DQA and DRB loci. These results, obtained by using a method for allele-specific polymerase chain reaction amplification, strongly support the hypothesis that the allele DQB1.3 confers susceptibility. This DQB allele is correlated with the MLC-defined Dw9 specificity and is associated with two different DRB1 alleles (the common "6A" associated with DRw13 and the rare "6B" associated with DRw14). Since 86% (19 of 22) of DRw6+ patients contain the DQB1.3 allele (vs. 3% of controls), whereas 64% (14 of 22) contain the DRB1 allele 6B (vs. 6% of the controls), we conclude that most of the DRw6 susceptibility to PV can be accounted for by the DQ beta chain. Images PMID:2503828

  3. Extensive allele-specific translational regulation in hybrid mice.

    PubMed

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-08-07

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.

  4. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  5. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  6. Genomic landscape of human allele-specific DNA methylation.

    PubMed

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J; Smith, Andrew D

    2012-05-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  7. Genomic landscape of human allele-specific DNA methylation

    PubMed Central

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J.; Smith, Andrew D.

    2012-01-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  8. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  9. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  10. A specific HLA-DP beta allele is associated with pauciarticular juvenile rheumatoid arthritis but not adult rheumatoid arthritis.

    PubMed Central

    Begovich, A B; Bugawan, T L; Nepom, B S; Klitz, W; Nepom, G T; Erlich, H A

    1989-01-01

    Nonradioactive sequence-specific oligonucleotide probes specific for the HLA-DP beta locus have been used in a simple dot-blot format to type samples amplified by the polymerase chain reaction from 44 patients with pauciarticular juvenile rheumatoid arthritis, 32 patients with adult rheumatoid arthritis, and 50 random controls. The sequences of four new DP beta alleles derived from these patients and controls are reported, bringing the total number of alleles identified thus far to 19. The DPB2.1 allele is significantly increased in juvenile rheumatoid arthritis patients over controls; this allele is not increased in patients with adult rheumatoid arthritis. The association of juvenile rheumatoid arthritis with the DPB2.1 allele is independent of linkage with previously defined HLA-D region markers of disease. Analysis of the DPB2.1 sequence shows that it differs from the nonsusceptible DPB4.2 allele by only 1 amino acid at position 69 in the beta 1 domain. PMID:2512583

  11. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant. PMID:7895166

  12. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant.

  13. A novel one cycle allele specific primer extension--molecular beacon displacement method for DNA point mutation detection with improved specificity.

    PubMed

    Li, Xiaomin; Huang, Yong; Guan, Yuan; Zhao, Meiping; Li, Yuanzong

    2007-02-12

    We report here a new method for the real-time detection of DNA point mutations with molecular beacon as the fluorescence tracer and 3' (exo-) Bst DNA polymerase large fragment as the polymerase. The method is based on the mechanism of allele specific primer extension-strand displacement (ASPE-SD). To improve the specificity of the method only one cycle of the allele specific polymerase chain reaction (PCR) was used that could largely eliminate the non-specific reactions between the primers and template of the "wrong" genotype. At first, the primer and molecular beacon both hybridize to the DNA template, and the molecular beacon emits intensive fluorescence. The role of 3' exonuclease excision of Bst DNA polymerase large fragment is utilized for primer extension. When 3'-termini matches its corresponding template, the primer would efficiently extend and replace the molecular beacon that would simultaneously return to its closed form leading to the quenching of the fluorescence. However, when 3'-termini of the primer mismatches its corresponding template primer extension and molecular beacon displacement would not happen and fluorescence of the hybridized molecular beacon holds the line without fluorescence quenching. This approach was fully demonstrated in synthetic template systems and applied to detect point mutation at codon 259, a possible point mutation site in exon 7 of p53 gene, obtained from human genomic DNA samples with unambiguous differentiation power.

  14. Allele-specific chemical genetics: concept, strategies, and applications.

    PubMed

    Islam, Kabirul

    2015-02-20

    The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.

  15. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR. PMID:12470637

  16. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  17. DQB1*06:02 allele specific expression varies by allelic dosage, not narcolepsy status

    PubMed Central

    lachmi, Karin Weiner; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single allele HLA associations. In this study, we explored genome wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and found the largest differences between the groups to be in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65 fold) and protein (1.59 fold) could be demonstrated independent of the disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes. PMID:22326585

  18. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status.

    PubMed

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-04-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65-fold) and protein (1.59-fold) could be demonstrated independent of disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes.

  19. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  20. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  1. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris.

    PubMed

    Amarasinghe, Harindra E; Toghill, Bradley J; Nathanael, Despina; Mallon, Eamonn B

    2015-01-01

    Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  2. Impriniting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching

    SciTech Connect

    Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. )

    1993-07-01

    Genomic imprinting and monoallelic gene expression appear to play a role in human genetic disease and tumorigenesis. The human H19 gene, at chromosome 11p15, has previously been shown to be monoallelically expressed. Since CpG methylation has been implicated in imprinting, the authors analyzed methylation of H19 DNA. In fetal and adult organs the transcriptionally silent H19 allele was extensively hypermethylated through the entire gene and its promoter, and, consistent with a functional role for DNA methylation, expression of an H19 promoter-reporter construct was inhibited by in vitro methylation. Gynogenetic ovarian teratomas were found to contain only hypomethylated H19 DNA, suggesting that the expressed H19 allele might be maternal. This was confirmed by analysis of 11p15 polymorphisms in a patient with Wilms tumor. The tumor had lost the maternal 11p15, and H19 expression in the normal kidney was exclusively from this allele. Imprinting of human H19 appears to be susceptible to tissue-specific modulation in somatic development; in one individual, cerebellar cells were found to express only the otherwise silent allele. Implications of these findings for the role of DNA methylation in imprinting and for H19 as a candidate imprinted tumor-suppressor gene are discussed. 57 refs., 7 figs.

  3. Enhancing allele-specific PCR for specifically detecting short deletion and insertion DNA mutations.

    PubMed

    Wang, Yiran; Rollin, Joseph A; Zhang, Y-H Percival

    2010-02-01

    Allele-specific PCR (AS-PCR) has been widely used for the detection of single nucleotide polymorphism. But there are some challenges in using AS-PCR for specifically detecting DNA variations with short deletions or insertions. The challenges are associated with designing selective allele-specific primers as well as the specificity of AS-PCR in distinguishing some types of single base-pair mismatches. In order to address such problems and enhance the applicability of AS-PCR, a general primer design method was developed to create a multiple base-pair mismatch between the primer 3'-terminus and the template DNA. This approach can destabilize the primer-template complex more efficiently than does a single base-pair mismatch, and can dramatically increase the specificity of AS-PCR. As a proof-of-principle demonstration, the method of primer design was applied in colony PCR for identifying plasmid DNA deletion or insertion mutants after site-directed mutagenesis. As anticipated, multiple base-pair mismatches achieved much more specific PCR amplification than single base-pair mismatches. Therefore, with the proposed primer design method, the detection of short nucleotide deletion and insertion mutations becomes simple, accurate and more reliable.

  4. A computational workflow to identify allele-specific expression and epigenetic modification in maize.

    PubMed

    Wei, Xiaoxing; Wang, Xiangfeng

    2013-08-01

    Allele-specific expression refers to the preferential expression of one of the two alleles in a diploid genome, which has been thought largely attributable to the associated cis-element variation and allele-specific epigenetic modification patterns. Allele-specific expression may contribute to the heterosis (or hybrid vigor) effect in hybrid plants that are produced from crosses of closely-related species, subspecies and/or inbred lines. In this study, using Illumina high-throughput sequencing of maize transcriptomics, chromatic H3K27me3 histone modification and DNA methylation data, we developed a new computational framework to identify allele-specifically expressed genes by simultaneously tracking allele-specific gene expression patterns and the epigenetic modification landscape in the seedling tissues of hybrid maize. This approach relies on detecting nucleotide polymorphisms and any genomic structural variation between two parental genomes in order to distinguish paternally or maternally derived sequencing reads. This computational pipeline also incorporates a modified Chi-square test to statistically identify allele-specific gene expression and epigenetic modification based on the Poisson distribution.

  5. 5' and 3' untranslated regions contribute to the differential expression of specific HLA-A alleles.

    PubMed

    René, Céline; Lozano, Claire; Villalba, Martin; Eliaou, Jean-François

    2015-12-01

    In hematopoietic stem cell transplantation (HSCT), when no HLA full-matched donor is available, alternative donors could include one HLA-mismatched donor. Recently, the low expressed HLA-C alleles have been identified as permissive mismatches for the best donor choice. Concerning HLA-A, the degree of variability of expression is poorly understood. Here, we evaluated HLA-A expression in healthy individuals carrying HLA-A*02 allele in different genotypes using flow cytometry and allele-specific quantitative RT-PCR. While an interindividual variability of HLA-A*02 cell surface expression, not due to the allele associated, was observed, no difference of the mRNA expression level was shown, suggesting the involvement of the posttranscriptional regulation. The results of qRT-PCR analyses exhibit a differential expression of HLA-A alleles with HLA-A*02 as the strongest expressed allele independently of the second allele. The associated non-HLA-A*02 alleles were differentially expressed, particularly the HLA-A*31 and HLA-A*33 alleles (strong expression) and the HLA-A*29 (low expression). The presence of specific polymorphisms in the 5' and 3' untranslated regions of the HLA-A*31 and HLA-A*33 alleles could contribute to this high level of expression. As previously described for HLA-C, low-expressed HLA-A alleles, such as HLA-A*29, could be considered as a permissive mismatch, although this needs to be confirmed by clinical studies.

  6. Dr(a-) polymorphism of decay accelerating factor. Biochemical, functional, and molecular characterization and production of allele-specific transfectants.

    PubMed Central

    Lublin, D M; Thompson, E S; Green, A M; Levene, C; Telen, M J

    1991-01-01

    The Dra antigen belongs to the Cromer-related blood group system, a series of antigens on decay accelerating factor (DAF), a glycosyl-phosphatidylinositol-anchored membrane protein that protects host cells from complement-mediated damage. We studied the rare inherited Dr(a-) phenotype to ascertain the associated biochemical and functional changes in DAF and to characterize the basis for this polymorphism. Radioimmunoassay assay and flow cytometric analysis of Dr(a-) erythrocytes demonstrated 40% of normal surface expression of DAF but normal levels of several other glycosyl-phosphatidylinositol-anchored proteins, distinguishing this phenotype from that of paroxysmal nocturnal hemoglobinuria. Western blots confirmed this reduced DAF expression and indicated a slightly faster mobility of the molecule on SDS-PAGE. Despite the reduced DAF expression, Dr(a-) erythrocytes functioned normally in the complement lysis sensitivity assay. Utilization of the polymerase chain reaction to amplify mononuclear cell genomic DNA from three unrelated Dr(a-) individuals demonstrated that a point mutation underlies the Dr(a-) phenotype: a C to T change in nucleotide 649 resulting in a serine165 to leucine change. This defines the Drb allele of DAF, which can be distinguished from Dra by a Taq I restriction fragment length polymorphism. We created transfected Chinese hamster ovary cell lines expressing either the Dra or the Drb allelic form of DAF. These allele-specific transfectants were tested by inhibition of hemagglutination or flow cytometry and confirmed the specificity of anti-Dra alloantisera. The allele-specific transfectants could form the basis of a new serological approach to immunohematology. Images PMID:1710232

  7. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.

    PubMed

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-04-18

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org).

  8. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  9. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria.

    PubMed

    Lage, Melissa D; Pittman, Adrianne M C; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.

  10. The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases.

    PubMed

    Verlaan, Maarten G; Hutton, Samuel F; Ibrahem, Ragy M; Kormelink, Richard; Visser, Richard G F; Scott, John W; Edwards, Jeremy D; Bai, Yuling

    2013-03-01

    Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. PMID:23555305

  11. S-genotype identification based on allele-specific PCR in Japanese pear

    PubMed Central

    Nashima, Kenji; Terakami, Shingo; Nishio, Sogo; Kunihisa, Miyuki; Nishitani, Chikako; Saito, Toshihiro; Yamamoto, Toshiya

    2015-01-01

    Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1–S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1–S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs. PMID:26175617

  12. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers

    PubMed Central

    Groner, William D.; Christy, Megan E.; Kreiner, Catherine M.; Liljegren, Sarah J.

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  13. Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    PubMed Central

    Perez-Losada, Jesus; Wu, Di; DelRosario, Reyno; Balmain, Allan; Mao, Jian-Hua

    2012-01-01

    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility. PMID:22348067

  14. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  15. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  16. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  17. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays

    PubMed Central

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-01-01

    Motivation: Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. Results: The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. Availability: The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementaruy information: Supplementary data are available at Bioinformatics online. PMID:20529889

  18. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes

    PubMed Central

    Krueger, Felix; Andrews, Simon R.

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  19. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  20. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    PubMed

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  1. Epidemiological survey of Theileria parasite infection of cattle in Northeast China by allele-specific PCR.

    PubMed

    Yu, Longzheng; Zhang, Shoufa; Liang, Wanfeng; Jin, Chunmei; Jia, Lijun; Luo, Yuzi; Li, Yan; Cao, Shinuo; Yamagishi, Junya; Nishikawa, Yoshifumi; Kawano, Suguru; Fujisaki, Kozo; Xuan, Xuenan

    2011-11-01

    An epidemiological survey on a Theileria parasite infection of cattle in Northeast China was carried out using allele-specific PCR and DNA sequence analysis of the major piroplasm surface protein (MPSP) gene. The results showed that 14 of 104 blood samples were positive for Theileria by PCR. Among the positive cases, co-infection with various combinations of C- and I-type parasites was detected in 12 samples; no B- and Thai-type parasites were detected by allele-specific PCR. Phylogenetic analysis based on the MPSP gene sequences revealed that Theileria parasites with the MPSP types 1, 2, and 4 were distributed in Northeast China.

  2. Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2.

    PubMed

    Redis, Roxana S; Vela, Luz E; Lu, Weiqin; Ferreira de Oliveira, Juliana; Ivan, Cristina; Rodriguez-Aguayo, Cristian; Adamoski, Douglas; Pasculli, Barbara; Taguchi, Ayumu; Chen, Yunyun; Fernandez, Agustin F; Valledor, Luis; Van Roosbroeck, Katrien; Chang, Samuel; Shah, Maitri; Kinnebrew, Garrett; Han, Leng; Atlasi, Yaser; Cheung, Lawrence H; Huang, Gilbert Y; Monroig, Paloma; Ramirez, Marc S; Catela Ivkovic, Tina; Van, Long; Ling, Hui; Gafà, Roberta; Kapitanovic, Sanja; Lanza, Giovanni; Bankson, James A; Huang, Peng; Lai, Stephen Y; Bast, Robert C; Rosenblum, Michael G; Radovich, Milan; Ivan, Mircea; Bartholomeusz, Geoffrey; Liang, Han; Fraga, Mario F; Widger, William R; Hanash, Samir; Berindan-Neagoe, Ioana; Lopez-Berestein, Gabriel; Ambrosio, Andre L B; Gomes Dias, Sandra M; Calin, George A

    2016-02-18

    Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA. PMID:26853146

  3. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  4. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  5. Direct micro-haplotyping by multiple double PCR amplifications of specific alleles (MD-PASA)

    PubMed Central

    Eitan, Yuval; Kashi, Yechezkel

    2002-01-01

    Analysis of haplotypes is an important tool in population genetics, familial heredity and gene mapping. Determination of haplotypes of multiple single nucleotide polymorphisms (SNPs) or other simple mutations is time consuming and expensive when analyzing large populations, and often requires the help of computational and statistical procedures. Based on double PCR amplification of specific alleles, described previously, we have developed a simple, rapid and low-cost method for direct haplotyping of multiple SNPs and simple mutations found within relatively short specific regions or genes (micro-haplotypes). Using this method, it is possible to directly determine the physical linkage of multiple heterozygous alleles, by conducting a series of double allele-specific PCR amplification sets with simple analysis by gel electrophoresis. Application of the method requires prior information as to the sequence of the segment to be haplotyped, including the polymorphic sites. We applied the method to haplotyping of nine sites in the chicken HSP108 gene. One of the haplotypes in the population apparently arose by recombination between two existing haplotypes, and we were able to locate the point of recombination within a segment of 19 bp. We anticipate rapidly growing needs for SNP haplotyping in human (medical and pharmacogenetics), animal and plant genetics; in this context, the multiple double PCR amplifications of specific alleles (MD-PASA) method offers a useful haplotyping tool. PMID:12060700

  6. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  7. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections. PMID:26407876

  8. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    PubMed

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. PMID:27480981

  9. Advancing allele group-specific amplification of the complete HLA-C gene--isolation of novel alleles from three allele groups (C*04, C*07 and C*08).

    PubMed

    Cisneros, E; Martínez-Pomar, N; Vilches, M; Martín, P; de Pablo, R; Nuñez Del Prado, N; Nieto, A; Matamoros, N; Moraru, M; Vilches, C

    2013-10-01

    A variety of strategies have been designed for sequence-based HLA typing (SBT) and for the isolation of new human leucocyte antigen (HLA) alleles, but unambiguous characterization of complete genomic sequences remains a challenge. We recently reported a simple method for the group-specific amplification (GSA) and sequencing of a full-length C*04 genomic sequence in isolation from the accompanying allele. Here we build on this strategy and present homologous methods that enable the isolation of HLA-C alleles belonging to another two allele groups. Using this approach, which can be applied to sequence-based typing in some clinical settings, we have successfully characterized three novel HLA-C alleles (C*04:128, C*07:01:01:02, and C*08:62).

  10. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline

    PubMed Central

    Schwarz, Flavio; Springer, Stevan A.; Altheide, Tasha K.; Varki, Nissi M.; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer’s dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer’s disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  11. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline.

    PubMed

    Schwarz, Flavio; Springer, Stevan A; Altheide, Tasha K; Varki, Nissi M; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  12. Extracellular Superoxide Dismutase Polymorphism in Mice: Allele- Specific Effects on Phenotype

    PubMed Central

    Jun, Sujung; Pierce, Anson; Dory, Ladislav

    2010-01-01

    Extracellular superoxide dismutase (ecSOD) protects the extracellular matrix (ECM) from oxidative stress. We previously reported a new allele for ecSOD, expressed in 129P3/J mice (129), which differs from the wild-type (wt), expressed in C57BL/6J and other strains, by two amino acid substitutions and a 10 bp deletion in the 3' UTR of the mRNA [1]. The newly discovered allele is associated with a phenotype of significantly increased circulating and heparin-releasable enzyme activities and levels. In order to examine the properties of the two forms of ecSOD in an identical environment we generated, by extensive backcrossing of ecSOD heterozygous progeny to C57BL/6J females, a congenic C57 strain with the 129 (or wt) allele of ecSOD. These mice are homozygous for nearly 5,000 SNPs across all chromosomes, as determined by Affymetrix Parallele Mouse 5K SNP panel. The present study describes the generation of the congenic mice (genetically >99.8 % identical) and their ecSOD phenotype. The congenic mice plasma ecSOD activities before and after heparin administration recapitulate the differences reported in the founder mice. Tissue enzyme distribution is similar in both congenic groups, although the 129 allele is associated with higher levels of enzyme expression despite lower levels of enzyme mRNA. In these characteristics the phenotype is also allele driven, with little impact by the rest of the genome. The congenic mice carrying the 129 allele have mRNA levels that are in between those found in the founder 129P3/J and C57BL/6J strains. We conclude that the ecSOD phenotype in most aspects of enzyme expression is allele- driven, with the exception of tissue mRNA levels, where a significant contribution by the surrounding (host) genome is observed. These results also suggest potential allele-specific differences in the regulation of ecSOD synthesis and intracellular processing/secretion of ecSOD, independent of the genotype context. Most importantly, the congenic mice

  13. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  14. Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu; Xu, Yanfeng; Huang, Lan; Jones, Evan C; Zhang, Lianfeng; Clark, Richard A; Roop, Dennis R; Qin, Chuan; Chen, Jiang

    2016-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele-specific small interfering RNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific short hairpin RNA (shRNA) persistently suppressed this phenotype. The phenotypic correction was associated with a significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of mutant keratin genes. PMID:26763422

  15. Extensive allele-specific translational regulation in hybrid mice

    PubMed Central

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-01-01

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression. PMID:26253569

  16. Detection of mutation by allele-specific loop-mediated isothermal amplification (AS-LAMP).

    PubMed

    Aonuma, Hiroka; Badolo, Athanase; Okado, Kiyoshi; Kanuka, Hirotaka

    2013-01-01

    For effective control of pathogen-transmitting mosquitoes, precise surveillance data of mosquito distribution are essential. Recently, an increase of insecticide resistance due to the kdr mutation in Anopheles gambiae, a mosquito that transmits the malaria parasite, has been reported. With the aim of developing a simple and effective method for surveying resistant mosquitoes, LAMP was applied to the allele-specific detection of the kdr gene in An. gambiae. Allele-specific LAMP (AS-LAMP) method successfully distinguished the kdr homozygote from the heterozygote and the wild type. The robustness of AS-LAMP suggests its usefulness for routine identification of insects, not only mosquitoes but also other vectors and agricultural pests. Here we describe the method of AS-LAMP to detect mutation in Anopheles mosquitoes. PMID:24026691

  17. Genome-wide survey of allele-specific splicing in humans

    PubMed Central

    Nembaware, Victoria; Lupindo, Bukiwe; Schouest, Katherine; Spillane, Charles; Scheffler, Konrad; Seoighe, Cathal

    2008-01-01

    Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST) and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array data, including several

  18. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia

    PubMed Central

    Veronese, A; Pepe, F; Chiacchia, J; Pagotto, S; Lanuti, P; Veschi, S; Di Marco, M; D'Argenio, A; Innocenti, I; Vannata, B; Autore, F; Marchisio, M; Wernicke, D; Verginelli, F; Leone, G; Rassenti, L Z; Kipps, T J; Mariani-Costantini, R; Laurenti, L; Croce, C M; Visone, R

    2015-01-01

    Deregulation of the miR-15a/16-1 cluster has a key role in the pathogenesis of chronic lymphocytic leukemia (CLL), a clinically heterogeneous disease with indolent and aggressive forms. The miR-15a/16-1 locus is located at 13q14, the most frequently deleted region in CLL. Starting from functional investigations of a rare SNP upstream the miR cluster, we identified a novel allele-specific mechanism that exploits a cryptic activator region to recruit the RNA polymerase III for miR-15a/16-1 transcription. This regulation of the miR-15a/16- locus is independent of the DLEU2 host gene, which is often transcribed monoallellically by RPII. We found that normally one allele of miR-15a/16-1 is transcribed by RNAPII, the other one by RNAPIII. In our subset of CLL patients harboring 13q14 deletions, exclusive RNA polymerase III (RPIII)-driven transcription of the miR-15a/16-1 was the consequence of loss of the RPII-regulated allele and correlated with high expression of the poor prognostic marker ZAP70 (P=0.019). Thus, our findings point to a novel biological process, characterized by double allele-specific transcriptional regulation of the miR-15a/16-1 locus by alternative mechanisms. Differential usage of these mechanisms may distinguish at onset aggressive from indolent forms of CLL. This provides a basis for the clinical heterogeneity of the CLL patients carrying 13q14 deletions. PMID:24732594

  19. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity.

    PubMed

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R; Bartom, Elizabeth T; Gao, Xin; Smith, Edwin R; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  20. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity

    PubMed Central

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R.; Bartom, Elizabeth T.; Gao, Xin; Smith, Edwin R.; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  1. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus

    PubMed Central

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes. PMID:27465215

  2. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  3. Efficient and allele-specific genome editing of disease loci in human iPSCs.

    PubMed

    Smith, Cory; Abalde-Atristain, Leire; He, Chaoxia; Brodsky, Brett R; Braunstein, Evan M; Chaudhari, Pooja; Jang, Yoon-Young; Cheng, Linzhao; Ye, Zhaohui

    2015-03-01

    Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption.

  4. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts

    PubMed Central

    Scholefield, Janine; Watson, Lauren; Smith, Danielle; Greenberg, Jacquie; Wood, Matthew JA

    2014-01-01

    Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases. PMID:24667781

  5. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts.

    PubMed

    Scholefield, Janine; Watson, Lauren; Smith, Danielle; Greenberg, Jacquie; Wood, Matthew J A

    2014-12-01

    Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases.

  6. Identification of new primer binding site mutations at TH01 and D13S317 loci and determination of their corresponding STR alleles by allele-specific PCR.

    PubMed

    Li, Fengrui; Xuan, Jinfeng; Xing, Jiaxin; Ding, Mei; Wang, Baojie; Pang, Hao

    2014-01-01

    Several commercial multiplex PCR kits for the amplification of short tandem repeat (STR) loci have been extensively applied in forensic genetics. Consequently, large numbers of samples have been genotyped, and the number of discordant genotypes observed has also increased. We observed allele dropout with two novel alleles at the STR loci TH01 and D13S317 during paternity testing using the AmpFℓSTR Identifiler PCR Amplification Kit. The lost alleles reappeared when alternative PCR primer pairs were used. A sequence analysis revealed a G-to-A substitution 82 bases downstream of the last TCAT motif of the repeat region at the TH01 locus (GenBank accession: D00269) and a G-to-T substitution 90 bases upstream of the first TATC motif of the repeat region at the D13S317 locus (GenBank accession: G09017). The frequencies of these two point mutations were subsequently investigated in the Chinese population using sequence-specific primer PCR (SSP-PCR), but neither of these mutations was detected in any of the samples tested. In addition, the DNA samples in which the mutations were identified were amplified to type the point mutations by SSP-PCR to determine the corresponding STR alleles at the two loci. Subsequently, the amplified PCR products with different point mutations and STR repeat numbers were directly sequenced because this strategy overcomes the appearance overlapping peaks generated by different STR alleles and accurately characterizes genotypes. Thus, our findings not only provide useful information for DNA databases and forensic identification but also establish an effective strategy for typing STR alleles with primer binding site mutations.

  7. Detection of untreated mycobacteria by using polymerase chain reaction and specific DNA probes.

    PubMed Central

    Fries, J W; Patel, R J; Piessens, W F; Wirth, D F

    1991-01-01

    A method for specific identification of mycobacteria by using the polymerase chain reaction on organisms taken from liquid cultures, frozen suspensions, or colonies grown on Lowenstein-Jensen slants is presented. This direct detection of mycobacterial organisms has important implications for strain typing and diagnosis. Images PMID:1761699

  8. A Specific Qualitative Detection Method for Peanut (Arachis Hypogagea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A qualitative method for detection of peanuts in foods using polymerase chain reaction was developed. A universal primer pair CP 03-5 /CP 03-3 was designed to confirm the validity of the DNAs for PCR. The plant-specific amplified fragments were detected from 13 kinds of plants using the universal pr...

  9. A Specific Qualitative Detection Method for Peanut (Arachis Hypogaea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a qualitative detection method for peanuts in foods using polymerase chain reaction (PCR). We designed a universal primer pair CP 03-5’/ CP 03-3’ to confirm the validity of the DNAs for PCR. The plant specific amplified fragments were detected from 13 kinds of plants using the universal...

  10. Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA.

    PubMed

    Watanabe, Ken; Akutsu, Tomoko; Takamura, Ayari; Sakurada, Koichi

    2016-09-01

    The identification of blood samples obtained from crime scenes has been an important step in forensic investigation. Recently, a novel approach using the blood-specific methylated CpG site cg06379435 has been reported. In this study, we developed a real-time polymerase-chain-reaction-based method that can simply and rapidly quantitate the methylation ratio of cg06379435 and its neighboring CpGs and set the threshold ratios for blood identification by analyzing various body fluid samples. Blood identification using the thresholds was successfully performed in the analysis of a small amount (1ng) of DNA from blood and various aged blood samples, including 29-year-old stains. We also demonstrated a test for allele-specific blood identification from a mixed DNA sample by bisulfite sequencing analysis of these CpG sites and their neighboring single nucleotide polymorphism, rs7359943 (A/G), which is of relevance in cases where mixed samples are obtained from crime scenes. The stability of DNA methylation in aged samples and the usefulness of neighboring genetic information shown in this study suggest that DNA-methylation-based body fluid identification will play a major role in future forensic investigations. PMID:27591539

  11. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  12. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  13. Comparative analysis of type 2 diabetes-associated SNP alleles identifies allele-specific DNA-binding proteins for the KCNQ1 locus.

    PubMed

    Hiramoto, Masaki; Udagawa, Haruhide; Watanabe, Atsushi; Miyazawa, Keisuke; Ishibashi, Naoko; Kawaguchi, Miho; Uebanso, Takashi; Nishimura, Wataru; Nammo, Takao; Yasuda, Kazuki

    2015-07-01

    Although recent genome-wide association studies (GWAS) have been extremely successful, it remains a big challenge to functionally annotate disease‑associated single nucleotide polymorphisms (SNPs), as the majority of these SNPs are located in non‑coding regions of the genome. In this study, we described a novel strategy for identifying the proteins that bind to the SNP‑containing locus in an allele‑specific manner and successfully applied this method to SNPs in the type 2 diabetes mellitus susceptibility gene, potassium voltage‑gated channel, KQT‑like subfamily Q, member 1 (KCNQ1). DNA fragments encompassing SNPs, and risk or non‑risk alleles were immobilized onto the novel nanobeads and DNA‑binding proteins were purified from the nuclear extracts of pancreatic β cells using these DNA‑immobilized nanobeads. Comparative analysis of the allele-specific DNA-binding proteins indicated that the affinities of several proteins for the examined SNPs differed between the alleles. Nuclear transcription factor Y (NF‑Y) specifically bound the non‑risk allele of the SNP rs2074196 region and stimulated the transcriptional activity of an artificial promoter containing SNP rs2074196 in an allele‑specific manner. These results suggest that SNP rs2074196 modulates the affinity of the locus for NF‑Y and possibly induces subsequent changes in gene expression. The findings of this study indicate that our comparative method using novel nanobeads is effective for the identification of allele‑specific DNA‑binding proteins, which may provide important clues for the functional impact of disease‑associated non‑coding SNPs.

  14. Polymerase chain reaction (PCR) and sequence specific oligonucleotide probes (SSOP) genotyping assay for detection of genes associated with rheumatoid arthritis and multiple sclerosis.

    PubMed

    Nikolaou, Konstantina; Kalatzis, Fanis G; Giannakeas, Nikolaos; Markoula, Sofia; Chatzikyriakidou, Anthi; Georgiou, Ioannis; Fotiadis, Dimitrios I

    2010-01-01

    In this paper an assay for the detection of genes associated with rheumatoid arthritis (RA) and multiple sclerosis, using polymerase chain reaction (PCR) and sequence specific oligonucleotide probes (SSOP) is presented, in order to be further applied in a portable Lab-On-Chip (LOC) device. A substantial part of these reagents were based on the literature (11th International Histocompatibility Workshop, IHW), bearing the advantage of proven successful implementation in genotyping, while others were designed for this study. More precisely, our methodology discriminates HLA-DRB1 as DRB1*01, *04 and *10, which include shared epitope (SE) alleles associated with RA and additionally DRB1*15 allele, including DRB1*1501 associated with MS (broad genotyping method). To further present the basic elements of the assay for high resolution genotyping of SE DRB1 alleles, we provide as an example the case of HLA-DRB1*10 alleles (HLADRB1* 100101, *100102, *100103, *1002 and *1003). Regarding the methodology for developing a detection assay, for SNPs associated with RA or MS the basic steps are presented. DNA sequence data are obtained from IMGT/HLA and SNP database. Online software tools are used to define hybridization specificity of primers and probes towards human DNA, leading to hybridization patterns that uniquely designate a target allele and evaluate parameters influencing PCR efficiency. Respecting current technological limitations of autonomous molecular-based LOC systems the approach of broad genotyping of HLA-DRB1*01/*04/*10/*15 genes, is intended to be initially used, leaving, high resolution genotyping of SE alleles for future implementations. This method is easy to be updated and extended to detect additional associated loci with RA or MS.

  15. Specific Inhibitors of the Three RNA Polymerases from the Aquatic Fungus Blastocladiella emersonii

    PubMed Central

    Horgen, Paul A.; Griffin, David H.

    1971-01-01

    Specific inhibitors of each of the three RNA polymerases of Blastocladiella emersonii have been found. Cycloheximide specifically inhibited the in vitro activity of the DEAE-fraction I enzyme, alpha-amanitin specifically inhibited the DEAE-fraction II enzyme, and rifampicin specifically inhibited the fraction III enzyme. DNA stimulation and dependency on the four riboside triphosphates were shown to be characteristic of each of the three fractions. Optimum concentrations of magnesium ions required were shown to differ among the three fractions and to be somewhat higher than optimum concentrations of manganese ions. The effect of pH on activity was essentially identical for each of the three fractions. Kinetic experiments and nuclease assays indicated the presence of some interfering substances in the partially purified RNA polymerase fractions. PMID:5277081

  16. D9S1120, a simple STR with a common Native American-specific allele: forensic optimization, locus characterization and allele frequency studies.

    PubMed

    Phillips, C; Rodriguez, A; Mosquera-Miguel, A; Fondevila, M; Porras-Hurtado, L; Rondon, F; Salas, A; Carracedo, A; Lareu, M V

    2008-12-01

    The simple tetrameric STR D9S1120 exhibits a common population-specific allele of 9 repeats (9RA) reported to have an average frequency of 0.36 in Native Americans from both North and South of the continent. Apart from the presence of 9RA in two northeast Siberian populations, D9S1120 shows variability exclusive to, and universal in all American populations studied to date. This STR therefore provides an informative forensic marker applicable in countries with significant proportions of Native American populations or ancestry. We have re-designed PCR primers that reduce the amplified product sizes reported in NCBI UniSTS by more than a third and have characterized the repeat structure of D9S1120. The 9RA allele shares the same repeat structure as the majority of other D9S1120 alleles and so originates from a slippage-diminution mutation rather than an independent deletion. We confirm the previously reported allele frequencies from a range of populations indicating a global heterozygosity range for D9S1120 of 66-75% and estimate the proportion of Native American-diagnostic genotypes to average 53%, underlining the potential usefulness of this STR in both forensic identification and in population genetics studies of the Americas.

  17. In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

    PubMed Central

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD. PMID:25101598

  18. Allele-specific RNAi Mitigates Phenotypic Progression in a Transgenic Model of Alzheimer's Disease

    PubMed Central

    Rodríguez-Lebrón, Edgardo; Gouvion, Cynthia M; Moore, Steven A; Davidson, Beverly L; Paulson, Henry L

    2009-01-01

    Despite recent advances suggesting new therapeutic targets, Alzheimer's disease (AD) remains incurable. Aberrant production and accumulation of the Aβ peptide resulting from altered processing of the amyloid precursor protein (APP) is central to the pathogenesis of disease, particularly in dominantly inherited forms of AD. Thus, modulating the production of APP is a potential route to effective AD therapy. Here, we describe the successful use of an allele-specific RNA interference (RNAi) approach targeting the Swedish variant of APP (APPsw) in a transgenic mouse model of AD. Using recombinant adeno-associated virus (rAAV), we delivered an anti-APPsw short-hairpin RNA (shRNA) to the hippocampus of AD transgenic mice (APP/PS1). In short- and long-term transduction experiments, reduced levels of APPsw transprotein were observed throughout targeted regions of the hippocampus while levels of wild-type murine APP remained unaltered. Moreover, intracellular production of transfer RNA (tRNA)-valine promoter–driven shRNAs did not lead to detectable neuronal toxicity. Finally, long-term bilateral hippocampal expression of anti-APPsw shRNA mitigated abnormal behaviors in this mouse model of AD. The difference in phenotype progression was associated with reduced levels of soluble Aβ but not with a reduced number of amyloid plaques. Our results support the development of allele-specific RNAi strategies to treat familial AD and other dominantly inherited neurodegenerative diseases. PMID:19532137

  19. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  20. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  1. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  2. A simple and rapid method for HLA-DQA1 genotyping by digestion of PCR-amplified DNA with allele specific restriction endonucleases.

    PubMed

    Maeda, M; Murayama, N; Ishii, H; Uryu, N; Ota, M; Tsuji, K; Inoko, H

    1989-11-01

    The second exon of the HLA-DQA1 genes was selectively amplified from genomic DNAs of 72 HLA-homozygous B cell lines by the polymerase chain reaction (PCR). Amplified DNAs were digested with HaeIII, Ddel, ScrFI, FokI and RsaI, which recognize allelic sequence variations in the polymorphic segments of the DQA1 second exon, and then subjected to electrophoresis in polyacrylamide gels. Eight different polymorphic patterns of restriction fragments were obtained, and seven were identical to patterns predicted from the known DNA sequences, correlating with each HLA-DQw type defined by serological typing. The remaining one pattern cannot be explained from the sequence data, suggesting the presence of a novel DQA1 allele at the nucleotide level. This PCR-RFLP method provides a simple and rapid technique for accurate definition of the HLA-DQ types at the nucleotide level, eliminating the need for radioisotope as well as allele specific oligonucleotide probes and can be extended and applied to HLA-DR, -Dw DP typing. PMID:2576477

  3. [Study on identification of cistanche hebra and its adulterants by PCR amplification of specific alleles based on ITS sequences].

    PubMed

    Li, Zhen-Hua; Long, Ping; Zou, De-Zhi; Li, Yue; Cui, Zhan-Hu; Li, Min-Hui

    2014-10-01

    To explore the new method of discriminating Cistanche deserticola, Cynomorium songaricum and Orobanche pycnostachya by using PCR amplification of specific alleles. 30 samples of the different C. deserticola, 21 samples of C. songaricum and O. pycnostachya were collected. The total DNA of the samples were extracted, the ITS sequences from C. deserticola, C. songaricum and O. pycnostachya were amplified by PCR and sequenced unidirectionally. These sequences were aligned by using ClustulW. Specific primer was designed according to the ITS sequences of specific alleles, and PCR reaction system was optimized. Additionally, compare with the identification of specific PCR method and DNA sequence analysis method. The result showed that the 331 bp identification band for C. deserticola and the adulterants not amplified bands by a single PCR reaction, which showed good identification ability to the three species. PCR amplification of specific alleles can be used to identify C. deserticola, C. songaricum and O. pycnostachya successfully.

  4. Utilizing ethnic-specific differences in minor allele frequency to recategorize reported pathogenic deafness variants.

    PubMed

    Shearer, A Eliot; Eppsteiner, Robert W; Booth, Kevin T; Ephraim, Sean S; Gurrola, José; Simpson, Allen; Black-Ziegelbein, E Ann; Joshi, Swati; Ravi, Harini; Giuffre, Angelica C; Happe, Scott; Hildebrand, Michael S; Azaiez, Hela; Bayazit, Yildirim A; Erdal, Mehmet Emin; Lopez-Escamez, Jose A; Gazquez, Irene; Tamayo, Marta L; Gelvez, Nancy Y; Leal, Greizy Lopez; Jalas, Chaim; Ekstein, Josef; Yang, Tao; Usami, Shin-ichi; Kahrizi, Kimia; Bazazzadegan, Niloofar; Najmabadi, Hossein; Scheetz, Todd E; Braun, Terry A; Casavant, Thomas L; LeProust, Emily M; Smith, Richard J H

    2014-10-01

    Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness. PMID:25262649

  5. Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt ( Triticum spelta L.).

    PubMed

    Blatter, Robert H. E.; Jacomet, Stefanie; Schlumbaum, Angela

    2002-02-01

    A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt ( Triticum spelta L.) and an approximately 250 year-old bread wheat ( Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta'Oberkulmer.' The alleles from the historical bread wheat were most similar to those of modern T. aestivumcultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt.

  6. A hypervariable STR polymorphism in the CFI gene: southern origin of East Asian-specific group H alleles.

    PubMed

    Yuasa, Isao; Jin, Feng; Harihara, Shinji; Matsusue, Aya; Fujihara, Junko; Takeshita, Haruo; Akane, Atsushi; Umetsu, Kazuo; Saitou, Naruya; Chattopadhyay, Prasanta K

    2013-09-01

    Previous studies of four populations revealed that a hypervariable short tandem repeat (iSTR) in intron 7 of the human complement factor I (CFI) gene on chromosome 4q was unique, with 17 possible East Asian-specific group H alleles observed at relatively high frequencies. To develop a deeper anthropological and forensic understanding of iSTR, 1161 additional individuals from 11 Asian populations were investigated. Group H alleles of iSTR and c.1217A allele of a SNP in exon 11 of the CFI gene were associated with each other and were almost entirely confined to East Asian populations. Han Chinese in Changsha, southern China, showed the highest frequency for East Asian-specific group H alleles (0.201) among 15 populations. Group H alleles were observed to decrease gradually from south to north in 11 East Asian populations. This expansion of group H alleles provides evidence that southern China and Southeast Asia are a hotspot of Asian diversity and a genetic reservoir of Asians after they entered East Asia. The expected heterozygosity values of iSTR ranged from 0.927 in Thais to 0.874 in Oroqens, higher than those of an STR in the fibrinogen alpha chain (FGA) gene on chromosome 4q. Thus, iSTR is a useful marker for anthropological and forensic genetics.

  7. Specific detection of the toxic shock syndrome toxin-1 gene using the polymerase chain reaction.

    PubMed

    Jaulhac, B; Prevost, G; Piemont, Y

    1991-08-01

    A rapid and specific assay for toxic shock syndrome toxin-1 gene (tst gene) detection in Staphylococcus aureus was developed using the polymerase chain reaction. A two-primer set and an oligonucleotide detection probe were synthesized. After 40 cycles of amplification, detection of a 160-bp amplified DNA fragment was carried out by agarose gel electrophoresis and Southern blot hybridization. This assay was sensitive since it was able to detect 1-10 bacteria. It was also specific since no amplification was documented with DNAs from enterotoxigenic S. aureus or Gram-negative bacteria devoid of the tst gene.

  8. Separation of lymphocyte chromatin into template-active fractions with specificity for eukaryotic RNA polymerase II or prokaryotic RNA polymerase.

    PubMed Central

    Magee, B B; Paoletti, J; Magee, P T

    1975-01-01

    When chromatin prepared from WI-L2 lymphocytes by low salt extraction and shearing is centrifuged on a glycerol gradient, one area of the gradient yields chromatin enriched in template activity for Escherichia coli DNA-dependent RNA polymerase (EC 2.7.7.6; nucleosidetriphosphate:RNA nucleotidyltransferase) as compared to Saccharomyces cerevisiae RNA polymerase II (or B). Another area yields chromatin preferred by the eukaryotic enzyme. Kinetic studies indicate that the differences in activity cannot be explained by differences in affinity of the enzymes for the various templates. The DNA isolated from either fraction has a molecular weight of 8.5 X 106. The "yeast active" fraction seems enriched in proteins. Mixing experiments indicate that the yeast enzyme does not alter the template in such a way as to improve it for the bacterial enzyme. PMID:1108005

  9. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi

    PubMed Central

    Kaulich, Manuel; Lee, Yeon J.; Lönn, Peter; Springer, Aaron D.; Meade, Bryan R.; Dowdy, Steven F.

    2015-01-01

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. PMID:25586224

  10. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements.

    PubMed Central

    Chopra, S; Athma, P; Peterson, T

    1996-01-01

    The maize P gene is a transcriptional regulator of genes encoding enzymes for flavonoid biosynthesis in the pathway leading to the production of a red phlobaphene pigment. Multiple alleles of the P gene confer distinct patterns of pigmentation to specific floral organs, such as the kernel pericarp and cob tissues. To determine the basis of allele-specific pigmentation, we have characterized the gene products and transcript accumulation patterns of the P-wr allele, which specifies colorless pericarps and red cob tissues. RNA transcripts of P-wr are present in colorless pericarps as well as in the colored cob tissues; however, the expression of P-wr in pericarp does not induce the accumulation of transcripts from the C2 and A1 genes, which encode enzymes for flavonoid pigment biosynthesis. The coding sequences of P-wr were compared with the P-rr allele, which specifies red pericarp and red cob. The P-wr and P-rr cDNA sequences are very similar in their 5' regions. There are only two nucleotide changes that result in amino acid differences; both are outside of the Myb-homologous DNA binding domain. In contrast, the 3' coding region of P-rr is replaced by a unique 210-bp sequence in P-wr. The predicted P-wr protein has a C-terminal sequence resembling a cysteine-containing metal binding domain that is not present in the P-rr protein. These results indicate that the differential pericarp pigmentation specified by the P-rr and P-wr alleles does not result from an absence of P-wr transcripts in pericarps. Rather, the allele-specific patterns of P-rr and P-wr pigmentation may be associated with structural differences in the proteins encoded by each allele. PMID:8768374

  11. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator

    PubMed Central

    Severinov, Konstantin; Minakhin, Leonid; Sekine, Shun-ichi; Lopatina, Anna; Yokoyama, Shigeyuki

    2014-01-01

    Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue. PMID:25105059

  12. Self-(in)compatibility inheritance and allele-specific marker development in yellow mustard (Sinapis alba).

    PubMed

    Zeng, Fangqin; Cheng, Bifang

    2014-01-01

    Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F2 populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F2 populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program.

  13. Allele-specific analysis of DNA replication origins in mammalian cells.

    PubMed

    Bartholdy, Boris; Mukhopadhyay, Rituparna; Lajugie, Julien; Aladjem, Mirit I; Bouhassira, Eric E

    2015-05-19

    The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity.

  14. Allele-Specific Methylation Occurs at Genetic Variants Associated with Complex Disease

    PubMed Central

    Hutchinson, John N.; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T.; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results. PMID:24911414

  15. Allele-specific methylation occurs at genetic variants associated with complex disease.

    PubMed

    Hutchinson, John N; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results.

  16. The allele-specific suppressor sup-39 alters use of cryptic splice sites in Caenorhabditis elegans.

    PubMed Central

    Roller, A B; Hoffman, D C; Zahler, A M

    2000-01-01

    Mutations in the Caenorhabditis elegans sup-39 gene cause allele-specific suppression of the uncoordination defect of unc-73(e936). e936 is a point mutation that changes the canonical G at the 5' end of intron 16 to a U. This mutation activates three splice donors, two of which define introns beginning with the canonical GU. Use of these two cryptic splice sites causes loss of reading frame; interestingly these messages are not substrates for nonsense-mediated decay. The third splice donor, used in 10% of steady-state e936 messages, is the mutated splice donor at the wild-type position, which defines an intron beginning with UU. In the presence of a sup-39 mutation, these same three splice donors are used, but the ratio of messages produced by splicing at these sites changes. The percentage of unc-73(e936) messages containing the wild-type splice junction is increased to 33% with a corresponding increase in the level of UNC-73 protein. This sup-39-induced change was also observed when the e936 mutant intron region was inserted into a heterologous splicing reporter construct transfected into worms. Experiments with splicing reporter constructs showed that the degree of 5' splice site match to the splicing consensus sequence can strongly influence cryptic splice site choice. We propose that mutant SUP-39 is a new type of informational suppressor that alters the use of weak splice donors. PMID:10757761

  17. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  18. Assessing allele-specific expression across multiple tissues from RNA-seq read data

    PubMed Central

    Pirinen, Matti; Lappalainen, Tuuli; Zaitlen, Noah A.; Dermitzakis, Emmanouil T.; Donnelly, Peter; McCarthy, Mark I.; Rivas, Manuel A.

    2015-01-01

    Motivation: RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. Results: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally. Availability and implementation: http://www.well.ox.ac.uk/~rivas/mamba/. R-sources and data examples http://www.iki.fi/mpirinen/ Contact: matti.pirinen@helsinki.fi or rivas@well.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25819081

  19. Allele Specific Expression of MICA Variants in Human Fibroblasts Suggests a Pathogenic Mechanism.

    PubMed

    Shi, Chunhua; Li, Hongye; Couturier, Jacob P; Yang, Karen; Guo, Xinjian; He, Dongyi; Lewis, Dorothy E; Zhou, Xiaodong

    2015-01-01

    The major histocompatibility complex class I chain-related gene A (MICA) is involved in immune responses of both nature killer (NK) cells and subsets of T cells with its receptor NKG2D. MICA is highly polymorphic in sequence which leads to MICA protein variants with distinct features. Specific polymorphisms of MICA have been associated with inflammatory diseases, including ankylosing spondylitis (AS), ulcerative colitis (UC) and Behçet's disease. Studies herein characterize expression features of three MICA variants including MICA*008, a common variant in general population, and *MICA*007 and *019, which are associated with susceptibility to inflammatory diseases. MICA*019 was highly expressed on the surface of fibroblasts whereas expression of MICA*007 was the lowest in the culture supernatant. MICA*008 had low cell surface expression but was the only MICA allele in which exosomal material was detected. Surface or membrane-bound MICA activates NKG2D-mediated cytotoxicity, whereas soluble and exosomal MICAs down-regulate NKG2D. Therefore, comparisons of these three MICA variants in fibroblasts provides insight into understanding how MICA associated immune responses could be regulated to influence levels of inflammation.

  20. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

    PubMed

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2013-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  1. Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease.

    PubMed

    Matera, Ivana; Musso, Marco; Griseri, Paola; Rusmini, Marta; Di Duca, Marco; So, Man-Ting; Mavilio, Domenico; Miao, Xiaoping; Tam, Paul Hk; Ravazzolo, Roberto; Ceccherini, Isabella; Garcia-Barcelo, Merce

    2013-05-01

    RET common variants are associated with Hirschsprung disease (HSCR; colon aganglionosis), a congenital defect of the enteric nervous system. We analyzed a well-known HSCR-associated RET haplotype that encompasses linked alleles in coding and noncoding/regulatory sequences. This risk haplotype correlates with reduced level of RET expression when compared with the wild-type counterpart. As allele-specific expression (ASE) contributes to phenotypic variability in health and disease, we investigated whether RET ASE could contribute to the overall reduction of RET mRNA detected in carriers. We tested heterozygous neuroblastoma cell lines, ganglionic gut tissues (18 HSCR and 14 non-HSCR individuals) and peripheral blood mononuclear cells (PBMCs; 16 HSCR and 14 non-HSCR individuals). Analysis of the data generated by SNaPshot and Pyrosequencing revealed that the RET risk haplotype is significantly more expressed in gut than in PBMCs (P = 0.0045). No ASE difference was detected between patients and controls, irrespective of the sample type. Comparison of total RET expression levels between gut samples with and without ASE, correlated reduced RET expression with preferential transcription from the RET risk haplotype. Nonrandom RET ASE occurs in ganglionic gut regardless of the disease status. RET ASE should not be excluded as a disease mechanism acting during development.

  2. Characterization and machine learning prediction of allele-specific DNA methylation.

    PubMed

    He, Jianlin; Sun, Ming-an; Wang, Zhong; Wang, Qianfei; Li, Qing; Xie, Hehuang

    2015-12-01

    A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events.

  3. Allele-specific transcription factor binding to common and rare variants associated with disease and gene expression.

    PubMed

    Cavalli, Marco; Pan, Gang; Nord, Helena; Wallerman, Ola; Wallén Arzt, Emelie; Berggren, Olof; Elvers, Ingegerd; Eloranta, Maija-Leena; Rönnblom, Lars; Lindblad Toh, Kerstin; Wadelius, Claes

    2016-05-01

    Genome-wide association studies (GWAS) have identified a large number of disease-associated SNPs, but in few cases the functional variant and the gene it controls have been identified. To systematically identify candidate regulatory variants, we sequenced ENCODE cell lines and used public ChIP-seq data to look for transcription factors binding preferentially to one allele. We found 9962 candidate regulatory SNPs, of which 16 % were rare and showed evidence of larger functional effect than common ones. Functionally rare variants may explain divergent GWAS results between populations and are candidates for a partial explanation of the missing heritability. The majority of allele-specific variants (96 %) were specific to a cell type. Furthermore, by examining GWAS loci we found >400 allele-specific candidate SNPs, 141 of which were highly relevant in our cell types. Functionally validated SNPs support identification of an SNP in SYNGR1 which may expose to the risk of rheumatoid arthritis and primary biliary cirrhosis, as well as an SNP in the last intron of COG6 exposing to the risk of psoriasis. We propose that by repeating the ChIP-seq experiments of 20 selected transcription factors in three to ten people, the most common polymorphisms can be interrogated for allele-specific binding. Our strategy may help to remove the current bottleneck in functional annotation of the genome. PMID:26993500

  4. Allele-specific rpoB PCR assays for detection of rifampin-resistant Mycobacterium tuberculosis in sputum smears.

    PubMed

    Mokrousov, Igor; Otten, Tatiana; Vyshnevskiy, Boris; Narvskaya, Olga

    2003-07-01

    We describe an allele-specific PCR assay to detect mutations in three codons of the rpoB gene (516, 526, and 531) in Mycobacterium tuberculosis strains; mutations in these codons are reported to account for majority of M. tuberculosis clinical isolates resistant to rifampin (RIF), a marker of multidrug-resistant tuberculosis (MDR-TB). Three different allele-specific PCRs are carried out either directly with purified DNA (single-step multiplex allele-specific PCR), or with preamplified rpoB fragment (nested allele-specific PCR [NAS-PCR]). The method was optimized and validated following analysis of 36 strains with known rpoB sequence. A retrospective analysis of the 287 DNA preparations from epidemiologically unlinked RIF-resistant clinical strains from Russia, collected from 1996 to 2002, revealed that 247 (86.1%) of them harbored a mutation in one of the targeted rpoB codons. A prospective study of microscopy-positive consecutive sputum samples from new and chronic TB patients validated the method for direct analysis of DNA extracted from sputum smears. The potential of the NAS-PCR to control for false-negative results due to lack of amplification was proven especially useful in the study of these samples. The developed rpoB-PCR assay can be used in clinical laboratories to detect RIF-resistant and hence MDR M. tuberculosis in the regions with high burdens of the MDR-TB. PMID:12821473

  5. Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis.

    PubMed

    Jie, Qi; Shupeng, Gai; Jixiang, Zhang; Manru, Gu; Huairui, Shu

    2005-08-01

    A cDNA of 417 bp encoding an S-RNase gene, named PA S3, was isolated from apricot, Prunus aremeniaca. Nine S-alleles, S1-S9, were recognized by S-allele-specific PCR and confirmed by Southern blot analysis using PA S3 as probe. The S-genotypes of the six cultivars were determined and the results of self- and cross-pollination tests among the six cultivars were consistent with the predicted S-haplotypes by PCR analysis.

  6. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids1[OPEN

    PubMed Central

    2016-01-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  7. Paternal-specific S-allele transmission in sweet cherry (Prunus avium L.): the potential for sexual selection.

    PubMed

    Hedhly, A; Wünsch, A; Kartal, Ö; Herrero, M; Hormaza, J I

    2016-03-01

    Homomorphic self-incompatibility is a well-studied example of a physiological process that is thought to increase population diversity and reduce the expression of inbreeding depression. Whereas theoretical models predict the presence of a large number of S-haplotypes with equal frequencies at equilibrium, unequal allele frequencies have been repeatedly reported and attributed to sampling effects, population structure, demographic perturbation, sheltered deleterious mutations or selection pressure on linked genes. However, it is unclear to what extent unequal segregations are the results of gametophytic or sexual selection. Although these two forces are difficult to disentangle, testing S-alleles in the offspring of controlled crosses provides an opportunity to separate these two phenomena. In this work, segregation and transmission of S-alleles have been characterized in progenies of mixed donors and fully compatible pollinations under field conditions in Prunus avium. Seed set patterns and pollen performance have also been characterized. The results reveal paternal-specific distorted transmission of S-alleles in most of the crosses. Interestingly, S-allele segregation within any given paternal or maternal S-locus was random. Observations on pollen germination, pollen tube growth rate, pollen tube cohort size, seed set dynamics and transmission patterns strongly suggest post-pollination, prezygotic sexual selection, with male-male competition as the most likely mechanism. According to these results, post-pollination sexual selection takes precedence over frequency-dependent selection in explaining unequal S-haplotype frequencies.

  8. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers.

    PubMed

    Polegri, Livia; Calderini, Ornella; Arcioni, Sergio; Pupilli, Fulvio

    2010-06-01

    Apomixis is defined as clonal reproduction by seed. A comparative transcriptomic analysis was undertaken between apomictic and sexual genotypes of Paspalum simplex Morong to identify apomixis-related polymorphisms at the level of mRNA. cDNA-AFLP (amplified fragment length polymorphism) profiling of apomictic and sexual flowers at several stages of development yielded 202 amplicons that showed several kinds of expression specificities. Among these, the large majority consisted of amplicons that were present only in specific stages of development of the apomictic flowers. Ten percent of polymorphic amplicons were present with almost identical intensity in all stages of the apomictic flowers and never in the sexual flowers. Reverse transcription-PCR (RT-PCR) and Southern analyses of these amplicons showed that they belong to constitutively expressed alleles that are specifically present on the apomixis-controlling locus of P. simplex. The most frequent biological functions inferred from the sequence homology of the apomixis-linked alleles were related to signal transduction and nucleic acid/protein-binding activities. Most of these apomixis-linked alleles showed nonsense and frameshift mutations, revealing their probable pseudogene nature. None of the amplicons that were present only in specific stages of development of the apomictic flowers co-segregated with apomixis, indicating they did not originate from additional apomictic alleles but more probably from differential regulation of the same allele in apomictic and sexual flowers. The molecular functions inferred from sequence analysis of these latter amplicons were related to seed storage protein and regulatory genes of various types. The results are discussed regarding the possible role in apomictic reproduction of the differentially expressed genes in relation to their specificity of expression and inferred molecular functions.

  9. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction.

    PubMed Central

    Newman, P J; Gorski, J; White, G C; Gidwitz, S; Cretney, C J; Aster, R H

    1988-01-01

    Human platelets are derived from megakaryocytes as anucleate cells, and thus contain only vestigial amounts of RNA capable of being transcribed into protein. This has greatly hampered efforts to study directly platelet-specific gene products and their associated polymorphisms. In this report, we describe direct amplification, using the polymerase chain reaction, of platelet-derived mRNA in amounts sufficient to permit detailed analysis, such as restriction mapping and nucleotide sequencing. The ability to generate large amounts of cDNA from platelet-specific mRNA sequences should make possible direct molecular characterization of normal platelet proteins, and facilitate the investigation of a wide variety of inherited platelet disorders. Images PMID:3403726

  10. Specific Polymerase Chain Reaction Primers for the Detection of Plasmodiophora brassicae in Soil and Water.

    PubMed

    Faggian, R; Bulman, S R; Lawrie, A C; Porter, I J

    1999-05-01

    ABSTRACT The development of specific oligonucleotide primers for Plasmodiophora brassicae has led to a nested polymerase chain reaction (PCR) detection method for P. brassicae in soil and water. Initially, the PCR was used to amplify a section of the rDNA repeat. The PCR products were sequenced and the data used to design primers that were directed at the ribosomal RNA genes and internal transcribed spacer regions. Specificity was tested against more than 40 common soil organisms, host plants, and spore suspension contaminants, as well as P. brassicae isolates from around Australia and the world. Sensitivity was determined to be 0.1 fentograms (fg; 10(-15) g) for pure template and as low as 1,000 spores per g of potting mix. In soil, P. brassicae was detected in all soils where the inoculum was sufficient to result in clubroot symptoms. Also outlined is a simple method of DNA extraction from soil. PMID:18944752

  11. Specific and sensitive detection of Trichomonas tenax by the polymerase chain reaction.

    PubMed

    Kikuta, N; Yamamoto, A; Fukura, K; Goto, N

    1997-03-01

    A polymerase chain reaction (PCR) protocol was developed for specific detection of Trichomonas tenax by using a pair of primers designed for its 18S rRNA gene. The detection was specific for T. tenax, since no amplification was detected with DNAs from Trichomonas vaginalis, which belongs to the same genus as T. tenax, in addition to various species of oral protists, fungi and bacteria, and human leukocytes. This method had a detection limit of 100 fg for T. tenax genomic DNA and could detect T. tenax cells in dental plaque at a concentration of as low as 5 cells per PCR mixture. Direct detection from clinical dental plaque samples was also possible; therefore, the present PCR procedure could provide a simple and rapid detection method of T. tenax in dental plaque.

  12. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene.

  13. Description of a novel HLA-B allele, B*5613, identified during HLA-typing using sequence-specific oligonucleotide hybridization and sequence-specific amplification.

    PubMed

    Hoppe, B; Heymann, G A; Schoenemann, C; Nagy, M; Kiesewetter, H; Salama, A

    2004-11-01

    Here, we report on the characterization of a novel human leukocyte antigen (HLA)-B allele, B*5613. The allele was identified in an adult male from North Africa who was suffering from sickle cell anemia. HLA-B*5613 most closely matches to B*5601 differing only by a substitution of three nucleotides of codon 180. Due to this substitution, low-resolution HLA-typing using sequence-specific oligonucleotide hybridization or amplification using sequence-specific primers gave inconclusive results. DNA sequencing confirmed a variation of codon 180 (CTG-->GAC) resulting in an amino acid substitution Leu156Asp. PMID:15496207

  14. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  15. Event-specific qualitative and quantitative polymerase chain reaction analysis for genetically modified canola T45.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Haibo; Guo, Jinchao; Yin, Changsong; Zhang, Dabing

    2006-12-27

    Polymerase chain reaction (PCR) methods have been the main technical support for the detection of genetically modified organisms (GMOs). To date, GMO-specific PCR detection strategies have been developed basically at four different levels, such as screening-, gene-, construct-, and event-specific detection methods. Event-specific PCR detection method is the primary trend in GMO detection because of its high specificity based on the flanking sequence of exogenous integrant. GM canola, event T45, with tolerance to glufosinate ammonium is one of the commercial genetically modified (GM) canola events approved in China. In this study, the 5'-integration junction sequence between host plant DNA and the integrated gene construct of T45 canola was cloned and revealed by means of TAIL-PCR. Specific PCR primers and TaqMan probes were designed based upon the revealed sequence, and qualitative and quantitative TaqMan real-time PCR detection assays employing these primers and probe were developed. In qualitative PCR, the limit of detection (LOD) was 0.1% for T45 canola in 100 ng of genomic DNA. The quantitative PCR assay showed limits of detection and quantification (LOD and LOQ) of 5 and 50 haploid genome copies, respectively. In addition, three mixed canola samples with known GM contents were detected employing the developed real-time PCR assay, and expected results were obtained. These results indicated that the developed event-specific PCR methods can be used for identification and quantification of T45 canola and its derivates.

  16. Polymerase chain reaction-gene probe detection system specific for pathogenic strains of Yersinia enterocolitica.

    PubMed

    Ibrahim, A; Liesack, W; Stackebrandt, E

    1992-08-01

    The polymerase chain reaction technique was used to develop a rapid diagnostic assay for detection of pathogenic Yersinia enterocolitica strains. The assay targeted a stretch of 163 bp of the yst gene and could be applied to both pure cultures and crude DNA extracted from feces. The defined primer pair amplified the targeted sequence from only pathogenic strains and fecal samples seeded with the serotype O:3 strain of Y. enterocolitica, whereas neither nonpathogenic strains nor normal stools yielded any amplified fragments. Of the other Yersinia species and non-Yersinia species tested, only two strains of Y. kristensenii yielded the same amplified product. A 20-mer oligonucleotide probe specifically hybridized within the amplified yst fragment of Y. enterocolitica but did not hybridize with the amplified yst fragment of Y. kristensenii by Southern and dot blot hybridizations. This confirms the reliability of this diagnostic assay in both clinical and epidemiological studies. The availability of the extracted DNA for the polymerase chain reaction was checked by simultaneous amplification of a part of the 16S rDNA and the yst gene. The entire diagnostic assay, including a simplified technique for DNA extraction, the amplification process, and gel electrophoresis, could be completed within 1 working day, which is better than the time required for the time-consuming traditional techniques used in clinical laboratories.

  17. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories.

  18. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. PMID:26115609

  19. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous. PMID:12296957

  20. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous.

  1. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia

    PubMed Central

    Wang, Xu; Clark, Andrew G.

    2016-01-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  2. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia.

    PubMed

    Wang, Xu; Werren, John H; Clark, Andrew G

    2016-07-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  3. Different aubergine alleles confirm the specificity of different RNAi pathways in Drosophila melanogaster.

    PubMed

    Specchia, Valeria; Bozzetti, Maria Pia

    2009-01-01

    The crystal-Stellate system is one of the best-known examples of heterochromatin-euchromatin interaction. The components of this system are homologous repetitive sequences clustered in three regions: 12E1 and h27 on the X and h11 on the Y. The symptom of a disrupted crystal-Stellate interaction is the presence of crystals in the spermatocytes of males lacking the crystal region. Stellate silencing is based on the RNAi process. Many modifiers of this system have been isolated and many of these are involved in RNAi. One of these modifiers is aubergine(sting); this is a "gain of function" allele in somatic tissues. Here we report the different behavior of two aubergine alleles with respect to the RNAi pathway: aub(sting) and a "loss of function" heteroallelic combination aub(HN)/aub(QC42). An increased amount of Aub interferes with the correct functioning of the somatic yellow hairpin RNAi, whereas the Aub reduction does not. We also demonstrate the different behavior of these alleles on the I transposon silencing in ovaries. Intriguingly, neither of these aubergine alleles silence the Stellate locus. We can conclude that the crystal-Stellate system reveals different RNAi pathways even though much still remains to be done to completely explain the molecular bases of the crystal-Stellate interaction. PMID:19242123

  4. Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations.

    PubMed

    Sun, Chang; Southard, Catherine; Witonsky, David B; Kittler, Ralf; Di Rienzo, Anna

    2010-10-01

    The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation.

  5. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  6. [Microchip electrophoresis coupled with multiplex allele-specific am-plification for typing multiple single nucleotide polymorphisms (SNPs) simultaneously].

    PubMed

    Wang, Wei-Peng; Zhou, Guo-Hua

    2009-02-01

    A new method of DNA adapter ligation-mediated allele-specific amplification (ALM-ASA) was developed for typing multiple single nucleotide polymorphisms (SNPs) on the platform of microchip electrophoresis. Using seven SNPs of 794C>T, 1274C>T, 2143T>C, 2766T>del, 3298G>A, 5200G>A, and 5277C>T in the interleukin 1B (IL1B) gene as a target object, a long DNA fragment containing the seven SNPs of interest was pre-amplified to enhance the specificity. The pre-amplified DNA fragment was digested by a restriction endonuclease to form sticky ends; and then the adapter was ligated to either end of the digested fragment. Using the adapter-ligated fragments as templates, a 7-plex allele-specific amplification was performed by 7 allele-specific primers and a universal primer in one tube. The allele-specific products amplified were separated by chip electrophoresis and the types of SNPs were easily discriminated by the product sizes. The seven SNPs in IL1B gene in 48 healthy Chinese were successfully typed by microchip electrophoresis and the results coincided with those by PCR-restriction fragment length polymorphism and sequencing method. The method established was accurate and can be used to type multiple SNPs simultaneously. In combination with microchip electrophoresis for readout, ALM-ASA assay can be used for fast SNP detection with a small amount of sample. Using self-prepared gel matrix and reused chips for analysis, the SNP can be typed at an ultra low cost.

  7. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant

    PubMed Central

    Ginart, Paul; Kalish, Jennifer M.; Jiang, Connie L.; Yu, Alice C.; Bartolomei, Marisa S.; Raj, Arjun

    2016-01-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders. PMID:26944681

  8. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    PubMed

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  9. Development of a polymerase chain reaction test for specific identification of the urinary tract pathogen Aerococcus urinae.

    PubMed

    Aguirre, M; Collins, M D

    1993-05-01

    A polymerase chain reaction test was developed for identification of the gram-positive urinary tract pathogen Aerococcus urinae. Oligonucleotide primers were based on highly specific sequences within the small-subunit rRNA gene. A confirmatory test based on hybridization of the amplified products to a highly specific internal probe was also developed.

  10. Specific Residues of PB2 and PA Influenza Virus Polymerase Subunits Confer the Ability for RNA Polymerase II Degradation and Virus Pathogenicity in Mice

    PubMed Central

    Llompart, C. M.

    2014-01-01

    ABSTRACT Influenza virus transcription requires functional coupling with cellular transcription for the cap-snatching process. Despite this fact, RNA polymerase II (RNAP II) is degraded during infection in a process triggered by the viral polymerase. Reassortant viruses from the A/PR/8/34 (PR8) strain that induce (hvPR8) or do not induce (lvPR8) RNAP II degradation led to the identification of PA and PB2 subunits as responsible for the degradation process. Three changes in the PB2 sequence (I105M, N456D, and I504V) and two in PA (Q193H and I550L) differentiate PA and PB2 of lvPR8 from those of hvPR8. Using recombinant viruses, we observed that changes at position 504 of PB2, together with 550 of PA, confer the ability on lvPR8 for RNAP II degradation and, conversely, abolish hvPR8 degradation capacity. Since hvPR8 is more pathogenic than lvPR8 in mice, we tested the potential contribution of RNAP II degradation in a distant viral strain, the 2009 pandemic A/California/04/09 (CAL) virus, whose PA and PB2 subunits are of avian origin. As in the hvPR8 virus, mutations at positions 504 of PB2 and 550 of PA in CAL virus abolished its RNAP II degradation capacity. Moreover, in an in vivo model, the CAL-infected mice lost more body weight, and 75% lethality was observed in this situation compared with 100% survival in mutant-CAL- or mock-infected animals. These results confirm the involvement of specific PB2 and PA residues in RNAP II degradation, which correlates with pathogenicity in mice of viruses containing human or avian polymerase PB2 and PA subunits. IMPORTANCE The influenza virus polymerase induces the degradation of RNAP II, which probably cooperates to avoid the antiviral response. Here, we have characterized two specific residues located in the PA and PB2 polymerase subunits that mediate this degradation in different influenza viruses. Moreover, a clear correlation between RNAP II degradation and in vivo pathogenicity in mice was observed, indicating that the

  11. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  12. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  13. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing.

    PubMed

    Shen, Ronglai; Seshan, Venkatraman E

    2016-09-19

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of 'actionable' mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel.

  14. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing

    PubMed Central

    Shen, Ronglai; Seshan, Venkatraman E.

    2016-01-01

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of ‘actionable’ mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel. PMID:27270079

  15. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing.

    PubMed

    Shen, Ronglai; Seshan, Venkatraman E

    2016-09-19

    Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in clinical sequencing studies for the detection of 'actionable' mutations and copy number alterations to guide treatment decisions, accurate, tumor purity-, ploidy- and clonal heterogeneity-adjusted integer copy number calls are greatly needed to more reliably interpret NGS-based cancer gene copy number data in the context of clinical sequencing. We developed FACETS, an ASCN tool and open-source software with a broad application to whole genome, whole-exome, as well as targeted panel sequencing platforms. It is a fully integrated stand-alone pipeline that includes sequencing BAM file post-processing, joint segmentation of total- and allele-specific read counts, and integer copy number calls corrected for tumor purity, ploidy and clonal heterogeneity, with comprehensive output and integrated visualization. We demonstrate the application of FACETS using The Cancer Genome Atlas (TCGA) whole-exome sequencing of lung adenocarcinoma samples. We also demonstrate its application to a clinical sequencing platform based on a targeted gene panel. PMID:27270079

  16. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  17. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression

    PubMed Central

    Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk

    2016-01-01

    Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner. PMID:27264542

  18. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene

    PubMed Central

    Yan, Rengna; Lai, Shanshan; Yang, Yang; Shi, Hongfei; Cai, Zhenming; Sorrentino, Vincenzo; Du, Hong; Chen, Huimei

    2016-01-01

    Genome-wide association studies have identified Ankyrin-1 (ANK1) as a common type 2 diabetes (T2D) susceptibility locus. However, the underlying causal variants and functional mechanisms remain unknown. We screened for 8 tag single nucleotide polymorphisms (SNPs) in ANK1 between 2 case-control studies. Genotype analysis revealed significant associations of 3 SNPs, rs508419 (first identified here), rs515071, and rs516946 with T2D (P < 0.001). These SNPs were in linkage disequilibrium (r2 > 0.80); subsequent analysis indicated that the CCC haplotype associated with increased T2D susceptibility (OR 1.447, P < 0.001). Further mapping showed that rs508419 resides in the muscle-specific ANK1 gene promoter. Allele-specific mRNA and protein level measurements confirmed association of the C allele with increased small ANK1 (sAnk1) expression in human skeletal muscle (P = 0.018 and P < 0.001, respectively). Luciferase assays showed increased rs508419-C allele transcriptional activity in murine skeletal muscle C2C12 myoblasts, and electrophoretic mobility-shift assays demonstrated altered rs508419 DNA-protein complex formation. Glucose uptake was decreased with excess sAnk1 expression upon insulin stimulation. Thus, the ANK1 rs508419-C T2D-risk allele alters DNA-protein complex binding leading to increased promoter activity and sAnk1 expression; thus, increased sAnk1 expression in skeletal muscle might contribute to T2D susceptibility. PMID:27121283

  19. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines

    PubMed Central

    Yang, Jin; Li, Yao; Chan, Lawrence; Tsai, Yi-Ting; Wu, Wen-Hsuan; Nguyen, Huy V.; Hsu, Chun-Wei; Li, Xiaorong; Brown, Lewis M.; Egli, Dieter; Sparrow, Janet R.; Tsang, Stephen H.

    2014-01-01

    While the past decade has seen great progress in mapping loci for common diseases, studying how these risk alleles lead to pathology remains a challenge. Age-related macular degeneration (AMD) affects 9 million older Americans, and is characterized by the loss of the retinal pigment epithelium (RPE). Although the closely linked genome-wide association studies ARMS2/HTRA1 genes, located at the chromosome 10q26 locus, are strongly associated with the risk of AMD, their downstream targets are unknown. Low population frequencies of risk alleles in tissue banks make it impractical to study their function in cells derived from autopsied tissue. Moreover, autopsy eyes from end-stage AMD patients, where age-related RPE atrophy and fibrosis are already present, cannot be used to determine how abnormal ARMS2/HTRA1 expression can initiate RPE pathology. Instead, induced pluripotent stem (iPS) cell-derived RPE from patients provides us with earlier stage AMD patient-specific cells and allows us to analyze the underlying mechanisms at this critical time point. An unbiased proteome screen of A2E-aged patient-specific iPS-derived RPE cell lines identified superoxide dismutase 2 (SOD2)-mediated antioxidative defense in the genetic allele's susceptibility of AMD. The AMD-associated risk haplotype (T-in/del-A) impairs the ability of the RPE to defend against aging-related oxidative stress. SOD2 defense is impaired in RPE homozygous for the risk haplotype (T-in/del-A; T-in/del-A), while the effect was less pronounced in RPE homozygous for the protective haplotype (G–Wt–G; G–Wt–G). ARMS2/HTRA1 risk alleles decrease SOD2 defense, making RPE more susceptible to oxidative damage and thereby contributing to AMD pathogenesis. PMID:24497574

  20. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, Tonie E.; Smith, Susan R.; Miyamoto, Amy; Shadduck, Daniel J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  1. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, T.E.; Smith, S.R.; Miyamoto, A.; Shadduck, D.J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 ?? 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  2. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1.

    PubMed

    Rocke, Tonie E; Smith, Susan R; Miyamoto, Amy; Shadduck, Daniel J

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 x 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission. PMID:12061646

  3. Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.

    PubMed Central

    Reines, D; Mote, J

    1993-01-01

    In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt, I. (1990) Nature (London) 344, 559-562; Deuschele, U., Hipskind, R. A. & Bujard, H. (1990) Science 248, 480-483]. We show that in a reconstituted transcription system, elongation factor SII enables RNA polymerase II to proceed through this blockage at high efficiency. lac repressor-arrested elongation complexes display an SII-activated transcript cleavage reaction, an activity associated with transcriptional read-through of a previously characterized region of bent DNA. This demonstrates factor-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Nascent transcript cleavage may be a general mechanism by which RNA polymerase II can bypass many transcriptional impediments. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446609

  4. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1.

    PubMed

    Minocha, Shilpi; Sung, Tzu-Ling; Villeneuve, Dominic; Lammers, Fabienne; Herr, Winship

    2016-04-01

    Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

  5. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  6. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  7. An allele-specific PCR system for rapid detection and discrimination of the CYP2C19∗4A, ∗4B, and ∗17 alleles: implications for clopidogrel response testing.

    PubMed

    Scott, Stuart A; Tan, Qian; Baber, Usman; Yang, Yao; Martis, Suparna; Bander, Jeffrey; Kornreich, Ruth; Hulot, Jean-Sébastien; Desnick, Robert J

    2013-11-01

    CYP2C19 is involved in the metabolism of clinically relevant drugs, including the antiplatelet prodrug clopidogrel, which has prompted interest in clinical CYP2C19 genotyping. The CYP2C19∗4B allele is defined by both gain-of-function [c.-806C>T (∗17)] and loss-of-function [c.1A>G (∗4)] variants on the same haplotype; however, current genotyping and sequencing assays are unable to determine the phase of these variants. Thus, the aim of this study was to develop an assay that could rapidly detect and discriminate the related ∗4A, ∗4B, and ∗17 alleles. An allele-specific PCR assay, composed of four unique primer mixes that specifically interrogate the defining ∗17 and ∗4 variants, was developed by using samples (n = 20) with known genotypes, including the ∗4A, ∗4B, and/or ∗17 alleles. The assay was validated by testing 135 blinded samples, and the results were correlated with CYP2C19 genotyping and allele-specific cloning/sequencing. Importantly, among the six ∗4 carriers in the validation cohort, after allele-specific PCR testing both samples with a ∗1/∗4 genotype were reclassified to ∗1/∗4A, all three samples with a ∗4/∗17 genotype were reclassified to ∗1/∗4B, and a sample with a ∗4/∗17/∗17 genotype was reclassified to ∗4B/∗17. In conclusion, this rapid and robust allele-specific PCR assay can refine CYP2C19 genotyping and metabolizer phenotype classification by determining the phase of the defining ∗17 and ∗4 variants, which may have utility when testing CYP2C19 for clopidogrel response.

  8. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.

    PubMed

    Welter, Moritz; Verga, Daniela; Marx, Andreas

    2016-08-16

    DNA polymerases select the right nucleotide for the growing polynucleotide chain based on the shape and geometry of the nascent nucleotide pairs and thereby ensure high DNA replication selectivity. High-fidelity DNA polymerases are believed to possess tight active sites that allow little deviation from the canonical structures. However, DNA polymerases are known to use nucleotides with small modifications as substrates, which is key for numerous core biotechnology applications. We show that even high-fidelity DNA polymerases are capable of efficiently using nucleotide chimera modified with a large protein like horseradish peroxidase as substrates for template-dependent DNA synthesis, despite this "cargo" being more than 100-fold larger than the natural substrates. We exploited this capability for the development of systems that enable naked-eye detection of DNA and RNA at single nucleotide resolution. PMID:27392211

  9. Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.

    PubMed

    Jin, Zhinan; Johnson, Kenneth A

    2011-01-14

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches.

  10. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription.

    PubMed Central

    Bogenhagen, D F; Insdorf, N F

    1988-01-01

    The Xenopus laevis mitochondrial RNA (mtRNA) polymerase was purified to near homogeneity with an overall yield approaching 50%. The major polypeptides in the final fraction were a doublet of proteins of approximately 140 kilodaltons that copurified with the mtRNA polymerase activity. It appeared likely that the smaller polypeptide is a breakdown product of the larger one. The highly purified polymerase was active in nonspecific transcription but required a dissociable factor for specific transcription of X. laevis mtDNA. The factor could be resolved from mtRNA polymerase by hydrophobic chromatography and had a sedimentation coefficient of 3.0 S. The transcription factor eluted from both the hydrophobic column and a Mono Q anion-exchange column as a single symmetrical peak. The mtRNA polymerase and this factor together are necessary and sufficient for active transcription from four promoters located in a noncoding region of the mtDNA genome between the gene for tRNA(Phe) and the displacement loop. Images PMID:2457154

  11. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  12. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities

    PubMed Central

    Iyer, Swathi V.; Parrales, Alejandro; Begani, Priya; Narkar, Akshay; Adhikari, Amit S.; Martinez, Luis A.; Iwakuma, Tomoo

    2016-01-01

    Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies. PMID:26700961

  13. Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus.

    PubMed

    Huh, N E; Weaver, R F

    1990-01-01

    Nuclear run-on assays carried out in the presence and absence of the RNA polymerase II inhibitor, alpha-amanitin, were used to determine the exact timing of the switch from inhibitor-sensitive transcription catalysed by host RNA polymerase II, to inhibitor-resistant transcription catalysed by the baculovirus-induced RNA polymerase. These studies revealed that the onset of alpha-amanitin-resistant transcription is just after 6 h post-infection, simultaneous with the beginning of the late phase of infection. They also showed that transcripts from the p26 gene in the HindIII Q/P region and the p35 gene in the HindIII K/Q region of the viral genome are synthesized by the host RNA polymerase II both early and late in infection. On the other hand, transcripts of the p10 gene in the HindIII Q/P region and the gamma transcripts in the HindIII K region are synthesized by the alpha-amanitin-resistant, virus-induced RNA polymerase late in infection. PMID:2106003

  14. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  15. New primer for specific amplification of the CAG repeat in Huntington disease alleles

    SciTech Connect

    Bond, C.E.; Hodes, M.E.

    1994-09-01

    Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designing a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.

  16. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    PubMed

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles.

  17. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity

    PubMed Central

    Novelli, F; Lena, A M; Panatta, E; Nasser, W; Shalom-Feuerstein, R; Candi, E; Melino, G

    2016-01-01

    EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients. PMID:27195674

  18. A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect

    PubMed Central

    Hsu, Chia-Hao; Lin, Ji-Sheng; Po Lai, Keng; Li, Jing-Woei; Chan, Ting-Fung; You, May-Su; Tse, William Ka Fai; Jiang, Yun-Jin

    2015-01-01

    mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp. PMID:26039894

  19. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  20. Specific HLA-DRB and -DQB Alleles and Haplotypes Confer Disease Susceptibility or Resistance in Bahraini Type 1 Diabetes Patients

    PubMed Central

    Al-Harbi, Einas M.; Abbassi, Abdul-Jabbar; Tamim, Hala; al-Jenaidi, Fayza; Kooheji, Mariam; Kamal, Madeeha; al-Mahroos, Salwa; al-Nasir, Faisal; Motala, Ayesha A.; Almawi, Wassim Y.

    2004-01-01

    Insofar as genetic susceptibility to type 1 diabetes is associated with HLA class II genes, with certain allelic combinations conferring disease susceptibility or resistance, this study assessed the distributions of HLA-DR and -DQ among 107 unrelated patients with type 1 diabetes and 88 healthy controls from Bahrain, all of Arab origin. The HLA-DRB and -DQB genotypes were determined by PCR-sequence-specific priming. The following alleles showed the strongest association with type 1 diabetes among patients versus controls according to their frequencies: DRB1*030101 (0.430 versus 0.097; P < 0.001), DRB1*040101 (0.243 versus 0.034; P < 0.001), DQB1*0201 (0.467 versus 0.193; P < 0.001), and DQB1*0302 (0.229 versus 0.091; P < 0.001). When the frequencies of alleles in controls were compared to those in patients, negative associations were seen for DRB1*100101 (0.085 versus 0.014; P < 0.001), DRB1*110101 (0.210 versus 0.060; P < 0.001), DQB1*030101 (0.170 versus 0.075; P = 0.006), and DQB1*050101 (0.335 versus 0.121; P < 0.001). In addition, the DRB1*030101-DQB1*0201 (70.1 versus 22.7%; P < 0.001) and DRB1*030101-DQB1*0302 (21.5 versus 0.0%; P < 0.001) genotypes were more prevalent among patients, thereby conferring disease susceptibility, whereas the DRB1*100101-DQB1*050101 (20.5 versus 2.8%; P < 0.001), DRB1*110101-DQB1*030101 (28.4 versus 8.4%; P < 0.001), and DRB1*110101-DQB1*050101 (30.7 versus 0.9%; P < 0.001) genotypes were more prevalent among controls, thus assigning a protective role. These results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with type 1 diabetes and may underline several characteristics that distinguish Bahraini patients from other Caucasians patients. PMID:15013978

  1. Specific HLA-DRB and -DQB alleles and haplotypes confer disease susceptibility or resistance in Bahraini type 1 diabetes patients.

    PubMed

    Al-Harbi, Einas M; Abbassi, Abdul-Jabbar; Tamim, Hala; al-Jenaidi, Fayza; Kooheji, Mariam; Kamal, Madeeha; al-Mahroos, Salwa; al-Nasir, Faisal; Motala, Ayesha A; Almawi, Wassim Y

    2004-03-01

    Insofar as genetic susceptibility to type 1 diabetes is associated with HLA class II genes, with certain allelic combinations conferring disease susceptibility or resistance, this study assessed the distributions of HLA-DR and -DQ among 107 unrelated patients with type 1 diabetes and 88 healthy controls from Bahrain, all of Arab origin. The HLA-DRB and -DQB genotypes were determined by PCR-sequence-specific priming. The following alleles showed the strongest association with type 1 diabetes among patients versus controls according to their frequencies: DRB1*030101 (0.430 versus 0.097; P < 0.001), DRB1*040101 (0.243 versus 0.034; P < 0.001), DQB1*0201 (0.467 versus 0.193; P < 0.001), and DQB1*0302 (0.229 versus 0.091; P < 0.001). When the frequencies of alleles in controls were compared to those in patients, negative associations were seen for DRB1*100101 (0.085 versus 0.014; P < 0.001), DRB1*110101 (0.210 versus 0.060; P < 0.001), DQB1*030101 (0.170 versus 0.075; P = 0.006), and DQB1*050101 (0.335 versus 0.121; P < 0.001). In addition, the DRB1*030101-DQB1*0201 (70.1 versus 22.7%; P < 0.001) and DRB1*030101-DQB1*0302 (21.5 versus 0.0%; P < 0.001) genotypes were more prevalent among patients, thereby conferring disease susceptibility, whereas the DRB1*100101-DQB1*050101 (20.5 versus 2.8%; P < 0.001), DRB1*110101-DQB1*030101 (28.4 versus 8.4%; P < 0.001), and DRB1*110101-DQB1*050101 (30.7 versus 0.9%; P < 0.001) genotypes were more prevalent among controls, thus assigning a protective role. These results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with type 1 diabetes and may underline several characteristics that distinguish Bahraini patients from other Caucasians patients.

  2. Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in alpha-spectrin-deficient red cells.

    PubMed

    Robledo, Raymond F; Lambert, Amy J; Birkenmeier, Connie S; Cirlan, Marius V; Cirlan, Andreea Flavia M; Campagna, Dean R; Lux, Samuel E; Peters, Luanne L

    2010-03-01

    Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3.

  3. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients.

    PubMed

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-12-22

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAF(V600E) and BRAF(V600K) mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method.

  4. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  5. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions.

    PubMed

    Long, Yicheng; Jackman, Jane E

    2015-07-22

    Protozoan mitochondrial tRNAs (mt-tRNAs) are repaired by a process known as 5'-editing. Mt-tRNA sequencing revealed organism-specific patterns of editing G-U base pairs, wherein some species remove G-U base pairs during 5'-editing, while others retain G-U pairs in the edited tRNA. We tested whether 3'-5' polymerases that catalyze the repair step of 5'-editing exhibit organism-specific preferences that explain the treatment of G-U base pairs. Biochemical and kinetic approaches revealed that a 3'-5' polymerase from Acanthamoeba castellanii tolerates G-U wobble pairs in editing substrates much more readily than several other enzymes, consistent with its biological pattern of editing.

  6. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions

    PubMed Central

    Long, Yicheng; Jackman, Jane E.

    2015-01-01

    Protozoan mitochondrial tRNAs (mt-tRNAs) are repaired by a process known as 5'-editing. Mt-tRNA sequencing revealed organism-specific patterns of editing G-U base pairs, wherein some species remove G-U base pairs during 5'-editing, while others retain G-U pairs in the edited tRNA. We tested whether 3'-5' polymerases that catalyze the repair step of 5'-editing exhibit organism-specific preferences that explain the treatment of G-U base pairs. Biochemical and kinetic approaches revealed that a 3'-5' polymerase from A. castellanii tolerates G-U wobble pairs in editing substrates much more readily than several other enzymes, consistent with its biological pattern of editing. PMID:26143376

  7. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  8. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle.

    PubMed

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  9. Bivariate segmentation of SNP-array data for allele-specific copy number analysis in tumour samples

    PubMed Central

    2013-01-01

    Background SNP arrays output two signals that reflect the total genomic copy number (LRR) and the allelic ratio (BAF), which in combination allow the characterisation of allele-specific copy numbers (ASCNs). While methods based on hidden Markov models (HMMs) have been extended from array comparative genomic hybridisation (aCGH) to jointly handle the two signals, only one method based on change-point detection, ASCAT, performs bivariate segmentation. Results In the present work, we introduce a generic framework for bivariate segmentation of SNP array data for ASCN analysis. For the matter, we discuss the characteristics of the typically applied BAF transformation and how they affect segmentation, introduce concepts of multivariate time series analysis that are of concern in this field and discuss the appropriate formulation of the problem. The framework is implemented in a method named CnaStruct, the bivariate form of the structural change model (SCM), which has been successfully applied to transcriptome mapping and aCGH. Conclusions On a comprehensive synthetic dataset, we show that CnaStruct outperforms the segmentation of existing ASCN analysis methods. Furthermore, CnaStruct can be integrated into the workflows of several ASCN analysis tools in order to improve their performance, specially on tumour samples highly contaminated by normal cells. PMID:23497144

  10. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  11. Search for mycobacteria in interstitial cystitis using mycobacteria-specific DNA probes with signal amplification by polymerase chain reaction.

    PubMed

    Hampson, S J; Christmas, T J; Moss, M T

    1993-09-01

    The aetiology of interstitial cystitis is not known. Various infective agents have been postulated and although recognised as perpetrators of chronic inflammatory conditions, mycobacteria have never been satisfactorily excluded from interstitial cystitis. If present in interstitial cystitis tissue, mycobacteria exist either in very small numbers or in forms which contemporary staining techniques fail to recognise. We used a polymerase chain reaction with mycobacteria-specific DNA probes and found no evidence of mycobacterial involvement in 8 cases of proven interstitial cystitis.

  12. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    PubMed

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques. PMID:24705376

  13. Enhanced Specificity of TPMT*2 Genotyping Using Unidirectional Wild-Type and Mutant Allele-Specific Scorpion Primers in a Single Tube

    PubMed Central

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques. PMID:24705376

  14. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers.

    PubMed

    Pedersen, Lasse Eggers; Jungersen, Gregers; Sorensen, Maria Rathmann; Ho, Chak-Sum; Vadekær, Dorte Fink

    2014-12-15

    The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination.

  15. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat

    PubMed Central

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472

  16. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.

    PubMed

    Xu, Guojie; Wang, Xueyong; Liu, Chunsheng; Li, Weidong; Wei, Shengli; Liu, Ying; Cheng, Xiaoli; Liu, Juan

    2013-02-01

    Rhubarb (official Da-huang) is an important medicinal herb in Asia. Many adulterants of official Da-huang have been discovered in Chinese markets in recent years, which has resulted in adverse effects in medicinal treatment. Here, novel molecular markers based on a short maturase K (matK) gene were developed for authenticating official Da-huang. This study showed that all the species from official Da-huang were clustered together in one clade in the polygenetic trees based on short matK. Two highly conserved single nucleotide polymorphisms of short matK were mined in the species from official Da-huang. Based on these polymophisms, four improved specific primers of official Da-huang were successfully developed that generated reproducible specific bands. These results suggest that the short matK sequence can be considered as a favorable candidate for distinguishing official Da-huang from its adulterants. The established multiplex allele-specific PCR was determined to be simple and accurate and may serve as a preferable tool for authentication of official Da-huang. In addition, we suggest that short-sized specific bands be developed to authenticate materials used in traditional Chinese medicine.

  17. Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens.

    PubMed

    Beck-Engeser, G B; Monach, P A; Mumberg, D; Yang, F; Wanderling, S; Schreiber, K; Espinosa, R; Le Beau, M M; Meredith, S C; Schreiber, H

    2001-08-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4(+) T cell-recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light-induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4(+) T cell-recognized antigen. Thus, for both L9 and L26 genes, we observe "two hit" kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth.

  18. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  19. In Vitro Synthesis of Rous Sarcoma Virus-Specific RNA is Catalyzed by a DNA-Dependent RNA Polymerase

    PubMed Central

    Rymo, L.; Parsons, J. T.; Coffin, J. M.; Weissmann, C.

    1974-01-01

    Synthesis of Rous sarcoma virus RNA was examined in vitro with a new assay for radioactive virus-specific RNA. Nuclei from infected and uninfected cells were incubated with ribonucleoside [α-32P]triphosphates, Mn++, Mg++ and (NH4)2SO4. Incorporation into total and viral RNA proceeded with similar kinetics for up to 25 min at 37°. About 0.5% of the RNA synthesized by the infected system was scored as virus-specific, compared to 0.03% of the RNA from the uninfected system and 0.005% of the RNA synthesized by monkey kidney cell nuclei. Preincubation with DNase or actinomycin D completely suppressed total and virus-specific RNA synthesis. α-Amanitin, a specific inhibitor of eukaryotic RNA polymerase II, completely inhibited virus-specific RNA synthesis, while reducing total RNA synthesis by only 50%. We conclude that tumor virus-specific RNA is synthesized on a DNA template, most probably by the host's RNA polymerase II. PMID:4368801

  20. [Detection of JAK2V617F mutation rate by real-time fluorescent quantitative PCR using allele specific primer and TaqMan-MGB probe for dual inhibiting amplification of wild type alleles].

    PubMed

    Liang, Guo-Wei; Shao, Dong-Hua; He, Mei-Ling; Cao, Qing-Yun

    2012-12-01

    This study was purposed to develop a real-time PCR assay for sensitive quantification of JAK2V617F allele burden in peripheral blood and to evaluate the clinical value of this method. Both allele-specific mutant reverse primer and wild-type TaqMan-MGB probe were used for dual-inhibiting amplification of wild-type alleles in a real-time PCR, and then the JAK2V617F mutant alleles were amplified specially. The standard curve for quantification of JAK2V617F was established by percentages of JAK2V617F alleles with threshold cycle (Ct) values in a real-time PCR. Furthermore, 89 apparent healthy donors were tested by this method. The results showed that the quantitative lower limit of this method for JAK2V617F was 0.1%, and the intra- and inter-assay average variability for quantifying percentage of JAK2V617F in total DNA was 4.1% and 6.1%, respectively. Two JAK2V617F-positive individuals were identified (the percentage of JAK2V617F alleles were 0.64% and 0.98%, respectively) using this method in blood from 89 apparently healthy donors. It is concluded that the developed method with highly sensitive and reproducible quantification of JAK2V617F mutant burden can be used clinically for diagnosis and evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms. Moreover, this technique can be also used for quantitative detection of variety of single nucleotide mutation.

  1. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  2. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA.

    PubMed

    Billard, A; Laval, V; Fillinger, S; Leroux, P; Lachaise, H; Beffa, R; Debieu, D

    2012-02-01

    The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.

  3. An African ancestry-specific allele of CTLA4 confers protection against rheumatoid arthritis in African Americans.

    PubMed

    Kelley, James M; Hughes, Laura B; Faggard, Jeffrey D; Danila, Maria I; Crawford, Monica H; Edberg, Yuanqing; Padilla, Miguel A; Tiwari, Hemant K; Westfall, Andrew O; Alarcón, Graciela S; Conn, Doyt L; Jonas, Beth L; Callahan, Leigh F; Smith, Edwin A; Brasington, Richard D; Allison, David B; Kimberly, Robert P; Moreland, Larry W; Edberg, Jeffrey C; Bridges, S Louis

    2009-03-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA4) is a negative regulator of T-cell proliferation. Polymorphisms in CTLA4 have been inconsistently associated with susceptibility to rheumatoid arthritis (RA) in populations of European ancestry but have not been examined in African Americans. The prevalence of RA in most populations of European and Asian ancestry is approximately 1.0%; RA is purportedly less common in black Africans, with little known about its prevalence in African Americans. We sought to determine if CTLA4 polymorphisms are associated with RA in African Americans. We performed a 2-stage analysis of 12 haplotype tagging single nucleotide polymorphisms (SNPs) across CTLA4 in a total of 505 African American RA patients and 712 African American controls using Illumina and TaqMan platforms. The minor allele (G) of the rs231778 SNP was 0.054 in RA patients, compared to 0.209 in controls (4.462 x 10(-26), Fisher's exact). The presence of the G allele was associated with a substantially reduced odds ratio (OR) of having RA (AG+GG genotypes vs. AA genotype, OR 0.19, 95% CI: 0.13-0.26, p = 2.4 x 10(-28), Fisher's exact), suggesting a protective effect. This SNP is polymorphic in the African population (minor allele frequency [MAF] 0.09 in the Yoruba population), but is very rare in other groups (MAF = 0.002 in 530 Caucasians genotyped for this study). Markers associated with RA in populations of European ancestry (rs3087243 [+60C/T] and rs231775 [+49A/G]) were not replicated in African Americans. We found no confounding of association for rs231778 after stratifying for the HLA-DRB1 shared epitope, presence of anti-cyclic citrullinated peptide antibody, or degree of admixture from the European population. An African ancestry-specific genetic variant of CTLA4 appears to be associated with protection from RA in African Americans. This finding may explain, in part, the relatively low prevalence of RA in black African populations.

  4. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    PubMed

    Perry, John R B; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coviello, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davey Smith, George; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco E J; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D P; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth J F; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K

    2014-10-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  5. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche

    PubMed Central

    Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F

    2014-01-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  6. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    PubMed

    Perry, John R B; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coviello, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davey Smith, George; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco E J; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D P; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth J F; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K

    2014-10-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.

  7. A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression

    PubMed Central

    Warburton, Alix; Breen, Gerome; Bubb, Vivien J.; Quinn, John P.

    2016-01-01

    Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterized an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk. PMID:26429811

  8. Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds.

    PubMed

    Wu, Huayu; Gaur, Uma; Mekchay, Supamit; Peng, Xianwen; Li, Lianghua; Sun, Hua; Song, Zhongxu; Dong, Binke; Li, Mingbo; Wimmers, Klaus; Ponsuksili, Siriluck; Li, Kui; Mei, Shuqi; Liu, Guisheng

    2015-11-01

    Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.

  9. Identification and Evolution of Functional Alleles of the Previously Described Pollen Specific Myrosinase Pseudogene AtTGG6 in Arabidopsis thaliana

    PubMed Central

    Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming

    2016-01-01

    Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes. PMID:26907263

  10. Molecular interactions and trafficking of influenza A virus polymerase proteins analyzed by specific monoclonal antibodies

    SciTech Connect

    MacDonald, Leslie A.; Aggarwal, Shilpa; Bussey, Kendra A.; Desmet, Emily A.; Kim, Baek; Takimoto, Toru

    2012-04-25

    The influenza polymerase complex composed of PA, PB1 and PB2, plays a key role in viral replication and pathogenicity. Newly synthesized components must be translocated to the nucleus, where replication and transcription of viral genomes take place. Previous studies suggest that while PB2 is translocated to the nucleus independently, PA and PB1 subunits could not localize to the nucleus unless in a PA-PB1 complex. To further determine the molecular interactions between the components, we created a panel of 16 hybridoma cell lines, which produce monoclonal antibodies (mAbs) against each polymerase component. We showed that, although PB1 interacts with both PA and PB2 individually, nuclear localization of PB1 is enhanced only when co-expressed with PA. Interestingly, one of the anti-PA mAbs reacted much more strongly with PA when co-expressed with PB1. These results suggest that PA-PB1 interactions induce a conformational change in PA, which could be required for its nuclear translocation.

  11. HLA-DRB1 and HLA-DQB1 allele associations in an Albanian patient population with rheumatoid arthritis: correlations with the specific autoantibody markers and inter-population DRB1 allele frequency variability.

    PubMed

    Prifti-Kurti, Margarita; Nunes, José Manuel; Shyti, Erkena; Ylli, Zamira; Sanchez-Mazas, Alicia; Sulcebe, Genc

    2014-08-01

    The prevalence of rheumatoid arthritis and its specific autoantibodies varies in different populations. This variability depends on the genetic polymorphism of the immune response genes among which the HLA system plays a major role. In this context, we studied the HLA-DRB1 and HLA-DQB1 first-level allele frequencies in 100 Albanian patients with rheumatoid arthritis (RA), and taking into account their rheumatoid factor (RF) and anticitrullinated peptide antibodies (ACPA) serologic subgroups, we compared them with the respective frequencies in a population of 191 Albanian individuals without known pathology. No differences were found between the controls and the RA patient group as a whole, but three statistically significant differences were found: an increase in DRB1*04 among ACPA+, RF+ and ACPA+/RF+ patients, a significant decrease in DRB1*11 among ACPA+/RF+ and also a decrease in DRB1*13 among RF+ patient subgroups. Comparing allele frequencies of putatively associated RA alleles in different European populations revealed a significant negative correlation between the RA predisposing DRB1*04 and protective DRB1*11 allele frequencies. A statistically significant correlation was also found between RA prevalence rates and DRB1*04 as well as DRB1*11 frequencies. The relatively low frequencies of DRB1*04 and high DRB1*11 in the Albanian population might explain the rather low positivity rate of ACPA and RF antibodies among the Albanian RA patients. These specific association patterns suggest that this first study of RA in an Albanian population should be followed up to include second level or higher definition of HLA alleles and to compare RA patterns among European populations.

  12. Species-specific functional interactions of DNA polymerase alpha-primase with simian virus 40 (SV40) T antigen require SV40 origin DNA.

    PubMed Central

    Schneider, C; Weisshart, K; Guarino, L A; Dornreiter, I; Fanning, E

    1994-01-01

    Physical and functional interactions of simian virus 40 (SV40) and polyomavirus large-T antigens with DNA polymerase alpha-primase were analyzed to elucidate the molecular basis for the species specificity of polymerase alpha-primase in viral DNA replication. SV40 T antigen associated more efficiently with polymerase alpha-primase in crude human extracts than in mouse extracts, while polyomavirus T antigen interacted preferentially with polymerase alpha-primase in mouse extracts. The apparent species specificity of complex formation was not observed when purified polymerase alpha-primases were substituted for the crude extracts. Several functional interactions between T antigen and purified polymerase alpha-primase, including stimulation of primer synthesis and primer elongation on M13 DNA in the presence or absence of the single-stranded DNA binding protein RP-A, also proved to be independent of the species from which polymerase alpha-primase had been purified. However, the human DNA polymerase alpha-primase was specifically required for primosome assembly and primer synthesis on SV40 origin DNA in the presence of T antigen and RP-A. Images PMID:8164673

  13. Sigma-G RNA polymerase controls forespore-specific expression of the glucose dehydrogenase operon in Bacillus subtilis.

    PubMed Central

    Nakatani, Y; Nicholson, W L; Neitzke, K D; Setlow, P; Freese, E

    1989-01-01

    The gene encoding glucose dehydrogenase (gdh) is part of an operon whose expression is transcriptionally activated specifically in the developing forespore of Bacillus subtilis at stage III of sporulation. The in vivo startpoint of gdh transcription was determined using primer extension analysis. Deletion mapping and site-specific mutagenesis experiments indicated that the region responsible for regulated expression of gdh in vivo was limited to the "-35" and "-10" regions preceding the transcriptional start site. RNA polymerase containing omega G (E omega G) transcribed gdh in vitro with a start site identical to that found in vivo, and transcription of gdh by E omega G in vitro also did not require any specific sequences upstream from "-35" region. These results suggest that the appearance of E omega G in the forespore at stage III of sporulation is sufficient to cause temporal and compartment-specific expression of the gdh operon. Images PMID:2493633

  14. Polymerase Chain Reaction Diagnosis of Leishmaniasis: A Species-Specific Approach.

    PubMed

    González-Marcano, Eglys; Kato, Hirotomo; Concepción, Juan Luis; Márquez, María Elizabeth; Mondolfi, Alberto Paniz

    2016-01-01

    Leishmaniasis is an infectious disease caused by protozoan parasites of the genus Leishmania which are transmitted to humans through bites of infected sand flies. The variable clinical manifestations and the evolution of the disease are determined by the infecting species. Recognition at a species level is of utmost importance since this greatly impacts therapy decision making as well as predicts outcome for the disease. This chapter describes the application of polymerase chain reaction (PCR) in the detection of Leishmania parasites across the disease spectrum, including protocols for sample collection and transportation, genomic material extraction, and target amplification methods with special emphasis on PCR amplification of the cytochrome b gene for Leishmania spp. species identification.

  15. Linear allele-specific long-range amplification: a novel method of long-range molecular haplotyping.

    PubMed

    Wu, Wei-Ming; Tsai, Hsiang-Ju; Pang, Jong-Hwei S; Wang, Tzu-Hao; Wang, Hsin-Shih; Hong, Hong-Shang; Lee, Yun-Shien

    2005-10-01

    Haplotypes have been repeatedly shown to be more powerful than collections of single-locus markers in gene-mapping studies. Various haplotyping methods including statistical estimation are employed but molecular haplotyping, the acquisition of information directly on physical DNA sequences, has been in demand for its accuracy and independence from family pedigrees. We investigated the allelic specificity of long-range PCR, which was successful for long-range haplotyping in recent reports, and found problems of initial mispriming and crossover amplification significantly confounded its application. Based on these observations, we designed a novel method based on linear amplification of a hemizygous DNA segment with a single phosphorothioate-modified oligonucleotide. Our results revealed, with a single nucleotide polymorphism as the discriminative marker, downstream haplotypes of 14-15 kb DNA segment could be confidently scored. With two rounds of the method and five single nucleotide polymorphisms, molecular haplotypes of 29.3 kb spanning the HCR and CDSN genes, two genes associated with the susceptibility of psoriasis, of 11 members, belonging to a CEPH family, were revealed. Clear Mendelian segregation of 35 highly heterozygous SNPs confirmed the accuracy of the method. Problems of low specificity associated with long-range PCR were not observed. The simplicity, along with long-sequence accessibility and feasibility of a single nucleotide difference as the discriminative marker indicated our method holds promise for future gene-mapping studies.

  16. Specific discrimination of chicken DNA from other poultry DNA in processed foods using the polymerase chain reaction.

    PubMed

    Fujimura, Tatsuya; Matsumoto, Takashi; Tanabe, Soichi; Morimatsu, Fumiki

    2008-03-01

    In the present study, specific discrimination of chicken DNA contamination in processed foods using the polymerase chain reaction was investigated. The primer pair was designed to amplify a 102-bp fragment of the chicken mitochondrial 16S ribosomal RNA gene. While the DNA from chicken meat was amplified, the DNA from other poultry meat, mammalian meat, fish, shellfish, and cereals was not amplified. The primer amplified DNA fragments derived from model processed and nonprocessed food samples containing 0.001, 0.01, 0.1, 1, 10, and 100% chicken.

  17. Phenotypic effect of substitution of allelic variants for a histone H1 subtype specific for growing tissues in the garden pea (Pisum sativum L.).

    PubMed

    Bogdanova, Vera S; Kosterin, Oleg E; Berdnikov, Vladimir A

    2007-05-01

    In pea, subtype H1-7 of histone H1 is specific for young actively growing tissues and disappears from chromatin of mature tissues. We sequenced the alleles coding for three main variants, numbered according to the increase of the electrophoretic mobility. Allele 1 differs from the most common allele 2 by eight nucleotide substitutions, two of them associated with amino acid replacements, His->Tyr in the globular domain and Ala->Val in the C-terminal domain. Allele 3 differs from alleles 1 and 2 by a 24-bp deletion in the part coding for the C-terminal domain. In three greenhouse experiments, we compared quantitative traits in nearly isogenic lines differing by these H1-7 variants. In experiment 1, three lines bearing either of the three allelic variants were compared, the other experiments involved pairs of lines bearing variants 1 and 3. In all experiments, statistically significant differences between the lines were registered, mostly related to the plant size. The most prominent effect was associated with plant growth dynamics. Plants of line 3, carrying the 8-amino acid deletion in histone H1-7, on average grew slower. In two experiments, the differences of the mean stem length persisted throughout plant growth while in experiment 2 differences disappeared upon maturity. The H1-7 subtype is supposed to be related to maintenance of chromatin state characteristic for cell growth and division. PMID:16900316

  18. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-01-01

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  19. Development of a Novel Allele-Specific PCR Method for Rapid Assessment of Nervous Necrosis Virus Genotypes.

    PubMed

    Toubanaki, Dimitra K; Margaroni, Maritsa; Karagouni, Evdokia

    2015-11-01

    Viral nervous necrosis infections are causing severe problems on aquaculture industry due to ecological and economic impacts. Their causal agent is nervous necrosis virus or nodavirus, which has been classified into four genotypes. Different genotypes correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostic reagents requires analysis of the genetic variation. The development and validation of a polymerase chain reaction amplification (PCR)-based methodology for nodavirus genotype assessment in a simple and robust format is described. Degenerate external primers and two genotype-specific internal primers were utilized for simultaneous amplification of nodavirus products in a single PCR. A first set of cycles produced a long PCR product, defined by the outer primers, and the internal primers amplified short DNA fragments specific for each genotype in lower annealing temperature. Detection was based on the size of the short products. Nodavirus infected and healthy samples were analyzed and none of the non-infected samples showed any bands, while all infected samples were positive. The proposed method can be performed within 4 h and consumes standard PCR and electrophoresis reagents, with costs lower than 2€ per sample. Tetra-primer PCR is a suitable alternative for virus sequencing in medium scale research laboratories and farming facilities. PMID:26210900

  20. Development of a Novel Allele-Specific PCR Method for Rapid Assessment of Nervous Necrosis Virus Genotypes.

    PubMed

    Toubanaki, Dimitra K; Margaroni, Maritsa; Karagouni, Evdokia

    2015-11-01

    Viral nervous necrosis infections are causing severe problems on aquaculture industry due to ecological and economic impacts. Their causal agent is nervous necrosis virus or nodavirus, which has been classified into four genotypes. Different genotypes correlate with differences in viral pathogenicity. Therefore, rational development of effective vaccines and diagnostic reagents requires analysis of the genetic variation. The development and validation of a polymerase chain reaction amplification (PCR)-based methodology for nodavirus genotype assessment in a simple and robust format is described. Degenerate external primers and two genotype-specific internal primers were utilized for simultaneous amplification of nodavirus products in a single PCR. A first set of cycles produced a long PCR product, defined by the outer primers, and the internal primers amplified short DNA fragments specific for each genotype in lower annealing temperature. Detection was based on the size of the short products. Nodavirus infected and healthy samples were analyzed and none of the non-infected samples showed any bands, while all infected samples were positive. The proposed method can be performed within 4 h and consumes standard PCR and electrophoresis reagents, with costs lower than 2€ per sample. Tetra-primer PCR is a suitable alternative for virus sequencing in medium scale research laboratories and farming facilities.

  1. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication.

    PubMed

    Shinbrot, Eve; Henninger, Erin E; Weinhold, Nils; Covington, Kyle R; Göksenin, A Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M; Gibbs, Richard A; Sander, Chris; Pursell, Zachary F; Wheeler, David A

    2014-11-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication.

  2. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum.

    PubMed

    Yeam, Inhwa; Kang, Byoung-Cheorl; Lindeman, Wouter; Frantz, James D; Faber, Nanne; Jahn, Molly M

    2005-12-01

    Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 (1), and pvr1 (2). These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.

  3. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction.

    PubMed

    Rodríguez, Miguel A; García, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martín, Rosario

    2003-03-12

    A specific Polymerase Chain Reaction (PCR) has been developed for the identification of goose (Anser anser), mule duck (Anas platyrhynchos x Cairina moschata), chicken (Gallus gallus), turkey (Meleagris gallopavo), and swine (Sus scrofa domesticus) in foie gras. A forward common primer was designed on a conserved DNA sequence in the mitochondrial 12S ribosomal RNA gene (rRNA), and reverse primers were designed to hybridize on species-specific DNA sequences of each species considered. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose, mule duck, chicken, turkey, and swine in foie gras. Analysis of experimental mixtures demonstrated that the detection limit of the assay was approximately 1% for each species analyzed. This genetic marker can be very useful for the accurate identification of these species, avoiding mislabeling or fraudulent species substitution in foie gras.

  4. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly

    PubMed Central

    Wawrzycka, Aleksandra; Gross, Marta; Wasaznik, Anna; Konieczny, Igor

    2015-01-01

    Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. PMID:26195759

  5. Pathway Analysis Using Information from Allele-Specific Gene Methylation in Genome-Wide Association Studies for Bipolar Disorder

    PubMed Central

    Chuang, Li-Chung; Kao, Chung-Feng; Shih, Wei-Liang; Kuo, Po-Hsiu

    2013-01-01

    Bipolar disorder (BPD) is a complex psychiatric trait with high heritability. Despite efforts through conducting genome-wide association (GWA) studies, the success of identifying susceptibility loci for BPD has been limited, which is partially attributed to the complex nature of its pathogenesis. Pathway-based analytic strategy is a powerful tool to explore joint effects of gene sets within specific biological pathways. Additionally, to incorporate other aspects of genomic data into pathway analysis may further enhance our understanding for the underlying mechanisms for BPD. Patterns of DNA methylation play important roles in regulating gene expression and function. A commonly observed phenomenon, allele-specific methylation (ASM) describes the associations between genetic variants and DNA methylation patterns. The present study aimed to identify biological pathways that are involve in the pathogenesis of BPD while incorporating brain specific ASM information in pathway analysis using two large-scale GWA datasets in Caucasian populations. A weighting scheme was adopted to take ASM information into consideration for each pathway. After multiple testing corrections, we identified 88 and 15 enriched pathways for their biological relevance for BPD in the Genetic Association Information Network (GAIN) and the Wellcome Trust Case Control Consortium dataset, respectively. Many of these pathways were significant only when applying the weighting scheme. Three ion channel related pathways were consistently identified in both datasets. Results in the GAIN dataset also suggest for the roles of extracellular matrix in brain for BPD. Findings from Gene Ontology (GO) analysis exhibited functional enrichment among genes of non-GO pathways in activity of gated channel, transporter, and neurotransmitter receptor. We demonstrated that integrating different data sources with pathway analysis provides an avenue to identify promising and novel biological pathways for exploring the

  6. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia.

    PubMed

    Wang, Yang; Cao, Yanfei; Huang, Xiaoye; Yu, Tao; Wei, Zhiyun; McGrath, John; Xu, Fei; Bi, Yan; Li, Xingwang; Yang, Fengping; Li, Weidong; Zou, Xia; Peng, Zhihai; Xiao, Yanzeng; Zhang, Yan; He, Lin; He, Guang

    2016-01-01

    Evidence has indicated that the incidence of colorectal cancer (CRC) among schizophrenia is lower than normal. To explore this potential protective effect, we employed an innovative strategy combining association study with allele-specific expression (ASE) analysis in MCC gene. We first genotyped four polymorphisms within MCC in 312 CRC patients, 270 schizophrenia patients and 270 controls. Using the MassArray technique, we performed ASE measurements in a second sample series consisting of 50 sporadic CRC patients, 50 schizophrenia patients and 52 controls. Rs2227947 showed significant differences between schizophrenia cases and controls, and haplotype analysis reported some significant discrepancies among these three subject groups. ASE values of rs2227948 and rs2227947 presented consistently differences between CRC (or schizophrenia) patients and controls. Of the three groups, highest frequencies of ASE in MCC were concordantly found in CRC group, whereas lowest frequencies of ASE were observed in schizophrenia group. Similar trends were confirmed in both haplotype frequencies and ASE frequencies (i.e. CRC > control > schizophrenia). We provide a first indication that MCC might confer alterative genetic susceptibility to CRC in individuals with schizophrenia promising to shed more light on the relationship between schizophrenia and cancer progression. PMID:27226254

  7. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese

    PubMed Central

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-01-01

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5’ end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels. PMID:26568273

  8. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese.

    PubMed

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-11-16

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5' end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels.

  9. Specific binding of tryptophan transfer RNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase).

    PubMed Central

    Panet, A; Haseltine, W A; Baltimore, D; Peters, G; Harada, F; Dahlberg, J E

    1975-01-01

    The ability of tryptophan tRNA (tRNATrp) to initiate reverse transcription of the 70S RNA of avian RNA tumor viruses suggested that the reverse transcriptase (RNA-dependent DNA polymerase; deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) might have a specific binding site for the tRNA. A complex of tRNATrp and the avian myeloblastosis virus reverse transcriptase has been demonstrated using chromatography on Sephadex G-100 columns. Of all the chicken tRNAs, only tRNATrp and a tRNA4Met bind to the enzyme with high enough affinity to be selected from a mixture of the chicken cell tRNAs. The ability of tRNATrp to change the sedimentation rate of the enzyme indicates that tRNATrp is not binding to a contaminant in the enzyme preparation. Treatment of the enzyme with monospecific antibody to reverse transcriptase prevented binding of tRNA as well as inhibited the DNA polymerase activity of the enzyme. The ability of reverse transcriptase to utilize tRNATrp aa a primer for DNA synthesis, therefore, appears to involve a highly specific site on the enzyme. Images PMID:52156

  10. Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase

    PubMed Central

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Jittavisutthikul, Surasak; Seesuay, Watee; Chulanetra, Monrat; Sakolvaree, Yuwaporn; Srimanote, Potjanee; Chaicumpa, Wanpen

    2014-01-01

    A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes. PMID:25517317

  11. Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase.

    PubMed

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Jittavisutthikul, Surasak; Seesuay, Watee; Chulanetra, Monrat; Sakolvaree, Yuwaporn; Srimanote, Potjanee; Chaicumpa, Wanpen

    2014-01-01

    A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes. PMID:25517317

  12. The sensitivity and specificity of a reverse transcription-polymerase chain reaction assay for the avian pneumovirus (Colorado strain).

    PubMed

    Pedersen, J C; Reynolds, D L; Ali, A

    2000-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of avian pneumovirus (APV), Colorado strain (US/CO), was evaluated for sensitivity and specificity. The single-tube RT-PCR assay utilized primers developed from the matrix (M) gene sequence of the US/CO APV. The RT-PCR amplified the US/CO APV but did not amplify other pneumoviruses, including the avian pneumoviruses subgroups A and B. The RT-PCR was capable of detecting between 10(0.25) mean tissue culture infective dose (TCID50) and 10(-0.44) TCID50 of the US/CO APV. These results have demonstrated that the single-tube RT-PCR assay is a specific and sensitive assay for the detection of US/CO APV.

  13. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  14. Simultaneous Detection of Major Drug Resistance Mutations of HIV-1 Subtype B Viruses from Dried Blood Spot Specimens by Multiplex Allele-Specific Assay.

    PubMed

    Zhang, Guoqing; Cai, Fangping; de Rivera, Ivette Lorenzana; Zhou, Zhiyong; Zhang, Jing; Nkengasong, John; Gao, Feng; Yang, Chunfu

    2016-01-01

    A multiplex allele-specific (MAS) assay has been developed for the detection of HIV-1 subtype C drug resistance mutations (DRMs). We have optimized the MAS assay to determine subtype B DRMs in dried blood spots (DBS) collected from patients on antiretroviral therapy. The new assay accurately detected DRMs, including low-abundance mutations that were often missed by Sanger sequencing. PMID:26560533

  15. Specific detection and identification of mulberry-infecting strains of Xylella fastidiosa by polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X. fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular land...

  16. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. PMID:26783342

  17. Application of species-specific polymerase chain reaction in the forensic identification of tiger species.

    PubMed

    Wan, Qiu-Hong; Fang, Sheng-Guo

    2003-01-01

    Globally, tigers are considered to be endangered, and are listed on Appendix I of CITES. A simple test, using a species-specific primer pair, was developed to identify tiger meat, faeces and dried skin, and provide forensic evidence of illegal wildlife trade. The specific fragment of mitochondrial cytochrome b gene was also successfully amplified from raw DNA products extracted from single tiger hairs. This PCR-based approach opens a new avenue to forensic identification of less-than-optimal samples.

  18. Allele-specific PCR for the beta-tubulin codon 200 TTC/TAC polymorphism using single adult and larval small strongyle (Cyathostominae) stages.

    PubMed

    von Samson-Himmelstjerna, G; Pape, M; von Witzendorff, C; Schnieder, T

    2002-04-01

    It has been shown that benzimidazole (BZ) resistance in sheep gastrointestinal nematodes is linked with an increase in beta-tubulin codon 200 tyrosine-expressing alleles in the resistant parasite populations. Here, an allele-specific PCR has been developed for the discrimination of the TAC/TTC polymorphism in the beta-tubulin 200 codon of small strongyles. One reverse primer was used in 2 separate amplifications with 1 of 2 forward primers that differed only in their final 3' nucleotide. The primers flank a facultative intron/exon. Therefore, the amplified fragments are either 251 or 308 bp in size, depending on the presence or absence of the intron in individual worms. Amplification of genomic DNA isolated from single adult small strongyles from a set of 7 species consistently generated allele-specific products. Three worms each of the following species were used: Cylicocyclus nassatus, Cylicocyclus insigne, Cylicocyclus elongatus, Cylicocyclus radiatus, Cyathostomum pateratum, Cyathostomum catinatum, and Cyathostomum coronatum. PCR with DNA isolated from single larvae also reproducibly generated specific fragments. This method might be applied for the future assessment of allele frequencies in susceptible and resistant populations to further investigate the mechanism of BZ-resistance in small strongyles. PMID:12053994

  19. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    PubMed Central

    Bolduc, Véronique; Zou, Yaqun; Ko, Dayoung; Bönnemann, Carsten G

    2014-01-01

    Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA) oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT) construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies. PMID:24518369

  20. Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids☆

    PubMed Central

    Shen, Yingjia; Catchen, Julian; Garcia, Tzintzuni; Amores, Angel; Beldroth, Ion; Wagner, Jonathon R; Zhang, Ziping; Postlethwait, John; Warren, Wes; Schartl, Manfred; Walter, Ronald B.

    2011-01-01

    Variations in gene expression are essential for the evolution of novel phenotypes and for speciation. Studying allelic specific gene expression (ASGE) within interspecies hybrids provides a unique opportunity to reveal underlying mechanisms of genetic variation. Using Xiphophorus interspecies hybrid fishes and high-throughput next generation sequencing technology, we were able to assess variations between two closely related vertebrate species, X. maculatus and X. couchianus, and their F1 interspecies hybrids. We constructed transcriptome-wide SNP polymorphism sets between two highly inbred X. maculatus lines (JP 163 A and B), and between X. maculatus and a second species, X. couchianus. The X. maculatus JP 163 A and B parental lines have been separated in the laboratory for ≈ 70 years and we were able to identify SNPs at a resolution of 1 SNP per 49 kb of transcriptome. In contrast, SNP polymorphisms between X. couchianus and X. maculatus species, which diverged ≈ 5–10 million years ago, were identified about every 700 bp. Using 6,524 transcripts with identified SNPs between the two parental species (X. maculatus and X. couchianus), we mapped RNA-seq reads to determine ASGE within F1 interspecies hybrids. We developed an in silico X. couchianus transcriptome by replacing 90,788 SNP bases for X. maculatus transcriptome with the consensus X. couchianus SNP bases and provide evidence that this procedure overcomes read mapping biases. Employment of the insilico reference transcriptome and tolerating 5 mismatches during read mapping allow direct assessment of ASGE in the F1 interspecies hybrids. Overall, these results show that Xiphophorus is a tractable vertebrate experimental model to investigate how genetic variations that occur during speciation may affect gene interactions and the regulation of gene expression. PMID:21466860

  1. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  2. Genome-wide Association Study of Subtype-Specific Epithelial Ovarian Cancer Risk Alleles Using Pooled DNA

    PubMed Central

    Earp, Madalene A.; Kelemen, Linda E.; Magliocco, Anthony M.; Swenerton, Kenneth D.; Chenevix–Trench, Georgia; Lu, Yi; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Fasching, Peter A.; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Lambrechts, Sandrina; Doherty, Jennifer A.; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Friel, Grace; Moysich, Kirsten B.; Odunsi, Kunle; Sucheston-Campbell, Lara; Lurie, Galina; Goodman, Marc T.; Carney, Michael E.; Thompson, Pamela J.; Runnebaum, Ingo B.; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M.; Butzow, Ralf; Bunker, Clareann H.; Modugno, Francesmary; Edwards, Robert P.; Ness, Roberta B.; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjær, Susanne K.; Høgdall, Claus K.; Høgdall, Estrid; Lundvall, Lene; Sellers, Thomas A.; Fridley, Brooke L.; Goode, Ellen L.; Cunningham, Julie M.; Vierkant, Robert A.; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; Southey, Melissa C.; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A.T.; Levine, Douglas A.; Bisogna, Maria; Schildkraut, Joellen M.; Iversen, Edwin S.; Weber, Rachel Palmieri; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Poole, Elizabeth M.; Tworoger, Shelley S.; Bandera, Elisa V.; Chandran, Urmila; Orlow, Irene; Olson, Sara H.; Wik, Elisabeth; Salvesen, Helga B.; Bjorge, Line; Halle, Mari K.; van Altena, Anne M.; Aben, Katja K.H.; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Pejovic, Tanja; Bean, Yukie T.; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia–Closas, Montserrat; Dicks, Ed; Dennis, Joe; Easton, Douglas F.; Song, Honglin; Tyrer, Jonathan P.; Pharoah, Paul D. P.; Eccles, Diana; Campbell, Ian G.; Whittemore, Alice S.; McGuire, Valerie; Sieh, Weiva; Rothstein, Joseph H.; Flanagan, James M.; Paul, James; Brown, Robert; Phelan, Catherine M.; Risch, Harvey A.; McLaughlin, John R.; Narod, Steven A.; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Gayther, Simon A.; Ramus, Susan J.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz M; Kupryjanczyk, Jolanta; Cook, Linda S.; Le, Nhu D.; Brooks–Wilson, Angela

    2014-01-01

    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by pooling genomic DNA from 545 cases and 398 controls of European descent, and testing for allelic associations. We evaluated for replication 188 variants from the GWAS (56 variants for mucinous, 55 for endometrioid and clear cell, 53 for low malignant potential (LMP) serous, and 24 for invasive serous EOC), selected using pre-defined criteria. Genotypes from 13,188 cases and 23,164 controls of European descent were used to perform unconditional logistic regression under the log-additive genetic model; odds ratios (OR) and 95% confidence intervals are reported. Nine variants tagging 6 loci were associated with subtype-specific EOC risk at P<0.05, and had an OR that agreed in direction of effect with the GWAS results. Several of these variants are in or near genes with a biological rationale for conferring EOC risk, including ZFP36L1 and RAD51B for mucinous EOC (rs17106154, OR=1.17, P=0.029, n=1,483 cases), GRB10 for endometrioid and clear cell EOC (rs2190503, P=0.014, n=2,903 cases), and C22orf26/BPIL2 for LMP serous EOC (rs9609538, OR=0.86, P=0.0043, n=892 cases). In analyses that included the 75 GWAS samples, the association between rs9609538 (OR=0.84, P=0.0007) and LMP serous EOC risk remained statistically significant at P<0.0012 adjusted for multiple testing. Replication in additional samples will be important to verify these results for the less-common EOC subtypes. PMID:24190013

  3. DNA polymerases and cancer

    PubMed Central

    Lange, Sabine S.; Takata, Kei-ichi; Wood, Richard D.

    2013-01-01

    There are fifteen different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells and at least one DNA polymerase, POLζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes may be viable targets for therapeutic strategies. PMID:21258395

  4. Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction.

    PubMed

    Precigou, S; Goulas, P; Duran, R

    2001-10-16

    A polymerase chain reaction (PCR) protocol was developed for the specific detection of genes coding nitrile hydratase (NHase). Primer design was based on the highly conserved sequences found in the coding region of the alpha-subunit gene corresponding to the metal-binding site. Purified genomic DNA from bacterial strains or directly from soil can serve as the target for the PCR, thus affording a simple and rapid method for screening NHase genes. The primer pairs, NHCo1/NHCo2 and NHFe1/NHFe2 yield PCR products corresponding to a partial coding sequence of cobalt and iron NHase genes, respectively. Using the PCR method, both types of iron- and cobalt-NHase-encoding genes were detected in DNA from pure cultures and soil samples. Furthermore consensus primers allowed rapid cloning and expression of novel NHases in Escherichia coli.

  5. Genetically modified organisms in food-screening and specific detection by polymerase chain reaction.

    PubMed

    Vollenhofer, S; Burg, K; Schmidt, J; Kroath, H

    1999-12-01

    PCR methods for the detection of genetically modified organisms (GMOs) were developed that can be used for screening purposes and for specific detection of glyphosate-tolerant soybean and insect-resistant maize in food. Primers were designed to amplify parts of the 35S promoter derived from Cauliflower Mosaic Virus, the NOS terminator derived from Agrobacterium tumefaciens and the antibiotic marker gene NPTII (neomycin-phosphotransferase II), to allow for general screening of foods. PCR/hybridization protocols were established for the detection of glyphosate-tolerant RoundUp Ready soybean and insect-resistant Bt-maize. Besides hybridization, confirmation of the results using restriction analysis was also possible. The described methods enabled a highly sensitive and specific detection of GMOs and thus provide a useful tool for routine analysis of raw and processed food products.

  6. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression

    PubMed Central

    Vecellio, Matteo; Roberts, Amity R; Cohen, Carla J; Cortes, Adrian; Knight, Julian C; Bowness, Paul; Wordsworth, B Paul

    2016-01-01

    Objectives To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). Methods We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. Results The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10−14) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 ‘G’ allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk ‘A’ allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). Conclusion We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS. PMID:26452539

  7. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover

    PubMed Central

    2013-01-01

    Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for

  8. Specific detection of potentially allergenic kiwifruit in foods using polymerase chain reaction.

    PubMed

    Taguchi, Hiromu; Watanabe, Satoshi; Hirao, Takashi; Akiyama, Hiroshi; Sakai, Shinobu; Watanabe, Takahiro; Matsuda, Rieko; Urisu, Atsuo; Maitani, Tamio

    2007-03-01

    Kiwifruit (Actinidia deliciosa and Actinidia chinensis) is allergenic to sensitive patients, and, under Japanese regulations, it is one of the food items that are recommended to be declared on food labeling as much as possible. To develop PCR-based methods for the detection of trace amounts of kiwifruit in foods, two primer pairs targeting the ITS-1 region of the Actinidia spp. were designed using PCR simulation software. On the basis of the known distribution of a major kiwifruit allergen (actinidin) within the Actinidia spp., as well as of reports on clinical and immunological cross-reactivities, one of the primer pairs was designed to detect all Actinidia spp. and the other to detect commercially grown Actinidia spp. (i.e., kiwifruit, Actinidia arguta, and their interspecific hybrids) except for Actinidia polygama. The specificity of the developed methods using the designed primer pairs was verified by performing PCR experiments on 8 Actinidia spp. and 26 other plants including fruits. The methods were considered to be specific enough to yield target-size products only from the target Actinidia spp. and to detect no target-size products from nontarget species. The methods were sensitive enough to detect 5-50 fg of Actinidia spp. DNA spiked in 50 ng of salmon testis DNA used as a carrier (1-10 ppm of kiwifruit DNA) and 1700 ppm (w/w) of fresh kiwifruit puree spiked in a commercial plain yogurt (corresponding to ca. 10 ppm of kiwifruit protein). These methods would be expected to be useful in the detection of hidden kiwifruit and its related species in processed foods.

  9. Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA.

    PubMed

    Earp, Madalene A; Kelemen, Linda E; Magliocco, Anthony M; Swenerton, Kenneth D; Chenevix-Trench, Georgia; Lu, Yi; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Fasching, Peter A; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Lambrechts, Sandrina; Doherty, Jennifer A; Rossing, Mary Anne; Chang-Claude, Jenny; Rudolph, Anja; Friel, Grace; Moysich, Kirsten B; Odunsi, Kunle; Sucheston-Campbell, Lara; Lurie, Galina; Goodman, Marc T; Carney, Michael E; Thompson, Pamela J; Runnebaum, Ingo B; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Nevanlinna, Heli; Pelttari, Liisa M; Butzow, Ralf; Bunker, Clareann H; Modugno, Francesmary; Edwards, Robert P; Ness, Roberta B; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Jensen, Allan; Kjær, Susanne K; Høgdall, Claus K; Høgdall, Estrid; Lundvall, Lene; Sellers, Thomas A; Fridley, Brooke L; Goode, Ellen L; Cunningham, Julie M; Vierkant, Robert A; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; Southey, Melissa C; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A T; Levine, Douglas A; Bisogna, Maria; Schildkraut, Joellen M; Iversen, Edwin S; Weber, Rachel Palmieri; Berchuck, Andrew; Cramer, Daniel W; Terry, Kathryn L; Poole, Elizabeth M; Tworoger, Shelley S; Bandera, Elisa V; Chandran, Urmila; Orlow, Irene; Olson, Sara H; Wik, Elisabeth; Salvesen, Helga B; Bjorge, Line; Halle, Mari K; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Pejovic, Tanja; Bean, Yukie T; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Wentzensen, Nicolas; Brinton, Louise A; Lissowska, Jolanta; Garcia-Closas, Montserrat; Dicks, Ed; Dennis, Joe; Easton, Douglas F; Song, Honglin; Tyrer, Jonathan P; Pharoah, Paul D P; Eccles, Diana; Campbell, Ian G; Whittemore, Alice S; McGuire, Valerie; Sieh, Weiva; Rothstein, Joseph H; Flanagan, James M; Paul, James; Brown, Robert; Phelan, Catherine M; Risch, Harvey A; McLaughlin, John R; Narod, Steven A; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Gayther, Simon A; Ramus, Susan J; Wu, Anna H; Pearce, Celeste L; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz M; Kupryjanczyk, Jolanta; Cook, Linda S; Le, Nhu D; Brooks-Wilson, Angela

    2014-05-01

    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by pooling genomic DNA from 545 cases and 398 controls of European descent, and testing for allelic associations. We evaluated for replication 188 variants from the GWAS [56 variants for mucinous, 55 for endometrioid and clear cell, 53 for low-malignant potential (LMP) serous, and 24 for invasive serous EOC], selected using pre-defined criteria. Genotypes from 13,188 cases and 23,164 controls of European descent were used to perform unconditional logistic regression under the log-additive genetic model; odds ratios (OR) and 95 % confidence intervals are reported. Nine variants tagging six loci were associated with subtype-specific EOC risk at P < 0.05, and had an OR that agreed in direction of effect with the GWAS results. Several of these variants are in or near genes with a biological rationale for conferring EOC risk, including ZFP36L1 and RAD51B for mucinous EOC (rs17106154, OR = 1.17, P = 0.029, n = 1,483 cases), GRB10 for endometrioid and clear cell EOC (rs2190503, P = 0.014, n = 2,903 cases), and C22orf26/BPIL2 for LMP serous EOC (rs9609538, OR = 0.86, P = 0.0043, n = 892 cases). In analyses that included the 75 GWAS samples, the association between rs9609538 (OR = 0.84, P = 0.0007) and LMP serous EOC risk remained statistically significant at P < 0.0012 adjusted for multiple testing. Replication in additional samples will be important to verify these results for the less-common EOC subtypes. PMID:24190013

  10. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  11. A polymerase chain reaction-based method for constructing a linear vector with site-specific DNA methylation.

    PubMed

    Arakawa, Toshiya; Ohta, Tohru; Abiko, Yoshihiro; Okayama, Miki; Mizoguchi, Itaru; Takuma, Taishin

    2011-09-15

    DNA methylation is an important epigenetic modification that leads to a wide variety of biological functions, including transcription, growth and development, and diseases associated with altered gene expression such as cancers. However, tools to insert site-specific methylation into DNA for analyzing epigenetic functions are limited. Here we describe a novel polymerase chain reaction (PCR)-based approach to provide site-specific DNA methylation at any site, including CpG or CpNpG islands. This method is simple and versatile, and it consists of four steps to construct the DNA methylation vector: (I) design and synthesis of methylated primers, (II) PCR amplification, (III) isolation of single-stranded DNA, and (IV) annealing and ligation of isolated single-stranded DNAs. First we produced and validated a linear green fluorescence protein (GFP) vector by this method. Next we applied this method to introduce methyl groups into the promoter of the cyclooxygenase-2 (COX-2) gene and found that site-specific DNA methylation at the CRE element significantly altered COX-2 gene expression. These results demonstrate that this PCR-based approach is useful for the analysis of biological functions that depend on DNA methylation. PMID:21669180

  12. Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles.

    PubMed

    Bunce, M; Welsh, K I

    1994-01-01

    Detection of HLA-C antigens by complement mediated cytotoxicity using human alloantisera is often difficult. Between 20 to 40% of individuals in every race have undetectable HLA-C locus antigens and 9 out of the 29 sequenced HLA-C alleles so far published encode serologically undetected antigens. In addition, HLA-C molecules are expressed at the cell surface at about 10% of the levels of HLA-A and HLA-B. Recently, amplification of DNA using sequence-specific primers (PCR-SSP) has proved a reliable and rapid method for typing HLA-DR, HLA-DQA and HLA-DQB genes. PCR-SSP takes two hours to perform and is therefore suitable for the genotyping of cadaveric donors. We have designed a set of primers which will positively identify the HLA-C alleles corresponding to the serologically defined series HLA-Cw1, Cw2, Cw3, Cw4, Cw5, Cw6, Cw7 and Cw8. The serologically undetectable alleles have also been detected in groups according to sequence homology. In addition, three new unsequenced variants have been identified. DNA samples from 56 International Histocompatibility Workshop reference cell lines and 103 control individuals have been typed by the HLA-C PCR-SSP technique. 4/56 cell line types and 11/103 normal control individuals types were discrepant with the reported serological types. All combinations of serologically detectable and most of the serologically blank HLA-C antigens can be readily identified. DNA typing for HLA-Cw by PCR-SSP can take as little as 130 minutes from start to finish, including DNA preparation.

  13. A Panel of Artificial APCs Expressing Prevalent HLA Alleles Permits Generation of Cytotoxic T Cells Specific for Both Dominant and Subdominant Viral Epitopes for Adoptive Therapy1

    PubMed Central

    Hasan, Aisha N.; Kollen, Wouter J.; Trivedi, Deepa; Selvakumar, Annamalai; Dupont, Bo; Sadelain, Michel; O'Reilly, Richard J.

    2009-01-01

    Adoptive transfer of virus-specific T cells can treat infections complicating allogeneic hematopoietic cell transplants. However, autologous antigen-presenting cells (APCs) are often limited in supply. Here, we describe a panel of artificial APCs (AAPCs) consisting of murine 3T3 cells transduced to express human B7.1, ICAM-1 and LFA-3 that each stably express one of a series of 6 common HLA class I alleles. In comparative analyses, T cells sensitized with AAPCs expressing a shared HLA allele or autologous APCs loaded with a pool of 15-mers spanning the sequence of CMVpp65 produced similar yields of HLA-restricted CMVpp65 specific T cells; significantly higher yields could be achieved by sensitization with AAPCs transduced to express the CMVpp65 protein. T cells generated were CD8+, IFNγ+ and exhibited HLA-restricted CMVpp65 specific cytotoxicity. T cells sensitized with either peptide-loaded or transduced AAPCs recognized epitopes presented by each HLA allele known to be immunogenic in man. Sensitization with AAPCs also permitted expansion of IFNγ+ cytotoxic effector cells against subdominant epitopes that were either absent or in low frequencies in T cells sensitized with autologous APCs. This replenishable panel of AAPCs can be used for immediate sensitization and expansion of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. It may be of particular value for recipients of transplants from HLA disparate donors. PMID:19635907

  14. Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species

    PubMed Central

    2010-01-01

    Background Genotype analysis using multiple single nucleotide polymorphisms (SNPs) is a useful but labor-intensive or high-cost procedure in plant research. Here we describe an alternative genotyping method that is suited to multi-sample or multi-locus SNP genotyping and does not require electrophoresis or specialized equipment. Results We have developed a simple method for multi-sample or multi-locus SNP genotyping using allele-specific primers (ASP). More specifically, we (1) improved the design of allele-specific primers, (2) established a method to detect PCR products optically without electrophoresis, and (3) standardized PCR conditions for parallel genomic assay using various allele-specific primers. As an illustration of multi-sample SNP genotyping using ASP, we mapped the locus for lodging resistance in a typhoon (lrt5). Additionally, we successfully tested multi-locus ASP-PCR analysis using 96 SNPs located throughout the genomes of rice (Oryza sativa) cultivars 'Koshihikari' and 'Kasalath', and demonstrated its applicability to other diverse cultivars/subspecies, including wild rice (O. rufipogon). Conclusion Our ASP methodology allows characterization of SNPs genotypes without electrophoresis, expensive probes or specialized equipment, and is highly versatile due to the flexibility in the design of primers. The method could be established easily in any molecular biology laboratory, and is applicable to diverse organisms. PMID:20409329

  15. Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites

    PubMed Central

    Tong, Weiwei; Cao, Xueyan; Wen, Shihui; Guo, Rui; Shen, Mingwu; Wang, Jianhua; Shi, Xiangyang

    2012-01-01

    There is a general necessity to improve the specificity and efficiency of the polymerase chain reaction (PCR), and exploring the PCR-enhancing mechanism still remains a great challenge. In this paper we report the use of branched polyethyleneimine (PEI)-based derivatives and hybrid nanocomposites as a novel class of enhancers to improve the specificity and efficiency of a nonspecific PCR system. We show that the surface-charge polarity of PEI and PEI derivatives plays a major role in their effectiveness to enhance the PCR. Positively charged amine-terminated pristine PEI, partially (50%) acetylated PEI (PEI-Ac50), and completely acetylated PEI (PEI-Ac) are able to improve PCR efficiency and specificity with an optimum concentration order of PEI < PEI-Ac50 < PEI-Ac, whereas negatively charged carboxyl-terminated PEI (PEI-SAH; SAH denotes succinamic acid groups) and neutralized PEI modified with both polyethylene glycol (PEG) and acetyl (Ac) groups (PEI-PEG-Ac) are unable to improve PCR specificity and efficiency even at concentrations three orders of magnitude higher than that of PEI. Our data clearly suggests that the PCR-enhancing effect is primarily based on the interaction between the PCR components and the PEI derivatives, where electrostatic interaction plays a major role in concentrating the PCR components locally on the backbones of the branched PEI. In addition, multiwalled carbon nanotubes modified with PEI and PEI-stabilized gold nanoparticles are also able to improve the PCR specificity and efficiency with an optimum PEI concentration less than that of the PEI alone, indicating that the inorganic component of the nanocomposites may help improve the interaction between PEI and the PCR components. The developed PEI-based derivatives or nanocomposites may be used as efficient additives to enhance other PCR systems for different biomedical applications. PMID:22393296

  16. Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction.

    PubMed

    Yuan, Longfei; He, Yujian

    2013-01-21

    The polymerase chain reaction (PCR) has become an indispensable technique in molecular biology, however, it suffers from low efficiency and specificity problems. Developing suitable additives to effectively avoid nonspecific PCR reactions and explore the mechanism for PCR enhancing is a significant challenge. In this paper, we report three different modified gold nanoparticles (AuNPs) with different surface charge polarities and poly (diallyl dimethylammonium) chloride (PDDA) for use as novel PCR enhancers to improve the efficiency and specificity. These AuNPs included the positively charged PDDA protected AuNPs (PDDA-AuNPs), the neutral PDDA-AuNPs modified with excess chloride ion (PDDA.C-AuNPs), and the negatively charged sodium citrate (Na(3)Ct) protected AuNPs (Na(3)Ct-AuNPs). Our data clearly suggests that the positively charged PDDA-AuNPs with an optimum concentration as low as 1.54 pM could significantly enhance the specificity and efficiency of PCR, however, the optimum concentration of the negatively charged Na(3)Ct-AuNPs (2.02 nM) was more than 3 orders of magnitude higher than that of positively charged PDDA-AuNPs. The PCR specificity and efficiency are also improved by the neutral PDDA.C-AuNPs with an optimum concentration, much more than that of the PDDA-AuNPs. This suggests that there should be an electrostatic interaction between the positively charged PDDA-AuNPs and the negatively charged PCR components, and the surface charge polarities of PDDA-AuNPs may play an important role in improving the PCR specificity and efficiency. PMID:23170311

  17. CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation

    PubMed Central

    Ortiz-Estevez, Maria; Aramburu, Ander; Bengtsson, Henrik; Neuvial, Pierre; Rubio, Angel

    2012-01-01

    Summary: CalMaTe calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina. Availability: The method is available on CRAN (http://cran.r-project.org/) in the open-source R package calmate, which also includes an add-on to the Aroma Project framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22576175

  18. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.

    PubMed

    Barnes, Marjorie H; Butler, Michelle M; Wright, George E; Brown, Neal C

    2012-10-01

    DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.

  19. Mechanism of transcription termination by RNA polymerase III utilizes a nontemplate-strand sequence-specific signal element

    PubMed Central

    Arimbasseri, Aneeshkumar G.; Maraia, Richard J.

    2015-01-01

    SUMMARY Understanding the mechanism of transcription termination by a eukaryotic RNA polymerase (RNAP) has been limited by lack of a characterizable intermediate that reflects transition from an elongation complex to a true termination event. While other multisubunit RNAPs require multipartite cis-signals and/or ancillary factors to mediate pausing and release of the nascent transcript from the clutches of these enzymes, RNAP III does so with precision and efficiency on a simple oligo(dT) tract, independent of other cis-elements or trans-factors. We report a RNAP III pre-termination complex that reveals termination mechanisms controlled by sequence-specific elements in the non-template strand. Furthermore, the TFIIF-like, RNAP III subunit, C37 is required for this function of the non-template strand signal. The results reveal the RNAP III terminator as an information-rich control element. While the template strand promotes destabilization via a weak oligo(rU:dA) hybrid, the non-template strand provides distinct sequence-specific destabilizing information through interactions with the C37 subunit. PMID:25959395

  20. Haplotyping using a combination of polymerase chain reaction-single-strand conformational polymorphism analysis and haplotype-specific PCR amplification.

    PubMed

    Zhou, Huitong; Li, Shaobin; Liu, Xiu; Wang, Jiqing; Luo, Yuzhu; Hickford, Jon G H

    2014-12-01

    A single nucleotide polymorphism (SNP) may have an impact on phenotype, but it may also be influenced by multiple SNPs within a gene; hence, the haplotype or phase of multiple SNPs needs to be known. Various methods for haplotyping SNPs have been proposed, but a simple and cost-effective method is currently unavailable. Here we describe a haplotyping approach using two simple techniques: polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and haplotype-specific PCR. In this approach, individual regions of a gene are analyzed by PCR-SSCP to identify variation that defines sub-haplotypes, and then extended haplotypes are assembled from the sub-haplotypes either directly or with the additional use of haplotype-specific PCR amplification. We demonstrate the utility of this approach by haplotyping ovine FABP4 across two variable regions that contain seven SNPs and one indel. The simplicity of this approach makes it suitable for large-scale studies and/or diagnostic screening.

  1. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II

    PubMed Central

    Bharati, Akhilendra Pratap; Singh, Neha; Kumar, Vikash; Kashif, Md.; Singh, Amit Kumar; Singh, Priyanka; Singh, Sudhir Kumar; Siddiqi, Mohammad Imran; Tripathi, Timir; Akhtar, Md. Sohail

    2016-01-01

    RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 prime capping of the nascent transcript is the first detectable mRNA processing event, and is crucial for the productive transcript elongation. The binding of capping enzyme, RNA guanylyltransferases to the transcribing RNAPII is known to be primarily facilitated by the CTD, phosphorylated at Ser5 (Ser5P). Here we report that the Saccharomyces cerevesiae RNA guanylyltransferase (Ceg1) has dual specificity and interacts not only with Ser5P but also with Ser7P of the CTD. The Ser7 of CTD is essential for the unconditional growth and efficient priming of the mRNA capping complex. The Arg159 and Arg185 of Ceg1 are the key residues that interact with the Ser5P, while the Lys175 with Ser7P of CTD. These interactions appear to be in a specific pattern of Ser5PSer7PSer5P in a tri-heptad CTD (YSPTSPPS YSPTSPSP YSPTSPPS) and provide molecular insights into the Ceg1-CTD interaction for mRNA transcription. PMID:27503426

  2. Artificial antigen presenting cells that express prevalent HLA alleles: A step towards the broad application of antigen-specific adoptive cell therapies.

    PubMed

    Hasan, Aisha N; Selvakumar, Annamalai; Doubrovina, Ekaterina; Riviere, Isabelle; Sadelain, Michel W; O'Reilly, Richard J

    2009-12-01

    The artificial antigen-presenting cells (AAPCs) described in this review were generated to facilitate the production of virus-specific T-cells for the treatment of infections in patients after bone marrow transplant. These AAPCs consist of murine 3T3 cells genetically modified to express critical human molecules needed for T-cell stimulation, such as the co-stimulatory molecules B7.1, ICAM-1, and LFA-3 and one of a series of 6 common HLA class I alleles. When T-cells were sensitized against cytomegalovirus (CMV) using AAPCs that express a shared HLA allele or using autologous antigen-presenting cells (APCs) loaded with the CMVpp65 antigen, they were activated and expanded to become HLA-restricted CMVpp65-specific T-cells. These T-cells demonstrated functional activity in vitro against CMV by producing IFN-gamma and inducing CMVpp65-specific cytotoxicity. T-cells sensitized with AAPCs recognized antigenic epitopes presented by each HLA allele known to be immunogenic in Man. Sensitization with AAPCs also permitted expansion of IFN-gamma+ cytotoxic T-cells against subdominant epitopes that were not effectively recognized by T-cells sensitized with autologous APCs. This panel of AAPCs provides a source of immediately accessible, standardizable, and replenishable "off the shelf" cellular reagents with the potential to make adoptive immunotherapy widely available for the treatment of lethal infections, cancer, and autoimmune diseases. PMID:20040272

  3. Development of a Melting Curve-Based Allele-Specific PCR of Apolipoprotein E (APOE) Genotyping Method for Genomic DNA, Guthrie Blood Spot, and Whole Blood.

    PubMed

    Chen, Chia-Hsiang

    2016-01-01

    Genetic polymorphisms of apolipoprotein E (APOE) are associated with various health conditions and diseases, such as Alzheimer's disease, cardiovascular diseases, type 2 diabetes, etc. Hence, genotyping of APOE has broad applications in biomedical research and clinical settings, particularly in the era of precision medicine. The study aimed to develop a convenient and accurate method with flexible throughput to genotype the APOE polymorphisms. A melting curve-based allele-specific PCR method was developed to genotype two single nucleotide polymorphisms (SNPs) of APOE, i.e. rs429358 at codon 112 and rs7412 at codon 158. These two SNPs determine the genotype of APOE2, E3, and E4. PCR-based Sanger sequencing was used as the reference method for APOE genotyping. A 100% concordance rate was obtained in 300 subjects between the melting curve-based allele-specific PCR method and the Sanger sequencing method. This method was applied to a genetic association analysis of APOE and schizophrenia consisting of 711 patients with schizophrenia and 665 control subjects from Taiwan. However, no significant differences in the allele and genotype frequencies were detected between these two groups. Further experiments showed that DNA dissolved from blood collected on Guthrie filter paper and total blood cell lysate without DNA extraction can be used in the melting curve-based allele-specific PCR method. Thus, we suggest that this is a fast, accurate and robust APOE genotyping method with a flexible throughput and suitable for DNA template from different preparations. This convenient method shall meet the different needs of various research and clinical laboratories. PMID:27078154

  4. Three Wzy polymerases are specific for particular forms of an internal linkage in otherwise identical O units.

    PubMed

    Hong, Yaoqin; Morcilla, Vincent A; Liu, Michael A; Russell, Elsa L M; Reeves, Peter R

    2015-08-01

    The Wzx/Wzy-dependent pathway is the predominant pathway for O-antigen production in Gram-negative bacteria. The O-antigen repeat unit (O unit) is an oligosaccharide that is assembled at the cytoplasmic face of the membrane on undecaprenyl pyrophosphate. Wzx then flips it to the periplasmic face for polymerization by Wzy, which adds an O unit to the reducing end of a growing O-unit polymer in each round of polymerization. Wzx and Wzy both exhibit enormous sequence diversity. It has recently been shown that, contrary to earlier reports, the efficiency of diverse Wzx forms can be significantly reduced by minor structural variations to their native O-unit substrate. However, details of Wzy substrate specificity remain unexplored. The closely related galactose-initiated Salmonella O antigens present a rare opportunity to address these matters. The D1 and D2 O units differ only in an internal mannose-rhamnose linkage, and D3 expresses both in the same chain. D1 and D2 polymerases were shown to be specific for O units with their respective α or β configuration for the internal mannose-rhamnose linkage. The Wzy encoded by D3 gene cluster polymerizes only D1 O units, and deleting the gene does not eliminate polymeric O antigen, both observations indicating the presence of an additional wzy gene. The levels of Wzx and Wzy substrate specificity will affect the ease with which new O units can evolve, and also our ability to modify O antigens, capsules or secreted polysaccharides by glyco-engineering, to generate novel polysaccharides, as the Wzx/Wzy-dependent pathway is responsible for much of the diversity.

  5. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction.

    PubMed Central

    Seal, S E; Jackson, L A; Daniels, M J

    1992-01-01

    A subtraction hybridization technique was employed to make a library enriched for Pseudomonas solanacearum-specific sequences. One cloned fragment, PS2096, hybridized under stringent conditions to DNA of 82 P. solanacearum strains representing all subgroups of the species. Other plant-associated bacteria, including closely related species such as Pseudomonas capacia, Pseudomonas picketti, or Pseudomonas syzygii, did not hybridize to PS2096. A minimum number of between 4 x 10(5) and 4 x 10(6) P. solanacearum cells could routinely be detected with PS2096 labelled either with [32P]dCTP or with digoxigenin-11-dUTP. To improve the sensitivity of detection, PS2096 was sequenced to allow the construction of specific oligonucleotide primers to be used for polymerase chain reaction (PCR) amplification. After 50 cycles of amplification, 5 to 116 cells, depending on the strain, could reproducibly be detected by visualization of a 148-bp PCR product on an agarose gel. A preliminary field trial in Burundi with the probe and PCR primers has confirmed that they are sensitive tools for specifically detecting low-level infections of P. solanacearum in potato tubers. Images PMID:1482193

  6. Simultaneous Detection of Major Drug Resistance Mutations in the Protease and Reverse Transcriptase Genes for HIV-1 Subtype C by Use of a Multiplex Allele-Specific Assay

    PubMed Central

    Zhang, Guoqing; Cai, Fangping; Zhou, Zhiyong; DeVos, Joshua; Wagar, Nick; Diallo, Karidia; Zulu, Isaac; Wadonda-Kabondo, Nellie; Stringer, Jeffrey S. A.; Weidle, Paul J.; Ndongmo, Clement B.; Sikazwe, Izukanji; Sarr, Abdoulaye; Kagoli, Matthew; Nkengasong, John

    2013-01-01

    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring. PMID:23985909

  7. [The Use of Specific DNA Markers for the Identification of Alleles of the FAD3 Genes in Rape (Brassica napus L.)].

    PubMed

    Lemesh, V A; Mozgova, G V; Grushetskaya, Z E; Sidorenko, E V; Pilyuk, Ya E; Bakanovskaya, A V

    2015-08-01

    A search was conducted for the alleles responsible for the quality of food-grade rapeseed oil in a collection of 21 samples of spring and winter oilseed rape of Belarusian and Russian breeding. We also developed A- and C-gene-specific DNA markers to assess the genomic polymorphisms of rape for FAD3 genes and selected plants with a low content of linolenic acid for use in the selection process. The development of a method for identifying FAD3 alleles, which control the level of linolenic acid in rapeseed oil, as well as of the design for new dCAPS markers, enabled the identification of plants homozygous for individual FAD3A and/or FAD3C genes in the F2-generation. These plants are currently involved in the selection process of new varieties with a reduced content of linolenic acid in rapeseed oil. PMID:26601489

  8. Polymerase chain reaction-restriction fragment length polymorphism method for differentiation of uropathogenic specific protein gene types.

    PubMed

    Lai, Yun Mei; Zaw, Myo Thura; Shamsudin, Shamsul Bahari; Lin, Zaw

    2016-08-01

    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.

  9. Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression.

    PubMed

    Melas, P A; Lennartsson, A; Vakifahmetoglu-Norberg, H; Wei, Y; Åberg, E; Werme, M; Rogdaki, M; Mannervik, M; Wegener, G; Brené, S; Mathé, A A; Lavebratt, C

    2013-05-07

    Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant.

  10. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  11. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  12. Allele-specific recognition by LILRB3 and LILRA6 of a cytokeratin 8 - associated ligand on necrotic glandular epithelial cells

    PubMed Central

    López-Álvarez, María R.; Jahnke, Martin; Russell, Alasdair I.; Radjabova, Valeria; Trowsdale, Alice R.Z.; Trowsdale, John

    2016-01-01

    The LILRs are a family of receptors that regulate the activities of myelomonocytic cells. We found that specific allelic variants of two related members of the LILR family, LILRB3 and LILRA6, interact with a ligand exposed on necrotic glandular epithelial cells. The extracellular domains of LILRB3 and LILRA6 are very similar and their genes are highly polymorphic. A commonly occurring allele, LILRB3*12, displayed particularly strong binding of these necrotic cells and further screening of the products of LILRB3 alleles identified motifs that correlated with binding. Immunoprecipitation of the ligand from epithelial cell lysates using recombinant LILRB3*12, identified cytokeratins 8, 18 and 19. Purified proteins obtained from epithelial cell lysates, using anti-cytokeratin 8 antibodies, were able to activate LILRB3*12 reporter cells. Knock-down of cytokeratin 8 in epithelial cells abrogated expression of the LILRB3 ligand, while staining with recombinant LILRB3*12 showed co-localisation with cytokeratin 8 and 18 in permeabilised breast cancer cells. Necrosis is a common feature of tumours. The finding of a necrosis-associated ligand for these two receptors raises the possibility of a novel interaction that alters immune responses within the tumour microenvironment. Since LILRB3 and LILRA6 genes are highly polymorphic the interaction may influence an individual's immune response to tumours. PMID:26769854

  13. From genes to phenotypes - evaluation of two methods for the SNP analysis in archaeological remains: pyrosequencing and competitive allele specific PCR (KASPar).

    PubMed

    Pruvost, Melanie; Reissmann, Monika; Benecke, Norbert; Ludwig, Arne

    2012-01-20

    The amplification length of the DNA fragments is one major limitation of most paleogenetic analyses. Routinely, only fragments below 200 bp can be amplified, significantly reducing the content of genetic information. Although overlapping PCR strategies and next generation sequencing techniques have strongly improved data mining recently, these methods are still expensive and time consuming. In contrast, SNP analyses are easy to handle, fast and cheap. In this study, we compare two methods of SNP detection as to efficiency, cost and reliability for their use in ancient DNA applications: pyrosequencing and competitive allele specific PCR (KASPar). Our sample set consisted of 16 horse bones from two Scythian graves (600-800 BC). In conclusion, both approaches produced reliable results for most allelic patterns. But an indel of 11 bp (ASIP) could not be detected in the KASPar approach and produced problems in the pyrosequencing method (70% success rate). In such cases, we recommend checking allelic distribution using a gel approach or capillary sequencing. Overall, in comparison with the traditional mode of ancient DNA investigations (PCR, cloning, capillary sequencing), both approaches are superior for SNP analyses especially of large sample sets.

  14. Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity.

    PubMed

    Hernandez, Genaro; Valafar, Faramarz; Stumph, William E

    2007-01-01

    In animals, most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II (Pol II), but U6 snRNA is synthesized by RNA polymerase III (Pol III). In Drosophila melanogaster, the promoters for the Pol II-transcribed snRNA genes consist of approximately 21 bp PSEA and approximately 8 bp PSEB. U6 genes utilize a PSEA but have a TATA box instead of the PSEB. The PSEAs of the two classes of genes bind the same protein complex, DmSNAPc. However, the PSEAs that recruit Pol II and Pol III differ in sequence at a few nucleotide positions that play an important role in determining RNA polymerase specificity. We have now performed a bioinformatic analysis to examine the conservation and divergence of the snRNA gene promoter elements in other species of insects. The 5' half of the PSEA is well-conserved, but the 3' half is divergent. Moreover, within each species positions exist where the PSEAs of the Pol III-transcribed genes differ from those of the Pol II-transcribed genes. Interestingly, the specific positions vary among species. Nevertheless, we speculate that these nucleotide differences within the 3' half of the PSEA act similarly to induce conformational alterations in DNA-bound SNAPc that result in RNA polymerase specificity.

  15. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis.

    PubMed

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F; Ramroop, Johnny; Kellner, Stefanie M; Benton, Matthew A; Govind, Shubha; Dedon, Peter C; Sternglanz, Rolf; Lai, Eric C

    2015-12-01

    N(6)-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon-codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease.

  16. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    PubMed

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  17. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  18. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes.

    PubMed

    Cheung, Stephanie; Ma, Lina; Chan, Patrick H W; Hu, Hui-Lan; Mayor, Thibault; Chen, Hung-Ta; Measday, Vivien

    2016-03-18

    Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes. PMID:26797132

  19. Identification of the new HLA-DRB1{sup *}0812 allele detected by sequencing based typing

    SciTech Connect

    Versluis, L.F.; Zwan, A.W. van der; Tilanus, M.G.J.; Savelkoul, P.H.M.; Berg-Loonen, E.M. van den

    1996-12-31

    HLA-DRB typing by polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing based typing (SBT) was studied within the framework of the Antigen and Haplotype Society 11 and the Sequencing Based Typing Component of the Twelfth International HLA workshop. Sequencing was performed as described by McGinnis and co-workers in 1995 on coded samples, including most DR2 subtypes, resulting in high resolution HLA-DR typing. Sequences were compared with a database containing 107 DRB1, four DRB3, and five DRB5 alleles in a similar way as described for HLA-DPB. One sample showed a new DR8 sequence, indicating the presence of a new allele. This individual (4390) is of Indonesian origin. The specific amplification of the DR8 allele and subsequent sequencing resulted in a sequence which did not match the database and new polymorphism was identified. The complementary strand was sequenced and confirmed the presence of a new DRB1 allele. Cloning and subsequent sequencing of the polymerase chain reaction fragment resulted in confirmation of the direct sequence data. Later this variant was officially named DRB1{sup *}0812. The complete nucleotide sequence of exon 2 of this new allele is shown. This allele differs from DRB1{sup *}0810 by one nucleotide at codon 85, resulting in an alanine (GTT), whereas DRB1{sup *}0810 carries a valine (GCT). 5 refs., 1 fig.

  20. Transcriptome and allele specificity associated with a 3BL locus for Fusarium crown rot resistance in bread wheat.

    PubMed

    Ma, Jian; Stiller, Jiri; Zhao, Qiang; Feng, Qi; Cavanagh, Colin; Wang, Penghao; Gardiner, Donald; Choulet, Frédéric; Feuillet, Catherine; Zheng, You-Liang; Wei, Yuming; Yan, Guijun; Han, Bin; Manners, John M; Liu, Chunji

    2014-01-01

    Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL. PMID:25405461

  1. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model.

    PubMed

    Millett, B P; Bradeen, J M

    2007-02-01

    Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. PMID:17177064

  2. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft.

    PubMed Central

    Sarafianos, S G; Kortz, U; Pope, M T; Modak, M J

    1996-01-01

    The anti-DNA polymerase activity of a structural family of polyoxometalates has been determined. Two representative compounds of this family, possessing a saddle-like structure [(O3POPO3)4W12O36]16- (polyoxometalate I) and [(O3PCH2PO3)4W12O36]16- (polyoxometalate II) were found to inhibit all the DNA polymerases tested, with IC50 values ranging from 2 to 10 microM. A comparative study with HIV-1 reverse transcriptase (RT) and Klenow polymerase as representative DNA polymerases indicated that protection from inactivation was achieved by inclusion of DNA but not by deoxynucleotide triphosphates (dNTPs). Kinetic analysis revealed that the mode of HIV-1 RT inhibition is competitive with respect to DNA, and non-competitive with respect to dNTP binding. Cross-linking experiments confirmed that the inhibitors interfere with the DNA-binding function of HIV-1 reverse transcriptase. Interestingly, a number of drug-resistant mutants of HIV-1 RT exhibit a sensitivity to polyoxometalate comparable to the wild-type HIV-1 RT, suggesting that these polyoxometalates interact at a novel site. Because different polymerases contain DNA-binding clefts of various dimensions, it should be possible to modify polyoxometalates or to add a link to an enzyme-specific drug so that more effective inhibitors could be developed. Using a computer model of HIV-1 RT we performed docking studies in a binary complex (enzyme-polyoxometalate I) to propose tentatively a possible interacting site in HIV-1 RT consistent with the available biochemical results as well as with the geometric and charge constraints of the two molecules. PMID:8912703

  3. Reliable and fast allele-specific extension of 3'-LNA modified oligonucleotides covalently immobilized on a plastic base, combined with biotin-dUTP mediated optical detection.

    PubMed

    Michikawa, Yuichi; Fujimoto, Kentaro; Kinoshita, Kenji; Kawai, Seiko; Sugahara, Keisuke; Suga, Tomo; Otsuka, Yoshimi; Fujiwara, Kazuhiko; Iwakawa, Mayumi; Imai, Takashi

    2006-12-01

    In the present work, a convenient microarray SNP typing system has been developed using a plastic base that covalently immobilizes amino-modified oligonucleotides. Reliable SNP allele discrimination was achieved by using allelic specificity-enhanced enzymatic extension of immobilized oligonucleotide primer, with a locked nucleic acid (LNA) modification at the SNP-discriminating 3'-end nucleotide. Incorporation of multiple biotin-dUTP molecules during primer extension, followed by binding of alkaline phosphatase-conjugated streptavidin, allowed optical detection of the genotyping results through precipitation of colored alkaline phosphatase substrates onto the surface of the plastic base. Notably, rapid primer extension was demonstrated without a preliminary annealing step of double-stranded template DNA, allowing overall processes to be performed within a couple of hours. Simultaneous evaluation of three SNPs in the genes TGFB1, SOD2 and APEX1, previously investigated for association with radiation sensitivity, in 25 individuals has shown perfect assignment with data obtained by another established technique (MassARRAY system).

  4. High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids, and allotetraploids.

    PubMed

    Ng, Danny W-K; Shi, Xiaoli; Nah, Gyoungju; Chen, Z Jeffrey

    2014-01-01

    With the next generation sequencing technology, RNA-Seq (RNA sequencing) becomes one of the most powerful tools in quantification of global transcriptomes, discovery of new transcripts and alternative isoforms, as well as detection of single nucleotide polymorphisms (SNPs). RNA-Seq is advantageous over hybridization-based gene quantification methods: (1) it does not require prior information about genomic sequences, (2) it avoids high background problem caused by cross-hybridization, and (3) it is highly sensitive and avoids background and saturation of signals; and finally it is capable of detecting allelic expression differences in hybrids and allopolyploids. We used the RNA-Seq method to determine the genome-wide transcriptome changes in Arabidopsis allotetraploids and their parents, A. thaliana and A. arenosa. The use of this approach allows us to quantify transcriptome from these species and more importantly, to identify allelic or homoeologous-specific gene expression that plays a role in morphological evolution of allopolyploids. The computational pipelines developed are also applicable to the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data in Arabidopsis-related species, hybrids, and allopolyploids. Comparative analysis of RNA-Seq and ChIP-Seq data will allow us to determine the effects of chromatin modifications on nonadditive gene expression in hybrids and allopolyploids.

  5. Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater's prairie-chicken.

    PubMed

    Bateson, Zachary W; Hammerly, Susan C; Johnson, Jeff A; Morrow, Michael E; Whittingham, Linda A; Dunn, Peter O

    2016-10-01

    The negative effects of inbreeding on fitness are serious concerns for populations of endangered species. Reduced fitness has been associated with lower genome-wide heterozygosity and immune gene diversity in the wild; however, it is rare that both types of genetic measures are included in the same study. Thus, it is often unclear whether the variation in fitness is due to the general effects of inbreeding, immunity-related genes or both. Here, we tested whether genome-wide heterozygosity (20 990 SNPs) and diversity at nine immune genes were better predictors of two measures of fitness (immune response and survival) in the endangered Attwater's prairie-chicken (Tympanuchus cupido attwateri). We found that postrelease survival of captive-bred birds was related to alleles of the innate (Toll-like receptors, TLRs) and adaptive (major histocompatibility complex, MHC) immune systems, but not to genome-wide heterozygosity. Likewise, we found that the immune response at the time of release was related to TLR and MHC alleles, and not to genome-wide heterozygosity. Overall, this study demonstrates that immune genes may serve as important genetic markers when monitoring fitness in inbred populations and that in some populations specific functional genes may be better predictors of fitness than genome-wide heterozygosity.

  6. Increased prevalence of mutant null alleles that cause hereditary fructose intolerance in the American population

    PubMed Central

    Coffee, Erin M.; Yerkes, Laura; Ewen, Elizabeth P.; Zee, Tiffany

    2010-01-01

    Mutations in the aldolase B gene (ALDOB) impairing enzyme activity toward fructose-1-phosphate cleavage cause hereditary fructose intolerance (HFI). Diagnosis of the disease is possible by identifying known mutant ALDOB alleles in suspected patients; however, the frequencies of mutant alleles can differ by population. Here, 153 American HFI patients with 268 independent alleles were analyzed to identify the prevalence of seven known HFI-causing alleles (A149P, A174D, N334K, Δ4E4, R59Op, A337V, and L256P) in this population. Allele-specific oligonucleotide hybridization analysis was performed on polymerase chain reaction (PCR)-amplified genomic DNA from these patients. In the American population, the missense mutations A149P and A174D are the two most common alleles, with frequencies of 44% and 9%, respectively. In addition, the nonsense mutations Δ4E4 and R59Op are the next most common alleles, with each having a frequency of 4%. Together, the frequencies of all seven alleles make up 65% of HFI-causing alleles in this population. Worldwide, these same alleles make up 82% of HFI-causing mutations. This difference indicates that screening for common HFI alleles is more difficult in the American population. Nevertheless, a genetic screen for diagnosing HFI in America can be improved by including all seven alleles studied here. Lastly, identification of HFI patients presenting with classic symptoms and who have homozygous null genotypes indicates that aldolase B is not required for proper development or metabolic maintenance. PMID:20033295

  7. Allelic loss in colorectal carcinoma

    SciTech Connect

    Kern, S.E.; Fearon, E.R.; Tersmette, K.W.F.; Enterline, J.P.; Vogelstein, B.; Hamilton, S.R. ); Leppert, M.; Nakamura, Yusuke; White, R. )

    1989-06-02

    Clinical and pathological associations with molecular genetic alterations were studied in colorectal carcinomas from 83 patients. Fractional allelic loss, a measure of allelic deletions throughout the genome, and allelic deletions of specific chromosomal arms (the short arm of 17 and long arm of 18) each provided independent prognostic information by multivariate analysis when considered individually with Dukes' classification. Distant metastasis was significantly associated with high fractional allelic loss and with deletions of 17p and 18q. Mutations of ras proto-oncogenes and deletions of 5q had no prognostic importance. Statistically significant associations were also found between allelic losses and a family history of cancer, left-sided tumor location, and absence of extracellular tumor mucin. Allelic deletion analysis thus identified subsets of colorectal carcinoma with increased predilection for distant metastasis and cancer-related death. Further studies may define a subset of genetic alterations that can be used clinically to help assess prognosis.

  8. A novel molecular beacon-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration.

    PubMed

    Yin, Bin-Cheng; Wu, Shan; Ma, Jin-Liang; Ye, Bang-Ce

    2015-06-15

    Developing molecular beacon (MB)-based method for DNA detection has been of great interest to many researchers because of its intrinsic advantages of simplicity, rapidity, and specificity. In this work, we have developed a novel MB-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration strategy. The proposed method involves three primary processes of target-mediated ligation by T4 DNA ligase, transcription reaction by T7 RNA polymerase, and MB switch for signal output. Upon the hybridization with DNA target, a rationally designed MB and a pair of primers encoded with T7 promoter sequence were ligated via the formation of a phosphodiester bond by T4 DNA ligase. The resultant joint fragment acted as template to initiate T7 RNA polymerase-mediated transcription reaction. Correspondingly, a great amount of RNA strands complementary to MB and partial primers were transcribed to initiate new cyclic reactions of MB switch, ligation, and transcription. With such signal amplification strategy of the regeneration of target-like RNA fragments, our proposed assay achieved a detection limit as low as ∼10 pM, which was ∼3 orders of magnitude lower than the traditional MB-based method with a recognition mechanism in 1:1 stoichiometric ratio between MB and target molecule.

  9. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism.

    PubMed

    Dykxhoorn, Derek M; Schlehuber, Lisa D; London, Irving M; Lieberman, Judy

    2006-04-11

    A single nucleotide polymorphism (SNP) in the sickle beta-globin gene (beta(S)) leads to sickle cell anemia. Sickling increases sharply with deoxy sickle Hb concentration and decreases with increasing fetal gamma-globin concentration. Measures that decrease sickle Hb concentration should have an antisickling effect. RNA interference (RNAi) uses small interfering (si)RNAs for sequence-specific gene silencing. A beta(S) siRNA with position 10 of the guide strand designed to align with the targeted beta(S) SNP specifically silences beta(S) gene expression without affecting the expression of the gamma-globin or normal beta-globin (beta(A)) genes. Silencing is increased by altering the 5' end of the siRNA antisense (guide) strand to enhance its binding to the RNA-induced silencing complex (RISC). Specific beta(S) silencing was demonstrated by using a luciferase reporter and full-length beta(S) cDNA transfected into HeLa cells and mouse erythroleukemia cells, where it was expressed in the context of the endogenous beta-globin gene promoter and the locus control region enhancers. When this strategy was used to target beta(E), silencing was not limited to the mutant gene but also targeted the normal beta(A) gene. siRNAs, mismatched with their target at position 10, guided mRNA cleavage in all cases except when two bulky purines were aligned. The specific silencing of the beta(S)-globin gene, as compared with beta(E), as well as studies of silencing SNP mutants in other diseases, indicates that siRNAs developed to target a disease-causing SNP will be specific if the mutant residue is a pyrimidine and the normal residue is a purine.

  10. Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage.

    PubMed

    Lagarrigue, Sandrine; Martin, Lisa; Hormozdiari, Farhad; Roux, Pierre-François; Pan, Calvin; van Nas, Atila; Demeure, Olivier; Cantor, Rita; Ghazalpour, Anatole; Eskin, Eleazar; Lusis, Aldons J

    2013-11-01

    We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data.

  11. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    PubMed Central

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  12. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways.

    PubMed

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Svatoš, Aleš; Doubský, Jan; Schneeberger, Korbinian; Weigel, Detlef; Bednarek, Paweł; Schulze-Lefert, Paul

    2015-07-01

    Arabidopsis (Arabidopsis thaliana) penetration (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-D-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes.

  13. Collagen Specific T-Cell Repertoire and HLA-DR Alleles: Biomarkers of Active Refractory Rheumatoid Arthritis

    PubMed Central

    Di Sante, Gabriele; Tolusso, Barbara; Fedele, Anna Laura; Gremese, Elisa; Alivernini, Stefano; Nicolò, Chiara; Ria, Francesco; Ferraccioli, Gianfranco

    2015-01-01

    Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04–04, 04–01 and 04–11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients. PMID:26844284

  14. Collagen Specific T-Cell Repertoire and HLA-DR Alleles: Biomarkers of Active Refractory Rheumatoid Arthritis.

    PubMed

    Di Sante, Gabriele; Tolusso, Barbara; Fedele, Anna Laura; Gremese, Elisa; Alivernini, Stefano; Nicolò, Chiara; Ria, Francesco; Ferraccioli, Gianfranco

    2015-12-01

    Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04-04, 04-01 and 04-11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients.

  15. Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium.

    PubMed

    Dubrana, K; Le Mouël, A; Amar, L

    1997-06-15

    Ciliated protozoa undergo thousands of site-specific DNA deletion events during the programmed development of micronuclear genomes to macronuclear genomes. Two deletion elements, W1 and W2, were identified in the Paramecium primaurelia wild-type 156 strain. Here, we report the characterization of both elements in wild-type strain 168 and show that they display variant deletion patterns when compared with those of strain 156. The W1 ( 168 ) element is defective for deletion. The W2 ( 168 ) element is excised utilizing two alternative boundaries on one side, both are different from the boundary utilized to excise the W2156 element. By crossing the 156 and 168 strains, we demonstrate that the definition of all deletion endpoints are each controlled by cis -acting determinant(s) rather than by strain-specific trans-acting factor(s). Sequence comparison of all deleted DNA segments indicates that the 5'-TA-3'terminal sequence is strictly required at their ends. Furthermore the identity of the first eight base pairs of these ends to a previously established consensus sequence correlates with the frequency of the corresponding deletion events. Our data implies the existence of an adaptive convergent evolution of these Paramecium deleted DNA segment end sequences. PMID:9171098

  16. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  17. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.

    PubMed

    Yang, Qingyong; Fan, Chuchuan; Guo, Zhenhua; Qin, Jie; Wu, Jianzhong; Li, Qingyuan; Fu, Tingdong; Zhou, Yongming

    2012-08-01

    Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with

  18. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction

    SciTech Connect

    Day, D.J.; Barany, F.; Speiser, P.W.

    1995-09-01

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia, an inherited inability to synthesize cortisol that occurs in 1 in 10,000-15,000 births. Affected females are born with ambiguous genitalia, a condition that can be ameliorated by administering dexamethasone to the mother for most of gestation. Prenatal diagnosis is required for accurate treatment of affected females as well as for genetic counseling purposes. Approximately 95% of mutations causing this disorder result from recombinations between the gene encoding the 21-hydroxylase enzyme (CYP21) and a linked, highly homologous pseudogene (CYP21P). Approximately 20% of these mutations are gene deletions, and the remainder are gene conversions that transfer any of nine deleterious mutations from the CYP21P pseudogene to CYP21. We describe a methodology for genetic diagnosis of 21-hydroxylase deficiency that utilizes gene-specific PCR amplification in conjunction with thermostable DNA ligase to discriminate single nucleotide variations in a multiplexed ligation detection assay. The assay has been designed to be used with either fluorescent or radioactive detection of ligation products by electrophoresis on denaturing acrylamide gels and is readily adaptable for use in other disease systems. 30 refs., 5 figs.

  19. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies.

    PubMed

    Rachel, Rivka A; Yamamoto, Erin A; Dewanjee, Mrinal K; May-Simera, Helen L; Sergeev, Yuri V; Hackett, Alice N; Pohida, Katherine; Munasinghe, Jeeva; Gotoh, Norimoto; Wickstead, Bill; Fariss, Robert N; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2015-07-01

    Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies. PMID:25859007

  20. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen.

    PubMed

    Liston, Sean D; Clarke, Bradley R; Greenfield, Laura K; Richards, Michele R; Lowary, Todd L; Whitfield, Chris

    2015-01-01

    The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane. PMID:25422321

  1. Parental Allele-Specific Chromatin Configuration in a Boundary–Imprinting-Control Element Upstream of the Mouse H19 Gene

    PubMed Central

    Khosla, Sanjeev; Aitchison, Alan; Gregory, Richard; Allen, Nicholas D.; Feil, Robert

    1999-01-01

    The mouse H19 gene is expressed from the maternal chromosome exclusively. A 2-kb region at 2 to 4 kb upstream of H19 is paternally methylated throughout development, and these sequences are necessary for the imprinted expression of both H19 and the 5′-neighboring Igf2 gene. In particular, on the maternal chromosome this element appears to insulate the Igf2 gene from enhancers located downstream of H19. We analyzed the chromatin organization of this element by assaying its sensitivity to nucleases in nuclei. Six DNase I hypersensitive sites (HS sites) were detected on the unmethylated maternal chromosome exclusively, the two most prominent of which mapped 2.25 and 2.75 kb 5′ to the H19 transcription initiation site. Five of the maternal HS sites were present in expressing and nonexpressing tissues and in embryonic stem (ES) cells. They seem, therefore, to reflect the maternal origin of the chromosome rather than the expression of H19. A sixth maternal HS site, at 3.45 kb upstream of H19, was detected in ES cells only. The nucleosomal organization of this element was analyzed in tissues and ES cells by micrococcal nuclease digestion. Specifically on the maternal chromosome, an unusual and strong banding pattern was obtained, suggestive of a nonnucleosomal organization. From our studies, it appears that the unusual chromatin organization with the presence of HS sites (maternal chromosome) and DNA methylation (paternal chromosome) in this element are mutually exclusive and reflect alternate epigenetic states. In addition, our data suggest that nonhistone proteins are associated with the maternal chromosome and that these might be involved in its boundary function. PMID:10082521

  2. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles.

    PubMed

    Pembleton, Luke W; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C; Forster, John W; Cogan, Noel O I

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25-0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  3. Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5' Hypersensitive Site 4-Locus Control Region.

    PubMed

    Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam

    2016-08-01

    In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies. PMID:27492765

  4. RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations

    PubMed Central

    Bell, Graeme D.M.; Kane, Nolan C.; Rieseberg, Loren H.; Adams, Keith L.

    2013-01-01

    Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations. PMID:23677938

  5. Direct and site-specific quantification of RNA 2'-O-methylation by PCR with an engineered DNA polymerase.

    PubMed

    Aschenbrenner, Joos; Marx, Andreas

    2016-05-01

    Methylation of the 2'-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2'-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2'-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2'-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  6. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase

    PubMed Central

    Aschenbrenner, Joos; Marx, Andreas

    2016-01-01

    Methylation of the 2′-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2′-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2′-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2′-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  7. Development and comparison of four real-time polymerase chain reaction systems for specific detection and quantification of Zea mays L.

    PubMed

    Hernández, Marta; Duplan, Marie-Noëlle; Berthier, Georges; Vaïtilingom, Marc; Hauser, Wolfgang; Freyer, Regina; Pla, Maria; Bertheau, Yves

    2004-07-28

    Four real-time polymerase chain reaction systems aiming at the specific detection and quantification of maize DNA are described. They have been developed in four independent laboratories targeting different maize sequences, i.e., alcohol dehydrogenase (Adh1), high mobility group protein (hmga), invertase A (ivr1), and zein, respectively. They were all fully specific, showing a very similar quantification accuracy along a number of distantly related maize cultivars and being either single or low copy number genes. They were highly sensitive and exhibited limits of quantification below 100 maize genomic copies. In consequence, they are considered suitable for use as maize specific endogenous reference genes in DNA analyses, including GMO quantitative tests.

  8. NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble.

    PubMed

    Yakhnin, Alexander V; Murakami, Katsuhiko S; Babitzke, Paul

    2016-03-01

    NusG, referred to as Spt5 in archaeal and eukaryotic organisms, is the only transcription factor conserved in all three domains of life. This general transcription elongation factor binds to RNA polymerase (RNAP) soon after transcription initiation and dissociation of the RNA polymerase σ factor. Escherichia coli NusG increases transcription processivity by suppressing RNAP pausing, whereas Bacillus subtilis NusG dramatically stimulates pausing at two sites in the untranslated leader of the trpEDCFBA operon. These two regulatory pause sites participate in transcription attenuation and translational control mechanisms, respectively. Here we report that B. subtilis NusG makes sequence-specific contacts with a T-rich sequence in the non-template DNA (ntDNA) strand within the paused transcription bubble. NusG protects T residues of the recognition sequence from permanganate oxidation, and these T residues increase the affinity of NusG to the elongation complex. Binding of NusG to RNAP does not require interaction with RNA. These results indicate that bound NusG prevents forward movement of RNA polymerase by simultaneously contacting RNAP and the ntDNA strand. Mutational studies indicate that amino acid residues of two short regions within the NusG N-terminal domain are primarily responsible for recognition of the trp operon pause signals. Structural modeling indicates that these two regions are adjacent to each another in the protein. We propose that recognition of specific sequences in the ntDNA and stimulation of RNAP pausing is a conserved function of NusG-like transcription factors.

  9. NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble.

    PubMed

    Yakhnin, Alexander V; Murakami, Katsuhiko S; Babitzke, Paul

    2016-03-01

    NusG, referred to as Spt5 in archaeal and eukaryotic organisms, is the only transcription factor conserved in all three domains of life. This general transcription elongation factor binds to RNA polymerase (RNAP) soon after transcription initiation and dissociation of the RNA polymerase σ factor. Escherichia coli NusG increases transcription processivity by suppressing RNAP pausing, whereas Bacillus subtilis NusG dramatically stimulates pausing at two sites in the untranslated leader of the trpEDCFBA operon. These two regulatory pause sites participate in transcription attenuation and translational control mechanisms, respectively. Here we report that B. subtilis NusG makes sequence-specific contacts with a T-rich sequence in the non-template DNA (ntDNA) strand within the paused transcription bubble. NusG protects T residues of the recognition sequence from permanganate oxidation, and these T residues increase the affinity of NusG to the elongation complex. Binding of NusG to RNAP does not require interaction with RNA. These results indicate that bound NusG prevents forward movement of RNA polymerase by simultaneously contacting RNAP and the ntDNA strand. Mutational studies indicate that amino acid residues of two short regions within the NusG N-terminal domain are primarily responsible for recognition of the trp operon pause signals. Structural modeling indicates that these two regions are adjacent to each another in the protein. We propose that recognition of specific sequences in the ntDNA and stimulation of RNAP pausing is a conserved function of NusG-like transcription factors. PMID:26742846

  10. Real-time fluorogenic reverse transcription polymerase chain reaction assay for the specific detection of Bagaza virus.

    PubMed

    Buitrago, Dolores; Rocha, Ana; Tena-Tomás, Cristina; Vigo, Marta; Agüero, Montserrat; Jiménez-Clavero, Miguel Angel

    2012-09-01

    In September 2010, an outbreak of disease in 2 wild bird species (red-legged partridge, Alectoris rufa; ring-necked pheasant, Phasianus colchicus) occurred in southern Spain. Bagaza virus (BAGV) was identified as the etiological agent of the outbreak. BAGV had only been reported before in Western Africa (Central African Republic, Senegal) and in India. The first occurrence of BAGV in Spain stimulated a demand for rapid, reliable, and efficacious diagnostic methods to facilitate the surveillance of this disease in the field. This report describes a real-time reverse transcription polymerase chain reaction (RT-PCR) method based on a commercial 5'-Taq nuclease-3' minor groove binder DNA probe and primers targeting the Bagaza NS5 gene. The method allowed the detection of BAGV with a high sensitivity, whereas other closely related flaviviruses (Usutu virus, West Nile virus, and Japanese encephalitis virus) were not detected. The assay was evaluated using field samples of red-legged partridges dead during the outbreak (n = 11), as well as samples collected from partridges during surveillance programs (n = 81). The results were compared to those obtained with a pan-flaviviral hemi-nested RT-PCR followed by nucleotide sequencing, which was employed originally to identify the virus involved in the outbreak. The results obtained with both techniques were 100% matching, indicating that the newly developed real-time RT-PCR is a valid technique for BAGV genome detection, useful in both diagnosis and surveillance studies.

  11. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella.

    PubMed

    Rahn, K; De Grandis, S A; Clarke, R C; McEwen, S A; Galán, J E; Ginocchio, C; Curtiss, R; Gyles, C L

    1992-08-01

    Amplification of nucleotide sequences within the invA gene of Salmonella typhimurium was evaluated as a means of detecting Salmonella. A collection of 630 strains of Salmonella comprising over 100 serovars, including the 20 most prevalent serovars isolated from animals and humans in Canada, was examined. Controls consisted of 142 non-Salmonella strains comprising 21 genera of bacteria. Cultures were screened by inoculating a single colony of bacteria directly into a polymerase chain reaction (PCR) mixture which contained a pair of primers specific for the invA gene. The specific PCR product was a 284 bp DNA fragment which was visualized in 2% agarose gels. With the exception of two S. litchfield and two S. senftenberg strains, all Salmonella strains were detected. In contrast, none of the non-Salmonella strains yielded the specific amplification product. Non-specific amplification of a few non-Salmonella strains resulted in a product that was distinctly different in size from the specific 284 bp product. Specificity of amplification was further confirmed by demonstration of hybridization of a 32P-labelled invA gene fragment only to the specific 284 bp product. The detection of 99.4% of Salmonella strains tested and the failure to specifically amplify DNA from non-Salmonella strains confirm that the invA gene contains sequences unique to Salmonella and demonstrate that this gene is a suitable PCR target, with potential diagnostic applications.

  12. High-throughput, low-cost, and event-specific polymerase chain reaction detection of herbicide tolerance in genetically modified soybean A2704-12.

    PubMed

    Ma, H; Li, H; Li, J; Wang, X F; Wei, P C; Li, L; Yang, J B

    2014-01-01

    The aim of this study was to develop an event-specific qualitative and real-time quantitative polymerase chain reaction (PCR) method for detection of herbicide-tolerance genetically modified (GM) soybean A2704-12. The event-specific PCR primers were designed, based on the 5'-flanking integration sequence in the soybean genome, to amplify the 239-bp target fragment. Employing the same event-specific primers, qualitative PCR and real-time quantitative PCR detection methods were successfully developed. The results showed that the A2704-12 event could be specifically distinguished from other GM soybean events. In the qualitative PCR assay, the limit of detection was 0.05%, and in the real-time quantitative PCR assay, the limit of detection was less than 0.01%. Moreover, our genomic DNA (gDNA) extraction protocol is high-throughput, safe, and low-cost. The event-specific PCR assay system is cost-efficient by using SYBR Green I in real-time PCR, and by using the same primers in both the qualitative and quantitative PCR assays. We therefore developed a high-throughput, low-cost, and event-specific qualitative and quantitative PCR detection method for GM soybean A2704-12. The method would be useful for market supervision and management of GM soybean A2704-12 due to its high specificity and sensitivity. PMID:24615034

  13. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method. PMID:25946377

  14. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  15. Concordance between allele-specific PCR and ultra-deep pyrosequencing for the detection of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations

    PubMed Central

    Hunt, Gillian M; Morris, Lynn; Moorthy, Anitha; Coovadia, Ashraf; Abrams, Elaine J; Strehlau, Renate; Kuhn, Louise; Persaud, Deborah

    2014-01-01

    Recent advances in genotyping technologies have allowed for detection of HIV-1 drug resistance mutations present at low levels. The presence and percentage of Y181C and K103N drug-resistant variants in the blood of 105 subtype C HIV-infected infants who failed single-dose nevirapine prophylaxis for HIV transmission were compared using two highly sensitive genotyping methods, allele-specific PCR (AS-PCR) and ultra-deep pyrosequencing. Significant correlations in detection between both methods were found for both Y181C (correlation coefficients of 0.94 [95% CI 0.91-0.96]) and K103N (0.89 [95% CI 0.84 – 0.92]) mutations. The majority of discordant specimens (3/5 Y181C and 8/11 K103N) had wild-type variants when population sequencing was used, but mutant variants were detectable at very low levels (≤5%) with either assay. This difference is most likely due to stochastic variations in the appearance of mutant variants. Overall, both AS-PCR and ultra-deep pyrosequencing methods have proven to be sensitive and accurate, and may confidently be used where feasible. PMID:25034127

  16. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    SciTech Connect

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.

  17. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    DOE PAGES

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; et al

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

  18. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    PubMed Central

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-01-01

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (∼36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo. PMID:26370782

  19. Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

    PubMed Central

    Schrumpf, Melanie; Talebian Yazdi, Mehrdad; Ruano, Dina; Forte, Giusi I.; Nederlof, Petra M.; Veselic, Maud; Rabe, Klaus F.; Annema, Jouke T.; Smit, Vincent; Morreau, Hans; van Wezel, Tom

    2011-01-01

    Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and histological material was available. We demonstrated that these standard molecular techniques can be accurately applied on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling can be reliably performed on fine needle cytology aspirates from NSCLC patients. PMID:21408138

  20. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples.

    PubMed

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D'Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues.

  1. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID

  2. Major histocompatibility complex class I chain related (MIC) A gene, TNFa microsatellite alleles and TNFB alleles in juvenile idiopathic arthritis patients from Latvia.

    PubMed

    Nikitina Zake, Liene; Cimdina, Ija; Rumba, Ingrida; Dabadghao, Preethi; Sanjeevi, Carani B

    2002-05-01

    In order to analyze involvement of major histocompatibility complex class I chain-related gene A (MICA) and tumor necrosis factor a (TNFa) microsatellite polymorphisms as well as TNFB gene in juvenile idiopathic arthritis (JIA), we studied 128 patients divided into groups according to clinical features [monoarthritis (n = 14), oligoarthritis (n = 58), polyarthritis (n = 50), and systemic (n = 6)], and 114 age- and sex-matched healthy controls from Latvia. DNA samples were amplified with specific primers and used for genotyping of MICA and TNFa microsatellite. Typing for a biallelic NcoI polymerase chain reaction RFLP polymorphism located at the first intron of TNFB gene was done as follows: restriction digests generated fragments of 555bp and 185bp for TNFB*1 allele, and 740bp for TNFB*2 allele. The results were compared between cases and controls. We found significant increase of MICA allele A4 (p = 0.009; odds ratio [OR] = 2.3) and allele TNFa2 (p = 0.0001; OR = 4.4) in patients compared with controls. The frequency of allele TNFa9 was significantly decreased (p = 0.0001; OR = 0.1) in patients with JIA. No significant differences of TNFB allele frequency were found. Our data suggest that MICA and TNFa microsatellite polymorphisms may be used as markers for determination of susceptibility and protection from JIA.

  3. Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

    PubMed Central

    Lewis, Jennifer D.; Wu, Ronald

    2010-01-01

    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a. PMID:20368970

  4. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    PubMed

    Wu, Ying; Waite, Lindsay L; Jackson, Anne U; Sheu, Wayne H-H; Buyske, Steven; Absher, Devin; Arnett, Donna K; Boerwinkle, Eric; Bonnycastle, Lori L; Carty, Cara L; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C; Dumitrescu, Logan; Eaton, Charles B; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E; Hindorff, Lucia A; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L; Narisu, Narisu; Robinson, Jennifer G; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M; Adair, Linda S; Ballantyne, Christie M; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S; Duggan, David; Feranil, Alan B; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C; Hveem, Kristian; Juang, Jyh-Ming J; Kesäniemi, Antero Y; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lee, I-Te; Leppert, Mark F; Matise, Tara C; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Boehnke, Michael; Haiman, Christopher A; Chen, Yii-Der I; Kooperberg, Charles; Assimes, Themistocles L; Crawford, Dana C; Hsiung, Chao A; North, Kari E; Mohlke, Karen L

    2013-03-01

    Genome-wide association studies (GWAS) have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4) in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291

  5. [Structural-functional characteristics of the Schizosaccharomyces pombe rpb8+ gene, coding the subunit of RNA polymerase I-III, specific only for eukaryotes].

    PubMed

    Shpakovskiĭ, G V; Proshkin, S A; Kaiushin, A L; Korosteleva, M D; Lebedenko, E N

    1998-02-01

    A full-length cDNA of the rpb8+ gene encoding a common subunit Rpb8 of nuclear RNA polymerases I-III only specific for Eucarya was isolated from an expression library of the fission yeast Schizosaccharomyces pombe. The primary structure of the corresponding fragment of the Sz. pombe genome was also established. The rpb8+ gene contains two short introns, 59 and 48 bp long. Only short segments of homology were found upon comparing the Rpb8 subunit homologs from various eukaryotic species, and substantial differences exist between the corresponding proteins of unicellular and multicellular organisms. Subunit Rpb8 of Sz. pombe proved to be the smallest one among the known related proteins: it lacks the 21-aa fragment corresponding to amino acids residues 68-88 of the central part of the homologous subunit ABC14.5 of Saccharomyces cerevisiae. Accordingly, subunit Rpb8 of the fission yeast was not capable of substituting in vivo subunit ABC14.5 in nuclear RNA polymerases of the baker's yeast. PMID:10335407

  6. HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies.

    PubMed

    Koffman, B M; Sivakumar, K; Simonis, T; Stroncek, D; Dalakas, M C

    1998-04-15

    We studied the HLA class II associations in patients with sporadic inclusion body myositis (s-IBM) and hereditary inclusion body myopathies (h-IBM) and attempted to distinguish these myopathies on the basis of HLA allele assignments. Forty-five patients, 30 with s-IBM and 15 with h-IBM, underwent HLA class II allele-specific typing using polymerase chain reaction sequence-specific primers for 71 alleles contained in the DRbeta1, DRbeta3-5, and DQbeta1 loci. In s-IBM, we found a high (up to 77%) frequency of DRbeta1*0301, DRbeta3*0101 (or DRbeta3*0202) and DQbeta1*0201 alleles. No significant association with alleles in the DR and DQ haplotypes was found among the 15 h-IBM patients. The strong association of prominent alleles with s-IBM, but not h-IBM, suggests that s-IBM is a distinct disorder with an immunogenetic background that differs from h-IBM.

  7. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that polymorphisms associated with transcriptional regulation are critical for viral disease resistance was tested by selecting birds using SNPs exhibiting allele-specific expression (ASE) in response to viral challenge. Analysis indicates ASE markers account for 83% of the disease re...

  8. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. PMID:26341059

  9. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence.

  10. Allele-specific marker development and selection efficiencies for both flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes in soybean subgenus soja.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-06-01

    Color is one of the phenotypic markers mostly used to study soybean (Glycine max L. Merr.) genetic, molecular and biochemical processes. Two P450-dependent mono-oxygenases, flavonoid 3'-hydroxylase (F3'H; EC1.14.3.21) and flavonoid 3',5'-hydroxylase (F3'5'H, EC1.14.13.88), both catalyzing the hydroxylation of the B-ring in flavonoids, play an important role in coloration. Previous studies showed that the T locus was a gene encoding F3'H and the W1 locus co-segregated with a gene encoding F3'5'H in soybean. These two genetic loci have identified to control seed coat, flower and pubescence colors. However, the allelic distributions of both F3'H and F3'5'H genes in soybean were unknown. In this study, three novel alleles were identified (two of four alleles for GmF3'H and one of three alleles for GmF3'5'H). A set of gene-tagged markers was developed and verified based on the sequence diversity of all seven alleles. Furthermore, the markers were used to analyze soybean accessions including 170 cultivated soybeans (G. max) from a mini core collection and 102 wild soybeans (G. soja). For both F3'H and F3'5'H, the marker selection efficiencies for pubescence color and flower color were determined. The results showed that one GmF3'H allele explained 92.2 % of the variation in tawny and two gmf3'h alleles explained 63.8 % of the variation in gray pubescence colors. In addition, two GmF3'5'H alleles and one gmF3'5'h allele explained 94.0 % of the variation in purple and 75.3 % in white flowers, respectively. By the combination of the two loci, seed coat color was determined. In total, 90.9 % of accessions possessing both the gmf3'h-b and gmf3'5'h alleles had yellow seed coats. Therefore, seed coat colors are controlled by more than two loci.

  11. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  12. Sensitive detection of the c-KIT c.1430G>T mutation by mutant-specific polymerase chain reaction in feline mast cell tumours.

    PubMed

    Takanosu, M; Sato, M; Kagawa, Y

    2014-06-01

    Here, we describe the establishment of mutant-specific polymerase chain reaction (PCR) for detection of a c-KIT c.1430G>T mutation in feline mast cell tumours. Several mutations in feline c-KIT have been identified, with the c.1430G>T mutation accounting for a significant portion of feline mast cell tumour mutations. The c.1430G>T mutation in c-KIT exon 9 was detected in 15.7% (11 of 70) of samples by mutant-specific PCR but in only 7.1% (5 of 70) by PCR-restriction fragment length polymorphism (RFLP) in the genomic DNA isolated from 70 formalin-fixed paraffin-embedded sections or cells collected by fine needle aspiration. Mutant-specific PCR showed remarkably higher detection rate than did PCR-RFLP. DNA sequence analysis did not always yield identical results to those of mutant-specific PCR, suggesting heterogeneity of tumour cells. Mutant-specific PCR is a valid and efficient screening tool for detection of the c-KIT c.1430G>T point mutation in feline mast cell tumours compared with PCR-RFLP and sequencing analysis.

  13. Effect of the Concentration Difference between Magnesium Ions and Total Ribonucleotide Triphosphates in Governing the Specificity of T7 RNA Polymerase-Based Rolling Circle Transcription for Quantitative Detection.

    PubMed

    Li, Zhiyan; Lau, Choiwan; Lu, Jianzhong

    2016-06-01

    T7 RNA polymerase-based rolling circle transcription (RCT) is a more powerful tool than universal runoff transcription and traditional DNA polymerase-based rolling circle amplification (RCA). However, RCT is rarely employed in quantitative detection due to its poor specificity for small single-stranded DNA (ssDNA), which can be transcribed efficiently by T7 RNA polymerase even without a promoter. Herein we show that the concentration difference between Mg(2+) and total ribonucleotide triphosphates (rNTPs) radically governs the specificity of T7 RNA polymerase. Only when the total rNTP concentration is 9 mM greater than the Mg(2+) concentration can T7 RNA polymerase transcribe ssDNA specifically and efficiently. This knowledge improves our traditional understanding of T7 RNA polymerase and makes convenient application of RCT in quantitative detection possible. Subsequently, an RCT-based label-free chemiluminescence method for microRNA detection was designed to test the capability of this sensing platform. Using this simple method, microRNA as low as 20 amol could be quantitatively detected. The results reveal that the developed sensing platform holds great potential for further applications in the quantitative detection of a variety of targets. PMID:27167591

  14. Event-specific qualitative and quantitative polymerase chain reaction methods for detection of genetically modified rapeseed Ms8xRf3 based on the right border junctions.

    PubMed

    Wu, Gang; Wu, Yuhua; Xiao, Ling; Lu, Changming

    2008-01-01

    Ms8xRf3 is a genetically modified rapeseed hybrid which is widely cultivated in Canada and exported to some other countries for production of foodstuffs or fodder. In this study, the genomic sequences flanking the right borders of the integrated transgenic sequences in the Ms8xRf3 genome were characterized and showed high similarities with the bacterial artificial chromosome clone of Chinese cabbage. Event-specific qualitative polymerase chain reaction (PCR) methods were established with the primers and probes targeting the junction regions to produce a 123 base pair (bp) product for the Ms8 event and 92 bp for the Rf3 event. The absolute detection limit of qualitative PCR was 2.5 initial template copies for the Ms8 event and 50 copies for the Rf3 event. Quantitiative detection methods were established, with the absolute quantification limit being approximately 25 initial template copies.

  15. Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner

    PubMed Central

    Amin, Ahmad S.; Giudicessi, John R.; Tijsen, Anke J.; Spanjaart, Anne M.; Reckman, Yolan J.; Klemens, Christine A.; Tanck, Michael W.; Kapplinger, Jamie D.; Hofman, Nynke; Sinner, Moritz F.; Müller, Martina; Wijnen, Wino J.; Tan, Hanno L.; Bezzina, Connie R.; Creemers, Esther E.; Wilde, Arthur A. M.; Ackerman, Michael J.; Pinto, Yigal M.

    2012-01-01

    Aims Heterozygous mutations in KCNQ1 cause type 1 long QT syndrome (LQT1), a disease characterized by prolonged heart rate-corrected QT interval (QTc) and life-threatening arrhythmias. It is unknown why disease penetrance and expressivity is so variable between individuals hosting identical mutations. We aimed to study whether this can be explained by single nucleotide polymorphisms (SNPs) in KCNQ1's 3′ untranslated region (3′UTR). Methods and results This study was performed in 84 LQT1 patients from the Academic Medical Center in Amsterdam and validated in 84 LQT1 patients from the Mayo Clinic in Rochester. All patients were genotyped for SNPs in KCNQ1's 3′UTR, and six SNPs were found. Single nucleotide polymorphisms rs2519184, rs8234, and rs10798 were associated in an allele-specific manner with QTc and symptom occurrence. Patients with the derived SNP variants on their mutated KCNQ1 allele had shorter QTc and fewer symptoms, while the opposite was also true: patients with the derived SNP variants on their normal KCNQ1 allele had significantly longer QTc and more symptoms. Luciferase reporter assays showed that the expression of KCNQ1's 3′UTR with the derived SNP variants was lower than the expression of the 3′UTR with the ancestral SNP variants. Conclusion Our data indicate that 3′UTR SNPs potently modify disease severity in LQT1. The allele-specific effects of the SNPs on disease severity and gene expression strongly suggest that they are functional variants that directly alter the expression of the allele on which they reside, and thereby influence the balance between proteins stemming from either the normal or the mutant KCNQ1 allele. PMID:22199116

  16. Proper Use of Allele-Specific Expression Improves Statistical Power for cis-eQTL Mapping with RNA-Seq Data

    PubMed Central

    HU, Yi-Juan; SUN, Wei; TZENG, Jung-Ying; PEROU, Charles M.

    2015-01-01

    Studies of expression quantitative trait loci (eQTLs) offer insight into the molecular mechanisms of loci that were found to be associated with complex diseases and the mechanisms can be classified into cis- and trans-acting regulation. At present, high-throughput RNA sequencing (RNA-seq) is rapidly replacing expression microarrays to assess gene expression abundance. Unlike microarrays that only measure the total expression of each gene, RNA-seq also provides information on allele-specific expression (ASE), which can be used to distinguish cis-eQTLs from trans-eQTLs and, more importantly, enhance cis-eQTL mapping. However, assessing the cis-effect of a candidate eQTL on a gene requires knowledge of the haplotypes connecting the candidate eQTL and the gene, which cannot be inferred with certainty. The existing two-stage approach that first phases the candidate eQTL against the gene and then treats the inferred phase as observed in the association analysis tends to attenuate the estimated cis-effect and reduce the power for detecting a cis-eQTL. In this article, we provide a maximum-likelihood framework for cis-eQTL mapping with RNA-seq data. Our approach integrates the inference of haplotypes and the association analysis into a single stage, and is thus unbiased and statistically powerful. We also develop a pipeline for performing a comprehensive scan of all local eQTLs for all genes in the genome by controlling for false discovery rate, and implement the methods in a computationally efficient software program. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to empirical breast cancer data from The Cancer Genome Atlas project. PMID:26568645

  17. Comparison of human platelet antigen (HPA)-1a typing by solid phase red cell adherence to HPA-1 allotypes determined by allele-specific restriction enzyme analysis.

    PubMed

    McGann, M J; Procter, J L; Honda, J; Matsuo, K; Stroncek, D F

    2000-01-01

    Phenotype results for human platelet antigen (HPA)-1 by Capture-P(R), (Immucor, Inc., Norcross, GA) solid phase red cell adherence (SPRCA) were compared to results of allele-specific restriction enzyme analysis (ASRA) for the determination of HPA-1 allotype. Because the expression of HPA-1a and HPA-1b is determined by a single nucleotide substitution of thymine --> cytosine at position 196 of the gene encoding membrane glycoprotein (GP)-IIIa, it is possible to distinguish the alternate forms of the gene using ASRA. Primers (5'- GCTCCAATGTACGGGGTAAACTC-3' and 5'-CAGACCTCCACCTTGTGCTCTATG- 3') were designed to amplify the region of DNA that contains the polymorphism and a restriction enzyme (Nci I) was used to cleave the DNA in a predictable manner. Platelet-rich plasma for immunophenotying and anticoagulated whole blood for DNA extraction were obtained from 159 platepheresis donors. Of 159 SPRCA tests, 138 were valid and 21 were invalid due to positive autologous controls. For 135 HPA-1a-positive and 2 HPA-1a-negative phenotype tests the DNA typing results correlated: 135 positive samples were either HPA-1a/a or HPA-1a/b and 2 negative samples were HPA-1b/b. One donor that typed as HPA-1b/b by ASRA had a positive result of 2+ on SPRCA. This donor had been previously typed by SPRCA as HPA-1a-negative and DNA typed as HPA-1b/b by our laboratory. Based on these findings results of = 3+ by SPRCA are interpreted as HPA-1a-positive for donor screening purposes. SPRCA test results of = 2+ are considered equivocal and the HPA-1 allotype is determined by ASRA. HPA-1a-negative donors by SPRCA must be confirmed as HPA-1b/b by ASRA prior to issue for a patient that requires HPA-1anegative platelets.

  18. Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata.

    PubMed

    Wang, X; Hughes, A L; Tsukamoto, T; Ando, T; Kao, T

    2001-02-01

    For Solanaceae type self-incompatibility, discrimination between self and nonself pollen by the pistil is controlled by the highly polymorphic S-RNase gene. To date, the mechanism generating the allelic diversity of this gene is largely unknown. Natural populations offer a good opportunity to address this question because they likely contain different alleles that share recent common progenitors. We identified 19 S haplotypes from a natural population of Petunia inflata in Argentina, used reverse transcriptase-polymerase chain reaction to obtain cDNAs for 15 alleles of the S-RNase gene, and sequenced all the cDNAs. Phylogenetic studies revealed that five of these alleles and two previously identified alleles form a major clade, and that the 5' region of S(19) allele was derived from an ancestor allele closely related to S(2), whereas its 3' region was derived from an ancestor allele closely related to S(8). A similar evolutionary relationship was found among S(3), S(12), and S(15) alleles. These findings suggest that intragenic recombination contributed to the generation of the allelic diversity of the S-RNase gene. Two additional findings emerged from the sequence comparisons. First, the nucleotide sequence of the S(1) allele identified in this work is completely identical to that of the previously identified S(1) allele of a different origin. Second, in the two hypervariable regions HVa and HVb, thought to be involved in determining S allele specificity, S(6) and S(9) alleles differ only by four nucleotides, all in HVb, resulting in two amino acid differences. The implications of these findings are discussed. PMID:11161057

  19. Diversity of HLA-B17 alleles and haplotypes in East Asians and a novel Cw6 allele (Cw*0604) associated with B*5701.

    PubMed

    Inoue, T; Ogawa, A; Tokunaga, K; Ishikawa, Y; Kashiwase, K; Tanaka, H; Park, M H; Jia, G J; Chimge, N O; Sideltseva, E W; Akaza, T; Tadokoro, K; Takahashi, T; Juji, T

    1999-06-01

    The distribution of HLA-B17 alleles and their association with HLA-A, -C and -DRB1 alleles were investigated in seven East Asian populations Japanese, South Korean, Chinese-Korean, Man, Northern Han, Mongolian and Buryat populations). The B17 alleles were identified from genomic DNA using group-specific polymerase chain reaction (PCR) followed by hybridization with sequence-specific oligonucleotide probes (SSOP). In all of these East Asian populations, except Japanese and Chinese-Koreans, B*5701 was detected and strongly associated with A*0101, Cw*0602 and DRB1*0701. In contrast, B*5801 was detected in all the seven populations and strongly associated with A*3303, Cw*0302, DRB1*0301 and DRB1*1302. The A*3303-Cw*0302-B*5801-DRB1*1302 haplotype was observed in South Korean, Chinese-Korean, Buryat and Japanese populations, while A*3303-Cw*0302-B*5801-DRB1*0301 was predominantly observed in the Mongolian population. A similar haplotype, A*0101-Cw*0302-B*5801-DRB1*1302, was observed in the Buryat population. A novel Cw6 allele, Cw*0604, was identified in the Man population. This Cw allele was observed on the haplotype A*0101-B*5701-DRB1*0701. Thus, we confirmed, at the sequence level, that the common haplotypes carrying B*5701 and B*5801 have been conserved and shared in East Asian populations.

  20. Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: evidence for trans-specific evolution of alleles.

    PubMed

    Arden, B; Klein, J

    1982-04-01

    H-2 haplotypes were extracted from wild mice of three subspecies, Mus musculus domesticus, M. m. molossinus, and M. m. castaneus, that are known to have been separated from one another for some 1 to 2 million years. Serologically indistinguishable molecules controlled by some of the polymorphic H-2 loci were compared by tryptic peptide mapping, and the maps were found to be identical. In addition, a number of instances of biochemically indistinguishable H-2 molecules were found among wild mice and inbred strains of the M. m. domesticus subspecies. These findings suggest that some of the H-2 alleles have not altered for greater than 1 million years. To reconcile this apparent stability of H-2 genes with their extraordinary polymorphism (some 100 alleles at each of the polymorphic H-2 loci), it is proposed that the H-2 alleles evolve as if they were separate loci.

  1. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  2. Brief communication: Evolution of a specific O allele (O1vG542A) supports unique ancestry of Native Americans.

    PubMed

    Villanea, Fernando A; Bolnick, Deborah A; Monroe, Cara; Worl, Rosita; Cambra, Rosemary; Leventhal, Alan; Kemp, Brian M

    2013-08-01

    In this study, we explore the geographic and temporal distribution of a unique variant of the O blood group allele called O1v(G542A) , which has been shown to be shared among Native Americans but is rare in other populations. O1v(G542A) was previously reported in Native American populations in Mesoamerica and South America, and has been proposed as an ancestry informative marker. We investigated whether this allele is also found in the Tlingit and Haida, two contemporary indigenous populations from Alaska, and a pre-Columbian population from California. If O1v(G542A) is present in Na-Dene speakers (i.e., Tlingits), it would indicate that Na-Dene speaking groups share close ancestry with other Native American groups and support a Beringian origin of the allele, consistent with the Beringian Incubation Model. If O1v(G542A) is found in pre-Columbian populations, it would further support a Beringian origin of the allele, rather than a more recent introduction of the allele into the Americas via gene flow from one or more populations which have admixed with Native Americans over the past five centuries. We identified this allele in one Na-Dene population at a frequency of 0.11, and one ancient California population at a frequency of 0.20. Our results support a Beringian origin of O1v(G542A) , which is distributed today among all Native American groups that have been genotyped in appreciable numbers at this locus. This result is consistent with the hypothesis that Na-Dene and other Native American populations primarily derive their ancestry from a single source population. PMID:23868176

  3. Characterization and evaluation of an arbitrary primed Polymerase Chain Reaction (PCR) product for the specific detection of Brucella species.

    PubMed

    Qasem, Jafar A; AlMomin, Sabah; Al-Mouqati, Salwa A; Kumar, Vinod

    2015-03-01

    Laboratory detection of Brucella is based largely on bacterial isolation and phenotypic characterization. These methods are lengthy and labor-intensive and have been associated with a heightened risk of laboratory-acquired infection. Antibody based indirect detection methods also suffer from limitations in proper diagnosis of the organism. To overcome these problems, nucleic acid amplification has been explored for rapid detection and confirmation of the presence of Brucella spp. PCR-based diagnostics is useful for screening large populations of livestock to identify infected individuals and confirms the presence of the pathogen. Random Amplification of Polymorphic DNA (RAPD) was performed and identified a 1.3 kb PCR fragment specifically amplifiable from DNA isolated from Brucella. A BLAST search revealed no significant homology with the reported sequences from species other than the members of Brucella. The isolated fragment seems to be a part of d-alanine-d-alanine ligase gene in Brucella sp. Translational BLAST revealed certain degree of homology of this sequence with orthologs of this gene reported from other microbial species at the deduced amino acid level. The sequence information was used to develop PCR based assays to detect Brucella sp. from various samples. The minimum detection limit of Brucella from blood and milk samples spiked with Brucella DNA was found to be 1 ng/ml and 10 ng/ml, respectively. In conclusion, we demonstrated that the PCR based detection protocol was successfully used for the detection of Brucella from various organs and spiked samples of diseased sheep. Diagnosis of Brucellosis by PCR based method reported in this study is relatively rapid, specific and simple.

  4. Characterization and evaluation of an arbitrary primed Polymerase Chain Reaction (PCR) product for the specific detection of Brucella species

    PubMed Central

    Qasem, Jafar A.; AlMomin, Sabah; Al-Mouqati, Salwa A.; Kumar, Vinod

    2014-01-01

    Laboratory detection of Brucella is based largely on bacterial isolation and phenotypic characterization. These methods are lengthy and labor-intensive and have been associated with a heightened risk of laboratory-acquired infection. Antibody based indirect detection methods also suffer from limitations in proper diagnosis of the organism. To overcome these problems, nucleic acid amplification has been explored for rapid detection and confirmation of the presence of Brucella spp. PCR-based diagnostics is useful for screening large populations of livestock to identify infected individuals and confirms the presence of the pathogen. Random Amplification of Polymorphic DNA (RAPD) was performed and identified a 1.3 kb PCR fragment specifically amplifiable from DNA isolated from Brucella. A BLAST search revealed no significant homology with the reported sequences from species other than the members of Brucella. The isolated fragment seems to be a part of d-alanine–d-alanine ligase gene in Brucella sp. Translational BLAST revealed certain degree of homology of this sequence with orthologs of this gene reported from other microbial species at the deduced amino acid level. The sequence information was used to develop PCR based assays to detect Brucella sp. from various samples. The minimum detection limit of Brucella from blood and milk samples spiked with Brucella DNA was found to be 1 ng/ml and 10 ng/ml, respectively. In conclusion, we demonstrated that the PCR based detection protocol was successfully used for the detection of Brucella from various organs and spiked samples of diseased sheep. Diagnosis of Brucellosis by PCR based method reported in this study is relatively rapid, specific and simple. PMID:25737656

  5. [RHD 1227A allele frequency among Rh negative population and random population].

    PubMed

    Wu, Jun-Jie; Hong, Xiao-Zhen; Xu, Xian-Guo; Ma, Kai-Rong; Zhu, Fa-Ming; Yan, Li-Xing

    2006-12-01

    To investigate the frequency of RHD 1227A allele in Rh negative population and random population, an AS-PCR (allele specific-polymerase chain reaction) method was employed to detect RHD 1227A allele. RHD gene copy was determined by D zygosity test and RHD exon 9 nucleotide sequence analysis. The results showed that among 143 Rh negative donors, forty-one RHD 1227A allele carriers were detected, and 8 (19.51%) out of which were RhCCdee, 32 (78.05%) were RhCcdee, and 1 (2.44%) was RhCcdEe. Thirty-five Rh negative RHD 1227A carriers had RHD gene deletion, and the remaining carriers were RHD 1227A homozygous. Seven (1.43%) individuals were detected with RHD 1227A allele among 489 random donors. They were all G/A heterozygous at RHD 1227 site. Serological test indicated that they were normal Rh positive phenotype. It is concluded that the frequency of RHD 1227A allele is 16.43% among Rh negative population and 0.72% among the random population.

  6. A new DRB1 allele (DRB1*0811) identified in Native Americans

    SciTech Connect

    McAuley, J.D.; Williams, T.M.; Wu, J.; Foutz, T.; Troup, G.M.

    1994-12-31

    A novel DRB1 allele was identified in a potential bone marrow transplantation recipient and her father. Both are Native Americans of Navajo descent. Class II serologic typing of the patient demonstrated the presence of DR8, DR14, DR52, and DQ3. Sequence specific polymerase chain reaction (PCR) amplification of genomic DNA was consistent with the DRB1 alleles *08 and *14. Direct DNA sequencing of PCR products prepared from genomic DNA demonstrated that the patient`s class II alleles included the novel allele, DRB1*1402, DRB3*0101, DQB1*0301, and DQB1*0402. Analysis of the siblings and the father of this individual revealed that the new allele was transmitted on the haplotype A2, Cw7, B39, DQB1*0402, while the DRB1*1402 allele was transmitted on the haplotype A24, Cw4, B35, DRB3*0101, DQB1*0301. 4 refs., 1 fig., 1 tab.

  7. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  8. Detection of Mycoplasma ovipneumoniae and M. arginini in bighorn sheep using enrichment culture coupled with genus- and species-specific polymerase chain reaction.

    PubMed

    Weiser, Glen C; Drew, Mark L; Cassirer, E Frances; Ward, Alton C S

    2012-04-01

    Mycoplasma species are of interest as possible primary pathogens in the pneumonia complex of bighorn sheep (Ovis canadensis). Previous investigations have not commonly detected low frequencies of Mycoplasma spp. from free-ranging bighorn sheep, possibly due to the fastidious and slow growth of these organisms. We developed a culture protocol that employed an average initial 3-day enrichment culture in liquid Hayflick broth in a CO(2)-enhanced atmosphere. The broth was plated to solid Hayflick medium and the cultures observed for growth for up to 30 days. Polymerase chain reaction (PCR) was performed on DNA isolated from the enrichment broth and on isolates obtained from culture using Mycoplasma genus-specific PCR assays and species-specific PCR assays for M. arginini and M. ovipneumoniae. Some cultures that grew on Hayflick plates were picked as single colonies but were mixed because two organisms may grow together and appear as a single colony. Culture and PCR tests produced similar results for M. arginini, but for M. ovipneumoniae, culture alone was less accurate than PCR. Use of genus-specific primers also may allow detection of other species in samples negative for M. arginini and M. ovipneumoniae. Two methods of transport from field to laboratory (Port-a-Cul™ tubes, cryoprotectant in liquid N(2) and Fisher Transport System) gave similar results under our study conditions.

  9. Interlaboratory trial validation of an event-specific qualitative polymerase chain reaction-based detection method for genetically modified RT73 rapeseed.

    PubMed

    Pan, Liangwen; Zhang, Shuya; Yang, Litao; Broll, Hermann; Tian, Fenghua; Zhang, Dabing

    2007-01-01

    The qualitative event-specific polymerase chain reaction detection method of genetically modified (GM) RT73 rapeseed was developed based on the cloned 3' end flanking sequence of RT73 rapeseed integration. The specificity of the method for GM RT73 rapeseed was validated using several different GM rapeseed lines, GM maize lines, GM soybean line, non-GM rapeseed, and other non-GM crops. In this study, the developed method was validated through an interlaboratory study by 12 laboratories from 6 countries. The sensitivity of this method was evaluated using several mixed rapeseed meals with different GM RT73 rapeseed contents from 5.0 to 0.01% prepared by our laboratory. The evaluated results showed that all of the rapeseed endogenous reference high mobility group protein gene (HMG I/Y), figwort mosaic virus 35S (FMV 35S) promoter, and RT73 event-specific fragment could be detected from rapeseed samples at 0.1% (w/w) with a confidence level of more than 95%. All results from the 12 laboratories indicated that the developed method could be considered fit for the detection and identification of GM RT73 rapeseed.

  10. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  11. Development and validation of a quantitative real-time polymerase chain reaction assay specific for the detection of Rickettsia felis and not Rickettsia felis-like organisms.

    PubMed

    Odhiambo, Antony M; Maina, Alice N; Taylor, Melissa L; Jiang, Ju; Richards, Allen L

    2014-07-01

    Human infections with Rickettsia felis have been reported worldwide. Recent studies have revealed the presence of many closely related but unique rickettsiae, referred to as Rickettsia felis-like organisms (RFLO), identified in various arthropods. Due to the recent discovery of the lack of specificity of earlier R. felis-specific assays, there has become a need to develop a new generation of R. felis-specific molecular assays that will differentiate R. felis not only from other rickettsiae but more importantly from other members of the R. felis genogroup that may not be pathogenic to humans. This new generation of assays is essential for determining the true risk for flea-borne spotted fever (FBSF) by surveying arthropod vectors/hosts. Because of the lack of specificity of previous assays developed to detect R. felis infections, prior surveys may have overestimated the prevalence of R. felis in arthropod vectors and thus the perceived risk of FBSF. We have developed a specific quantitative real-time polymerase chain reaction (qPCR) assay to detect R. felis (RfelB). Specificity of the assay was determined by testing it with a panel of 17 related Rickettsia species and 12 nonrickettsial bacterial DNA preparations. The RfelB qPCR assay was positive for R. felis DNA and negative for all of the 17 related Rickettsia species and 12 nonrickettsia bacterial DNA preparations. The limit of detection of the RfelB qPCR assay was determined to be two copies (two genoequivalents) per microliter of R. felis target ompB fragment-containing plasmid. Validation of the RfelB qPCR assay was accomplished by testing 83 previously sequence-confirmed R. felis and RFLOs containing DNA preparations from human and flea samples collected from different geographical locations around the world. This assay will be useful for rapid detection, identification, and enumeration of R. felis, an emerging human pathogen of worldwide importance, from both clinical and environmental samples.

  12. Emaravirus-specific degenerate PCR primers allowed the identification of partial RNA-dependent RNA polymerase sequences of Maize red stripe virus and Pigeonpea sterility mosaic virus.

    PubMed

    Elbeaino, Toufic; Whitfield, Anna; Sharma, Mamta; Digiaro, Michele

    2013-03-01

    Emaravirus is a recently established viral genus that includes two approved virus species: European mountain ash ringspot-associated virus (EMARaV) and Fig mosaic virus (FMV). Other described but unclassified viruses appear to share biological characteristics similar to emaraviruses, including segmented, negative-single stranded RNA genomes with enveloped virions approximately 80-200nm in diameter. Sequence analysis of emaravirus genomes revealed the presence of conserved amino acid sequences in the RNA-dependent RNA polymerase gene (RdRp) denoted as pre-motif A, motifs A and C. Degenerate oligonucleotide primers were developed to these conserved sequences and were shown to amplify in reverse transcription-polymerase chain reaction assay (RT-PCR) DNA fragments of 276bp and 360bp in size. These primers efficiently detected emaraviruses with known sequences available in the database (FMV and EMARaV); they also detected viruses with limited sequence information such as Pigeonpea sterility mosaic virus (PPSMV) and Maize red stripe virus (MRSV). The degenerate primers designed on pre-motif A and motif A sequences successfully amplified the four species used as positive controls (276bp), whereas those of motifs A and C failed to detect only MRSV. The amino acid sequences obtained from PPSMV and MRSV shared the highest identity with those of two other tentative species of the Emaravirus genus, Rose rosette virus (RRV) (69%) and Redbud yellow ringspot virus (RYRV) (60%), respectively. The phylogenetic tree constructed with 92 amino acid-long portions of polypeptide putatively encoded by RNA1 of definitive and tentative emaravirus species clustered PPSMV and MRSV in two separate clades close to RRV and Raspberry leaf blotch virus (RLBV), respectively. The newly developed degenerate primers have proved their efficacy in amplifying new emaravirus-specific sequences; accordingly, they could be useful in identifying new emaravirus-like species in nature.

  13. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs

    PubMed Central

    Haist, Kelsey; Ziegler, Christopher; Botten, Jason

    2015-01-01

    Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment. PMID:25978311

  14. Serologic and nucleotide sequencing analyses of a novel DR52-associated DRB1 allele with the DR 'NJ25' specificity, designated DRB1*1307.

    PubMed

    Kaneshige, T; Hashimoto, M; Matsumoto, Y; Kinoshita, T; Hirasawa, T; Uchida, K; Inoko, H

    1994-10-01

    A novel DR52-associated DRB1* allele, designated DRB1*1307, was encountered in the course of our HLA-DRB1 genotyping study in a Japanese population by PCR-RFLP. Comparison of the nucleotide sequence of its second exon with those of the other known DRB1 alleles revealed that DRB1*1307 was most similar to DRB1*1101, differing by two amino acid substitutions. From a family study, DRB1*1307 was found to segregate with a haplotype of DRB3*0202-DQA1*0501-DQB1*0301, which was also observed with DRB1*1101 in a Japanese population. DRB1*1307 was recognized in three of 652 healthy Japanese controls (gene frequency: 0.24%) with the same DR-DQ haplotype, indicating that DRB1*1307 arose from DRB1*1101 by a gene conversionlike event(s) and/or point mutations. Further, it was also observed that this allele had a strong linkage disequilibrium with HLA-B70 (p < 0.001). This new DRB1*1307 allele was serologically defined as DR 'NJ25,' and it gave an almost identical serologic pattern to DRB1*1406. On sequence comparison, however, no unique amino acid residues conserved in DRB1*1406 and DRB1*1307 but absent in all the other DRB1 alleles could be found, indicating that two amino acid changes at positions 47 and 58 abolished the reactivity against the DR11 antisera.

  15. Genotype-specific mutations in the polymerase gene of hepatitis B virus potentially associated with resistance to oral antiviral therapy.

    PubMed

    Mirandola, Silvia; Sebastiani, Giada; Rossi, Cristina; Velo, Emanuela; Erne, Elke Maria; Vario, Alessandro; Tempesta, Diego; Romualdi, Chiara; Campagnolo, Davide; Alberti, Alfredo

    2012-12-01

    The evolution of hepatitis B virus (HBV) and the role of different variants during antiviral therapy may be influenced by HBV genotype. We have therefore analysed substitutions potentially related to nucleos(t)ide analogues (NAs) resistance at 42 positions within RT-region in a cohort of patients with chronic hepatitis B in relation to HBV-genotype. RT mutations analysis was performed by direct sequencing in 200 NAs-naïve patients and in 64 LAM or LAM+ADV experienced patients with NAs resistance, infected mainly by HBV-genotypes D and A. 27 polymorphic-sites were identified among the 42 positions analysed and 64 novel mutations were detected in 23 positions. Genotype-D displayed the highest mutation frequency (6.4%) among all HBV-genotypes analysed. Single or multiple mutations were detected in 80% of naïve patients. Overall, the most frequent single mutations were at residues rt54, rt53 and rt91 which may associate with significantly lower HBV-DNA levels (p=0.001). Comparison with sequencing data of patients failing LMV or LAM+ADV therapy revealed an higher frequency of novel genotype-specific mutations if compared with naïve patients: 3 mutations under LAM monotherapy in HBV-D (rtS85F; rtL91I; rtC256G) and 3 mutations under ADV therapy in HBV-A (rtI53V; rtW153R; rtF221Y). In HBV-D treated patients the dominant resistance mutation was rtL80V (31.4%) and rtM204I (60%) in LAM+ADV group while LAM-treated patients showed a preference of rtM204V (51.9%). Interestingly, none of HBV-A patients had mutation rtM204I under ADV add-on treatment but all of them had the "V" AA substitution. These results suggested that in patients with CHB, HBV-genotype might be relevant in the evolution and development of drug resistance showing also different mutation patterns in the YMDD motif between HBV genotype D and A. PMID:23026293

  16. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire

    PubMed Central

    1991-01-01

    We report here the first extensive study of a T cell repertoire for a class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the T cell receptors (TCRs) carried by 28 H-2Kd-restricted CTL clones specific for a single Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V alpha, J alpha, and J beta segments and aminoacid composition of the junctional regions. However, despite this extensive diversity, a high proportion of the TCRs contain the same V beta segment. These results are in contrast to most previously reported T cell responses towards class II MHC-peptide complexes, where the TCR repertoires appeared to be much more limited. In our study, the finding of a dominant V beta in the midst of otherwise highly diverse TCRs suggests the importance of the V beta segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As an additional finding, we observed that nearly all clones have rearranged both TCR alpha loci. Moreover, as many as one-third of the CTL clones that we analyzed apparently display two productive alpha rearrangements. This argues against a regulated model of sequential recombination at the alpha locus and consequently raises the question of whether allelic exclusion of the TCR alpha chain is achieved at all. PMID:1836010

  17. Cold-Sensitive Pseudomonas RNA Polymerase II. Cold-Promoted Restriction of Bacteriophage CB3 and the Lack of Host-Dependent Bacteriophage-Specific RNA Transcription

    PubMed Central

    Sobieski, Rodney J.; Olsen, Ronald H.

    1973-01-01

    Cold-sensitive restriction of Pseudomonas phage CB3 by Pseudomonas aeruginosa strain PAT2 involves some aspect of CB3 specific RNA synthesis at 20 C. Experiments using chloramphenicol treatment and RNA-DNA hybridization establish that the amount of CB3 RNA present at 20 C is consistent with the known percentage of phage yielder cells at 20 C. Thus, it appears that nonyielder cells of PAT2 synthesize little or no phage-specific mRNA. Burgess technique extracted PAT2 RNA polymerase (RNAP) is cold sensitive when assayed in vitro with CB3 DNA at 20 C. However, it is not cold sensitive when either calf thymus or PAT2 DNA are the templates for transcription. Low ionic strength assay conditions eliminate the cold sensitivity of PAT2 RNAP. The effect of low ionic environments on transcription initiation along with the in vivo and in vitro suppression of cold sensitivity by host rifampin resistance suggests that the inability of CB3 to reproduce in PAT2 at 20 C is a cold-sensitive step in host RNAP initiation. Our modified RNAP extraction procedure for PAT2 and PAO1C also results in the recovery of cold-sensitive PAT2 RNAP with respect to CB3 DNA templates and points to basic enzymological differences between the two hosts. A model is presented for the unusual influence of temperature on the initiation process of both PAT2 and PAO1C on RNAP transcription. PMID:4202618

  18. Polymerase chain reaction (PCR) amplification demonstrates the absence of human T-cell lymphotrophic virus (HTLV)-I specific pol sequences in peripheral T-cell lymphomas.

    PubMed

    Henni, T; Divine, M; Gaulard, P; Haioun, C; Duc Dodon, M; Gourdin, M F; Desforges, L; Goossens, M; Reyes, F; Farcet, J P

    1990-09-01

    HTLV-I seronegative patients in nonendemic areas have been described with T-cell proliferations the DNA of which contains specific HTLV-I viral sequences. We have looked for the presence of HTLV-I DNA sequences in 27 HTLV-I seronegative patients with peripheral T-cell lymphomas, distinct from adult T-cell leukemia (ATL), and four HTLV-I seropositive patients, three with an ATL and one with a tropical spastic paraparesis. Using HTLV-I pol specific primers, the genomic DNA from peripheral blood mononuclear cells and lymph nodes massively infiltrated by tumor cells was analyzed by the enzymatic gene amplification procedure. In contrast to the peripheral blood lymphocytes from the four HTLV-I seropositive patients, the peripheral T-cell lymphoma samples did not harbor HTLV-I pol sequences. The data show that the detection of HTLV-I nucleotide sequences by the polymerase chain reaction correlates with serologic analysis in this series. PMID:2266151

  19. Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction.

    PubMed Central

    Berthomme, H; Monahan, S J; Parris, D S; Jacquemont, B; Epstein, A L

    1995-01-01

    The pseudorabies virus (PRV) genes encoding the two subunits of the DNA polymerase were located on the genome by hybridization to their herpes simplex virus type 1 (HSV-1) homologs, pol and UL42, and subsequently were sequenced. Like the HSV-1 homologs, in vitro translation products of the PRV gene encoding the catalytic subunit (pol) possessed activity in the absence of the Pol accessory protein (PAP). However, the PRV PAP stimulated the activity of Pol fourfold in the presence of 150 mM KCl, using an activated calf thymus DNA template. The stimulation of Pol activity by PAP under high-salt conditions and the inhibition of Pol activity by PAP when assayed in low salt (0 mM KCl) together were used to determine the specificity with which PAP interacted with Pol. Despite functional similarity, HSV-1 UL42 and PRV PAP could neither stimulate the noncognate Pols at high salt nor inhibit them at low salt. Furthermore, a PRV Pol mutant lacking the 30 C-terminal amino acids retained basal Pol activity but could be neither stimulated nor inhibited by the PRV PAP. Sequence comparisons of the Pol proteins of the alphaherpesviruses reveal a conserved domain in the C terminus which terminates immediately before the last 41 residues of both PRV and HSV-1 proteins. These results indicate that the ability and specificity for interaction of the PRV Pol with PAP most likely resides predominantly in the extreme Pol C terminus. PMID:7707503

  20. A Fast Real-Time Polymerase Chain Reaction Method for Sensitive and Specific Detection of the Neisseria gonorrhoeae porA Pseudogene

    PubMed Central

    Hjelmevoll, Stig Ove; Olsen, Merethe Elise; Sollid, Johanna U. Ericson; Haaheim, Håkon; Unemo, Magnus; Skogen, Vegard

    2006-01-01

    Ever since the advent of molecular methods, the diagnostics of Neisseria gonorrhoeae has been troubled by false negative and false positive results compared with culture. Commensal Neisseria species and Neisseria meningitidis are closely related to N. gonorrhoeae and may cross-react when using molecular tests comprising too-low specificity. We have devised a real-time polymerase chain reaction (PCR), including an internal amplification control, that targets the N. gonorrhoeae porA pseudogene. DNA was automatically isolated on a BioRobot M48. Our subsequent PCR method amplified all of the different N. gonorrhoeae international reference strains (n = 34) and N. gonorrhoeae clinical isolates (n = 176) but not isolates of the 13 different nongonococcal Neisseria species (n = 68) that we tested. Furthermore, a panel of gram-negative bacterial (n = 18), gram-positive bacterial (n = 23), fungal (n = 1), and viral (n = 4) as well as human DNA did not amplify. The limit of detection was determined to be less than 7.5 genome equivalents/PCR reaction. In conclusion, the N. gonorrhoeae porA pseudogene real-time PCR developed in the present study is highly sensitive, specific, robust, rapid and reproducible, making it suitable for diagnosis of N. gonorrhoeae infection. PMID:17065426

  1. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

  2. In vitro replication by prokaryotic and eukaryotic polymerases on DNA templates containing site-specific and stereospecific benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide adducts.

    PubMed

    Chary, P; Lloyd, R S

    1995-04-25

    DNA adducts of the environmental carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) interact stereospecifically with prokaryotic and eukaryotic polymerases in vitro. Toward understanding the capacity to replicate past different diastereomers of BPDE at specific sites in DNA, six deoxyoligonucleotides, each 33 bases long, were constructed with stereochemically defined BPDE adducts on adenine N6 at position two of the human N-ras codon 61. Four polymerases that were studied under single encounters with the template-primer complex terminated synthesis one base 3' to the lesion with all the adducted templates. When multiple encounters between polymerase and substrate were permitted, each of the polymerases analyzed revealed a unique pattern for a given adducted template. The general replication pattern was encompassed under two categories, reflecting the significance of the R and S configurations of C10 of the pyrenyl ring attached to the single-stranded DNA template. Furthermore, within each of these categories, every polymerase demonstrated distinct quantitative differences in product accumulation at a given site, for the various adducted templates. Among the polymerases utilized in this study, exonuclease-deficient Klenow fragment of polymerase I (exo- KF) exhibited the most efficient translesion synthesis resulting in approximately 16% full-length products with the modified templates bearing adducts with C10-S configuration. In contrast, chain elongation with bacteriophage T4 DNA polymerase bearing an active 3'-->5' exonucleolytic activity was most strongly inhibited by all six BPDE-adducted templates. Misincorporation of A opposite the adduct occurred in all the templates when polymerized with Sequenase, whereas exo- KF preferentially incorporated C opposite the C10-R BPDE adducts and A opposite the C10-S BPDE adducts.

  3. Allele-specific germ cell epimutation in the spacer promoter of the 45S ribosomal RNA gene after Cr(III) exposure

    SciTech Connect

    Shiao, Y.-H. . E-mail: shiao@mail.ncifrcf.gov; Crawford, Erik B.; Anderson, Lucy M.; Patel, Pritesh; Ko, Kinarm

    2005-06-15

    Paternal exposure of mice to Cr(III) causes increased tumor risk in offspring; an epigenetic mechanism has been hypothesized. Representational difference analysis of gene methylation in sperm revealed hypomethylation in the 45S ribosomal RNA (rRNA) gene after Cr(III) exposure, compared with controls. The most striking effects were seen in the rRNA spacer promoter, a region in the intergenic region of rRNA gene clusters that can influence transcription. Methylation of the rRNA spacer promoter has not been studied heretofore. Sperm DNAs from Cr(III)-treated and control mice were modified by the bisulfite method followed by PCR amplification of the spacer promoter, including 27 CpG sites. Cloning and dideoxy sequencing identified sequence variants (T or G at base -2214) in the spacer promoter. The T allele had less DNA methylation than the G allele in control mice (17 of 17 clones vs. 42 of 72 clones, P = 0.0004). In spite of diversity of sperm DNA methylation patterns, the DNA clones from Cr(III)-exposed mice had fewer methylated CpG sites, by an average of 19% (P < 0.0001). This difference was limited to the G allele. The pyrosequencing technique was applied to quantify the percentage of methylation directly from amplified PCR products. Strikingly, for nine CpG sites including the spacer promoter core region, hypomethylation was highly significant in the Cr(III)-treated group (paired T test, P < 0.0001). Thus, one allele of the 45S rRNA spacer promoter is hypomethylated in sperm germ cells after Cr(III) exposure. This epimutation may lead to increase of tumor risk in the offspring.

  4. A Mutant S3 RNase of Petunia inflata Lacking RNase Activity Has an Allele-Specific Dominant Negative Effect on Self-Incompatibility Interactions.

    PubMed Central

    McCubbin, A. G.; Chung, Y. Y.; Kao, Th.

    1997-01-01

    Gametophytic self-incompatibility in the Solanaceae is controlled by a multiallelic locus called the S locus. Growth of pollen tubes in the pistil is inhibited when the pollen has one of the two S alleles carried by the pistil. The products of a number of pistil S alleles[mdash]S proteins or S RNases[mdash]have been identified, and their role in controlling the pistil's ability to reject self-pollen has been positively established. In contrast, the existence of pollen S allele products has so far been inferred entirely from genetic evidence. Here, we introduced a modified S3 gene of Petunia inflata encoding an S3 RNase lacking RNase activity into P. inflata plants of the S2S3 genotype to determine whether the production of the mutant protein, designated S3(H93R), would have any effect on the ability of the transgenic plants to reject S2 and S3 pollen. Analysis of the self-incompatibility behavior of 49 primary transgenic plants and the progeny of three plants (H30, H37, and H40) that produced S3(H93R) in addition to producing wild-type levels of endogenous S2 and S3 RNases revealed that S3(H93R) had a dominant negative effect on the function of the S3 RNase in rejecting self-pollen; however, it had no effect on the function of the S2 RNase. One likely explanation of the results is that S3(H93R) competes with the S3 RNase for binding to a common molecule, which is presumably the product of the pollen S3 allele. PMID:12237345

  5. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

    PubMed

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-09-15

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.

  6. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo

    PubMed Central

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-01-01

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR −129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that −129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with −129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than −129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo. PMID:26370050

  7. A novel HLA-A allele: A*0257.

    PubMed

    García-Ortiz, J E; Cox, S T; Sandoval-Ramirez, L; Little, A M; Marsh, S G E; Madrigal, J A; Argüello, J R

    2004-01-01

    A novel human leucocyte antigen-A*02 (HLA-A*02) allele was detected by reference strand-mediated conformation analysis (RSCA) of a DNA sample from a Tarahumara individual. Direct sequencing of HLA-A locus polymerase chain reaction products identified a mutation in one of the alleles. Cloning and sequencing confirmed the presence of a new allele, A*0257 which differed from A*0206 by two nucleotides at positions 355 and 362, inducing changes in residues 95 and 97, respectively, within the peptide-binding site. Those changes suggest that allele A*0257 may have resulted from an intralocus recombination event.

  8. Specificity of reverse transcriptase polymerase chain reaction assays designed for the detection of circulating cancer cells is influenced by cytokines in vivo and in vitro.

    PubMed Central

    Jung, R.; Krüger, W.; Hosch, S.; Holweg, M.; Kröger, N.; Gutensohn, K.; Wagener, C.; Neumaier, M.; Zander, A. R.

    1998-01-01

    Several reverse transcriptase polymerase chain reaction (RT-PCR) assays have been described for the detection of circulating tumour cells in blood and bone marrow. Target mRNA sequences for this purpose are the cytokeratins (CK) 19 and 20, the carcinoembryonic antigen (CEA), and the prostate-specific antigen messages. In this study, we investigated biological factors influencing the specificity of the CK19 and CEA RT-PCR assays. Bone marrow, granulocyte colony-stimulating factor (G-CSF)-mobilized blood stem cells and peripheral blood samples obtained from healthy volunteers (n = 15; CEA n = 7), from patients with epithelial (n = 29) and haematological (n = 23) cancer and from patients with chronic inflammatory diseases (n = 16) were examined. Neither CEA nor cytokeratin 19 messages could be amplified from bone marrow samples from healthy subjects and from patients with haematological malignancies. In contrast, specimens from patients with inflammatory diseases scored positive up to 60%. To investigate the influence of inflammation on target mRNA expression, haemopoietic cells were cultured with and without cytokine stimulation in vitro. CK19 messages could be easily detected in cultured marrow cells without further stimulation, CEA messages only after gamma-interferon (gamma-INF) stimulation. In contrast, G-CSF-mobilized peripheral blood stem cells were positive for CK19 messages only after stem cell factor (SCF) or interleukin stimulation. We conclude that transcription of so-called tissue-specific genes is inductible in haemopoietic tissues under certain conditions. These factors have to be considered in future applications of RT-PCR for the detection of minimal residual disease. PMID:9820179

  9. Establishment and application of event-specific polymerase chain reaction methods for two genetically modified soybean events, A2704-12 and A5547-127.

    PubMed

    Li, Xiang; Pan, Liangwen; Li, Junyi; Zhang, Qigang; Zhang, Shuya; Lv, Rong; Yang, Litao

    2011-12-28

    For implementation of the issued regulations and labeling policies for genetically modified organism (GMO) supervision, the polymerase chain reaction (PCR) method has been widely used due to its high specificity and sensitivity. In particular, use of the event-specific PCR method based on the flanking sequence of transgenes has become the primary trend. In this study, both qualitative and quantitative PCR methods were established on the basis of the 5' flanking sequence of transgenic soybean A2704-12 and the 3' flanking sequence of transgenic soybean A5547-127, respectively. In qualitative PCR assays, the limits of detection (LODs) were 10 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127. In quantitative real-time PCR assays, the LODs were 5 copies of haploid soybean genomic DNA for both A2704-12 and A5547-127, and the limits of quantification (LOQs) were 10 copies for both. Low bias and acceptable SD and RSD values were also achieved in quantification of four blind samples using the developed real-time PCR assays. In addition, the developed PCR assays for the two transgenic soybean events were used for routine analysis of soybean samples imported to Shanghai in a 6 month period from October 2010 to March 2011. A total of 27 lots of soybean from the United States and Argentina were analyzed: 8 lots from the Unites States were found to have the GM soybean A2704-12 event, and the GM contents were <1.5% in all eight analyzed lots. On the contrary, no GM soybean A5547-127 content was found in any of the eight lots. These results demonstrated that the established event-specific qualitative and quantitative PCR methods could be used effectively in routine identification and quantification of GM soybeans A2704-12 and A5547-127 and their derived products.

  10. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila.

    PubMed Central

    Law, A; Hirayoshi, K; O'Brien, T; Lis, J T

    1998-01-01

    A new method is described for cloning DNA sequences occupied by a specific protein on chromatin in vivo . The approach uses UV cross-linking to couple proteins covalently to DNA and the resulting complexes are then purified under stringent conditions. Particular adducts are immunoprocipitated with antibody to the protein of interest. The resulting DNA (iDNA) is amplified by PCR, cloned and characterized. The model system used was RNA polymerase II (Pol II), whose density on particular DNAs under various conditions is well documented. Pol II can exist in several states on DNA. While Pol II can simply be bound to DNA, the bulk of DNA-associated Pol II is transcriptionally engaged in either the transcribing or paused states. Paused Pol IIs that have previously been characterized are found at promoters and have the distinctive property that their transcription in isolated nuclei is stimulated by sarkosyl or high salt. Here we isolate and sequence DNAs that cross-link to Pol II molecules. We identify by nuclear run-on assays those DNAs that have Pol II engaged in transcription. Twenty one percent of the iDNA clones that have detectable transcriptionally engaged Pol II appear to be paused, in that they display sarkosyl-stimulated trancription in a nuclear run-on transcription assay. At least some of these map to the 5'-ends of genes. These results suggest that transcriptional pausing of Pol II is a general phenomenon in vivo. PMID:9461448

  11. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila.

    PubMed

    Law, A; Hirayoshi, K; O'Brien, T; Lis, J T

    1998-02-15

    A new method is described for cloning DNA sequences occupied by a specific protein on chromatin in vivo . The approach uses UV cross-linking to couple proteins covalently to DNA and the resulting complexes are then purified under stringent conditions. Particular adducts are immunoprocipitated with antibody to the protein of interest. The resulting DNA (iDNA) is amplified by PCR, cloned and characterized. The model system used was RNA polymerase II (Pol II), whose density on particular DNAs under various conditions is well documented. Pol II can exist in several states on DNA. While Pol II can simply be bound to DNA, the bulk of DNA-associated Pol II is transcriptionally engaged in either the transcribing or paused states. Paused Pol IIs that have previously been characterized are found at promoters and have the distinctive property that their transcription in isolated nuclei is stimulated by sarkosyl or high salt. Here we isolate and sequence DNAs that cross-link to Pol II molecules. We identify by nuclear run-on assays those DNAs that have Pol II engaged in transcription. Twenty one percent of the iDNA clones that have detectable transcriptionally engaged Pol II appear to be paused, in that they display sarkosyl-stimulated trancription in a nuclear run-on transcription assay. At least some of these map to the 5'-ends of genes. These results suggest that transcriptional pausing of Pol II is a general phenomenon in vivo. PMID:9461448

  12. Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3'-end formation.

    PubMed Central

    Ryner, L C; Takagaki, Y; Manley, J L

    1989-01-01

    Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation. Images PMID:2555686

  13. Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy.

    PubMed

    Baumgartner, Matthias R; Dantas, M Fernanda; Suormala, Terttu; Almashanu, Shlomo; Giunta, Cecilia; Friebel, Dolores; Gebhardt, Boris; Fowler, Brian; Hoffmann, Georg F; Baumgartner, E Regula; Valle, David

    2004-11-01

    Deficiency of 3-methylcrotonyl-CoA carboxylase (MCC) results in elevated excretion of 3-methylcrotonylglycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA). MCC is a heteromeric mitochondrial enzyme comprising biotin-containing alpha subunits and smaller beta subunits, encoded by MCCA and MCCB, respectively. Mutations in these genes cause isolated MCC deficiency, an autosomal recessive disorder with a variable phenotype that ranges from severe neonatal to asymptomatic adult forms. No reported patients have responded to biotin therapy. Here, we describe two patients with a biochemical and, in one case, clinical phenotype of MCC deficiency, both of whom were responsive to biotin. The first patient presented at 3 months with seizures and progressive psychomotor retardation. Metabolic investigation at 2 years revealed elevated excretion of 3-MCG and 3-HIVA, suggesting MCC deficiency. High-dose biotin therapy was associated with a dramatic reduction in seizures, normalization of the electroencephalogram, and correction of the organic aciduria, within 4 weeks. MCC activity in fibroblasts was 25% of normal levels. The second patient, a newborn detected by tandem-mass-spectrometry newborn screening, displayed the same biochemical phenotype and remained asymptomatic with biotin up to the age of 18 months. In both patients, sequence analysis of the complete open reading frames of MCCA and MCCB revealed heterozygosity for MCCA-R385S and for the known polymorphic variant MCCA-P464H but revealed no other coding alterations. MCCA-R385S is unusual, in that it has a normal amount of MCC alpha protein but confers no MCC activity. We show that MCCA-R385S, but not other MCCA missense alleles, reduces the MCC activity of cotransfected MCCA-wild-type allele. Our results suggest that MCCA-R385S is a dominant negative allele and is biotin responsive in vivo.

  14. The -5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer.

    PubMed

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; Bryś, Magdalena

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the -5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region -5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the -5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that -5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer.

  15. Autoantibodies to RNA polymerase II are common in systemic lupus erythematosus and overlap syndrome. Specific recognition of the phosphorylated (IIO) form by a subset of human sera.

    PubMed Central

    Satoh, M; Ajmani, A K; Ogasawara, T; Langdon, J J; Hirakata, M; Wang, J; Reeves, W H

    1994-01-01

    Autoantibodies to RNA polymerases (RNAP) I, II, and III are reported to be highly specific for the diagnosis of scleroderma (systemic sclerosis, SSc). In the present study, the specificity of autoantibodies to RNAP I and III for SSc was confirmed by immunoprecipitation of 35S-labeled proteins. However, we report here the previously unrecognized production of anti-RNAP II autoantibodies by 9-14% of patients with SLE and mixed connective tissue disease/overlap syndrome. 12 out of 32 anti-RNAP II positive sera (group 1) immunoprecipitated a diffuse 220-240-kD band identified as the largest subunit of RNAP II whereas the remaining 20 (group 2) immunoprecipitated preferentially the 240-kD phosphorylated (IIo) form of the large subunit. After pulse labeling, group 1 sera immunoprecipitated only the 220-kD (IIa) RNAP II subunit, whereas the diffuse IIa/IIo band plus the 145-kD second largest RNAP II subunit (IIc) were immunoprecipitated after several hours of cold chase, suggesting that these sera recognized primarily the largest subunit of RNAP II. Group 2 sera recognized the IIc subunit after pulse labeling, and immunoprecipitated the IIc and IIo, but not the IIa, subunits after cold chase. Although it has been suggested that autoantibodies to RNAP II are usually accompanied by anti-RNAP I/III in SSc, all but one of the anti-RNAP II positive sera from SLE or mixed connective tissue disease/overlap syndrome patients, as well as most of the SSc sera, were negative for anti-RNAP I/III. Moreover, in contrast to previous reports suggesting that anti-RNAP antibodies rarely coexist with other SSc subset marker antibodies, anti-RNAP II antibodies were often accompanied by anti-Ku, anti-nRNP, or anti-topoisomerase I autoantibodies in the present study. We conclude that autoantibodies to RNAP II are not a specific marker for SSc, whereas autoantibodies to RNAP I/III are associated primarily with SSc. In addition, we have identified two distinctive patterns of RNAP II antigen

  16. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses.

    PubMed

    Bihl, Florian; Frahm, Nicole; Di Giammarino, Loriana; Sidney, John; John, Mina; Yusim, Karina; Woodberry, Tonia; Sango, Kaori; Hewitt, Hannah S; Henry, Leah; Linde, Caitlyn H; Chisholm, John V; Zaman, Tauheed M; Pae, Eunice; Mallal, Simon; Walker, Bruce D; Sette, Alessandro; Korber, Bette T; Heckerman, David; Brander, Christian

    2006-04-01

    Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.

  17. Study of HLA-DQA1 alleles in celiac children.

    PubMed

    Nieto, A; Blanco Quirós, A; Arranz, E; Alonso Franch, M; Garrote, J A; Calvo, C

    1995-01-01

    The familial incidence of celiac disease (CD) confirms its genetic basis, although acquired factors are also involved. Many authors have reported a linkage between celiac disease and HLA antigens, but there are differences which depend on geographical areas, and nowadays the study must be done at the genetic level. Thirty-eight celiac children and 52 normal controls were included in this study. All individuals were chosen from the Castilla and Leon area. We used the reverse ¿dot block¿ technique, using sequence-specific oligonucleotide DNA probes (Cetus, USA) to determine the HLA-DQA1 alleles in DNA samples previously amplified by PCR (polymerase chain reaction). The different frequency of alleles in patients and controls was assessed by 3 statistical tests: chi square (chi(2)), relative risk (RR) and etiologic fraction (EF). A very high frequency of DQA1*0201 (chi(2):p <0.0001) and DQA1*0501 (chi(2): p <0.0001) alleles was observed in patients; all but one (97%) had the DQA1*0501 allele vs. 40% of controls (RR: 37.00; EF: 0.955). The DQA1*0201 allele also had a high prevalence in celiacs (58%)(RR: 1.375: EF:0.438). The DQA1*01 allele was only found in 10.5% of patients compared to 79% of controls (chi(2): p <0.0001) and the DQA1*03 allele was also decreased in celiacs. There was only one celiac girl without the DQA1*0501 allele. She had no other clinical or serological differences, as compared to the other patients. In the study of allele subtypes, among the DQA1*01 allele, 50% of patients were positive for DQA1*101 and the remaining 50% had DQA1*0102, but none of the individuals were positive for DQA1*0103. Among normal controls, 32 individuals (61.5%) expressed the DQA1*0102 subtype, 15 (28.9%) the DQA1*0101 subtype and 5 (9.6%) the DQA1*0103 subtype. All positive cases for DQA1-*05 belong to the DQA1* 0501 subtype, in both celiac and control groups. There were 10 possible combinations of HLA-DQA1 genes, but we found a very unequal distribution in both celiacs

  18. Retrospective study of central nervous system lesions and association with Parelaphostrongylus species by histology and specific nested polymerase chain reaction in domestic camelids and wild ungulates.

    PubMed

    Dobey, Carrie L; Grunenwald, Caroline; Newman, Shelley J; Muller, Lisa; Gerhold, Richard W

    2014-11-01

    Formalin-fixed, paraffin-embedded tissues from elk (Cervus elaphus), goats, and camelids with case histories and lesions suggestive of Parelaphostrongylus tenuis were examined by histology to characterize lesions that could aid in definitively diagnosing P. tenuis infection. Additionally, sections of paraffin-embedded tissue were used in a nested polymerase chain reaction (nPCR) using Parelaphostrongylus-specific primers to determine how PCR results corresponded with histological findings. Histological changes in brain and spinal cord consisted of linear tracks of hemorrhage; tracks or perivascular accumulations of hemosiderin-laden macrophages; acute foci of axonal degeneration and/or linear glial scars; and perivascular, parenchymal, or meningeal accumulations of eosinophils and/or lymphocytes and plasma cells. Of the 43 samples with histologic lesions consistent with neural larval migrans, 19 were PCR positive; however, only 8 were confirmed Parelaphostrongylus by DNA sequencing. Additionally, 1 goat was identified with a protostrongylid that had a 97% identity to both Parelaphostrongylus odocoilei and a protostrongylid nematode from pampas deer (Ozotoceros bezoarticus celer) from Argentina. None of the histologic lesions individually or in combination correlated statistically to positive molecular tests for the nematode. The results indicate that it is possible to extract Parelaphostrongylus DNA from formalin-fixed, paraffin-embedded tissue, but extended fixation presumably can cause DNA crosslinking. Nested PCR provides another diagnostic tool to identify the cause of neurologic disease in camelids and elk with histologic lesions consistent with neural larval migrans. Furthermore, potential novel protostrongylid DNA was detected from a goat with lesions consistent with P. tenuis infection, suggesting that other neurotropic Parelaphostrongylus species may occur locally.

  19. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers.

    PubMed

    Shatters, Robert G; Powell, Charles A; Boykin, Laura M; Liansheng, He; McKenzie, C L

    2009-04-01

    Whiteflies, heteropterans in the family Aleyrodidae, are globally distributed and severe agricultural pests. The mitochondrial cytochrome c oxidase I (mtCOI) sequence has been used extensively in whitefly phylogenetic comparisons and in biotype identification of the agriculturally important Bemisia tabaci (Gennadius) whitefly. Because of the economic importance of several whitefly genera, and the invasive nature of the B and the Q biotypes of Bemisia tabaci, mtCOI sequence data are continually generated from sampled populations worldwide. Routine phylogenetic comparisons and biotype identification is done through amplification and sequencing of an approximately 800-bp mtCOI DNA fragment. Despite its routine use, published primers for amplification of this region are often inefficient for some B. tabaci biotypes and especially across whitefly species. Through new sequence generation and comparison to available whitefly mtCOI sequence data, a set of polymerase chain reaction (PCR) amplification primers (Btab-Uni primers) were identified that are more efficient at amplifying approximately 748 bp of the approximately 800-bp fragment currently used. These universal primers amplify an mtCOI fragment from numerous B. tabaci biotypes and whitefly genera by using a single amplification profile. Furthermore, mtCOI PCR primers specific for the B, Q, and New World biotypes of B. tabaci were designed that allow rapid discrimination among these biotypes. These primers produce a 478-, 405-, and 303-bp mtCOI fragment for the B, New World, and Q biotypes, respectively. By combining these primers and using rapid PCR and electrophoretic techniques, biotype determination can be made within 3 h for up to 96 samples at a time.

  20. Species-specific identification of adulteration in cooked mutton Rista (a Kashmiri Wazwan cuisine product) with beef and buffalo meat through multiplex polymerase chain reaction

    PubMed Central

    Bhat, M. Mansoor; Salahuddin, Mir; Mantoo, Imtiyaz A.; Adil, Sheikh; Jalal, Henna; Pal, M. Ashraf

    2016-01-01

    Aim: Meat adulteration is a serious problem in the meat industry and needs to be tackled to ensure the authenticity of meat products and protect the consumers from being the victims. In view of such likely problem in indigenous meat products of Kashmiri cuisine (Wazwan), the present work was performed to study the detection of beef and buffalo meat in cooked mutton Rista by mitochondrial DNA (mtDNA) based multiplex polymerase chain reaction (PCR) method under laboratory conditions. Materials and Methods: Three experimental trials were conducted wherein the products were prepared from pure mutton, beef and buffalo meat, and their admixtures in the ratios of 60:20:20, 80:10:10, 90:05:05 and 98:01:01, respectively. Results: The primers used in the study amplified the cyt b gene fragments of sizes 124 bp, 472 bp and 585 bp for buffalo, cattle and sheep, respectively. It was possible to detect cattle and buffalo meat at the level of 1% in the mixed meat cooked Rista. The multiplex PCR successfully amplified cyt b gene fragments of mtDNA of the target species and thus produced characteristic band pattern for each species. The band intensities of cattle and buffalo in the mixed meat Rista progressively decreased corresponding to their decreasing level from 20% to 1%. Processing, cooking (moist heating) and non-meat formulation ingredients had no effect on detection of meat species adulteration. Conclusion: The multiplex PCR procedure standardized and developed in this study is simple, efficient, sensitive, reliable and highly specific for detecting falsification of cooked mutton product with beef and buffalo meat up to 1% level. PMID:27057103

  1. Nascent transcription affected by RNA polymerase IV in Zea mays.

    PubMed

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.

  2. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  3. Evaluation of the paternity probability on an application of minisatellite variant repeat mapping using polymerase chain reaction (MVR-PCR) to paternity testing.

    PubMed

    Huang, X L; Tamaki, K; Yamamoto, T; Yoshimoto, T; Mizutani, M; Leong, Y K; Tanaka, M; Nozawa, H; Uchihi, R; Katsumata, Y

    1999-09-01

    Minisatellite variant repeat (MVR) mapping using polymerase chain reaction (PCR) was applied to a practical case of paternity testing to evaluate the paternity probability. In order to obtain single allele mapping by allele-specific MVR-PCR, three flanking polymorphic sites for each of the MS31A and MS32 loci were investigated and all three individuals were typed as heterozygous for at least one flanking polymorphic site at each locus. Allele-specific MVR-PCR was then performed using genomic DNA. It was confirmed that one allele in the child was identical to that from the mother and the other one in the child was identical to that from the alleged father. Mapped allele codes were also compared with those in the database by dot-matrix analysis, and no identical allele was found although some motifs were shared with Japanese alleles. The paternity index and the probability of paternity exclusion in the case at these two MVR loci were calculated using the presumed values of the allele frequencies. These studies seem to illustrate the practical value of MVR mapping of MS31A and MS32 loci in paternity testing.

  4. Influence of HLA-DRB alleles on haemorrhagic fever with renal syndrome in a Chinese Han population in Hubei Province, China.

    PubMed

    Zhu, N; Luo, F; Chen, Q; Li, N; Xiong, H; Feng, Y; Yang, Z; Hou, W

    2015-01-01

    Specific human leucocyte antigen (HLA) alleles are considered a genetic risk factor for the progression of haemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses. The aim of this study was to establish whether HLA-DRB alleles are associated with the severity of HFRS caused by different types of hantaviruses in a Chinese Han population from Hubei Province of central China. Twenty-two specific HLA-DRB alleles were analysed by sequence-specific primer-polymerase chain reaction (SSP-PCR) in 100 HFRS patients and 213 healthy volunteers. Associations of HLA-DRB alleles with the severity and clinical parameters of HFRS caused by Hantaan virus (HTNV) or Seoul virus (SEOV) infection were evaluated. Six alleles (HLA-DRB1*0401-0411, HLA-DRB1*1001, HLA-DRB1*1101-1105, HLA-DRB1*1201-1202, HLA-DRB1*1305 and DRB5*0101-0201) demonstrated strong associations with HFRS caused by HTNV and SEOV infections. Further comparison of these HLA-DRB1 allele frequencies between HFRS patients with differing severities and healthy controls demonstrated that the HLA-DRB1*0401-0411, HLA-DRB1*1001 and DRB1*1305 alleles were more frequent in the moderate course of HTNV-infected HFRS. Meanwhile, the DRB1*1101-1105 allele was more frequently observed in the severe course of HTNV-infected HFRS. We also found that the HLA-DRB1*1201-1202 allele frequency was higher in the moderate course of SEOV-infected HFRS, whereas the DRB5*0101-0201 allele may play a protective role in moderate HFRS caused by both HTNV and SEOV infections. These results provide evidence of the influence of HLA-DRB on the severity of HFRS and confirm the effect of HLA-DRB on HFRS during different types of hantavirus infection in a Chinese Han population in Hubei Province, China.

  5. Discordance between MTB/RIF and Real-Time Tuberculosis-Specific Polymerase Chain Reaction Assay in Bronchial Washing Specimen and Its Clinical Implications

    PubMed Central

    Jo, Yong Suk; Park, Ju-Hee; Lee, Jung Kyu; Heo, Eun Young; Chung, Hee Soon

    2016-01-01

    The prevalence and clinical implications of discordance between Xpert MTB/RIF assays and the AdvanSure TB/NTM real-time polymerase chain reaction (PCR) for bronchial washing specimens have not been studied in pulmonary TB (PTB) patients. The discordant proportion and its clinical impact were evaluated in 320 patients from the bronchoscopy registry whose bronchial washing specimens were tested simultaneously with Xpert MTB/RIF and the TB/NTM PCR assay for three years, and the accuracy of the assays, including the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were studied. The clinical risk factors for discordance and false positivity of assays were also studied. Among 130 patients who were clinically diagnosed with PTB, 64 patients showed positive acid-fast bacilli culture results, 56 patients showed positive results in molecular methods and clinician diagnosed PTB without results of microbiology in 10 patients. The sensitivity, specificity, PPV, and NPV were 80.0%, 98.95%, 98.1%, and 87.9%, respectively, for Xpert MTB/RIF and 81.5%, 92.6%, 88.3%, and 88.0%, respectively, for TB/NTM PCR. The discordant proportion was 16.9% and was higher in culture-negative PTB compared to culture-confirmed PTB (24.3% vs. 9.4%, p = 0.024). However, there were no significant differences in the clinical characteristics, regardless of the discordance. The diagnostic yield increased with an additional assay (7.7% for Xpert MTB/RIF and 9.2% for TB/NTM PCR). False positivity was less common in patients tested with Xpert MTB/RIF (1.05% vs. 7.37%, p = 0.0035). No host-related risk factor for false positivity was identified. The Xpert MTB/RIF and TB/NTM PCR assay in bronchial washing specimens can improve the diagnostic yields for PTB, although there were considerable discordant results without any patient-related risk factors. PMID:27760181

  6. Increased TNFA*2, but not TNFB*1, allele frequency in Spanish atopic patients.

    PubMed

    Castro, J; Tellería, J J; Linares, P; Blanco-Quirós, A

    2000-01-01

    Tumor necrosis factor (TNF) is a potent proinflammatory cytokine involved in asthma and atopy. Increased TNF-alpha levels have been found in airway biopsies and bronchoalveolar lavage fluids from asthmatic patients. Constitutional variations in the TNF-alpha secretion levels in vitro are associated with molecular polymorphisms located within and around the TNF loci. Our study objective was to investigate the association between atopy and two described di-allelic polymorphisms in the TNF locus: a G to A transition at position -308 in the 5'-promoter region of the TNFA gene (TNFA*1 and TNFA*2 alleles) and an Ncol restriction fragment length polymorphism (RFLP) in the first intron of the TNFB gene (TNFB*1 and TNFB*2 alleles). The genetic study was performed in 65 unrelated atopic patients and 60 healthy controls. The regions of interest were amplified from genomic DNA using specific primers and polymerase chain reaction. SSP-PCR analysis for TNFA -308 polymorphism genotyping and endonuclease digestion analysis for the TNFB Ncol RFLP were used. The frequency of the TNFA*2 allele was significantly higher in atopic subjects compared to the control group (38.5% vs. 10.5%; chi2 = 32.06; p <0.0001). The TNFA*2 allele is associated with a higher risk for the development of atopy (risk ratio = 9.44; EF = 0.65; chi2 = 30.06 p <0.0005). On the other hand, no significant association between the TNFB alleles and atopy was found. In conclusion, the TNFA*2 allele could be also a genetic risk marker for the predisposition to atopy in our population, as has been reported in other studies. Either the TNFA gene itself or a linked gene on chromosome region 6p21, which has yet to be identified, is a candidate gene for susceptibility to atopy. PMID:10923589

  7. A study of the association of childhood asthma with HLA alleles in the population of Siliguri, West Bengal, India.

    PubMed

    Lama, M; Chatterjee, M; Chaudhuri, T K

    2014-09-01

    Asthma is a heterogeneous disease for which a strong genetic basis is firmly established. It is a complex disorder influenced by gene-environment interaction. Human leukocyte antigen (HLA) genes have been shown to be consistently associated with asthma and its related phenotypes in various populations. The aim of this study was to determine the frequency of the selected HLA classes I and II allelic groups in asthmatic and control groups. HLA typing was performed using polymerase chain reaction-sequence-specific typing (PCR-SSP) method. The allele frequency was estimated by direct counting. Frequency of each HLA allelic group was compared between asthmatic group and control group using χ(2) test. P-value was corrected by multiplying with the number of the allelic groups studied. Odds ratio (OR) and its corresponding 95% confidence interval (CI) for each allelic group were calculated using graphpad instat 3.10. The results of this study showed a significantly higher frequency of HLA-DRB1*03 in asthmatics than in controls (11.43% vs 3.64%, OR = 3.78, 95% CI = 1.61-8.85, P = 0.0025, Pcorr  < 0.05). Analysis of HLA alleles in low and high total serum immunoglobulin E (IgE) level in asthmatics revealed no significant association. HLA-DRB1*03 may be implicated in the susceptibility to asthma in the pediatric population.

  8. Allele-Specific PCR Method Based on pncA and oxyR Sequences for Distinguishing Mycobacterium bovis from Mycobacterium tuberculosis: Intraspecific M. bovis pncA Sequence Polymorphism

    PubMed Central

    de los Monteros, Luz Elena Espinosa; Galán, Juan Carlos; Gutiérrez, Montserrat; Samper, Sofía; García Marín, Juan F.; Martín, Carlos; Domínguez, Lucas; de Rafael, Luis; Baquero, Fernando; Gómez-Mampaso, Enrique; Blázquez, Jesús

    1998-01-01

    An allele-specific amplification method based on two genetic polymorphisms to differentiate Mycobacterium tuberculosis from Mycobacterium bovis was tested. Based on the differences found at position 169 in the pncA genes from M. tuberculosis and M. bovis, a PCR system which was able to differentiate most of the 237 M. tuberculosis complex isolates tested in one of the two species was developed. All 121 M. tuberculosis strains showed the expected base (cytosine) at position 169. Most of the M. bovis isolates had a guanine at the cited position. Nevertheless, 18 of the 116 M. bovis isolates, all of them goat isolates, showed the pncA polymorphism specific to M. tuberculosis. These results suggest that goat M. bovis may be the nicotinamidase-missing link at the origin of the M. tuberculosis species. Based on the polymorphism found at position 285 in the oxyR gene, the same system was used to differentiate M. tuberculosis from M. bovis. In this case, DNAs from all 121 M. tuberculosis isolates had the expected base (guanine) at this position. In addition, all 116 M. bovis isolates, including those from goats, showed the identical polymorphism (adenine). The oxyR allele-specific amplification method can differentiate M. bovis from M. tuberculosis, is rapid (results can be obtained in less than 3 h), and is easy to perform. PMID:9431955

  9. Detection of Mutant BRAF Alleles in the Plasma of Patients with Metastatic Melanoma

    PubMed Central

    Yancovitz, Molly; Yoon, Joanne; Mikhail, Maryann; Gai, Weiming; Shapiro, Richard L.; Berman, Russell S.; Pavlick, Anna C.; Chapman, Paul B.; Osman, Iman; Polsky, David

    2007-01-01

    Mutations in the BRAF oncogene at amino acid 600 have been reported in 40 to 70% of human metastatic melanoma tissues, and the critical role of BRAF in the biology of melanoma has been established. Sampling the blood compartment to detect the mutational status of a solid tumor represents a highly innovative advance in cancer medicine, and such an approach could have advantages over tissue-based techniques. We report the development of a fluorescence-based polymerase chain reaction (PCR) assay to detect mutant BRAF alleles in plasma. A mutant-specific PCR assay was optimized to specifically amplify the mutant BRAF allele without amplifying the wild-type allele. Experiments mixing DNA from a BRAF mutant melanoma cell line with wild-type human placental DNA in varying proportions were performed to determine the threshold of this assay and to compare it with routine DNA sequencing. The assay was then applied to tissue and plasma specimens from patients with metastatic melanoma. The assay detected 0.1 ng of mutant DNA mixed in 100 ng of wild-type DNA and was 500-fold more sensitive than DNA sequencing. The assay detected mutant BRAF alleles in plasma samples from 14 of 26 (54%) metastatic melanoma patients. These data demonstrate the feasibility of blood-based testing for BRAF mutations in metastatic melanoma patients. PMID:17384209

  10. Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans.

    PubMed

    Kim, Sunhong; Johnson, Wade; Chen, Changchun; Sewell, Aileen K; Byström, Anders S; Han, Min

    2010-08-01

    The elongator (ELP) complex consisting of Elp1-6p has been indicated to play roles in multiple cellular processes. In yeast, the ELP complex has been shown to genetically interact with Uba4p/Urm1p and Kti11-13p for a function in tRNA modification. Through a Caenorhabditis elegans genetic suppressor screen and positional cloning, we discovered that loss-of-function mutations of moc-3 and dph-3, orthologs of the yeast UBA4 and KTI11, respectively, effectively suppress the Multivulva (Muv) phenotype of the lin-1(e1275, R175Opal) mutation. These mutations do not suppress the Muv phenotype caused by other lin-1 alleles or by gain-of-function alleles of ras or raf that act upstream of lin-1. The suppression can also be reverted by RNA interference of lin-1. Furthermore, we showed that dph-3(lf) also suppressed the defect of lin-1(e1275) in promoting the expression of a downstream target (egl-17). These results indicate that suppression by the moc-3 and dph-3 mutations is due to the elevated activity of lin-1(e1275) itself rather than the altered activity of a factor downstream of lin-1. We further showed that loss-of-function mutations of urm-1 and elpc-1-4, the worm counterparts of URM1 and ELP complex components in yeast, also suppressed lin-1(e1275). We also confirmed that moc-3(lf) and dph-3(lf) have defects in tRNA modifications as do the mutants of their yeast orthologs. These results, together with the observation of a likely readthrough product from a lin-1(e1275)::gfp fusion transgene indicate that the aberrant tRNA modification led to failed recognition of a premature stop codon in lin-1(e1275). Our genetic data suggest that the functional interaction of moc-3/urm-1 and dph-3 with the ELP complex is an evolutionarily conserved mechanism involved in tRNA functions that are important for accurate translation. PMID:20479142

  11. In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements

    PubMed Central

    Maciąg, Anna; Peano, Clelia; Pietrelli, Alessandro; Egli, Thomas; De Bellis, Gianluca; Landini, Paolo

    2011-01-01

    Specific promoter recognition by bacterial RNA polymerase is mediated by σ subunits, which assemble with RNA polymerase core enzyme (E) during transcription initiation. However, σ70 (the housekeeping σ subunit) and σS (an alternative σ subunit mostly active during slow growth) recognize almost identical promoter sequences, thus raising the question of how promoter selectivity is achieved in the bacterial cell. To identify novel sequence determinants for selective promoter recognition, we performed run-off/microarray (ROMA) experiments with RNA polymerase saturated either with σ70 (Eσ70) or with σS (EσS) using the whole Escherichia coli genome as DNA template. We found that Eσ70, in the absence of any additional transcription factor, preferentially transcribes genes associated with fast growth (e.g. ribosomal operons). In contrast, EσS efficiently transcribes genes involved in stress responses, secondary metabolism as well as RNAs from intergenic regions with yet-unknown function. Promoter sequence comparison suggests that, in addition to different conservation of the −35 sequence and of the UP element, selective promoter recognition by either form of RNA polymerase can be affected by the A/T content in the −10/+1 region. Indeed, site-directed mutagenesis experiments confirmed that an A/T bias in the −10/+1 region could improve promoter recognition by EσS. PMID:21398637

  12. Identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene.

    PubMed

    Fajardo, V; González, I; López-Calleja, I; Martín, I; Rojas, M; Hernández, P E; García, T; Martín, Rosario

    2007-06-01

    Polymerase chain reaction (PCR) based on oligonucleotide primers targeting the mitochondrial 12S rRNA gene was applied to the specific identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus). The use of a common reverse primer, together with forward specific primers for red deer, fallow deer, and roe deer, allowed the selective amplification of the desired cervid sequences. The specificity of each primer pair was verified by PCR analysis of DNA from various game and domestic meats. The assay can be useful for the accurate identification of meats from cervid species, avoiding mislabeling or fraudulent species substitution in meat products.

  13. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus.

    PubMed Central

    Gyllensten, U B; Erlich, H A

    1988-01-01

    Single-copy sequences can be enzymatically amplified from genomic DNA by the polymerase chain reaction. By using unequal molar amounts of the two amplification primers, it is possible in a single step to amplify a single-copy gene and produce an excess of single-stranded DNA of a chosen strand for direct sequencing or for use as a hybridization probe. Further, individual alleles in a heterozygote can be sequenced directly by using allele-specific oligonucleotides either in the amplification reaction or as sequencing primers. By using these methods, we have studied the allelic diversity at the HLA-DQA locus and its association with the serologically defined HLA-DR and -DQ types. This analysis has revealed a total of eight alleles and three additional haplotypes. This procedure has wide applications in screening for mutations in human genes and facilitates the linking of enzymatic amplification of genes to automated sequencing. Images PMID:3174659

  14. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  15. Analysis of polymorphism in the bovine casein genes by use of the polymerase chain reaction.

    PubMed

    Pinder, S J; Perry, B N; Skidmore, C J; Savva, D

    1991-01-01

    Methods have been devised for detecting polymorphisms in the bovine beta- and kappa-casein genes using the polymerase chain reaction (PCR) followed either by restriction enzyme digestion (to reveal a restriction fragment length polymorphism (RFLP] or by hybridization of an allele-specific oligonucleotide. These methods, as well as being faster and more sensitive than traditional RFLP methods, are of more general applicability since they can detect any change in DNA sequence. They require only a small sample of blood or semen and are applicable to animals of any age or sex. These methods make possible large-scale screening and thus selection for alleles at these loci. Typing of blood DNA can give erroneous results when the animal concerned is a twin; however, this can be overcome by retesting using milk or semen. Analysis of the kappa-casein genotype of Holstein-Friesian bulls gives frequencies for the A and B alleles of 0.80 and 0.20 respectively. Selection in favour of the B allele, which is superior for cheese production, could thus have a large effect. The A3 and B alleles at the beta-casein locus have been shown to be rare in the Holstein-Friesian population. Linkage disequilibrium exists between beta-casein B and kappa-casein B.

  16. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4

    PubMed Central

    Williams, Corey L.; Pieczynski, Jay N.; Roszczynialski, Kelly N.; Covington, Jannese E.; Malarkey, Erik B.; Yoder, Bradley K.

    2016-01-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  17. Relationship between HLA-DRB1 allele polymorphisms and familial aggregations of hepatocellular carcinoma

    PubMed Central

    Ma, S.; Wu, J.; Wu, J.; Wei, Y.; Zhang, L.; Ning, Q.; Hu, D.

    2016-01-01

    Objective We explored the relationship between HLA-DRB1 allele polymorphisms and familial aggregation of hepatocellular carcinoma (fhcc). Methods Polymerase chain reaction sequence-specific primers were used to determine HLA-DRB1 genotypes for 130 members of families with 2 or more liver cancer patients and for 130 members of families without any diagnosed cancers. The genotype profiles were then compared to explore the relationship between HLA-DRB1 gene polymorphism and fhcc. Result Of 11 selected alleles, the frequencies of DRB1*11 and DRB1*12 were significantly lower in the fhcc group than in no-cancer group (p < 0.05; odds ratio: 0.286; 95% confidence interval: 0.091 to 0.901; and odds ratio: 0.493; 95% confidence interval: 0.292 to 0.893). Differences in the frequencies of the other 9 alleles were not statistically significant in the two groups (p > 0.05). Conclusions Our research suggests that if genetic factors play a role in fhcc, the deficiency in the DRB1*11 and DRB1*12 alleles might be the risk factor at work in Guangxi Zhuang Autonomous Region, P.R.C. PMID:26966407

  18. Association of human leukocyte antigen DQB1 and DRB1 alleles with chronic hepatitis B

    PubMed Central

    Doganay, Levent; Fejzullahu, Arta; Katrinli, Seyma; Yilmaz Enc, Feruze; Ozturk, Oguzhan; Colak, Yasar; Ulasoglu, Celal; Tuncer, Ilyas; Dinler Doganay, Gizem

    2014-01-01

    AIM: To investigate the effect of human leukocyte antigen (HLA) DRB1 and DQB1 alleles on the inactive and advanced stages of chronic hepatitis B. METHODS: Patient records at a single institution’s hepatology clinic were reviewed. Demographic data, laboratory results, endoscopy results, virological parameters, biopsy scores and treatment statuses were recorded. In total, 355 patients were eligible for the study, of whom 226 (63.7%) were male. Overall, 82 (23.1%) were hepatitis B early antigen (HBeAg) positive, 87 (24.5%) had cirrhosis, and 66 (18.6%) had inactive disease. The presence of DQB1 and DRB1 alleles was determined by polymerase chain reaction with sequence-specific primers. The distribution of the genotyped alleles among patients with cirrhosis and patients with chronic active hepatitis was analyzed. RESULTS: The most frequent HLA DQB1 allele was DQB1*03:01 (48.2%), and the most frequent HLA DRB1 allele was DRB1*13/14 (51.8%). DQB1*05:01 was more frequent in patients with active disease than in inactive patients (27% vs 9.1%; P = 0.002, Pc = 0.026). DRB1*07 was rare in patients with cirrhosis compared with non-cirrhotics (3.4% vs 16%; P = 0.002, Pc = 0.022). Older age (P < 0.001) and male gender (P = 0.008) were the other factors that affected the presence of cirrhosis. In a multivariate logistic regression analysis, DRB1*07 remained a significant negative predictor of cirrhosis (P = 0.015). A bioinformatics analysis revealed that a polymorphic amino acid sequence in DRB1*07 may alter interaction with the T-cell recognition site. CONCLUSION: This study demonstrates that HLA alleles may influence cirrhosis development and disease activity in Turkish chronic hepatitis B patients. PMID:25009391

  19. Genetic exploration of interactive domains in RNA polymerase II subunits.

    PubMed Central

    Martin, C; Okamura, S; Young, R

    1990-01-01

    The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed. Images PMID:2183012

  20. Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.

    1993-04-01

    Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.

  1. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.

    PubMed

    Prigoda, Nadia L; Nassuth, Annette; Mable, Barbara K

    2005-07-01

    The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene

  2. Use of RNA polymerase molecular beacon assay to measure RNA polymerase interactions with model promoter fragments.

    PubMed

    Mekler, Vladimir; Severinov, Konstantin

    2015-01-01

    RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions. Here, we present detailed protocols for the preparation of an Escherichia coli molecular beacon and its application to study RNA polymerase interactions with model promoter fragments.

  3. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  4. Whole Genome Amplification of Plasma-Circulating DNA Enables Expanded Screening for Allelic Imbalance in Plasma

    PubMed Central

    Li, Jin; Harris, Lyndsay; Mamon, Harvey; Kulke, Matthew H.; Liu, Wei-Hua; Zhu, Penny; Mike Makrigiorgos, G.

    2006-01-01

    Apoptotic and necrotic tumor cells release DNA into plasma, providing an accessible tumor biomarker. Tumor-released plasma-circulating DNA can be screened for tumor-specific genetic changes, including mutation, methylation, or allelic imbalance. However, technical problems relating to the quantity and quality of DNA collected from plasma hinder downstream genetic screening and reduce biomarker detection sensitivity. Here, we present a new methodology, blunt-end ligation-mediated whole genome amplification (BL-WGA), that efficiently amplifies small apoptotic fragments (<200 bp) as well as intermediate and large necrotic fragments (>5 kb) and enables reliable high-throughput analysis of plasma-circulating DNA. In a single-tube reaction, purified double-stranded DNA was blunted with T4 DNA polymerase, self-ligated or cross-ligated with T4 DNA ligase and amplified via random primer-initiated multiple displacement amplification. Using plasma DNA from breast cancer patients and normal controls, we demonstrate that BL-WGA amplified the plasma-circulating genome by ∼1000-fold. Of 25 informative polymorphic sites screened via polymerase chain reaction-denaturating high-performance liquid chromatography, 24 (95%) were correctly determined by BL-WGA to be allelic retention or imbalance compared to 44% by multiple displacement amplification. By enabling target magnification and application of high-throughput genome analysis, BL-WGA improves sensitivity for detection of circulating tumor-specific biomarkers from bodily fluids or for recovery of nucleic acids from suboptimally stored specimens. PMID:16436631

  5. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II.

    PubMed

    Wang, Ying; Qu, Jie; Ji, Shaoyi; Wallace, Andrew J; Wu, Jian; Li, Yi; Gopalan, Venkat; Ding, Biao

    2016-05-01

    Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes. PMID:27113774

  6. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing

    SciTech Connect

    Haag, Jeremy R.; Pikaard, Craig S.

    2011-08-01

    In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

  7. Identification of a 7-cM region of frequent allelic loss on chromosome band 16p13.3 that is specifically associated with anaplastic thyroid carcinoma.

    PubMed

    Kadota, M; Tamaki, Y; Sakita, I; Komoike, Y; Miyazaki, M; Ooka, M; Masuda, N; Fujiwara, Y; Ohnishi, T; Tomita, N; Sekimoto, M; Ohue, M; Ikeda, T; Kobayashi, T; Horii, A; Monden, M

    2000-01-01

    A total of 17 primary thyroid cancer specimens including seven anaplastic cancers, two papillary cancers adjacent to the anaplastic cancers, and eight papillary cancers were analyzed for loss of heterozygosity (LOH) on chromosome arm 16p. All tumors of anaplastic cancer showed LOHs at one or more loci, and a 7-cM region of the smallest deleted region was found on 16p13.3 between D16S423 and D16S406. This LOH was specifically found in the anaplastic cancer and not in the papillary thyroid cancer. Our present results suggest localization of the putative tumor suppressor gene on 16p13.3, which is likely to play an important role in the anaplastic transformation of thyroid cancer.

  8. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation

    PubMed Central

    Henning, Amanda N.; Haag, Jill D.; Smits, Bart M. G.; Gould, Michael N.

    2016-01-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman’s life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  9. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation.

    PubMed

    Henning, Amanda N; Haag, Jill D; Smits, Bart M G; Gould, Michael N

    2016-08-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman's life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  10. Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit.

    PubMed

    Loregian, Arianna; Appleton, Brent A; Hogle, James M; Coen, Donald M

    2004-09-01

    The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL44 connector loop, we replaced each of its amino acids (amino acids 129 to 140) with alanine. We then tested the effect of each substitution on the UL44-UL54 interaction by glutathione S-transferase pulldown and isothermal titration calorimetry assays, on the stimulation of UL54-mediated long-chain DNA synthesis by UL44, and on the binding of UL44 to DNA-cellulose columns. Substitutions that affected residues 133 to 136 of the connector loop measurably impaired the UL44-UL54 interaction without altering the ability of UL44 to bind DNA. One substitution, I135A, completely disrupted the binding of UL44 to UL54 and inhibited the ability of UL44 to stimulate long-chain DNA synthesis by UL54. Thus, similar to the herpes simplex virus UL30-UL42 interaction, a residue of the connector loop of the accessory subunit is crucial for UL54-UL44 interaction. However, while alteration of a polar residue of the UL42 connector loop only partially reduced binding to UL30, substitution of a hydrophobic residue of UL44 completely disrupted the UL54-UL44 interaction. This information may aid the discovery of small-molecule inhibitors of the UL44-UL54 interaction.

  11. Allele-Specific Induction of IL-1β Expression by C/EBPβ and PU.1 Contributes to Increased Tuberculosis Susceptibility

    PubMed Central

    Zhang, Guoliang; Zhou, Boping; Li, Shaoyuan; Yue, Jun; Yang, Hui; Wen, Yuxin; Zhan, Senlin; Wang, Wenfei; Liao, Mingfeng; Zhang, Mingxia; Zeng, Gucheng; Feng, Carl G.; Sassetti, Christopher M.; Chen, Xinchun

    2014-01-01

    Mycobacterium tuberculosis infection is associated with a spectrum of clinical outcomes, from long-term latent infection to different manifestations of progressive disease. Pro-inflammatory pathways, such as those controlled by IL-1β, have the contrasting potential both to prevent disease by restricting bacterial replication, and to promote disease by inflicting tissue damage. Thus, the ultimate contribution of individual inflammatory pathways to the outcome of M. tuberculosis infection remains ambiguous. In this study, we identified a naturally-occurring polymorphism in the human IL1B promoter region, which alters the association of the C/EBPβ and PU.1 transcription factors and controls Mtb-induced IL-1β production. The high-IL-1β expressing genotype was associated with the development of active tuberculosis, the severity of pulmonary disease and poor treatment outcome in TB patients. Higher IL-1β expression did not suppress the activity of IFN-γ-producing T cells, but instead correlated with neutrophil accumulation in the lung. These observations support a specific role for IL-1β and granulocytic inflammation as a driver of TB disease progression in humans, and suggest novel strategies for the prevention and treatment of tuberculosis. PMID:25329476

  12. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  13. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-01

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  14. Universal molecular beacon-based tracer system for real-time polymerase chain reaction.

    PubMed

    Li, Xiaomin; Huang, Yong; Guan, Yuan; Zhao, Meiping; Li, Yuanzong

    2006-11-15

    DNA diagnostic has been moving from expensive, low-throughput, multistep methods to inexpensive, higher throughput, closed-tube, and automated methods. Fluorescence is the favored signaling technology for such assays. In this method, we describe a universal molecular beacon (U-MB) as the fluorescent tracer in the real-time PCR technique. A 5'-universal template primer (5'-UT primer) has been designed with a tail in complementary to the loop and 5'-side arm sequence of U-MB at the 5'-end of forward target specific primer. As PCR cycles increase, a new DNA fragment with a 5'-UT primer tail is synthesized, which is used as the template for next PCR cycle. As the reverse primer extends to the 5'-UT primer tail, the U-MB hybridized is displaced and the fluorescence from the fluorophore of the U-MB is quenched, indicating that the allele-specific PCR is in progress. This tracing system combined with an allele-specific reverse primer and vent (exo-) DNA polymerase, a polymerase that lacks 3'- to 5'-exonuclease activity, was used for the detection of point mutations of base G in codon 259 (AGA) of exon 7 of p53 gene on a panel of breast cancer individuals.

  15. Detection of HLA-DRB1 microchimerism using nested polymerase chain reaction and single-strand conformation polymorphism analysis.

    PubMed

    Song, Eun Young; Chung, Hye Yoon; Joo, Shin Young; Roh, Eun Youn; Seong, Moon-Woo; Shin, Yunsu; Park, Myoung Hee

    2012-03-01

    For the detection of microchimerism, molecular methods detecting donor-specific HLA-DRB1 alleles in the recipient are most commonly used. Nested polymerase chain reaction sequence specific primer (nested PCR-SSP) methods widely used to increase the sensitivity of detection have been reported to give frequent false-positive reactions. We have developed a new method combining nested PCR with single-strand conformation polymorphism analysis (nested PCR-SSCP) and tested the 1 to 0.00001% level of microchimerism for 27 different HLA-DRB1 alleles. For most (26/27) of the HLA-DRB1 alleles tested, this method could detect 0.01 to 0.001% of microchimerism and its sensitivity was equal to or better than that of nested PCR-SSP tested in parallel. Its specificity was verified by visualizing particular DRB1-specific SSCP bands under test. Nested PCR-SSP indicated frequent false-positive reactions, mainly caused by nonspecific amplification of DRB3/B4/B5 alleles present in the major (recipient) DNAs. We have compared a real-time quantitative PCR for non-human leukocyte antigen (HLA) target (insertion/deletion marker) using a commercial kit (AlleleSEQR Chimerism assay), and its microchimerism detection sensitivity (around 0.1%) was 1 step (10 times) lower than that of nested PCR-SSP or -SSCP methods for HLA-DRB1 alleles. We validated that the newly designed nested PCR-SSCP affords good sensitivity and specificity and may be useful for studying microchimerism in clinical settings.

  16. Identification of latent neosporosis in sheep in Tehran, Iran by polymerase chain reaction using primers specific for the Nc-5 gene.

    PubMed

    Arbabi, Mohsen; Abdoli, Amir; Dalimi, Abdolhossein; Pirestani, Majid

    2016-01-01

    Little is known about latent infection and molecular characterisation of Neospora caninum in sheep (Ovis aries). In this study, 330 sheep samples (180 hearts and 150 brains) were analysed for N. caninum DNA by nested polymerase chain reaction (PCR) targeting the Nc-5 gene. Neospora caninum DNA was detected in 3.9% (13/330) of sheep samples. The parasite's DNA was detected in 6.7% of heart samples (12/180) and 0.7% (1/150) of brain samples. No clinical signs were recorded from infected or uninfected animals. Sequencing of the genomic DNA revealed 96% - 99% similarity with each other and 95.15% - 100% similarity with N. caninum sequences deposited in GenBank. To our knowledge, this is the first report on the use of PCR to identify latent neosporosis in sheep in Iran. The results of this study have the potential to contribute to our understanding of the role of N. caninum-infected sheep in the epidemiology of neosporosis. PMID:27543149

  17. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase.

    PubMed

    Di Vona, Chiara; Bezdan, Daniela; Islam, Abul B M M K; Salichs, Eulàlia; López-Bigas, Nuria; Ossowski, Stephan; de la Luna, Susana

    2015-02-01

    DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase. PMID:25620562

  18. Identification of latent neosporosis in sheep in Tehran, Iran by polymerase chain reaction using primers specific for the Nc-5 gene.

    PubMed

    Arbabi, Mohsen; Abdoli, Amir; Dalimi, Abdolhossein; Pirestani, Majid

    2016-01-01

    Little is known about latent infection and molecular characterisation of Neospora caninum in sheep (Ovis aries). In this study, 330 sheep samples (180 hearts and 150 brains) were analysed for N. caninum DNA by nested polymerase chain reaction (PCR) targeting the Nc-5 gene. Neospora caninum DNA was detected in 3.9% (13/330) of sheep samples. The parasite's DNA was detected in 6.7% of heart samples (12/180) and 0.7% (1/150) of brain samples. No clinical signs were recorded from infected or uninfected animals. Sequencing of the genomic DNA revealed 96% - 99% similarity with each other and 95.15% - 100% similarity with N. caninum sequences deposited in GenBank. To our knowledge, this is the first report on the use of PCR to identify latent neosporosis in sheep in Iran. The results of this study have the potential to contribute to our understanding of the role of N. caninum-infected sheep in the epidemiology of neosporosis.

  19. Flanking-sequence exponential anchored–polymerase chain reaction amplification: a sensitive and highly specific method for detecting retroviral integrant–host–junction sequences

    PubMed Central

    Pule, MA; Rousseau, A; Vera, J; Heslop, HE; Brenner, MK; Vanin, EF

    2009-01-01

    Background Retroviral vectors are regularly used to transduce stem cells and their derivatives for experimental and therapeutic purposes. Because these vectors integrate semi-randomly into the cellular genome, analysis of integranated retroviral DNA/host cell DNA junctions (IHJ) facilitates clonality studies of engrafted cells, allowing their differentiation, survival and fate to be tracked. In the case of any adverse events, IHJ analysis can allow the identification of potentially oncogenic integration sites. At present, most measures to assess IHJ are complex, insensitive and may be subject to IHJ selection bias inherent to the technology used. Methods We have developed and validated a simple but effective technique for generating libraries of IHJ, which we term flanking-sequence exponential anchored–polymerase chain reaction (FLEA-PCR). Flanking-sequence random anchoring is used as an alternative to restriction enzyme digestion and cassette ligation to allow consistent detection of IHJ and decrease bias. Results Individual clones from plasmid libraries can be sequenced and assembled using custom-written software, and FLEA-PCR smears can be analyzed by capillary electrophoresis after digestion with restriction enzymes. Discussion This approach can readily analyze complex mixtures of IHJ, allowing localization of these sequences to their genomic sites. This approach should simplify analysis of retroviral integration. PMID:18821360

  20. The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions.

    PubMed

    Pfannschmidt, T; Ogrzewalla, K; Baginsky, S; Sickmann, A; Meyer, H E; Link, G

    2000-01-01

    We previously identified two multisubunit plastid RNA polymerases termed A and B. The B enzyme has a bacterial-type polypeptide composition and is sensitive to the prokaryotic transcription inhibitor rifampicin (Rif); the A enzyme has a more complex subunit structure and is Rif-resistant. Here we report results of N-terminal sequencing and MS carried out with the A enzyme, which establish that the latter contains rpo gene products and is structurally related to the B enzyme. Furthermore, evidence is provided that the A enzyme can be converted into a Rif-sensitive enzyme form in a phosphorylation-dependent manner in vitro by a treatment that results in depletion of a beta-like subunit. Database searches using sequence information derived from additional polypeptides that are present in purified A preparations revealed sequence similarity with chloroplast proteins involved in RNA processing and redox control. This proteomics approach thus points to the complexity of the chloroplast transcription apparatus and its interconnections with post-transcriptional and signalling mechanisms.

  1. Gynecological Manifestations, Histopathological Findings, and Schistosoma-Specific Polymerase Chain Reaction Results Among Women With Schistosoma haematobium Infection: A Cross-sectional Study in Madagascar

    PubMed Central

    Randrianasolo, Bodo Sahondra; Jourdan, Peter Mark; Ravoniarimbinina, Pascaline; Ramarokoto, Charles Emile; Rakotomanana, Fanjasoa; Ravaoalimalala, Vololomboahangy Elisabeth; Gundersen, Svein Gunnar; Feldmeier, Hermann; Vennervald, Birgitte Jyding; van Lieshout, Lisette; Roald, Borghild; Leutscher, Peter; Kjetland, Eyrun Floerecke

    2015-01-01

    Background. The pathophysiology of female genital schistosomiasis (FGS) is only partially understood. This study aims to describe the histopathological findings, polymerase chain reaction (PCR) results, and gynecological manifestations of FGS in women with different intensities of Schistosoma haematobium infection. Methods. Women aged 15–35 years living in an S. haematobium-endemic area in Madagascar underwent pelvic and colposcopic examinations. Small biopsy specimens were obtained from lesions and examined histopathologically. Schistosoma PCR was done on urine, biopsy, cervicovaginal lavage, and genital mucosal surface specimens. Results. Sandy patches and rubbery papules were found in 41 of 118 women (35%). Rubbery papules reflected an intense cellular immune reaction dominated by eosinophils, epithelial erosion, and viable ova. There was a significant decrease in the prevalence of rubbery papules with age, even after adjustment for urinary ova excretion. The sandy patches with grains showed moderate cellular immune reaction and ova (viable and/or calcified). They were most prevalent in cases with low-intensity urinary S. haematobium infection. Forty-two percent of women with Schistosoma-negative urine specimens had at least 1 genital specimen test positive for Schistosoma by PCR. Conclusions. The results indicate a diversity of lesions caused by S. haematobium and a dynamic evolution of the genital lesions. Schistosoma PCR may give an indication of the diagnosis. PMID:25725656

  2. DNA polymerase profiling.

    PubMed

    Summerer, Daniel

    2008-01-01

    We report a simple homogeneous fluorescence assay for quantification of DNA polymerase function in high throughput. The fluorescence signal is generated by the DNA polymerase triggering opening of a molecular beacon extension of the template strand. A resulting distance alteration is reported by fluorescence resonance energy transfer between two dyes introduced into the molecular beacon stem. We describe real-time reaction profiling of two model DNA polymerases. We demonstrate kinetic characterization, rapid optimization of reaction conditions, and inhibitor profiling using the presented assay. Furthermore, to supersede purification steps in screening procedures of DNA polymerase mutant libraries, detection of enzymatic activity in bacterial expression lysates is described.

  3. Using the Polymerase Chain Reaction in an Undergraduate Laboratory to Produce "DNA Fingerprints."

    ERIC Educational Resources Information Center

    Phelps, Tara L.; And Others

    1996-01-01

    Presents a laboratory exercise that demonstrates the sensitivity of the Polymerase Chain Reaction as well as its potential application to forensic analysis during a criminal investigation. Can also be used to introduce, review, and integrate population and molecular genetics topics such as genotypes, multiple alleles, allelic and genotypic…

  4. Analysis of HLA-DQB and HLA-DPB alleles in Graves' disease by oligonucleotide probing of enzymatically amplified DNA.

    PubMed

    Weetman, A P; Zhang, L; Webb, S; Shine, B

    1990-07-01

    We have tested the possible association of HLA-DQB and HLA-DPB alleles with Graves' thyrotoxicosis, with or without severe ophthalmopathy, by polymerase chain amplification of genomic DNA and allele-specific oligonucleotide probing. There was no significantly abnormal distribution of DQB alleles compared to 50 control subjects except for a reduced prevalence of DQw 3.1 in the Graves' patients with severe ophthalmopathy (X2 = 6.23, P less than 0.02). HLA-DPB 2.1/8 was found in only 1 of 40 of these patients compared with 15 of the controls (X2 = 11.49, P less than 0.001). Ten of 48 patients with Graves' disease but without clinically significant eye involvement were HLA-DPB 2.1/8 positive, not significantly different from controls, but significantly different from the ophthalmopathy group (X2 = 6.70, P less than 0.01). The other DPB alleles in both groups of Graves' disease patients were the same as controls. These results suggest that HLA-DPB 2.1/8 may confer a protective effect in Graves' disease with respect to ophthalmopathy. PMID:2401099

  5. [Rh-D genotyping for exon 2, 5 and 7 of German and Japanese blood donors with sequence specific polymerase chain reaction].

    PubMed

    Maas, J H; Legler, T J; Lynen, R; Blaschke, V; Ohto, H; Köhler, M

    1997-01-01

    RHD genotyping from fetal cells was applied for the detection of the RHD gene in the fetus of immunized Rh-D-negative women. Additionally, RHD genotyping was applied for the characterization of Rh-D variants. Although 44 nucleotide substitutions are known to code for 35 amino acid differences between the RHCE and the RHD gene, only a few polymorphisms have been investigated yet. We investigated 7 RHD-specific nucleotides on exons 2, 5, and 7 with sequence-specific primers and 1 nucleotide with ligation-based typing. All RHD genotyping results were correlated with serological results and established genotyping methods in 116 German and 98 Japanese blood donors, because different genetic sequences coding for Rh-D polypeptides have been described in different ethnic groups. Sequence-specific amplification of D-specific sequences was concordant with the serological result in all blood donors tested. However, ligation-based typing on exon 5 gave false-negative results in 7 donors. In summary, 5 new sequence-specific PCRs have been evaluated for further characterization of Rh-D variants. Furthermore, the methods described allow nested PCR and thus may help in determination of the fetal RhD status from maternal peripheral blood during pregnancy.

  6. Distribution of DI*A and DI*B Allele Frequencies and Comparisons among Central Thai and Other Populations

    PubMed Central

    Nathalang, Oytip; Panichrum, Puangpaka; Intharanut, Kamphon; Thattanon, Phatchira; Nathalang, Siriporn

    2016-01-01

    Alloantibodies to the Diego (DI) blood group system, anti-Dia and anti-Dib are clinically significant in causing hemolytic transfusion reactions (HTRs) and hemolytic disease of the fetus and newborn (HDFN), especially in Asian populations with Mongolian ancestry. This study aimed to report the frequency of the DI*A and DI*B alleles in a Central Thai population and to compare them with those of other populations previously published. Altogether, 1,011 blood samples from unrelated healthy blood donors at the National Blood Centre, Thai Red Cross Society, Bangkok were included. Only 391 samples were tested with anti-Dia by conventional tube technique. All samples were genotyped for DI*A and DI*B alleles using an in-house polymerase chain reaction with sequence-specific primer (PCR-SSP) technique. The DI phenotyping and genotyping results were in 100% concordance. The DI*A and DI*B allele frequencies among 1,011 Central Thais were 0.0183 (37/2,022) and 0.9817 (1,985/2,022), respectively. Allele frequencies were compared between Central Thai and other populations. Our data shows that DI*A and DI*B allele frequencies are similar to Southeast Asian, Brazilian, Southern Brazilian and American Native populations; whereas, these frequencies significantly differ from those reported in East Asian, Italian, Alaska Native/Aleut, Hawaiian/Pacific Islander and Filipino populations (P<0.05), corresponding to the results of a matrix of geometric genetic distances. This study confirms that the prevalence of DI*A and DI*B alleles among Central Thais is similar to Southeast Asians and different to others populations of the world. A PCR-based identification of DI genotyping should overcome some of the serological limitations in transfusion medicine and provides a complementary tool for further population-genetic studies. PMID:27764238

  7. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction

    PubMed Central

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E.; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains. PMID:26061051

  8. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    PubMed

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains. PMID:26061051

  9. Rapid and sensitive detection of Sclerotium rolfsii associated with collar rot disease of Amorphophallus paeoniifolius by species-specific polymerase chain reaction assay.

    PubMed

    Pravi, V; Jeeva, M L; Archana, P V

    2014-09-01

    Collar rot disease caused by Sclerotium rolfsii is an economically important disease prevailing in all Amorphophallus growing areas. The pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of S. rolfsii in soil and planting material. The PCR detection limit was 10 pg in conventional assay whereas 0.1 pg in nested assay. The primers designed were found to be highly specific and could be used for accurate identification of pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples. PMID:24788585

  10. RNA Polymerases of Maize: Nuclear RNA Polymerases*

    PubMed Central

    Strain, Gustave C.; Mullinix, Kathleen P.; Bogorad, Lawrence

    1971-01-01

    Two DNA-dependent RNA polymerases of nuclear origin have been purified from leaves of Zea mays. The two enzymes can be separated on DEAE-cellulose columns. Enzymes I and II are eluted with 0.08 and 0.20 M (NH4)2SO4, respectively. Both enzymes prefer maize nuclear DNA as a template; they are also more active in the presence of Mg++ than Mn++ and are inhibited by (NH4)2-SO4 or KCl. Neither enzyme is inhibited by rifamycin SV. Enzyme II is strongly inhibited by α-amanitin, whereas enzyme I is not significantly affected. Their ability to use native and denatured DNA as templates varies according to the extent and method of purification of the polymerase. Furthermore, enzyme II can be resolved by DEAE-chromatography or glycerol-gradient centrifugation into two components, one of which prefers native DNA, while the other prefers denatured DNA. PMID:5288239

  11. Ribonucleic Acid Polymerase in Allomyces arbuscula

    PubMed Central

    Cain, Alice K.; Nester, Eugene W.

    1973-01-01

    Three distinct species of ribonucleic acid (RNA) polymerase were resolved from Allomyces arbuscula by diethylaminoethyl-cellulose chromatography and characterized as to ionic strength and divalent cation preference. α-Amanitin specifically inhibited enzyme II; neither rifampin nor cycloheximide had any effect on the three enzymes. RNA polymerase was isolated from three stages of the diploid life cycle: the hyphal growth stage, mycelia in the process of forming sporangia, and the mitospores. The same three enzyme species could be resolved from each stage. Thus, there is no evidence from this work that RNA polymerase plays a major role in the control of development. PMID:4728272

  12. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    PubMed

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  13. Technical note: Detection of cat, dog, and rat or mouse tissues in food and animal feed using species-specific polymerase chain reaction.

    PubMed

    Martín, I; García, T; Fajardo, V; Rojas, M; Hernández, P E; González, I; Martín, R

    2007-10-01

    A PCR method based on the nucleotide sequence variation in the 12S ribosomal RNA, mitochondrial gene has been developed for the specific and qualitative detection and identification of cat, dog, and rat or mouse tissue in food and feedstuffs. The primers designed generated specific fragments of 108, 101, and 96 bp in length for cat, dog, and rat or mouse tissues, respectively. Specificity of the primers was tested against 32 nontarget species including mammals, birds, fish, and plant species. This PCR method allowed detection of raw and heated cat, dog, and rat or mouse tissues in meat/oats mixtures even when the concentration of the target species was reduced to 0.1%. Furthermore, the performance of the method was not affected by prolonged heat-treatment (up to 133 degrees C for 20 min at 300 kPa), and consequently, it could be very useful to verify the origin of raw materials in food and feedstuffs submitted to denaturing technologies, for which other methods cannot be applied.

  14. Nucleolin Is Required for RNA Polymerase I Transcription In Vivo▿

    PubMed Central

    Rickards, Brenden; Flint, S. J.; Cole, Michael D.; LeRoy, Gary

    2007-01-01

    Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin. PMID:17130237

  15. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  16. Quantifying the transcriptional output of single alleles in single living mammalian cells

    PubMed Central

    Yunger, Sharon; Rosenfeld, Liat; Garini, Yuval; Shav-Tal, Yaron

    2013-01-01

    Transcription kinetics of actively transcribing genes in vivo have generally been measured using tandem gene arrays. However, tandem arrays do not reflect the endogenous state of genome organization where genes appear as single alleles. We present here a robust technique for the quantification of mRNA synthesis from a single allele in real-time, in single living mammalian cells. The protocol describes how to generate cell clones harboring a tagged allele and how to detect in vivo transcription from this tagged allele at high spatial and temporal resolution throughout the cell cycle. Quantification of nascent mRNAs produced from the single tagged allele is performed using RNA fluorescence in situ hybridization (FISH) and live-cell imaging. Subsequent analyses and data modeling detailed in the protocol include measurements of: transcription rates of RNA polymerase II; determining the number of polymerases recruited to the tagged allele; and measuring the spacing between polymerases. Generating the cells containing the single tagged alleles should take up to a month; RNA FISH or live-cell imaging will require an additional week. PMID:23424748

  17. The expanding polymerase universe.

    PubMed

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  18. Apolipoprotein E alleles in women with severe pre-eclampsia.

    PubMed Central

    Nagy, B; Rigó, J; Fintor, L; Karádi, I; Tóth, T

    1998-01-01

    This study investigated the frequency of apolipoprotein E (apoE) alleles among women with severe pre-eclampsia. The presence of the three most common apoE alleles (epsilon 2, epsilon 3, epsilon 4) was determined by polymerase chain reaction-restriction fragment length polymorphism in three groups of white women: non-pregnant healthy (n = 101), pregnant healthy (n = 52), and pregnant with a diagnosis of severe pre-eclampsia (n = 54). The frequency of apo epsilon 2 was highest among women with severe pre-eclampsia (16.6%) followed by non-pregnant women (12.9%), and those experiencing a healthy pregnancy (10.6%). The higher frequency of the apo epsilon 2 allele detected among women with severe pre-eclampsia suggests that apoE may play a role in the development of pre-eclampsia. PMID:9659248

  19. Detection of tick-borne encephalitis virus by sample transfer, plaque assay and strand-specific reverse transcriptase polymerase chain reaction: what do we detect?

    PubMed

    Kreil, T R; Zimmermann, K; Burger, I; Attakpah, E; Mannhalter, J W; Eibl, M M

    1997-10-01

    Experimental inoculation of mice provides a well characterized model for studying infection with tick-borne encephalitis virus (TBEV), a