Science.gov

Sample records for allele-specific oligonucleotide aso

  1. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  2. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  3. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  4. Allele-specific DNA methylation: beyond imprinting.

    PubMed

    Tycko, Benjamin

    2010-10-15

    Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive-affecting many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quantitative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF to pinpoint functional regulatory polymorphisms influencing disease susceptibility.

  5. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  6. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  7. Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML).

    PubMed

    Erba, Harry P; Sayar, Hamid; Juckett, Mark; Lahn, Michael; Andre, Valerie; Callies, Sophie; Schmidt, Shelly; Kadam, Sunil; Brandt, John T; Van Bockstaele, Dirk; Andreeff, Michael

    2013-08-01

    Survivin is expressed in tumor cells, including acute myeloid leukemia (AML), regulates mitosis, and prevents tumor cell death. The antisense oligonucleotide sodium LY2181308 (LY2181308) inhibits survivin expression and may cause cell cycle arrest and restore apoptosis in AML. In this study, the safety, pharmacokinetics, and pharmacodynamics/efficacy of LY2181308 was examined in AML patients, first in a cohort with monotherapy (n = 8) and then post-amendment in a cohort with the combination of cytarabine and idarubicin treatment (n = 16). LY2181308 was administered with a loading dosage of three consecutive daily infusions of 750 mg followed by weekly intravenous (IV) maintenance doses of 750 mg. Cytarabine 1.5 g/m(2) was administered as a 4-hour IV infusion on Days 3, 4, and 5 of Cycle 1, and idarubicin 12 mg/m(2) was administered as a 30-minute IV infusion on Days 3, 4, and 5 of Cycle 1. Cytarabine and idarubicin were administered on Days 1, 2, and 3 of each subsequent 28-day cycle. Reduction of survivin was evaluated in peripheral blasts and bone marrow. Single-agent LY2181308 was well tolerated and survivin was reduced only in patients with a high survivin expression. In combination with chemotherapy, 4/16 patients had complete responses, 1/16 patients had incomplete responses, and 4/16 patients had cytoreduction. Nine patients died on study: 6 (monotherapy), 3 (combination). LY2181308 alone is well tolerated in patients with AML. In combination with cytarabine and idarubicin, LY2181308 does not appear to cause additional toxicity, and has shown some clinical benefit needing confirmation in future clinical trials.

  8. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry.

    PubMed

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-11-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder.

  9. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry

    PubMed Central

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-01-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449

  10. Surface Plasmon Resonance Assay of Binding Properties of Antisense Oligonucleotides to Serum Albumins and Lipoproteins.

    PubMed

    Onishi, Reina; Watanabe, Ayahisa; Nakajima, Mado; Sekiguchi, Mitsuaki; Kugimiya, Akira; Kinouchi, Hiroki; Nihashi, Yoichiro; Kamimori, Hiroshi

    2015-01-01

    In the present study, we developed an assay to evaluate the kinetic binding properties of the unconjugated antisense oligonucleotide (ASO) and lipophilic and hydrophilic ligands conjugated ASOs to mouse and human serum albumin, and lipoproteins using surface plasmon resonance (SPR). The lipophilic ligands conjugated ASOs showed clear affinity to the albumins and lipoproteins, while the unconjugated and hydrophilic ligand conjugated ASOs showed no interaction. The SPR method showed reproducible immobilization of albumins and lipoproteins as ligands on the sensor chip, and reproducible affinity kinetic parameters of interaction of ASOs conjugated with the ligands could be obtained. The kinetic binding data of these ASOs to albumin and lipoproteins by SPR were related with the distributions in the whole liver in mice after administration of these conjugated ASOs. The results demonstrated that our SPR method could be a valuable tool for predicting the mechanism of the properties of delivery of conjugated ASOs to the organs.

  11. Allele-specific chemical genetics: concept, strategies, and applications.

    PubMed

    Islam, Kabirul

    2015-02-20

    The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.

  12. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  13. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Kinberger, Garth A; Prakash, Thazha P; Nichols, Joshua G; Crooke, Stanley T

    2016-05-05

    RNase H1-dependent antisense oligonucleotides (ASOs) are chemically modified to enhance pharmacological properties. Major modifications include phosphorothioate (PS) backbone and different 2'-modifications in 2-5 nucleotides at each end (wing) of an ASO. Chemical modifications can affect protein binding and understanding ASO-protein interactions is important for better drug design. Recently we identified many intracellular ASO-binding proteins and found that protein binding could affect ASO potency. Here, we analyzed the structure-activity-relationships of ASO-protein interactions and found 2'-modifications significantly affected protein binding, including La, P54nrb and NPM. PS-ASOs containing more hydrophobic 2'-modifications exhibit higher affinity for proteins in general, although certain proteins, e.g. Ku70/Ku80 and TCP1, are less affected by 2'-modifications. We found that Hsp90 protein binds PS-ASOs containing locked-nucleic-acid (LNA) or constrained-ethyl-bicyclic-nucleic-acid ((S)-cEt) modifications much more avidly than 2'-O-methoxyethyl (MOE). ASOs bind the mid-domain of Hsp90 protein. Hsp90 interacts with more hydrophobic 2' modifications, e.g. (S)-cEt or LNA, in the 5'-wing of the ASO. Reduction of Hsp90 protein decreased activity of PS-ASOs with 5'-LNA or 5'-cEt wings, but not with 5'-MOE wing. Together, our results indicate Hsp90 protein enhances the activity of PS/LNA or PS/(S)-cEt ASOs, and imply that altering protein binding of ASOs using different chemical modifications can improve therapeutic performance of PS-ASOs.

  14. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  15. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation.

    PubMed

    Singh, Purnima; Wu, Xiwei; Lee, Dong-Hoon; Li, Arthur X; Rauch, Tibor A; Pfeifer, Gerd P; Mann, Jeffrey R; Szabó, Piroska E

    2011-04-01

    To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.

  16. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides.

    PubMed

    Wada, Shunsuke; Yasuhara, Hidenori; Wada, Fumito; Sawamura, Motoki; Waki, Reiko; Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Obika, Satoshi

    2016-03-28

    Cholesterol conjugation of oligonucleotides is an attractive way to deliver the oligonucleotides specifically to the liver. However cholesterol-conjugated antisense oligonucleotides (ASOs) mainly accumulate in non-parenchymal cells (NPCs) such as Kupffer cells. In this study, to increase the hepatic accumulation of cholesterol-conjugated ASOs, we prepared a variety of linkers for cholesterol conjugation to anti-Pcsk9 ASOs and examined their effects on pharmacological parameters. Hepatic accumulation of ASO was dramatically increased with cholesterol conjugation. The increase in hepatic accumulation depended largely on the linker chemistry of each cholesterol-conjugated ASO. In addition to hepatic accumulation, the cell tropism of each cholesterol-conjugated ASO tended to depend on their linker. Although a linker bearing a disulfide bond accumulated mainly in NPCs, hexamethylene succinimide linker accumulated mainly in hepatocytes. To estimate the benefits of releasing ASO from the conjugated cholesterol in hepatocyte, we designed another linker based on hexamethylene succinimide, which has a phosphodiester bond between the linker and the ASO. The cholesterol-conjugated ASO bearing such a phosphodiester bond showed a significantly improved Pcsk9 mRNA inhibitory effect compared to its counterpart, cholesterol-conjugated ASO with a phosphorothioate bond, while the hepatic accumulation of both cholesterol-conjugated ASOs was comparable, indicating the effectiveness of removing the conjugated cholesterol for ASO activity. In toxicity analysis, some of the linkers induced lethal toxicities when they were injected at high concentrations (>600μM). These toxicities were attributed to decreased platelet levels in the blood, suggesting an interaction between cholesterol-conjugated ASO and platelets. Our findings may provide a guideline for the design of molecule-conjugated ASOs.

  17. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference.

    PubMed

    Lombardi, Maria Stella; Jaspers, Leonie; Spronkmans, Christine; Gellera, Cinzia; Taroni, Franco; Di Maria, Emilio; Donato, Stefano Di; Kaemmerer, William F

    2009-06-01

    Use of RNA interference to reduce huntingtin protein (htt) expression in affected brain regions may provide an effective treatment for Huntington disease (HD), but it remains uncertain whether suppression of both wild-type and mutant alleles in a heterozygous patient will provide more benefit than harm. Previous research has shown suppression of just the mutant allele is achievable using siRNA targeted to regions of HD mRNA containing single nucleotide polymorphisms (SNPs). To determine whether more than a minority of patients may be eligible for an allele-specific therapy, we genotyped DNA from 327 unrelated European Caucasian HD patients at 26 SNP sites in the HD gene. Over 86% of the patients were found to be heterozygous for at least one SNP among those tested. Because the sites are genetically linked, one cannot use the heterozygosity rates of the individual SNPs to predict how many sites (and corresponding allele-specific siRNA) would be needed to provide at least one treatment possibility for this percentage of patients. By computing all combinations, we found that a repertoire of allele-specific siRNA corresponding to seven sites can provide at least one allele-specific siRNA treatment option for 85.6% of our sample. Moreover, we provide evidence that allele-specific siRNA targeting these sites are readily identifiable using a high throughput screening method, and that allele-specific siRNA identified using this method indeed show selective suppression of endogenous mutant htt protein in fibroblast cells from HD patients. Therefore, allele-specific siRNA are not so rare as to be impractical to find and use therapeutically.

  18. Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans

    PubMed Central

    McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan

    2010-01-01

    The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549

  19. A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Sato, M; Sakabe, M; Naito, E; Yamanouchi, H; Suzuki, T

    2001-02-01

    We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.

  20. High-Throughput Genotyping with TaqMan Allelic Discrimination and Allele-Specific Genotyping Assays.

    PubMed

    Heissl, Angelika; Arbeithuber, Barbara; Tiemann-Boege, Irene

    2017-01-01

    Real-time PCR-based genotyping methods, such as TaqMan allelic discrimination assays and allele-specific genotyping, are particularly useful when screening a handful of single nucleotide polymorphisms in hundreds of samples; either derived from different individuals, tissues, or pre-amplified DNA. Although real-time PCR-based methods such as TaqMan are well-established, alternative methods, like allele-specific genotyping, are powerful alternatives, especially for genotyping short tandem repeat (STR) length polymorphisms. Here, we describe all relevant aspects when developing an assay for a new SNP or STR using either TaqMan or allele-specific genotyping, respectively, such as primer and probe design, optimization of reaction conditions, the experimental procedure for typing hundreds of samples, and finally the data evaluation. Our goal is to provide a guideline for developing genotyping assays using these two approaches that render reliable and reproducible genotype calls involving minimal optimization.

  1. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  2. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation.

    PubMed

    Prince, J A; Feuk, L; Howell, W M; Jobs, M; Emahazion, T; Blennow, K; Brookes, A J

    2001-01-01

    We recently introduced a generic single nucleotide polymorphism (SNP) genotyping method, termed DASH (dynamic allele-specific hybridization), which entails dynamic tracking of probe (oligonucleotide) to target (PCR product) hybridization as reaction temperature is steadily increased. The reliability of DASH and optimal design rules have not been previously reported. We have now evaluated crudely designed DASH assays (sequences unmodified from genomic DNA) for 89 randomly selected and confirmed SNPs. Accurate genotype assignment was achieved for 89% of these worst-case-scenario assays. Failures were determined to be caused by secondary structures in the target molecule, which could be reliably predicted from thermodynamic theory. Improved design rules were thereby established, and these were tested by redesigning six of the failed DASH assays. This involved reengineering PCR primers to eliminate amplified target sequence secondary structures. This sophisticated design strategy led to complete functional recovery of all six assays, implying that SNPs in most if not all sequence contexts can be effectively scored by DASH. Subsequent empirical support for this inference has been evidenced by approximately 30 failure-free DASH assay designs implemented across a range of ongoing genotyping programs. Structured follow-on studies employed standardized assay conditions, and revealed that assay reproducibility (733 duplicated genotypes, six different assays) was as high as 100%, with an assay accuracy (1200 genotypes, three different assays) that exceeded 99.9%. No post-PCR assay failures were encountered. These findings, along with intrinsic low cost and high flexibility, validate DASH as an effective procedure for SNP genotyping.

  3. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https

  4. Safety of antisense oligonucleotide and siRNA-based therapeutics.

    PubMed

    Chi, Xuan; Gatti, Philip; Papoian, Thomas

    2017-01-31

    Oligonucleotide-based therapy is an active area of drug development designed to treat a variety of gene-specific diseases. Two of the more promising platforms are the antisense oligonucleotides (ASOs) and short interfering RNAs (siRNAs), both of which are often directed against similar targets. In light of recent reports on clinical trials of severe thrombocytopenia with two different ASO drugs and increased peripheral neuropathy with an siRNA drug, we compared and contrasted the specific safety characteristics of these two classes of oligonucleotide therapeutic. The objectives were to assess factors that could contribute to the specific toxicities observed with these two classes of promising drugs, and get a better understanding of the potential mechanism(s) responsible for these rare, but serious, adverse events.

  5. Allele-specific copy number profiling by next-generation DNA sequencing.

    PubMed

    Chen, Hao; Bell, John M; Zavala, Nicolas A; Ji, Hanlee P; Zhang, Nancy R

    2015-02-27

    The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual's colon cancer.

  6. Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo.

    PubMed

    Lee, Ji-Su; Chang, Eun Hyuk; Koo, Ok Jae; Jwa, Dong Hwan; Mo, Won Min; Kwak, Geon; Moon, Hyo Won; Park, Hwan Tae; Hong, Young Bin; Choi, Byung-Ok

    2017-04-01

    Charcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited. In this study, we investigated whether regulation of a mutant allele by an allele-specific small interfering RNA (siRNA) can alleviate the demyelinating neuropathic phenotype of CMT. We designed 19 different allele-specific siRNAs for Trembler J (Tr-J) mice harboring a naturally occurring mutation (Leu16Pro) in Pmp22. Using a luciferase assay, we identified an siRNA that specifically and selectively reduced the expression level of the mutant allele and reversed the low viability of Schwann cells caused by mutant Pmp22 over-expression in vitro. The in vivo efficacy of the allele-specific siRNA was assessed by its intraperitoneal injection to postnatal day 6 of Tr-J mice. Administration of the allele-specific siRNA to Tr-J mice significantly enhanced motor function and muscle volume, as assessed by the rotarod test and magnetic resonance imaging analysis, respectively. Increases in motor nerve conduction velocity and compound muscle action potentials were also observed in the treated mice. In addition, myelination, as evidenced by toluidine blue staining and electron microscopy, was augmented in the sciatic nerves of the mice after allele-specific siRNA treatment. After validating suppression of the Pmp22 mutant allele at the mRNA level in the Schwann cells of Tr-J mice, we observed increased expression levels of myelinating proteins such as myelin basic protein and myelin protein zero. These data indicate that selective suppression of the Pmp22 mutant allele by non-viral delivery of siRNA alleviates the demyelinating neuropathic phenotypes of CMT in vivo, implicating allele-specific siRNA treatment as a potent therapeutic strategy for dominantly inherited peripheral neuropathies.

  7. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.

    PubMed

    de Santiago, Ines; Liu, Wei; Yuan, Ke; O'Reilly, Martin; Chilamakuri, Chandra Sekhar Reddy; Ponder, Bruce A J; Meyer, Kerstin B; Markowetz, Florian

    2017-02-24

    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.

  8. Correction of hair shaft defects through allele-specific silencing of mutant Krt75

    PubMed Central

    Liu, Ying; Snedecor, Elizabeth R.; Zhang, Xu; Xu, Yan-Feng; Huang, Lan; Jones, Evan; Zhang, Lianfeng; Clark, Richard A.; Roop, Dennis R.; Qin, Chuan; Chen, Jiang

    2015-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele specific siRNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific shRNA persistently suppressed this phenotype. The phenotypic correction was associated with significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of the mutant keratin genes. PMID:26763422

  9. Predictive long-range allele-specific mapping of regulatory variants and target transcripts.

    PubMed

    Lee, Kibaick; Lee, Seulkee; Bang, Hyoeun; Choi, Jung Kyoon

    2017-01-01

    Genome-wide association studies (GWASs) have identified a large number of noncoding associations, calling for systematic mapping to causal regulatory variants and their distal target genes. A widely used method, quantitative trait loci (QTL) mapping for chromatin or expression traits, suffers from sample-to-sample experimental variation and trans-acting or environmental effects. Instead, alleles at heterozygous loci can be compared within a sample, thereby controlling for those confounding factors. Here we introduce a method for chromatin structure-based allele-specific pairing of regulatory variants and target transcripts. With phased genotypes, much of allele-specific expression could be explained by paired allelic cis-regulation across a long range. This approach showed approximately two times greater sensitivity than QTL mapping. There are cases in which allele imbalance cannot be tested because heterozygotes are not available among reference samples. Therefore, we employed a machine learning method to predict missing positive cases based on various features shared by observed allele-specific pairs. We showed that only 10 reference samples are sufficient to achieve high prediction accuracy with a low sampling variation. In conclusion, our method enables highly sensitive fine mapping and target identification for trait-associated variants based on a small number of reference samples.

  10. AlleleSeq: analysis of allele-specific expression and binding in a network framework.

    PubMed

    Rozowsky, Joel; Abyzov, Alexej; Wang, Jing; Alves, Pedro; Raha, Debasish; Harmanci, Arif; Leng, Jing; Bjornson, Robert; Kong, Yong; Kitabayashi, Naoki; Bhardwaj, Nitin; Rubin, Mark; Snyder, Michael; Gerstein, Mark

    2011-08-02

    To study allele-specific expression (ASE) and binding (ASB), that is, differences between the maternally and paternally derived alleles, we have developed a computational pipeline (AlleleSeq). Our pipeline initially constructs a diploid personal genome sequence (and corresponding personalized gene annotation) using genomic sequence variants (SNPs, indels, and structural variants), and then identifies allele-specific events with significant differences in the number of mapped reads between maternal and paternal alleles. There are many technical challenges in the construction and alignment of reads to a personal diploid genome sequence that we address, for example, bias of reads mapping to the reference allele. We have applied AlleleSeq to variation data for NA12878 from the 1000 Genomes Project as well as matched, deeply sequenced RNA-Seq and ChIP-Seq data sets generated for this purpose. In addition to observing fairly widespread allele-specific behavior within individual functional genomic data sets (including results consistent with X-chromosome inactivation), we can study the interaction between ASE and ASB. Furthermore, we investigate the coordination between ASE and ASB from multiple transcription factors events using a regulatory network framework. Correlation analyses and network motifs show mostly coordinated ASB and ASE.

  11. Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu; Xu, Yanfeng; Huang, Lan; Jones, Evan C; Zhang, Lianfeng; Clark, Richard A; Roop, Dennis R; Qin, Chuan; Chen, Jiang

    2016-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele-specific small interfering RNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific short hairpin RNA (shRNA) persistently suppressed this phenotype. The phenotypic correction was associated with a significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of mutant keratin genes.

  12. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  13. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-07-28

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.

  14. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus

    PubMed Central

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes. PMID:27465215

  15. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice

    PubMed Central

    Yu, Rosie Z; Graham, Mark J; Post, Noah; Riney, Stan; Zanardi, Thomas; Hall, Shannon; Burkey, Jennifer; Shemesh, Colby S; Prakash, Thazha P; Seth, Punit P; Swayze, Eric E; Geary, Richard S; Wang, Yanfeng; Henry, Scott

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotides (ASOs) have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2′-O-(2-methoxyethyl)-modified ASO conjugated with GalNAc3 (ISIS 681257) together with its unmodified congener (ISIS 494372) targeting human apolipoprotein (a) (apo(a)), were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a) mRNA and plasma apo(a) protein levels. Following subcutaneous (SC) dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7–8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound), which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies. PMID:27138177

  16. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  17. Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome.

    PubMed

    Kadota, Mitsutaka; Yang, Howard H; Hu, Nan; Wang, Chaoyu; Hu, Ying; Taylor, Philip R; Buetow, Kenneth H; Lee, Maxwell P

    2007-05-18

    Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.

  18. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  19. Human leukocyte antigen haplotype phasing by allele-specific enrichment with peptide nucleic acid probes

    PubMed Central

    Murphy, Nicholas M; Pouton, Colin W; Irving, Helen R

    2014-01-01

    Targeted capture of large fragments of genomic DNA that enrich for human leukocyte antigen (HLA) system haplotypes has utility in haematopoietic stem cell transplantation. Current methods of HLA matching are based on inference or familial studies of inheritance; and each approach has its own inherent limitations. We have designed and tested a probe–target-extraction method for capturing specific HLA haplotypes by hybridization of peptide nucleic acid (PNA) probes to alleles of the HLA-DRB1 gene. Short target fragments contained in plasmids were initially used to optimize the method followed by testing samples of genomic DNA from human subjects with preselected HLA haplotypes and obtained approximately 10% enrichment for the specific haplotype. When performed with high-molecular-weight genomic DNA, 99.0% versus 84.0% alignment match was obtained for the specific haplotype probed. The allele-specific target enrichment that we obtained can facilitate the elucidation of haplotypes between the 65 kb separating the HLA-DRB1 and the HLA-DQA1 genes, potentially spanning a total distance of at least 130 kb. Allele-specific target enrichment with PNA probes is a straightforward technique that has the capability to improve the resolution of DNA and whole genome sequencing technologies by allowing haplotyping of enriched DNA and crucially, retaining the DNA methylation profile. PMID:24936514

  20. Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications.

    PubMed

    Yu, Chih-Chieh; Qiu, Wanglong; Juang, Caroline S; Mansukhani, Mahesh M; Halmos, Balazs; Su, Gloria H

    2017-01-01

    Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.

  1. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  2. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  3. Determination of ABO genotypes by real-time PCR using allele-specific primers.

    PubMed

    Muro, Tomonori; Fujihara, Junko; Imamura, Shinji; Nakamura, Hiroaki; Kimura-Kataoka, Kaori; Toga, Tomoko; Iida, Reiko; Yasuda, Toshihiro; Takeshita, Haruo

    2012-01-01

    ABO grouping of biological specimens is informative for identifying victims and narrowing down suspects. In Japan and elsewhere, ABO grouping as well as DNA profiling plays an essential role in crime investigations. In the present study, we developed a new method for ABO genotyping using allele-specific primers and real-time PCR. The method allows for the detection of three single nucleotide polymorphisms (SNPs) at nucleotide positions 261, 796, and 803 in the ABO gene and the determination of six major ABO genotypes. This method required less than 2 h for accurate ABO genotyping using 2.0 ng of DNA. This method could be applicable for rapid and simple screening of forensic samples.

  4. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers.

    PubMed

    Groner, William D; Christy, Megan E; Kreiner, Catherine M; Liljegren, Sarah J

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  5. Genotyping of benzimidazole resistant and susceptible isolates of Haemonchus contortus from sheep by allele specific PCR.

    PubMed

    Mohanraj, Karthik; Subhadra, Subhra; Kalyanasundaram, Aravindan; Ilangopathy, Manikkavasagan; Raman, Muthusamy

    2017-03-01

    Extensive and indiscriminate use of the benzimidazole class of drugs has led to the onset of anthelmintic resistance. In tropical countries like India, Haemonchus contortus is the most pathogenic parasite infecting sheep and goats. The widespread presence of resistant helminths (especially H. contortus) threatens the livestock farming. The use of various drugs has led to single nucleotide polymorphism that causes specific amino acid substitutions in β-tubulin protein of H. contortus to confer resistance. This emphasizes the need for a survey on the present status of resistance in India. In this study, allele specific PCR was employed to screen the presence of a SNP, a thymine-to-adenine transversion which leads to substitution of amino acid in codon 200 of β-tubulin gene that is correlated specifically with BZ resistance. Third stage larvae (L3) from pooled faecal cultures of four organized sheep farms served as a source of genomic DNA for identification of H. contortus and further genotype analysis. A total of 1000 larvae was screened, out of which 673 larvae were identified as H. contortus. Among 673 H. contortus larvae, 539 larvae (80 %) were genotyped as homozygous resistant (rr) and remaining 134 (20 %) were heterozygous susceptible (Sr) by allele specific PCR. The concluded resistance status reasons out the failure of anthelmintic drug in treating ruminants. Immediate steps are needed to avoid further aggravation of the problem. Target selective treatment by reviewing the resistance status of individual drugs, appropriate use of anthelmintic drugs and other control strategies will provide a pragmatic option for delaying the further spread of anthelmintic resistance.

  6. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  7. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate gene expression in the postnatal mouse

    PubMed Central

    Depreux, Frederic F.; Wang, Lingyan; Jiang, Han; Jodelka, Francine M.; Rosencrans, Robert F.; Rigo, Frank; Lentz, Jennifer J.; Brigande, John V.; Hastings, Michelle L.

    2016-01-01

    Congenital diseases account for a large portion of pediatric illness. Prenatal screening and diagnosis permit early detection of many genetic diseases. Fetal therapeutic strategies to manage disease processes in utero represent a powerful new approach for clinical care. A safe and effective fetal pharmacotherapy designed to modulate gene expression ideally would avoid direct mechanical engagement of the fetus and present an external reservoir of drug. The amniotic cavity surrounding the fetus could serve as an ideal drug reservoir. Antisense oligonucleotides (ASOs) are an established tool for the therapeutic modulation of gene expression. We hypothesize that ASOs administered to the amniotic cavity will gain entry to the fetus and modulate gene expression. Here, we show that an ASO targeting MALAT1 RNA, delivered by transuterine microinjection into the mouse amniotic cavity at embryonic day 13-13.5, reduces target RNA expression for up to 4 weeks after birth. A similarly delivered ASO targeting a causal splice site mutation for Usher syndrome corrects gene expression in the inner ear, a therapeutically relevant target tissue. We conclude that intra-amniotic delivery of ASOs is well tolerated and produces a sustained effect on postnatal gene expression. Transuterine delivery of ASOs is an innovative platform for developing fetal therapeutics to efficaciously treat congenital disease. PMID:27683224

  8. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication

    PubMed Central

    Lenartowicz, Elzbieta; Nogales, Aitor; Kierzek, Elzbieta; Kierzek, Ryszard; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A virus (IAV) affects 5%–10% of the world's population every year. Through genome changes, many IAV strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find new targets for therapeutics against this important human respiratory pathogen. In this study, 2′-O-methyl and locked nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/2009 (H1N1) genomic viral RNA segment 8 (vRNA8) based on a base-pairing model of vRNA8. Ten of 14 tested ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11–15 nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity. The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity. These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between the 5′ and 3′ ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches. PMID:27463680

  9. Allele-specific methylation occurs at genetic variants associated with complex disease.

    PubMed

    Hutchinson, John N; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results.

  10. Allele-specific analysis of DNA replication origins in mammalian cells

    PubMed Central

    Bartholdy, Boris; Mukhopadhyay, Rituparna; Lajugie, Julien; Aladjem, Mirit I.; Bouhassira, Eric E.

    2015-01-01

    The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity. PMID:25987481

  11. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis.

    PubMed

    Nieminen, Taina T; Pavicic, Walter; Porkka, Noora; Kankainen, Matti; Järvinen, Heikki J; Lepistö, Anna; Peltomäki, Päivi

    2016-10-25

    Allele-specific expression (ASE) of the Adenomatous Polyposis Coli (APC) gene occurs in up to one-third of families with adenomatous polyposis (FAP) that have screened mutation-negative by conventional techniques. To advance our understanding of the genomic basis of this phenomenon, 54 APC mutation-negative families (21 with classical FAP and 33 with attenuated FAP, AFAP) were investigated. We focused on four families with validated ASE and scrutinized these families by sequencing of the blood transcriptomes (RNA-seq) and genomes (WGS). Three families, two with classical FAP and one with AFAP, revealed deep intronic mutations associated with pseudoexons. In all three families, intronic mutations (c.646-1806T>G in intron 6, c.1408+729A>G in intron 11, and c.1408+731C>T in intron 11) created new splice donor sites resulting in the insertion of intronic sequences (of 127 bp, 83 bp, and 83 bp, respectively) in the APC transcript. The respective intronic mutations were absent in the remaining polyposis families and the general population. Premature stop of translation as the predicted consequence as well as co-segregation with polyposis supported the pathogenicity of the pseudoexons. We conclude that next generation sequencing on RNA and genomic DNA is an effective strategy to reveal and validate pseudoexons that are regularly missed by traditional screening methods and is worth considering in apparent mutation-negative polyposis families.

  12. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

    PubMed Central

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2014-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  13. Utilising polymorphisms to achieve allele-specific genome editing in zebrafish

    PubMed Central

    Capon, Samuel J.; Baillie, Gregory J.; Bower, Neil I.; da Silva, Jason A.; Paterson, Scott; Hogan, Benjamin M.; Simons, Cas

    2017-01-01

    ABSTRACT The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites) and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19). To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected ‘heterozygotes’ compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs) present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model. PMID:27895053

  14. Regulatory Divergence in Drosophila melanogaster and D. simulans, a Genomewide Analysis of Allele-Specific Expression

    PubMed Central

    Graze, Rita M.; McIntyre, Lauren M.; Main, Bradley J.; Wayne, Marta L.; Nuzhdin, Sergey V.

    2009-01-01

    Species-specific regulation of gene expression contributes to the development and maintenance of reproductive isolation and to species differences in ecologically important traits. A better understanding of the evolutionary forces that shape regulatory variation and divergence can be developed by comparing expression differences among species and interspecific hybrids. Once expression differences are identified, the underlying genetics of regulatory variation or divergence can be explored. With the goal of associating cis and/or trans components of regulatory divergence with differences in gene expression, overall and allele-specific expression levels were assayed genomewide in female adult heads of Drosophila melanogaster, D. simulans, and their F1 hybrids. A greater proportion of cis differences than trans differences were identified for genes expressed in heads and, in accordance with previous studies, cis differences also explained a larger number of species differences in overall expression level. Regulatory divergence was found to be prevalent among genes associated with defense, olfaction, and among genes downstream of the Drosophila sex determination hierarchy. In addition, two genes, with critical roles in sex determination and micro RNA processing, Sxl and loqs, were identified as misexpressed in hybrid female heads, potentially contributing to hybrid incompatibility. PMID:19667135

  15. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  16. Utilising polymorphisms to achieve allele-specific genome editing in zebrafish.

    PubMed

    Capon, Samuel J; Baillie, Gregory J; Bower, Neil I; da Silva, Jason A; Paterson, Scott; Hogan, Benjamin M; Simons, Cas; Smith, Kelly A

    2017-01-15

    The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites) and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19). To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected 'heterozygotes' compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs) present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model.

  17. Human Y-chromosome haplotyping by allele-specific polymerase chain reaction.

    PubMed

    Gayden, Tenzin; Regueiro, Maria; Martinez, Laisel; Cadenas, Alicia M; Herrera, Rene J

    2008-06-01

    We describe the application of allele-specific PCR (AS-PCR) for screening biallelic markers, including SNPs, within the nonrecombining region of the human Y-chromosome (NRY). The AS-PCR method is based on the concept that the perfectly annealed primer-template complex is more stable, and therefore, more efficiently amplified under the appropriate annealing temperature than the complex with a mismatched 3'-residue. Furthermore, a mismatched nucleotide at the primer's 3'-OH end provides for a poor extension substrate for Taq DNA polymerase, allowing for discrimination between the two alleles. This method has the dual advantage of amplification and detection of alleles in a single expeditious and inexpensive procedure. The amplification conditions of over 50 binary markers, mostly SNPs, that define the major Y-haplogroups as well as their derived lineages were optimized and are provided for the first time. In addition, artificial restriction sites were designed for those markers that are not selectively amplified by AS-PCR. Our results are consistent with allele designations derived from other techniques such as RFLP and direct sequencing of PCR products.

  18. Molecular genetic mechanisms of allelic specific regulation of murine Comt expression

    PubMed Central

    Segall, Samantha K.; Shabalina, Svetlana A.; Meloto, Carolina B.; Wen, Xia; Cunningham, Danielle; Tarantino, Lisa M.; Wiltshire, Tim; Gauthier, Josée; Tohyama, Sarasa; Martin, Loren J.; Mogil, Jeffrey S.; Diatchenko, Luda

    2015-01-01

    Abstract A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3′-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), ComtB2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3′ to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3′-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels. PMID:26067582

  19. High-throughput allele-specific expression across 250 environmental conditions

    PubMed Central

    Moyerbrailean, Gregory A.; Richards, Allison L.; Kurtz, Daniel; Kalita, Cynthia A.; Davis, Gordon O.; Harvey, Chris T.; Alazizi, Adnan; Watza, Donovan; Sorokin, Yoram; Hauff, Nancy; Zhou, Xiang; Wen, Xiaoquan; Pique-Regi, Roger; Luca, Francesca

    2016-01-01

    Gene-by-environment (GxE) interactions determine common disease risk factors and biomedically relevant complex traits. However, quantifying how the environment modulates genetic effects on human quantitative phenotypes presents unique challenges. Environmental covariates are complex and difficult to measure and control at the organismal level, as found in GWAS and epidemiological studies. An alternative approach focuses on the cellular environment using in vitro treatments as a proxy for the organismal environment. These cellular environments simplify the organism-level environmental exposures to provide a tractable influence on subcellular phenotypes, such as gene expression. Expression quantitative trait loci (eQTL) mapping studies identified GxE interactions in response to drug treatment and pathogen exposure. However, eQTL mapping approaches are infeasible for large-scale analysis of multiple cellular environments. Recently, allele-specific expression (ASE) analysis emerged as a powerful tool to identify GxE interactions in gene expression patterns by exploiting naturally occurring environmental exposures. Here we characterized genetic effects on the transcriptional response to 50 treatments in five cell types. We discovered 1455 genes with ASE (FDR < 10%) and 215 genes with GxE interactions. We demonstrated a major role for GxE interactions in complex traits. Genes with a transcriptional response to environmental perturbations showed sevenfold higher odds of being found in GWAS. Additionally, 105 genes that indicated GxE interactions (49%) were identified by GWAS as associated with complex traits. Examples include GIPR–caffeine interaction and obesity and include LAMP3–selenium interaction and Parkinson disease. Our results demonstrate that comprehensive catalogs of GxE interactions are indispensable to thoroughly annotate genes and bridge epidemiological and genome-wide association studies. PMID:27934696

  20. Characterization and machine learning prediction of allele-specific DNA methylation.

    PubMed

    He, Jianlin; Sun, Ming-an; Wang, Zhong; Wang, Qianfei; Li, Qing; Xie, Hehuang

    2015-12-01

    A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events.

  1. Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs

    PubMed Central

    Smith, Cory; Abalde-Atristain, Leire; He, Chaoxia; Brodsky, Brett R; Braunstein, Evan M; Chaudhari, Pooja; Jang, Yoon-Young; Cheng, Linzhao; Ye, Zhaohui

    2015-01-01

    Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption. PMID:25418680

  2. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation

    PubMed Central

    Do, Catherine; Lang, Charles F.; Lin, John; Darbary, Huferesh; Krupska, Izabela; Gaba, Aulona; Petukhova, Lynn; Vonsattel, Jean-Paul; Gallagher, Mary P.; Goland, Robin S.; Clynes, Raphael A.; Dwork, Andrew; Kral, John G.; Monk, Catherine; Christiano, Angela M.; Tycko, Benjamin

    2016-01-01

    Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A∗-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders. PMID:27153397

  3. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications.

    PubMed

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D Gray; Soisson, Lorraine; Diggs, Carter L; Vekemans, Johan; Cohen, Joe; Blackwelder, William C; Dube, Tina; Laurens, Matthew B; Doumbo, Ogobara K; Plowe, Christopher V

    2013-02-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02(A), a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02(A) had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen.

  4. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  5. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Wagner, Thomas; Huyuh, Hoan K.; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2002-01-01

    Beta-D-Xylopyranosyl-(4 - 2 )-oligonucleotides containing adenine and thymine as nucleohases were synthesized as a part of a systematic study of the pairing properties of pentopyranosyl oligonucleotides. Contrary to earlier expectations based on qualitative conformational criteria, Beta-D-xylopyranosyl(4 - 2 )- oligonucleotides show Watson-Crick pairing comparable in strength to that shown by pyranosyl-RNA.

  6. Analysis of genomic imprinting by quantitative allele-specific expression by Pyrosequencing(®).

    PubMed

    McKeown, Peter C; Fort, Antoine; Spillane, Charles

    2014-01-01

    Genomic imprinting is a parent-of-origin phenomenon whereby gene expression is restricted to the allele inherited from either the maternal or paternal parent. It has been described from flowering plants and eutherian mammals and may have evolved due to parental conflicts over resource allocation. In mammals, imprinted genes are responsible for ensuring correct rates of embryo development and for preventing parthenogenesis. The molecular basis of imprinting depends upon the presence of differential epigenetic marks on the alleles inherited from each parent, although in plants the exact mechanisms that control imprinting are still unclear in many cases. Recent studies have identified large numbers of candidate imprinted genes from Arabidopsis thaliana and other plants (see Chap. 7 by Köhler and colleagues elsewhere in this volume) providing the tools for more thorough investigation into how imprinted gene networks (IGNs) are regulated. Analysis of genomic imprinting in animals has revealed important information on how IGNs are regulated during development, which often involves intermediate levels of imprinting. In some instances, small but significant changes in the degree of parental bias in gene expression have been linked to developmental traits, livestock phenotypes, and human disease. As some of the imprinted genes recently reported from plants show differential rather than complete (binary) imprinting, there is a clear need for tools that can quantify the degree of allelic expression bias occurring at a transcribed locus. In this chapter, we describe the use of Quantification of Allele-Specific Expression by Pyrosequencing(®) (QUASEP) as a tool suitable for this challenge. We describe in detail the factors which ensure that a Pyrosequencing(®) assay will be suitable for giving robust QUASEP and the problems which may be encountered during the study of imprinted genes by Pyrosequencing(®), with particular reference to our work in A. thaliana and in cattle

  7. The Lyman-α Solar Telescope (LST) for the ASO-S mission

    NASA Astrophysics Data System (ADS)

    Li, Hui

    The Lyman-α (Lyα) Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 R⊙ (R⊙ = solar radius), a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 R⊙, and a full-disk White-light Solar Telescope (WST) with the same FOV as the SDI, which also serves as the guiding telescope. The SCI is designed to work in the Lyα (121.6 nm) waveband and white-light (for polarization brightness observation), while the SDI will work in the Lyα waveband only. The WST works in both visible (for guide) and ultraviolet (for science) broadband. The LST will observe the Sun from disk-center up to 2.5 R⊙ for both solar flares and coronal mass ejections with high tempo-spatial resolution

  8. The Lyman-alpha Solar Telescope for the ASO-S

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-08-01

    The Lyman-alpha Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 Rsun, a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 Rsun, and a full-disk White-light Solar Telescope (WST) with an FOV of 1.2 Rsun, which also serves as the guiding telescope. The SCI is designed to work at the Lyman-alpha waveband and white-light, while the SDI will work at the Lyman-alpha waveband only. The WST works both in visible (for guide) and ultraviolet (for science) white-light. The LST will observe the Sun from disk-center up to 2.5 solar radii for both solar flares and coronal mass ejections. In this presentation, I will give an introduction to LST, including scientific objectives, science requirement, instrument design and current status.

  9. [Microchip electrophoresis coupled with multiplex allele-specific am-plification for typing multiple single nucleotide polymorphisms (SNPs) simultaneously].

    PubMed

    Wang, Wei-Peng; Zhou, Guo-Hua

    2009-02-01

    A new method of DNA adapter ligation-mediated allele-specific amplification (ALM-ASA) was developed for typing multiple single nucleotide polymorphisms (SNPs) on the platform of microchip electrophoresis. Using seven SNPs of 794C>T, 1274C>T, 2143T>C, 2766T>del, 3298G>A, 5200G>A, and 5277C>T in the interleukin 1B (IL1B) gene as a target object, a long DNA fragment containing the seven SNPs of interest was pre-amplified to enhance the specificity. The pre-amplified DNA fragment was digested by a restriction endonuclease to form sticky ends; and then the adapter was ligated to either end of the digested fragment. Using the adapter-ligated fragments as templates, a 7-plex allele-specific amplification was performed by 7 allele-specific primers and a universal primer in one tube. The allele-specific products amplified were separated by chip electrophoresis and the types of SNPs were easily discriminated by the product sizes. The seven SNPs in IL1B gene in 48 healthy Chinese were successfully typed by microchip electrophoresis and the results coincided with those by PCR-restriction fragment length polymorphism and sequencing method. The method established was accurate and can be used to type multiple SNPs simultaneously. In combination with microchip electrophoresis for readout, ALM-ASA assay can be used for fast SNP detection with a small amount of sample. Using self-prepared gel matrix and reused chips for analysis, the SNP can be typed at an ultra low cost.

  10. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    PubMed

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms.

  11. Activating the synthesis of progerin, the mutant prelamin A in Hutchinson-Gilford progeria syndrome, with antisense oligonucleotides.

    PubMed

    Fong, Loren G; Vickers, Timothy A; Farber, Emily A; Choi, Christine; Yun, Ui Jeong; Hu, Yan; Yang, Shao H; Coffinier, Catherine; Lee, Roger; Yin, Liya; Davies, Brandon S J; Andres, Douglas A; Spielmann, H Peter; Bennett, C Frank; Young, Stephen G

    2009-07-01

    Hutchinson-Gilford progeria syndrome (HGPS) is caused by point mutations that increase utilization of an alternate splice donor site in exon 11 of LMNA (the gene encoding lamin C and prelamin A). The alternate splicing reduces transcripts for wild-type prelamin A and increases transcripts for a truncated prelamin A (progerin). Here, we show that antisense oligonucleotides (ASOs) against exon 11 sequences downstream from the exon 11 splice donor site promote alternate splicing in both wild-type and HGPS fibroblasts, increasing the synthesis of progerin. Indeed, wild-type fibroblasts transfected with these ASOs exhibit progerin levels similar to (or greater than) those in fibroblasts from HGPS patients. This progerin was farnesylated, as judged by metabolic labeling studies. The synthesis of progerin in wild-type fibroblasts was accompanied by the same nuclear shape and gene-expression perturbations observed in HGPS fibroblasts. An ASO corresponding to the 5' portion of intron 11 also promoted alternate splicing. In contrast, an ASO against exon 11 sequences 5' to the alternate splice site reduced alternate splicing in HGPS cells and modestly lowered progerin levels. Thus, different ASOs can be used to increase or decrease 'HGPS splicing'. ASOs represent a new and powerful tool for recreating HGPS pathophysiology in wild-type cells.

  12. Magnetic force microscopy analysis of apoptosis of HL-60 cells induced by complex of antisense oligonucleotides and magnetic nanoparticles.

    PubMed

    Shen, He-bai; Long, De-hong; Zhu, Long-zhang; Li, Xing-Yu; Dong, Ya-ming; Jia, Neng-qin; Zhou, Hai-qing; Xin, Xi; Sun, Yang

    2006-06-20

    Magnetic force microscopy (MFM) has been employed to observe antisense oligonucleotides (ASOs)-coupled silica-coated magnetic iron oxide nanoparticles (SMNPs) internalized into human leukemia (HL-60) cells. The experiment demonstrated that the ASOs-coupled SMNPs delivery into the cells really occurred. The nanoparticles were internalized into the cells and the apoptotic topography can be directly visualized simultaneously with MFM technology. These present observations offer direct morphology evidence on studying the apoptosis of tumor cells and provide useful information for better design of new diagnostic and therapeutic tools in tumor treatment.

  13. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin–related liver disease in mice

    PubMed Central

    Guo, Shuling; Booten, Sheri L.; Aghajan, Mariam; Hung, Gene; Zhao, Chenguang; Blomenkamp, Keith; Gattis, Danielle; Watt, Andrew; Freier, Susan M.; Teckman, Jeffery H.; McCaleb, Michael L.; Monia, Brett P.

    2013-01-01

    Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease. PMID:24355919

  14. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice.

    PubMed

    Guo, Shuling; Booten, Sheri L; Aghajan, Mariam; Hung, Gene; Zhao, Chenguang; Blomenkamp, Keith; Gattis, Danielle; Watt, Andrew; Freier, Susan M; Teckman, Jeffery H; McCaleb, Michael L; Monia, Brett P

    2014-01-01

    Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.

  15. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model

    NASA Astrophysics Data System (ADS)

    Venuganti, , Venkata Vamsi K.; Saraswathy, Manju; Dwivedi, Chandradhar; Kaushik, Radhey S.; Perumal, Omathanu P.

    2015-02-01

    The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex reduced the tumor volume by 45% and was consistent with the reduction in Bcl-2 protein levels. The iontophoretically delivered ASO-dendrimer complex caused significant apoptosis in skin tumor. Overall, the findings from this study demonstrate that dendrimers are promising nanocarriers for developing topical gene silencing approaches for skin diseases.The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex

  16. Antisense oligonucleotide-based therapy in human erythropoietic protoporphyria.

    PubMed

    Oustric, Vincent; Manceau, Hana; Ducamp, Sarah; Soaid, Rima; Karim, Zoubida; Schmitt, Caroline; Mirmiran, Arienne; Peoc'h, Katell; Grandchamp, Bernard; Beaumont, Carole; Lyoumi, Said; Moreau-Gaudry, François; Guyonnet-Dupérat, Véronique; de Verneuil, Hubert; Marie, Joëlle; Puy, Herve; Deybach, Jean-Charles; Gouya, Laurent

    2014-04-03

    In 90% of people with erythropoietic protoporphyria (EPP), the disease results from the inheritance of a common hypomorphic FECH allele, encoding ferrochelatase, in trans to a private deleterious FECH mutation. The activity of the resulting FECH enzyme falls below the critical threshold of 35%, leading to the accumulation of free protoporphyrin IX (PPIX) in bone marrow erythroblasts and in red cells. The mechanism of low expression involves a biallelic polymorphism (c.315-48T>C) localized in intron 3. The 315-48C allele increases usage of the 3' cryptic splice site between exons 3 and 4, resulting in the transcription of an unstable mRNA with a premature stop codon, reducing the abundance of wild-type FECH mRNA, and finally reducing FECH activity. Through a candidate-sequence approach and an antisense-oligonucleotide-tiling method, we identified a sequence that, when targeted by an antisense oligonucleotide (ASO-V1), prevented usage of the cryptic splice site. In lymphoblastoid cell lines derived from symptomatic EPP subjects, transfection of ASO-V1 reduced the usage of the cryptic splice site and efficiently redirected the splicing of intron 3 toward the physiological acceptor site, thereby increasing the amount of functional FECH mRNA. Moreover, the administration of ASO-V1 into developing human erythroblasts from an overtly EPP subject markedly increased the production of WT FECH mRNA and reduced the accumulation of PPIX to a level similar to that measured in asymptomatic EPP subjects. Thus, EPP is a paradigmatic Mendelian disease in which the in vivo correction of a common single splicing defect would improve the condition of most affected individuals.

  17. Antisense Oligonucleotide-Based Therapy in Human Erythropoietic Protoporphyria

    PubMed Central

    Oustric, Vincent; Manceau, Hana; Ducamp, Sarah; Soaid, Rima; Karim, Zoubida; Schmitt, Caroline; Mirmiran, Arienne; Peoc’h, Katell; Grandchamp, Bernard; Beaumont, Carole; Lyoumi, Said; Moreau-Gaudry, François; Guyonnet-Dupérat, Véronique; de Verneuil, Hubert; Marie, Joëlle; Puy, Herve; Deybach, Jean-Charles; Gouya, Laurent

    2014-01-01

    In 90% of people with erythropoietic protoporphyria (EPP), the disease results from the inheritance of a common hypomorphic FECH allele, encoding ferrochelatase, in trans to a private deleterious FECH mutation. The activity of the resulting FECH enzyme falls below the critical threshold of 35%, leading to the accumulation of free protoporphyrin IX (PPIX) in bone marrow erythroblasts and in red cells. The mechanism of low expression involves a biallelic polymorphism (c.315−48T>C) localized in intron 3. The 315−48C allele increases usage of the 3′ cryptic splice site between exons 3 and 4, resulting in the transcription of an unstable mRNA with a premature stop codon, reducing the abundance of wild-type FECH mRNA, and finally reducing FECH activity. Through a candidate-sequence approach and an antisense-oligonucleotide-tiling method, we identified a sequence that, when targeted by an antisense oligonucleotide (ASO-V1), prevented usage of the cryptic splice site. In lymphoblastoid cell lines derived from symptomatic EPP subjects, transfection of ASO-V1 reduced the usage of the cryptic splice site and efficiently redirected the splicing of intron 3 toward the physiological acceptor site, thereby increasing the amount of functional FECH mRNA. Moreover, the administration of ASO-V1 into developing human erythroblasts from an overtly EPP subject markedly increased the production of WT FECH mRNA and reduced the accumulation of PPIX to a level similar to that measured in asymptomatic EPP subjects. Thus, EPP is a paradigmatic Mendelian disease in which the in vivo correction of a common single splicing defect would improve the condition of most affected individuals. PMID:24680888

  18. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia

    PubMed Central

    Wang, Xu; Clark, Andrew G.

    2016-01-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  19. Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis.

    PubMed

    Jie, Qi; Shupeng, Gai; Jixiang, Zhang; Manru, Gu; Huairui, Shu

    2005-08-01

    A cDNA of 417 bp encoding an S-RNase gene, named PA S3, was isolated from apricot, Prunus aremeniaca. Nine S-alleles, S1-S9, were recognized by S-allele-specific PCR and confirmed by Southern blot analysis using PA S3 as probe. The S-genotypes of the six cultivars were determined and the results of self- and cross-pollination tests among the six cultivars were consistent with the predicted S-haplotypes by PCR analysis.

  20. Read-mapping using personalized diploid reference genome for RNA sequencing data reduced bias for detecting allele-specific expression

    PubMed Central

    Yuan, Shuai; Qin, Zhaohui

    2014-01-01

    Next generation sequencing (NGS) technologies have been applied extensively in many areas of genetics and genomics research. A fundamental problem when comes to analyzing NGS data is mapping short sequencing reads back to the reference genome. Most of existing software packages rely on a single uniform reference genome and do not automatically take into the consideration of genetic variants. On the other hand, large proportions of incorrectly mapped reads affect the correct interpretation of the NGS experimental results. As an example, Degner et al. showed that detecting allele-specific expression from RNA sequencing data was biased toward the reference allele. In this study, we developed a method that utilize DirectX 11 enabled graphics processing unit (GPU)’s parallel computing power to produces a personalized diploid reference genome based on all known genetic variants of that particular individual. We show that using such a personalized diploid reference genome can improve mapping accuracy and significantly reduce the bias toward reference allele in allele-specific expression analysis. Our method can be applied to any individual that has genotype information obtained either from array-based genotyping or resequencing. Besides the reference genome, no additional changes to alignment algorithm are needed for performing read mapping therefore one can utilize any of the existing read mapping tools and achieve the improved read mapping result. C++ and GPU compute shader source code of the software program is available at: http://code.google.com/p/diploid-mapping/downloads/list. PMID:25621316

  1. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  2. Design of allele-specific primers and detection of the human ABO genotyping to avoid the pseudopositive problem.

    PubMed

    Yaku, Hidenobu; Yukimasa, Tetsuo; Nakano, Shu-ichi; Sugimoto, Naoki; Oka, Hiroaki

    2008-11-01

    PCR experiments using DNA primers forming mismatch pairing with template lambda DNA at the 3' end were carried out in order to develop allele-specific primers capable of detecting SNP in genomes without generating pseudopositive amplification products, and thus avoiding the so-called pseudopositive problem. Detectable amounts of PCR products were obtained when primers forming a single or two mismatch pairings at the 3' end were used. In particular, 3' terminal A/C or T/C (primer/template) mismatches tended to allow PCR amplification to proceed, resulting in pseudopositive results in many cases. While less PCR product was observed for primers forming three terminal mismatch pairings, target DNA sequences were efficiently amplified by primers forming two mismatch pairings next to the terminal G/C base pairing. These results indicate that selecting a primer having a 3' terminal nucleotide that recognizes the SNP nucleotide and the next two nucleotides that form mismatch pairings with the template sequence can be used as an allele-specific primer that eliminates the pseudopositive problem. Trials with the human ABO genes demonstrated that this primer design is also useful for detecting a single base pair difference in gene sequences with a signal-to-noise ratio of at least 45.

  3. Rapid quantification of single-nucleotide mutations in mixed influenza A viral populations using allele-specific mixture analysis.

    PubMed

    Liu, Cindy M; Driebe, Elizabeth M; Schupp, James; Kelley, Erin; Nguyen, Jack T; McSharry, James J; Weng, Qingmei; Engelthaler, David M; Keim, Paul S

    2010-01-01

    Monitoring antiviral resistance in influenza is critical to public health epidemiology and pandemic preparedness activities. Effective monitoring requires methods to detect low-level resistance and to monitor the change in resistance as a function of time and drug treatment. Resistance-conferring single-nucleotide mutations in influenza virus are ideal targets for such methods. In the present study, fives sets of paired TaqMan allele-specific PCR (ASPCR) assays were developed and validated for quantitative single-nucleotide polymorphism (SNP) analysis. This novel method using Delta Ct is termed allele-specific mixture analysis (ASMA) or FluASMA. The FluASMA assays target L26F, V27A, A30T, and S31N mutations in the A/Albany/1/98 (H3N2) M2 gene and H275Y mutation in the A/New Caledonia/20/99 (H1N1) NA gene and have a limit of quantification of 0.25-0.50% mutant. The error for % mutant estimation was less than 10% in all FluASMA assays, with intra-run Delta Ct coefficient of variance (CoV) at

  4. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.

  5. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing.

    PubMed

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2016-11-28

    Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only.

  6. Read-mapping using personalized diploid reference genome for RNA sequencing data reduced bias for detecting allele-specific expression.

    PubMed

    Yuan, Shuai; Qin, Zhaohui

    2012-10-01

    Next generation sequencing (NGS) technologies have been applied extensively in many areas of genetics and genomics research. A fundamental problem when comes to analyzing NGS data is mapping short sequencing reads back to the reference genome. Most of existing software packages rely on a single uniform reference genome and do not automatically take into the consideration of genetic variants. On the other hand, large proportions of incorrectly mapped reads affect the correct interpretation of the NGS experimental results. As an example, Degner et al. showed that detecting allele-specific expression from RNA sequencing data was biased toward the reference allele. In this study, we developed a method that utilize DirectX 11 enabled graphics processing unit (GPU)'s parallel computing power to produces a personalized diploid reference genome based on all known genetic variants of that particular individual. We show that using such a personalized diploid reference genome can improve mapping accuracy and significantly reduce the bias toward reference allele in allele-specific expression analysis. Our method can be applied to any individual that has genotype information obtained either from array-based genotyping or resequencing. Besides the reference genome, no additional changes to alignment algorithm are needed for performing read mapping therefore one can utilize any of the existing read mapping tools and achieve the improved read mapping result. C++ and GPU compute shader source code of the software program is available at: http://code.google.com/p/diploid-mapping/downloads/list.

  7. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys

    PubMed Central

    Shemesh, Colby S; Yu, Rosie Z; Gaus, Hans J; Greenlee, Sarah; Post, Noah; Schmidt, Karsten; Migawa, Michael T; Seth, Punit P; Zanardi, Thomas A; Prakash, Thazha P; Swayze, Eric E; Henry, Scott P; Wang, Yanfeng

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3) is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA)-C6 cluster significantly enhances antisense oligonucleotide (ASO) potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of 3H-radiolabeled (3H placed in THA) or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5′-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs. PMID:27164023

  8. The evaluation of ASOS for the Kennedy Space Center's Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Yersavich, Ann; Wheeler, Mark; Taylor, Gregory; Schumann, Robin; Manobianco, John

    1994-01-01

    This report documents the Applied Meteorology Unit's (AMU) evaluation of the effectiveness and utility of the Automated Surface Observing System (ASOS) in terms of spaceflight operations and user requirements. In particular, the evaluation determines which of the Shuttle Landing Facility (SLF) observation requirements can be satisfied by ASOS. This report also includes a summary of ASOS' background, current configuration and specifications, system performance, and the possible concepts of operations for use of ASOS at the SLF. This evaluation stems from a desire by the Air Force to determine if ASOS units could be used to reduce the cost of SLF meteorological observations.

  9. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization

    PubMed Central

    Kamola, Piotr J.; Kitson, Jeremy D. A.; Turner, Gemma; Maratou, Klio; Eriksson, Sofie; Panjwani, Aliza; Warnock, Linda C.; Douillard Guilloux, Gaelle A.; Moores, Kitty; Koppe, Emma L.; Wixted, William E.; Wilson, Paul A.; Gooderham, Nigel J.; Gant, Timothy W.; Clark, Kenneth L.; Hughes, Stephen A.; Edbrooke, Mark R.; Parry, Joel D.

    2015-01-01

    With many safety and technical limitations partly mitigated through chemical modifications, antisense oligonucleotides (ASOs) are gaining recognition as therapeutic entities. The increase in potency realized by ‘third generation chemistries’ may, however, simultaneously increase affinity to unintended targets with partial sequence complementarity. However, putative hybridization-dependent off-target effects (OTEs), a risk historically regarded as low, are not being adequately investigated. Here we show an unexpectedly high OTEs confirmation rate during screening of fully phosphorothioated (PS)-LNA gapmer ASOs designed against the BACH1 transcript. We demonstrate in vitro mRNA and protein knockdown of off-targets with a wide range of mismatch (MM) and gap patterns. Furthermore, with RNase H1 activity residing within the nucleus, hybridization predicted against intronic regions of pre-mRNAs was tested and confirmed. This dramatically increased ASO-binding landscape together with relatively high potency of such interactions translates into a considerable safety concern. We show here that with base pairing-driven target recognition it is possible to predict the putative off-targets and address the liability during lead design and optimization phases. Moreover, in silico analysis performed against both primary as well as spliced transcripts will be invaluable in elucidating the mechanism behind the hepatoxicity observed with some LNA-modified gapmers. PMID:26338776

  10. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides

    SciTech Connect

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi

    2015-08-21

    Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediated cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.

  11. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches

    PubMed Central

    Rouleau, Samuel G.; Beaudoin, Jean-Denis; Bisaillon, Martin; Perreault, Jean-Pierre

    2015-01-01

    G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5′UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding. PMID:25510493

  12. Citrus (Rutaceae) SNP markers based on Competitive Allele-Specific PCR; transferability across the Aurantioideae subfamily1

    PubMed Central

    Garcia-Lor, Andres; Ancillo, Gema; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    • Premise of the study: Single nucleotide polymorphism (SNP) markers based on Competitive Allele-Specific PCR (KASPar) were developed from sequences of three Citrus species. Their transferability was tested in 63 Citrus genotypes and 19 relative genera of the subfamily Aurantioideae to estimate the potential of SNP markers, selected from a limited intrageneric discovery panel, for ongoing broader diversity analysis at the intra- and intergeneric levels and systematic germplasm bank characterization. • Methods and Results: Forty-two SNP markers were developed using KASPar technology. Forty-one were successfully genotyped in all of the Citrus germplasm, where intra- and interspecific polymorphisms were observed. The transferability and diversity decreased with increasing taxonomic distance. • Conclusions: SNP markers based on the KASPar method developed from sequence data of a limited intrageneric discovery panel provide a valuable molecular resource for genetic diversity analysis of germplasm within a genus and should be useful for germplasm fingerprinting at a much broader diversity level. PMID:25202535

  13. Allele-specific impairment of GJB2 expression by GJB6 deletion del(GJB6-D13S1854).

    PubMed

    Rodriguez-Paris, Juan; Tamayo, Marta L; Gelvez, Nancy; Schrijver, Iris

    2011-01-01

    Mutations in the GJB2 gene, which encodes connexin 26, are a frequent cause of congenital non-syndromic sensorineural hearing loss. Two large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854), which truncate GJB6 (connexin 30), cause hearing loss in individuals homozygous, or compound heterozygous for these deletions or one such deletion and a mutation in GJB2. Recently, we have demonstrated that the del(GJB6-D13S1830) deletion contributes to hearing loss due to an allele-specific lack of GJB2 mRNA expression and not as a result of digenic inheritance, as was postulated earlier. In the current study we investigated the smaller del(GJB6-D13S1854) deletion, which disrupts the expression of GJB2 at the transcriptional level in a manner similar to the more common del(GJB6-D13S1830) deletion. Interestingly, in the presence of this deletion, GJB2 expression remains minimally but reproducibly present. The relative allele-specific expression of GJB2 was assessed by reverse-transcriptase PCR and restriction digestions in three probands who were compound heterozygous for a GJB2 mutation and del(GJB6-D13S1854). Each individual carried a different sequence variant in GJB2. All three individuals expressed the mutated GJB2 allele in trans with del(GJB6-D13S1854), but expression of the GJB2 allele in cis with the deletion was almost absent. Our study clearly corroborates the hypothesis that the del(GJB6-D13S1854), similar to the larger and more common del(GJB6-D13S1830), removes (a) putative cis-regulatory element(s) upstream of GJB6 and narrows down the region of location.

  14. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  15. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  16. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  17. Antisense Oligonucleotides: Rising Stars in Eliminating RNA Toxicity in Myotonic Dystrophy

    PubMed Central

    Gao, Zhihua

    2013-01-01

    Abstract Myotonic dystrophy (DM) is a dominantly inherited, multisystemic disease caused by expanded CTG (type 1, DM1) or CCTG (type 2, DM2) repeats in untranslated regions of the mutated genes. Pathogenesis results from expression of RNAs from the mutated alleles that are toxic because of the expanded CUG or CCUG repeats. Increased understanding of the repeat-containing RNA (C/CUGexp RNA)-induced toxicity has led to the development of multiple strategies targeting the toxic RNA. Among these approaches, antisense oligonucleotides (ASOs) have demonstrated high potency in reversing the RNA toxicity in both cultured DM1 cells and DM1 animal models, thus offering great promise for the potential treatment of DM1. ASO targeting approaches will also provide avenues for the treatment of other repeat RNA-mediated diseases. PMID:23252746

  18. Targeting Long Noncoding RNA with Antisense Oligonucleotide Technology as Cancer Therapeutics.

    PubMed

    Zhou, Tianyuan; Kim, Youngsoo; MacLeod, A Robert

    2016-01-01

    Recent annotation of the human transcriptome revealed that only 2 % of the genome encodes proteins while the majority of human genome is transcribed into noncoding RNAs. Although we are just beginning to understand the diverse roles long noncoding RNAs (lncRNAs) play in molecular and cellular processes, they have potentially important roles in human development and pathophysiology. However, targeting of RNA by traditional structure-based design of small molecule inhibitors has been difficult, due to a lack of understanding of the dynamic tertiary structures most RNA molecules adopt. Antisense oligonucleotides (ASOs) are capable of targeting specific genes or transcripts directly through Watson-Crick base pairing and thus can be designed based on sequence information alone. These agents have made possible specific targeting of "non-druggable targets" including RNA molecules. Here we describe how ASOs can be applied in preclinical studies to reduce levels of lncRNAs of interest.

  19. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Reck, Folkert; Kudick, Rene; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert; Wippo, Harald

    2001-01-01

    To determine whether the remarkable chemical properties of the pyranosyl isomer of RNA as an informational Watson-Crick base-pairing system are unique to the pentopyranosyl-(4 + 2)-oligonucleotide isomer derived from the RNA-building block D-ribose, studies on the entire family of diastereoisomeric pyranosyL(4 - Z)-oligonucleotide systems deriving from D-ribose. L-lyxose. D-xylose, and L-arabinose were carried out. The result of these extended studies is unambiguous: not only pyranosyl-RNA, but all members of the pentopyranosyl(4 + 2)-oligonucleotide family are highly efficient Watson-Crick base-pairing systems. Their synthesis and pairing properties will be described in a series of publications in this journal.

  20. The delivery of therapeutic oligonucleotides

    PubMed Central

    Juliano, Rudolph L.

    2016-01-01

    The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology. PMID:27084936

  1. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  2. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA.

    PubMed

    Billard, A; Laval, V; Fillinger, S; Leroux, P; Lachaise, H; Beffa, R; Debieu, D

    2012-02-01

    The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.

  3. Bivariate segmentation of SNP-array data for allele-specific copy number analysis in tumour samples

    PubMed Central

    2013-01-01

    Background SNP arrays output two signals that reflect the total genomic copy number (LRR) and the allelic ratio (BAF), which in combination allow the characterisation of allele-specific copy numbers (ASCNs). While methods based on hidden Markov models (HMMs) have been extended from array comparative genomic hybridisation (aCGH) to jointly handle the two signals, only one method based on change-point detection, ASCAT, performs bivariate segmentation. Results In the present work, we introduce a generic framework for bivariate segmentation of SNP array data for ASCN analysis. For the matter, we discuss the characteristics of the typically applied BAF transformation and how they affect segmentation, introduce concepts of multivariate time series analysis that are of concern in this field and discuss the appropriate formulation of the problem. The framework is implemented in a method named CnaStruct, the bivariate form of the structural change model (SCM), which has been successfully applied to transcriptome mapping and aCGH. Conclusions On a comprehensive synthetic dataset, we show that CnaStruct outperforms the segmentation of existing ASCN analysis methods. Furthermore, CnaStruct can be integrated into the workflows of several ASCN analysis tools in order to improve their performance, specially on tumour samples highly contaminated by normal cells. PMID:23497144

  4. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.

    PubMed

    Xu, Guojie; Wang, Xueyong; Liu, Chunsheng; Li, Weidong; Wei, Shengli; Liu, Ying; Cheng, Xiaoli; Liu, Juan

    2013-02-01

    Rhubarb (official Da-huang) is an important medicinal herb in Asia. Many adulterants of official Da-huang have been discovered in Chinese markets in recent years, which has resulted in adverse effects in medicinal treatment. Here, novel molecular markers based on a short maturase K (matK) gene were developed for authenticating official Da-huang. This study showed that all the species from official Da-huang were clustered together in one clade in the polygenetic trees based on short matK. Two highly conserved single nucleotide polymorphisms of short matK were mined in the species from official Da-huang. Based on these polymophisms, four improved specific primers of official Da-huang were successfully developed that generated reproducible specific bands. These results suggest that the short matK sequence can be considered as a favorable candidate for distinguishing official Da-huang from its adulterants. The established multiplex allele-specific PCR was determined to be simple and accurate and may serve as a preferable tool for authentication of official Da-huang. In addition, we suggest that short-sized specific bands be developed to authenticate materials used in traditional Chinese medicine.

  5. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  6. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  7. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia

    PubMed Central

    Wang, Yang; Cao, Yanfei; Huang, Xiaoye; Yu, Tao; Wei, Zhiyun; McGrath, John; Xu, Fei; Bi, Yan; Li, Xingwang; Yang, Fengping; Li, Weidong; Zou, Xia; Peng, Zhihai; Xiao, Yanzeng; Zhang, Yan; He, Lin; He, Guang

    2016-01-01

    Evidence has indicated that the incidence of colorectal cancer (CRC) among schizophrenia is lower than normal. To explore this potential protective effect, we employed an innovative strategy combining association study with allele-specific expression (ASE) analysis in MCC gene. We first genotyped four polymorphisms within MCC in 312 CRC patients, 270 schizophrenia patients and 270 controls. Using the MassArray technique, we performed ASE measurements in a second sample series consisting of 50 sporadic CRC patients, 50 schizophrenia patients and 52 controls. Rs2227947 showed significant differences between schizophrenia cases and controls, and haplotype analysis reported some significant discrepancies among these three subject groups. ASE values of rs2227948 and rs2227947 presented consistently differences between CRC (or schizophrenia) patients and controls. Of the three groups, highest frequencies of ASE in MCC were concordantly found in CRC group, whereas lowest frequencies of ASE were observed in schizophrenia group. Similar trends were confirmed in both haplotype frequencies and ASE frequencies (i.e. CRC > control > schizophrenia). We provide a first indication that MCC might confer alterative genetic susceptibility to CRC in individuals with schizophrenia promising to shed more light on the relationship between schizophrenia and cancer progression. PMID:27226254

  8. TFIIB/SUA7(E202G) is an allele-specific suppressor of TBP1(E186D)

    PubMed Central

    Chew, Boon Shang; Lehming, Norbert

    2007-01-01

    The TBP (TATA-box-binding protein), Tbp1p, plays a vital role in all three classes of transcription by RNA polymerases I–III. A TBP1(E186D) mutation had been described that affected interaction of Tbp1p with TFIIB (transcription factor IIB) and that caused slow-growth, temperature-sensitivity, 3-aminotriazole-sensitivity as well as a gal− phenotype. We used the TBP1(E186D) mutant for suppressor screens, and we isolated TFIIB/SUA7(E202G) as an allele-specific suppressor of all phenotypes caused by the TBP1(E186D) mutation. Our results show that the SUA7(E202G) mutation restored binding of TFIIB to Tbp1(E186D)p. In addition, we observed that Tbp1(E186D)p was expressed at a lower level than wild-type Tbp1p, and that SUA7(E202G) restored the protein level of Tbp1(E186D)p. This suggested that the TBP1(E186D) mutation might have generated its phenotypes by making Tbp1p the limiting factor for activated transcription. DNA microarray analysis indicated that the TBP1(E186D) temperature-sensitivity and slow-growth phenotypes might have been caused by insufficient amounts of Tbp1p for efficient transcription of the rRNA genes by RNA polymerase I. PMID:17680779

  9. EGFR mutant allelic-specific imbalance assessment in routine samples of non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Vatrano, Simona; Russo, Stefania; Bellevicine, Claudio; de Luca, Caterina; Sgariglia, Roberta; Rocco, Danilo; de Pietro, Livia; Riccardi, Fernando; Gobbini, Elisa; Righi, Luisella; Troncone, Giancarlo

    2015-09-01

    In non-small cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) gene may undergo both mutations and copy number gains. EGFR mutant allele-specific imbalance (MASI) occurs when the ratio of mutant-to-wild-type alleles increases significantly. In this study, by using a previously validated microfluidic-chip-based technology, EGFR-MASI occurred in 25/67 mutant cases (37%), being more frequently associated with EGFR exon 19 deletions (p=0.033). In a subset of 49 treated patients, we assessed whether MASI is a modifier of anti-EGFR treatment benefit. The difference in progression-free survival and overall survival between EGFR-MASI-positive and EGFR-MASI-negative groups of patients did not show a statistical significance. In conclusion, EGFR-MASI is a significant event in NSCLC, specifically associated with EGFR exon 19 deletions. However, EGFR-MASI does not seem to play a role in predicting the response to first-generation EGFR small molecules inhibitors.

  10. Allele-specific PCR typing and sequencing of the mitochondrial D-loop region in four layer breeds.

    PubMed

    Harumi, Takashi; Sano, Akiko; Minematsu, Takeo; Naito, Mitsuru

    2011-04-01

    This study aimed to investigate the ability of single nucleotide polymorphism (SNP) haplotypes in chicken mtDNA for presumption of the origins of chicken meat. We typed five SNPs of the D-loop region in mtDNA by allele-specific PCR (AS-PCR) in 556 hens, that is 233 White Leghorn (WL), 50 Dekalb-TX35 (D-TX), 140 Barred Plymouth Rock (BPR) and 133 Rhode Island Red (RIR) kept in the National Institute of Livestock and Grassland Science (NILGS, Tsukuba, Japan). Five haplotypes were observed among those chickens by AS-PCR. WL, D-TX, BPR and RIR displayed three, two, one and four SNP haplotypes, respectively. By a combination of the haplotypes by AS-PCR and the breeds, these chickens were classified into 10 groups. After the D-loop was sequenced in two chickens from every group (20 individuals), 15 SNP sites (including one insertion) and eight sequence haplotypes were observed. In conclusion, haplotype variation was observed in and among the layer breeds of the NILGS. This study demonstrates that SNP haplotypes in mtDNA should be appropriate for the presumption of the origins of chicken meat.

  11. Allele-specific polymerase chain reaction typing and sequencing of mitochondrial D-loop region in broiler chickens in Japan.

    PubMed

    Harumi, Takashi; Kobayashi, Eiji; Naito, Mitsuru

    2015-09-01

    This study aimed to comprehend a feature of single nucleotide polymorphism (SNP) in mitochondrial DNA (mtDNA) mainly of general broiler chickens in Japan. We typed two SNP sites (199C/T and 792A/G) of the D-loop region in mtDNA by allele-specific PCR (AS-PCR) in 359 broiler (182 chunky and 177 cobb) and 506 layer (233 White Leghorn, 140 Barred Plymouth Rock and 133 Rhode Island Red) chickens. The SNP of 199C or 792A by AS-PCR was observed in the chunky and cobb chickens, and not in the layers. The haplotype 199T/792G was observed in a part of cobb and all layers. By the result of AS-PCR haplotyping and the broiler brands, the D-loop region was sequenced in 44 broiler chickens (20 chunky and 24 cobb) and compared with the layers' sequence data. Among the broiler and layer chickens, 21 SNP sites (including one insertion) and 11 sequence haplotypes were observed. Haplotype variation or correspondence was observed in and between the broiler brands. This study provides important information to establish a chicken meat traceability system by SNP haplotyping of mtDNA in Japan.

  12. Simple and sensitive method for identification of human DNA by allele-specific polymerase chain reaction of FOXP2.

    PubMed

    Hiroshige, Kenichi; Soejima, Mikiko; Nishioka, Tomoki; Kamimura, Shigeo; Koda, Yoshiro

    2009-07-01

    The forkhead box P2 (FOXP2) gene is specifically involved in speech and language development in humans. The sequence is well conserved among many vertebrate species but has accumulated amino acid changes in the human lineage. The aim of this study was to develop a simple method to discriminate between human and nonhuman vertebrate DNA in forensic specimens by amplification of a human-specific genomic region. In the present study, we designed an allele-specific polymerase chain reaction (PCR) using primers to amplify smaller than 70-bp regions of FOXP2 to identify DNA as being of human or nonhuman, including ape, origin. PCR amplification was also successfully performed using fluorescence-labeled primers, and this method allows a single PCR reaction with a genomic DNA sample as small as 0.01 ng. This system also identified the presence of human DNA in two blood stains stored for 20 and 38 years. The results suggested the potential usefulness of FOXP2 as an identifier of human DNA in forensic samples.

  13. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    PubMed

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  14. Novel method for analysis of allele specific expression in triploid Oryzias latipes reveals consistent pattern of allele exclusion.

    PubMed

    Garcia, Tzintzuni I; Matos, Isa; Shen, Yingjia; Pabuwal, Vagmita; Coelho, Maria Manuela; Wakamatsu, Yuko; Schartl, Manfred; Walter, Ronald B

    2014-01-01

    Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18%) displayed a wide range of ASE levels. Interestingly the majority of genes (78%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.

  15. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects.

    PubMed

    Dinges, J R; Colleoni, C; Myers, A M; James, M G

    2001-03-01

    Starch production in all plants examined is altered by mutations of isoamylase-type starch-debranching enzymes (DBE), although how these proteins affect glucan polymer assembly is not understood. Various allelic mutations in the maize (Zea mays) gene sugary1 (su1), which codes for an isoamylase-type DBE, condition distinct kernel phenotypes. This study characterized the recessive mutations su1-Ref, su1-R4582::Mu1, and su1-st, regarding their molecular basis, chemical phenotypes, and effects on starch metabolizing enzymes. The su1-Ref allele results in two specific amino acid substitutions without affecting the Su1 mRNA level. The su1-R4582::Mu1 mutation is a null allele that abolishes transcript accumulation. The su1-st mutation results from insertion of a novel transposon-like sequence, designated Toad, which causes alternative pre-mRNA splicing. Three su1-st mutant transcripts are produced, one that is nonfunctional and two that code for modified SU1 polypeptides. The su1-st mutation is dominant to the null allele su1-R4582::Mu1, but recessive to su1-Ref, suggestive of complex effects involving quaternary structure of the SU1 enzyme. All three su1- alleles severely reduce or eliminate isoamylase-type DBE activity, although su1-st kernels accumulate less phytoglycogen and Suc than su1-Ref or su1-R4582::Mu1 mutants. The chain length distribution of residual amylopectin is significantly altered by su1-Ref and su1-R4582::Mu1, whereas su1-st has modest effects. These results, together with su1 allele-specific effects on other starch- metabolizing enzymes detected in zymograms, suggest that total DBE catalytic activity is the not the sole determinant of Su1 function and that specific interactions between SU1 and other components of the starch biosynthetic system are required.

  16. Molecular Structure of Three Mutations at the Maize sugary1 Locus and Their Allele-Specific Phenotypic Effects1

    PubMed Central

    Dinges, Jason R.; Colleoni, Christophe; Myers, Alan M.; James, Martha G.

    2001-01-01

    Starch production in all plants examined is altered by mutations of isoamylase-type starch-debranching enzymes (DBE), although how these proteins affect glucan polymer assembly is not understood. Various allelic mutations in the maize (Zea mays) gene sugary1 (su1), which codes for an isoamylase-type DBE, condition distinct kernel phenotypes. This study characterized the recessive mutations su1-Ref, su1-R4582::Mu1, and su1-st, regarding their molecular basis, chemical phenotypes, and effects on starch metabolizing enzymes. The su1-Ref allele results in two specific amino acid substitutions without affecting the Su1 mRNA level. The su1-R4582::Mu1 mutation is a null allele that abolishes transcript accumulation. The su1-st mutation results from insertion of a novel transposon-like sequence, designated Toad, which causes alternative pre-mRNA splicing. Three su1-st mutant transcripts are produced, one that is nonfunctional and two that code for modified SU1 polypeptides. The su1-st mutation is dominant to the null allele su1-R4582::Mu1, but recessive to su1-Ref, suggestive of complex effects involving quaternary structure of the SU1 enzyme. All three su1- alleles severely reduce or eliminate isoamylase-type DBE activity, although su1-st kernels accumulate less phytoglycogen and Suc than su1-Ref or su1-R4582::Mu1 mutants. The chain length distribution of residual amylopectin is significantly altered by su1-Ref and su1-R4582::Mu1, whereas su1-st has modest effects. These results, together with su1 allele-specific effects on other starch- metabolizing enzymes detected in zymograms, suggest that total DBE catalytic activity is the not the sole determinant of Su1 function and that specific interactions between SU1 and other components of the starch biosynthetic system are required. PMID:11244120

  17. Comprehensively Evaluating cis-Regulatory Variation in the Human Prostate Transcriptome by Using Gene-Level Allele-Specific Expression

    PubMed Central

    Larson, Nicholas B.; McDonnell, Shannon; French, Amy J.; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A.; Wang, Liang; Schaid, Daniel J.; Thibodeau, Stephen N.

    2015-01-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E−5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate. PMID:25983244

  18. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-04

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  19. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    SciTech Connect

    LaSalle, J.; Flint, A.; Lalande, M.

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  20. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  1. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.

    PubMed

    Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F

    2016-11-18

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (Mw) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano.

  2. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Lin, A.; Satsukawa, T.; Wang, M.; Mohammadi Asl, Z.; Fueta, R.; Nakajima, F.

    2016-11-01

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (Mw) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano.

  3. Allele-specific effects of ecSOD on asbestos-induced fibroproliferative lung disease in mice.

    PubMed

    Jun, Sujung; Fattman, Cheryl L; Kim, Byung-Jin; Jones, Harlan; Dory, Ladislav

    2011-05-15

    resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.

  4. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  5. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness.

    PubMed

    Lentz, Jennifer J; Jodelka, Francine M; Hinrich, Anthony J; McCaffrey, Kate E; Farris, Hamilton E; Spalitta, Matthew J; Bazan, Nicolas G; Duelli, Dominik M; Rigo, Frank; Hastings, Michelle L

    2013-03-01

    Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention. Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness. Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness.

  6. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models.

    PubMed

    Osman, Erkan Y; Miller, Madeline R; Robbins, Kate L; Lombardi, Abby M; Atkinson, Arleigh K; Brehm, Amanda J; Lorson, Christian L

    2014-09-15

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1(MO)-ASOs). A single intracerebroventricular injection in the relatively severe mouse model of SMA (SMNΔ7 mouse model) elicited a robust induction of SMN protein, and mean life span was extended from an average survival of 13 to 54 days following a single dose, consistent with large weight gains and a correction of the neuronal pathology. Additionally, E1(MO)-ASO treatment in an intermediate SMA mouse (SMN(RT) mouse model) significantly extended life span by ∼700% and weight gain was comparable with the unaffected animals. While a number of experimental therapeutics have targeted the ISS-N1 element of SMN2 pre-mRNA, the development of E1 ASOs provides a new molecular target for SMA therapeutics that dramatically extends survival in two important pre-clinical models of disease.

  7. Clinical significance of miR-155 expression in breast cancer and effects of miR-155 ASO on cell viability and apoptosis.

    PubMed

    Zheng, Shu-Rong; Guo, Gui-Long; Zhang, Wei; Huang, Guan-Li; Hu, Xiao-Qu; Zhu, Jin; Huang, Qi-Di; You, Jie; Zhang, Xiao-Hua

    2012-04-01

    Accumulating evidence shows that mircroRNAs (miRNAs) play a vital role in tumorigenesis. miR-155 is one of the most multifunctional miRNAs whose overexpression has been found to be associated with different types of cancer including breast cancer. To further determine the potential involvement of miR-155 in breast cancer, we evaluated the expression levels of miR-155 by real-time PCR and correlated the results with clinicopathological features. Matched non-tumor and tumor tissues of 42 infiltrating ductal carcinomas and 3 infiltrating lobular carcinomas were analyzed for miR-155 expression by real-time PCR. Further, we used an antisense technique to inhibit miR-155 expression in vitro. WST-8 test was performed to evaluate cell viability and apoptosis assay was used to investigate the effect of the miR-155 antisense oligonucleotide (miR-155 ASO) on HS578T cell death. The expression levels of miR-155 were significantly higher in tumor tissues than the levels in matched non-tumor tissues (P<0.001). Up-regulated miR-155 expression was associated with lymph node positivity (P=0.034), higher proliferation index (Ki-67 >10%) (P=0.019) and advanced breast cancer TNM clinical stage (P=0.002). Interestingly, we next found that miR-155 expression levels had close relations with ER status (P=0.041) and PR status (P=0.029). Transfection efficiency detected by flow cytometry was higher than 70%, the WST-8 test showed that viability of HS578T cells was greatly reduced after transfection with miR-155 ASO compared with the scramble (SCR) group or the liposome group. The Annexin V-FITC/PI assay also indicated that transfection with miR-155 ASO promoted apoptosis.

  8. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  9. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  10. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  11. Capillary and microchip gel electrophoresis for simultaneous detection of Salmonella pullorum and Salmonella gallinarum by rfbS allele-specific PCR.

    PubMed

    Jeon, Seonsook; Eo, Seong Kug; Kim, Yongseong; Yoo, Dong Jin; Kang, Seong Ho

    2007-09-30

    We report the use of capillary gel electrophoresis (CGE) based on a rfbS allele-specific polymerase chain reaction (PCR) for the analysis and simultaneous detection of Salmonella pullorum and Salmonella gallinarum, which are the major bacterial pathogens in poultry. rfbS allele-specific PCR was used to concurrently amplify two specific 147- and 187-bp DNA fragments for the simultaneous detection of S. pullorum and S. gallinarum at an annealing temperature of 54+/-1 degrees C and an MgCl(2) concentration of 2.8-5.6mM. Under an electric field of 333.3V/cm and a sieving matrix of 1.0% poly(ethyleneoxide) (M(r) 600000), the amplified PCR products were analyzed within 6min by CGE separation. This CGE assay could be translated to microchip format using programmed field strength gradients (PFSG). In the microchip gel electrophoresis with PFSG, both of the Salmonella analyses were completed within 30s, without decreasing the resolution efficiency. rfbS allele-specific PCR-microchip gel electrophoresis with the PFSG technique might be a new tool for the simultaneous detection of both S. pullorum and S. gallinarum, due to its ultra-speed and high efficiency.

  12. Analysis of Fumarole Acoustics at Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.

    2015-12-01

    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  13. AgNa2Mo3O9AsO4

    PubMed Central

    Hamza, Hamadi; Zid, Mohamed Faouzi; Driss, Ahmed

    2011-01-01

    The title compound, silver disodium trimolybdenum(VI) nonaoxide arsenate, AgNa2Mo3O9AsO4, was prepared by a solid-state reaction at 808 K. The structure consists of an infinite (Mo3AsO13)n ribbon, parallel to the c axis, composed of AsO4 tetra­hedra and MoO6 octa­hedra sharing edges and corners. The Na and Ag ions partially occupy several independent close positions, with various occupancies, in the inter-ribbon space delimited by the one-dimensional framework. The composition was refined to Ag1.06(1)Na1.94(1)Mo3O9AsO4. PMID:22219728

  14. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  15. Transcriptomes and shRNA Suppressors in a TP53 Allele-specific Model of Early-onset Colon Cancer in African Americans

    PubMed Central

    Weige, Charles C.; Birtwistle, Marc R.; Mallick, Himel; Yi, Nengjun; Berrong, Zuzana; Cloessner, Emily; Duff, Keely; Tidwell, Josephine; Clendenning, Megan; Wilkerson, Brent; Farrell, Christopher; Bunz, Fred; Ji, Hao; Shtutman, Michael; Creek, Kim E.; Banister, Carolyn E.; Buckhaults, Phillip J.

    2014-01-01

    African Americans are disproportionately affected by early-onset, high-grade malignancies. A fraction of this cancer health disparity can be explained by genetic differences between individuals of African or European descent. Here the wild-type Pro/Pro genotype at the TP53Pro72Arg (P72R) polymorphism (SNP: rs1042522) is more frequent in African Americans with cancer than in African Americans without cancer (51% vs 37%), and is associated with a significant increase in the rates of cancer diagnosis in African Americans. To test the hypothesis that p53 allele-specific gene expression may contribute to African American cancer disparities, p53 hemizygous knockout variants were generated and characterized in the RKO colon carcinoma cell line, which is wild-type for p53 and heterozygous at the TP53Pro72Arg locus. Transcriptome profiling, using RNAseq, in response to the DNA-damaging agent etoposide revealed a large number of p53-regulated transcripts, but also a subset of transcripts that were TP53Pro72Arg allele specific. In addition, a shRNA-library suppressor screen for p53 allele-specific escape from p53-induced arrest was performed. Several novel RNAi suppressors of p53 were identified, one of which, PRDM1β (BLIMP-1), was confirmed to be an Arg-specific transcript. PRDM1β silences target genes by recruiting H3K9 trimethyl (H3K9me3) repressive chromatin marks, and is necessary for stem cell differentiation. These results reveal a novel model for African American cancer disparity, in which the TP53 codon 72 allele influences lifetime cancer risk by driving damaged cells to differentiation through an epigenetic mechanism involving gene silencing. Implications TP53 P72R polymorphism significantly contributes to increased African American cancer disparity. PMID:24743655

  16. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  17. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  18. AZD9150, a Next-Generation Antisense Oligonucleotide Inhibitor of STAT3 with Early Evidence of Clinical Activity in Lymphoma and Lung Cancer

    PubMed Central

    Hong, David; Kurzrock, Razelle; Kim, Youngsoo; Woessner, Richard; Younes, Anas; Nemunaitis, John; Fowler, Nathan; Zhou, Tianyuan; Schmidt, Joanna; Jo, Minji; Lee, Samantha J.; Yamashita, Mason; Hughes, Steven G.; Fayad, Luis; Piha-Paul, Sarina; Nadella, Murali VP; Mohseni, Morvarid; Lawson, Deborah; Reimer, Corinne; Blakey, David C.; Xiao, Xiaokun; Hsu, Jeff; Revenko, Alexey; Monia, Brett P.; MacLeod, A. Robert

    2017-01-01

    Next-generation sequencing technologies have greatly expanded our understanding of cancer genetics. Antisense technology is an attractive platform with the potential to translate these advances into improved cancer therapeutics, because antisense oligonucleotide (ASO) inhibitors can be designed on the basis of gene sequence information alone. Recent human clinical data have demonstrated the potent activity of systemically administered ASOs targeted to genes expressed in the liver. Here, we describe the preclinical activity and initial clinical evaluation of a class of ASOs containing constrained ethyl modifications for targeting the gene encoding the transcription factor STAT3, a notoriously difficult protein to inhibit therapeutically. Systemic delivery of the unformulated ASO, AZD9150, decreased STAT3 expression in a broad range of preclinical cancer models and showed antitumor activity in lymphoma and lung cancer models. AZD9150 preclinical activity translated into single-agent antitumor activity in patients with highly treatment-refractory lymphoma and non-small cell lung cancer in a phase I dose escalation study. PMID:26582900

  19. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  20. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    PubMed

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.

  1. Characterization of allele-specific expression of the X-linked gene MAO-A in trophectoderm cells of bovine embryos produced by somatic cell nuclear transfer.

    PubMed

    Ferreira, A R; Aguiar Filho, L F C; Sousa, R V; Sartori, R; Franco, M M

    2015-10-05

    Somatic cell nuclear transfer (SCNT) may affect epigenetic mechanisms and alter the expression of genes related to embryo development and X chromosome inactivation (XCI). We characterized allele-specific expression of the X-linked gene monoamine oxidase type A (MAO-A) in the trophectoderm (TF) of embryos produced by SCNT. Total RNA was isolated from individual biopsies (N = 25), and the allele-specific expression assessed by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism. Both paternal and maternal alleles were expressed in the trophectoderm. However, a higher frequency of the mono-allelic expression of a specific allele was observed (N = 17; 68%), with the remaining samples showing the presence of mRNA from both alleles (N = 8; 32%). Considering that MAO-A is subject to XCI in bovine, our results suggest that SCNT may influence XCI because neither an imprinted (mono-allelic expression in all samples) nor a random (presence of mRNA from both alleles in all samples) pattern of XCI was observed in TF. Due to the importance of XCI in mammalian embryo development and its sensitivity to in vitro conditions, X-linked genes subject to XCI are candidates for use in the development of embryo quality molecular markers for assisted reproduction.

  2. Determination of cis/trans phase of variations in the MC1R gene with allele-specific PCR and single base extension.

    PubMed

    Mengel-From, Jonas; Børsting, Claus; Sanchez, Juan J; Eiberg, Hans; Morling, Niels

    2008-12-01

    The MC1R gene encodes a protein with key regulatory functions in the melanin synthesis. A multiplex PCR and a multiplex single base extension protocol were established for genotyping six exonic MC1R variations highly penetrant for red hair (R), four exonic MC1R variations weakly penetrant for red hair (r), two frameshift variations highly penetrant for red hair (R) and three variations in the promoter region. We genotyped 600 individuals from Denmark using either CE or MALDI-TOF MS as the detection platform. A total of 62 individuals were genotyped R/R and among the 62 individuals, 57 had red hair and five had blond hair colour. Two different R alleles may be located in cis (RR/-) position or trans (R/R) position, and the phenotype associated with RR/- and R/R may be different. Two allele-specific PCRs were established with primers targeting the -G445A variation in the MC1R promoter and the allele-specific PCR products were used in the multiplex single base extension assay. In all 62 individuals, the MC1R variants were situated in trans position. Another 18 individuals with red hair colour were either genotyped R/- or R/r, suggesting that other genes influence hair colour.

  3. A two-step method for identification of the Chinese glutinous rice Suyunuo, based on ISSR-SCAR and allele-specific markers.

    PubMed

    Lin, Y B; Zhang, Y M; Hang, Y Y; Li, M M; Zhou, G C; Shen, X L; Sun, X Q

    2016-10-05

    Suyunuo is a valuable glutinous rice variety cultivated mainly in the Lake Taihu area of China. Historically, Suyunuo was presented to emperors as a tribute, and, still today, enjoys a great reputation in China. This study aimed to develop a unique, specific molecular marker for the identification of Suyunuo rice. Polymerase chain reaction (PCR) amplification of inter-simple sequence repeat (ISSR) molecular markers was performed on Suyunuo and 11 other glutinous rice varieties that are mainly cultivated in the Yangtze River Delta region. A Suyunuo-specific band was detected in the PCR products generated from primer ISSR-807. A sequence characterized amplified region (SCAR) primer pair targeting a Suyunuo-specific band was subsequently designed. The SCAR primers amplified a target band in all individuals of Suyunuo and in four glutinous indica varieties, whereas no bands were found in the seven glutinous japonica varieties. Subsequently, sequences amplified by the SCAR primer pair were analyzed to facilitate the design of Suyunuo allele-specific primers. The allele-specific primer pair produced target bands in all individuals of Suyunuo rice but no bands in individuals of any of the other 11 rice varieties. This study provides a theoretical guideline for rice germplasm identification and innovation of other valuable rice landraces.

  4. La variété β-NaMoO2(AsO4)

    PubMed Central

    Ben Hlila, Soumaya; Zid, Mohamed Faouzi; Driss, Ahmed

    2009-01-01

    The title compound, sodium dioxidomolybdenum(VI) arsenate(V), β-NaMoO2AsO4, was prepared by solid-state reaction at 953 K. In the crystal structure, the AsO4 tetra­hedra and MoO6 octa­hedra (both with m symmetry) share corner atoms to form a three-dimensional framework that delimits cavities parallel to [010] where disordered six-coordinated sodium cations (half-occupation) are located. Structural relationships between the different orthoarsenates of the AMoO2AsO4 series (A = Ag, Li, Na, K and Rb) are discussed. PMID:21581739

  5. Oligonucleotide conjugates for therapeutic applications

    PubMed Central

    Winkler, Johannes

    2013-01-01

    Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake machanisms and pharmacokinetic properties. PMID:23883124

  6. Oligonucleotide conjugates for therapeutic applications.

    PubMed

    Winkler, Johannes

    2013-07-01

    Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake mechanisms and pharmacokinetic properties.

  7. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    PubMed

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  8. DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays.

    PubMed

    Jobs, Magnus; Howell, W Mathias; Stromqvist, Linda; Mayr, Torsten; Brookes, Anthony J

    2003-05-01

    Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8-100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support.

  9. Analysis of Allele-Specific Expression in Mouse Liver by RNA-Seq: A Comparison With Cis-eQTL Identified Using Genetic Linkage

    PubMed Central

    Lagarrigue, Sandrine; Martin, Lisa; Hormozdiari, Farhad; Roux, Pierre-François; Pan, Calvin; van Nas, Atila; Demeure, Olivier; Cantor, Rita; Ghazalpour, Anatole; Eskin, Eleazar; Lusis, Aldons J.

    2013-01-01

    We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data. PMID:24026101

  10. CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation

    PubMed Central

    Ortiz-Estevez, Maria; Aramburu, Ander; Bengtsson, Henrik; Neuvial, Pierre; Rubio, Angel

    2012-01-01

    Summary: CalMaTe calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina. Availability: The method is available on CRAN (http://cran.r-project.org/) in the open-source R package calmate, which also includes an add-on to the Aroma Project framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22576175

  11. Detection of cariogenic bacteria genes by a combination of allele-specific polymerase chain reactions and a novel bioluminescent pyrophosphate assay.

    PubMed

    Arakawa, Hidetoshi; Karasawa, Koji; Igarashi, Takeshi; Suzuki, Shigeya; Goto, Nobuichi; Maeda, Masako

    2004-10-15

    We developed a novel bioluminescent assay for detection of pyrophosphate in polymerase chain reaction (PCR) product. The principle of this method is as follows: pyrophosphate released by PCR is converted to adenosine 5'-triphosphate (ATP) by pyruvate phosphate dikinase in the presence of the substrate pyruvate phosphate and the coenzyme adenosine 5'-monophosphate; subsequently, ATP concentration is determined by firefly luciferase reaction. The detection limit of pyrophosphate is 1.56 x 10(-15)mol/assay. Additionally, luminescent intensity reached a maximum at approximately 100 s and remained elevated beyond 10 min. This approach is applicable to the detection of cariogenic bacteria in dental plaque. Thus, the allele-specific PCR products of Streptococcus mutans and Streptococcus sobrinus developed in this study were measured via the proposed bioluminescent assay. This protocol, which does not require expensive equipment, can be utilized to rapidly monitor cariogenic bacteria in dental plaque.

  12. 78 FR 18314 - Foreign-Trade Zone 169-Manatee County, Florida; Application for Production Authority; ASO, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Foreign-Trade Zones Board Foreign-Trade Zone 169--Manatee County, Florida; Application for Production Authority; ASO, LLC; Subzone 169A (Textile Fabric Adhesive Bandage Coating and Production); Sarasota... facility is used for the production of plastic and textile fabric adhesive bandages. ASO is also...

  13. Novel Targeted Therapy for Precursor B-Cell Acute Lymphoblastic Leukemia: Anti-CD22 Antibody-MXD3 Antisense Oligonucleotide Conjugate

    PubMed Central

    Satake, Noriko; Duong, Connie; Yoshida, Sakiko; Oestergaard, Michael; Chen, Cathy; Peralta, Rachael; Guo, Shuling; Seth, Punit P; Li, Yueju; Beckett, Laurel; Chung, Jong; Nolta, Jan; Nitin, Nitin; Tuscano, Joseph M

    2016-01-01

    The exponential rise in molecular and genomic data has generated a vast array of therapeutic targets. Oligonucleotide-based technologies to down regulate these molecular targets have promising therapeutic efficacy. However, there is relatively limited success in translating this into effective in vivo cancer therapeutics. The primary challenge is the lack of effective cancer cell-targeted delivery methods, particularly for a systemic disease such as leukemia. We developed a novel leukemia- targeting compound composed of a monoclonal antibody directly conjugated to an antisense oligonucleotide (ASO). Our compound uses an ASO that specifically targets the transcription factor MYC-associated factor X (MAX) dimerization protein 3 (MXD3), which was previously identified to be critical for precursor B-cell (preB) acute lymphoblastic leukemia (ALL) cell survival. The MXD3 ASO was conjugated to an anti-cluster of differentiation-22 (CD22) antibody (αCD22 Ab) that specifically targets most preB ALL. We demonstrated that the αCD22 Ab-ASO conjugate treatment showed MXD3 protein knockdown and leukemia cell apoptosis in vitro. We also demonstrated that the conjugate treatment showed cytotoxicity in normal B cells, but not in other hematopoietic cells, including hematopoietic stem cells. Furthermore, the conjugate treatment at the lowest dose tested (0.2 mg/kg Ab for 6 doses - twice a week for 3 wks) more than doubled the mouse survival time in both Reh (median survival time 20.5 versus 42.5 d, p < 0.001) and primary preB ALL (median survival time 29.3 versus 63 d, p < 0.001) xenograft models. Our conjugate that uses αCD22 Ab to target the novel molecule MXD3, which is highly expressed in preB ALL cells, appears to be a promising novel therapeutic approach. PMID:27455414

  14. Allele-specific transcriptional activity of the variable number of tandem repeats of the inducible nitric oxide synthase gene is associated with idiopathic achalasia

    PubMed Central

    Grosso, Michela; Palumbo, Ilaria; Pesce, Marcella; D’Alessandro, Alessandra; Zaninotto, Giovanni; Annese, Vito; Petruzzelli, Raffaella; Izzo, Paola; Sepulveres, Rossana; Bruzzese, Dario; Esposito, Giuseppe; Cuomo, Rosario

    2016-01-01

    Background Polymorphisms of genes involved in the regulation of the immune response are risk factors for achalasia, but their contribution to disease pathogenesis is unknown. Nitric oxide is involved both in immune function and inhibitory neurotransmission. Objective The objective of this article is to assess the association and the functional relevance of the CCTTT-inducible nitric oxide synthase (NOS2) gene promoter polymorphism in achalasia. Methods Genomic DNA was isolated from 181 achalasia patients and 220 controls. Genotyping of the (CCTTT)n repeats was performed by PCR and capillary electrophoresis, and data analyzed by considering the frequency of the different alleles. HT29 cells were transfected with iNOS luciferase promoter-reporter plasmids containing different (CCTTT)n. Results The alleles’ distribution ranged from 7 to 18, with a peak frequency at 12 repeats. Analysis of the allele frequencies revealed that individuals carrying 10 and 13 CCTTT repeats were respectively less and more frequent in achalasia (OR 0.5, 95% CI 0.3–0.5 and OR 1.6, 95% CI 1–2.4, all p < 0.05). Long repeats were also significantly associated with an earlier onset of the disease (OR 1.69, 95% CI 1.13–2.53, p = 0.01). Transfection experiments revealed a similar allele-specific iNOS transcriptional activity. Conclusion The functional polymorphism (CCTTT) of NOS2 promoter is associated with achalasia, likely by an allele-specific modulation of nitric oxide production. PMID:28344787

  15. Fully automated sample preparation microsystem for genetic testing of hereditary hearing loss using two-color multiplex allele-specific PCR.

    PubMed

    Zhuang, Bin; Gan, Wupeng; Wang, Shuaiqin; Han, Junping; Xiang, Guangxin; Li, Cai-Xia; Sun, Jing; Liu, Peng

    2015-01-20

    A fully automated microsystem consisting of a disposable DNA extraction and PCR microchip, as well as a compact control instrument, has been successfully developed for genetic testing of hereditary hearing loss from human whole blood. DNA extraction and PCR were integrated into a single 15-μL reaction chamber, where a piece of filter paper was embedded for capturing genomic DNA, followed by in-situ PCR amplification without elution. Diaphragm microvalves actuated by external solenoids together with a "one-way" fluidic control strategy operated by a modular valve positioner and a syringe pump were employed to control the fluids and to seal the chamber during thermal cycling. Fully automated DNA extractions from as low as 0.3-μL human whole blood followed by amplifications of 59-bp β-actin fragments can be completed on the microsystem in about 100 min. Negative control tests that were performed between blood sample analyses proved the successful elimination of any contamination or carryover in the system. To more critically test the microsystem, a two-color multiplex allele-specific PCR (ASPCR) assay for detecting c.176_191del16, c.235delC, and c.299_300delAT mutations in GJB2 gene that accounts for hereditary hearing loss was constructed. Two allele-specific primers, one labeled with TAMRA for wild type and the other with FAM for mutation, were designed for each locus. DNA extraction from blood and ASPCR were performed on the microsystem, followed by an electrophoretic analysis on a portable microchip capillary electrophoresis system. Blood samples from a healthy donor and five persons with genetic mutations were all accurately analyzed with only two steps in less than 2 h.

  16. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  17. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  18. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  19. Magma plumbing system at the beginning of repeated caldera eruption: A case study on Aso-1 erupted about 270 ky ago from Aso caldera, SW Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Hoshizumi, H.; Miyabuchi, Y.

    2015-12-01

    In order to understand the commencement of magma plumbing system of a polygenetic caldera, we started petrological study on the earliest eruptive product of Aso caldera, SW Japan. Aso caldera is one of the active volcano in Japan which have produced four stages (Aso-1, -2, -3, -4) of large-scale pyroclastic flow deposits 270 to 90 ky. ago. A suite of samples were collected from the bottom of Aso-1 pyroclastic flow deposit and from the underlying tephra layer (Ono et al., 1979). The tephra comprises more than 10 pumice fall units inter-layered by dark gray volcanic ash. For whole rock chemistry, coarser pumice fragments were separated. For mineral and glass chemistry, phenocrysts and glass particles were handpicked from the sieved 500-1000 um fractions under a binocular microscope. This fraction consist of plagioclase, orthopyroxene, variably vesiculated volcanic glass fragments, and clinopyroxene phenocrysts. They were analyzed using an electron micro-probe. The suite of samples are similar and major temporal change is the chemical composition of orthopyroxenes; those from upper horizon are relatively Mg rich. Anorthite content of plagioclase phenocryst is bimodal 49-53 mol. % (major) and 57-70 mol. % (minor). Silica content of matrix glass fall in a narrow range 68-70 wt. %. Temperature and oxygen fugacity were estimated to be 865-905 deg-C and FMQ+2 log unit, respectively, using ILMAT (Lepage, 2003). Pressure and water content of the magma are estimated to be 5-7 kbar and 0.5-1 wt. % H2O, respectively, using rhyolite-MELTS (Gualda et al., 2012) on the most undifferentiated tholeiitic basalt of Aso 4KC-03 (Hunter, 1998) to reproduce the observed composition of matrix glass (68-70 wt. % SiO2) and plagioclase (An 49-53 mol. %). The calcic plagioclase (An 57-70 mol. %), however, suggest that the basalt was initially hydrous and require magma degassing before the differentiation. If we assume degassing by magma convection in a conduit (Kazahaya et al., 1994), the

  20. Gaia17aso and Gaia17asp transients confirmed by Euler imaging

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Roelens, M.; Semaan, T.; Palaversa, L.; Mowlavi, N.; Eyer, L.

    2017-03-01

    We report confirmation of Gaia Science Alerts transients Gaia17aso and Gaia17asp. Images were obtained through modified Gunn R band filter of the ECAM instrument installed on the Swiss 1.2m Euler telescope at La Silla, on 2017 March 21st - 22nd.

  1. K(MoO2)4O3(AsO4)

    PubMed Central

    Jouini, Raja; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    A new compound with a non-centrosymmetric structure, potassium tetra­kis­[dioxomolybdenum(IV)] arsenate trioxide, K(MoO2)4O3(AsO4), has been synthesized by a solid-state reaction. The [(MoO2)4O3(AsO4)]+ three-dimensional framework consists of single arsenate AsO4 tetra­hedra, MoO6 octa­hedra, MoO5 bipyramids and bi­octa­hedral units of edge-sharing Mo2O10 octa­hedra. The [Mo2O8]∞ octa­hedral chains running along the a-axis direction are connected through their corners to the AsO4 tetra­hedra, MoO6 octa­hedra and MoO5 bipyramids, so as to form large tunnels propagating along the a axis in which the K+ cations are located. This structure is compared with compounds containing M 2O10 (M = Mo, V, Fe) dimers and with those containing M 2O8 (M = V) chains. PMID:23794968

  2. Simultaneous detection of several oligonucleotides by time-resolved fluorometry: the use of a mixture of categorized microparticles in a sandwich type mixed-phase hybridization assay.

    PubMed

    Hakala, H; Virta, P; Salo, H; Lönnberg, H

    1998-12-15

    Porous, uniformly sized (50 micrometer) glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as a solid phase to construct a sandwich type hybridization assay that allowed simultaneous detection of up to six oligonucleotides from a single sample. The assay was based on categorization of the particles by two organic prompt fluorophores, viz. fluorescein and dansyl, and quantification of the oligonucleotide hybridization by time-resolved fluorometry. Accordingly, allele-specific oligodeoxyribonucleotide probes were assembled on the particles by conventional phosphoramidite strategy using a non-cleavable linker, and the category defining fluorescein and/or dansyl tagged building blocks were inserted in the 3'-terminal sequence. An oligonucleotide bearing a photoluminescent europium(III) chelate was hybridized to the complementary 3'-terminal sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound allele-specific probes via the 5'-terminal sequence of the target. After hybridization each individual particle was subjected to three different fluorescence intensity measurements. The intensity of the prompt fluorescence signals of fluorescein and dansyl defined the particle category, while the europium(III) chelate emission quantified the hybridization. The length of the complementary region between the target oligonucleotide and the particle-bound probe was optimized to achieve maximal selectivity. Furthermore, the kinetics of hybridization and the effect of the concentration of the target oligomer on the efficiency of hybridization were evaluated. By this approach the possible presence of a three base deletion (DeltaF508), point mutation (G542X) and point deletion (1078delT) related to cystic fibrosis could unequivocally be detected from a single sample.

  3. Allele-specific suppression of a defective trans-Golgi network (TGN) localization signal in Kex2p identifies three genes involved in localization of TGN transmembrane proteins.

    PubMed Central

    Redding, K; Brickner, J H; Marschall, L G; Nichols, J W; Fuller, R S

    1996-01-01

    Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery. PMID:8887651

  4. Oligonucleotide-based antiviral strategies.

    PubMed

    Schubert, S; Kurreck, J

    2006-01-01

    In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.

  5. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    DOE PAGES

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; ...

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

  6. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    SciTech Connect

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.

  7. Molecular genetic survey of European mistletoe (Viscum album) subspecies with allele-specific and dCAPS type markers specific for chloroplast and nuclear DNA sequences.

    PubMed

    Piotrowski, Arkadiusz; Ochocka, J Renata; Stefanowicz, Justyna; ŁUczkiewicz, Maria

    2003-10-01

    The qualitative and quantitative content of mistletoe metabolites, and bioactivity of extracts is related to the subspecies of Viscum album L. These were indicated to be genetically distinct and host specific. We aimed to check (i) whether the specificity is strict and (ii) how frequently hybridization occurs among the subspecies. We designed two sets of allele-specific and dCAPS molecular genetic markers that would facilitate identification of Viscum album L. subspecies and their hybrid derivatives on the basis of chloroplast trnH(GUG)- trnK(UUU) and nuclear rDNA ITS1&2 sequences. Out of 118 plants surveyed, 103 displayed characteristics that confirmed strict host specificity of the subspecies, in addition, the results were compliant between nuclear and chloroplast markers showing no indication of hybridization among subspecies. From 15 samples that showed deviations from this model 13 came from the Mediterranean Sea basin, and only two originated from Central and Western Europe. Abbreviations. dCAPS:derived Cleaved Amplified Polymorphic Sequence ITS1&2:Internal Transcribed Spacers 1&2 MAMA:Mismatch Amplification Mutation Assay

  8. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology.

    PubMed

    Roma, Cristin; Esposito, Claudia; Rachiglio, Anna Maria; Pasquale, Raffaella; Iannaccone, Alessia; Chicchinelli, Nicoletta; Franco, Renato; Mancini, Rita; Pisconti, Salvatore; De Luca, Antonella; Botti, Gerardo; Morabito, Alessandro; Normanno, Nicola

    2013-01-01

    Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR) is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA) based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC) samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2); the maximum cycle threshold (Ct = 37); and the cut-off ΔCt value (7) for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.

  9. Use of an interspecific hybrid in identifying a new allelic specificity generated at the self-incompatibility locus after inbreeding in Lycopersicon peruvianum.

    PubMed

    Maheswaran, G; Perryman, T; Williams, E G

    1986-12-01

    An interspecific hybrid between Lycopersicon esculentum (♀) and L. peruvianum has been raised by embryo rescue in vitro and used to confirm the presence of a new S-allelic specificity in its inbred L. peruvianum parent, a plant derived by enforced bud self-pollination of a self-incompatible clone with the genotype S 1 S 2. The inbred plant showed breeding behavior characteristic of both S 2 and a second specificity which was not S 1, S 2, S 3 or S f. Two-dimensional gel electrophoresis of stylar proteins, however, showed only a single typical S-associated component with the Mr and pI characteristic of S2. The alteration in specificity, therefore, was not associated with a detectable change in an S-associated protein. The F1 interspecific hybrid showed intermediacy of vegetative and reproductive characters, relatively high fertility and full self-incompatibility. Backcrossing to L. esculentum produced only abortive seeds requiring embryo culture. Backcrosses to L. peruvianum produced a very low proportion of filled germinable seeds. Pollen of the hybrid showed superior viability and tube growth rate compared with pollen of the two parent plants.

  10. Allele-specific transcriptional activity of the variable number of tandem repeats in 5' region of the DRD4 gene is stimulus specific in human neuronal cells.

    PubMed

    Paredes, U M; Quinn, J P; D'Souza, U M

    2013-03-01

    The dopamine receptor D4 (DRD4) gene includes several variable number of tandem repeat loci that have been suggested to modulate DRD4 gene expression patterns. Previous studies showed differential basal activity of the two most common variants of a tandem repeat (120 bp per repeat unit) located in the 5' region adjacent to the DRD4 promoter in human cell lines. In this communication, we further characterized the ability of this polymorphic repeat to elicit tissue-, allele- and stimuli-specific transcriptional activity in vitro. The short and long variants of the DRD4 5' tandem repeat were cloned into a luciferase reporter gene construct containing the SV40 promoter. The luciferase constructs were cotransfected with expression vectors of two ubiquitously expressed human transcription factors (TFs), CCCTC-binding factor (CTCF) and upstream stimulatory factor 2 (USF2), into human cell lines and primary cultures of neonate rat cortex and luciferase activity measured. Overexpression with these TFs resulted in differential cell- and allele-specific transcriptional activities of the luciferase constructs. The results of our experiments show that variants of this tandem repeat in the 5' promoter of the DRD4 gene will direct differential reporter gene transcriptional activity in a cell-type-specific manner dependent on the signal pathways activated.

  11. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  12. Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA.

    PubMed

    Asari, Masaru; Watanabe, Satoshi; Matsubara, Kazuo; Shiono, Hiroshi; Shimizu, Keiko

    2009-03-01

    Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.

  13. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  14. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6.

    PubMed

    Vargas, Luis Eduardo; Parra, Carlos Alberto; Salazar, Luz Mary; Guzmán, Fanny; Pinto, Martha; Patarroyo, Manuel E

    2003-07-18

    Peptide 1585 (EVLYLKPLAGVYRSLKKQLE) has a highly conserved amino-acid sequence located in the Plasmodium falciparum main merozoite surface protein (MSP-1) C-terminal region, required for merozoite entry into human erythrocytes and therefore represents a vaccine candidate for P. falciparum malaria. Original sequence-specific binding to five HLA DRB1* alleles (0101, 0102, 0401, 0701, and 1101) revealed this peptide's specific HLA DRB1*0102 allele binding. This peptide's allele-specific binding to HLA DRB1*0102 took on broader specificity for the DRB1*0101, -0401, and -1101 alleles when lysine was replaced by glycine in position 17 (peptide 5198: EVLYLKPLAGVYRSLKG(17)QLE). Binding of the identified G(10)VYRSLKGQLE(20) C-terminal register to these alleles suggests that peptide promiscuous binding relied on fitting Y(12), L(15), and G(17) into P-1, P-4, and P-6, respectively. The implications of the findings and the future of this synthetic vaccine candidate are discussed.

  15. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  16. Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease.

    PubMed

    Matera, Ivana; Musso, Marco; Griseri, Paola; Rusmini, Marta; Di Duca, Marco; So, Man-Ting; Mavilio, Domenico; Miao, Xiaoping; Tam, Paul Hk; Ravazzolo, Roberto; Ceccherini, Isabella; Garcia-Barcelo, Merce

    2013-05-01

    RET common variants are associated with Hirschsprung disease (HSCR; colon aganglionosis), a congenital defect of the enteric nervous system. We analyzed a well-known HSCR-associated RET haplotype that encompasses linked alleles in coding and noncoding/regulatory sequences. This risk haplotype correlates with reduced level of RET expression when compared with the wild-type counterpart. As allele-specific expression (ASE) contributes to phenotypic variability in health and disease, we investigated whether RET ASE could contribute to the overall reduction of RET mRNA detected in carriers. We tested heterozygous neuroblastoma cell lines, ganglionic gut tissues (18 HSCR and 14 non-HSCR individuals) and peripheral blood mononuclear cells (PBMCs; 16 HSCR and 14 non-HSCR individuals). Analysis of the data generated by SNaPshot and Pyrosequencing revealed that the RET risk haplotype is significantly more expressed in gut than in PBMCs (P = 0.0045). No ASE difference was detected between patients and controls, irrespective of the sample type. Comparison of total RET expression levels between gut samples with and without ASE, correlated reduced RET expression with preferential transcription from the RET risk haplotype. Nonrandom RET ASE occurs in ganglionic gut regardless of the disease status. RET ASE should not be excluded as a disease mechanism acting during development.

  17. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  18. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    PubMed Central

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica; Kiialainen, Anna; Flaegstad, Trond; Jonmundsson, Gudmundur; Kanerva, Jukka; Schmiegelow, Kjeld; Gunderson, Kevin L.; Lönnerholm, Gudmar; Syvänen, Ann-Christine

    2009-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood samples of 197 children with ALL. Using a reproducible, quantitative genotyping method and stringent criteria for scoring ASE, we found that 16% of the analyzed genes display ASE in multiple ALL cell samples. For most of the genes, the level of ASE varied largely between the samples, from 1.4-fold overexpression of one allele to apparent monoallelic expression. For genes exhibiting ASE, 55% displayed bidirectional ASE in which overexpression of either of the two SNP alleles occurred. For bidirectional ASE we also observed overall higher levels of ASE and correlation with the methylation level of these sites. Our results demonstrate that CpG site methylation is one of the factors that regulates gene expression in ALL cells. PMID:18997001

  19. Natural variation in male-induced ‘cost-of-mating’ and allele-specific association with male reproductive genes in Drosophila melanogaster

    PubMed Central

    Fiumera, Anthony C; Dumont, Bethany L; Clark, Andrew G

    2006-01-01

    One of the most sharply defined sexual conflicts arises when the act of mating is accompanied by an inflated risk of death. Several reports have documented an increased death rate of female Drosophila as a result of recurrent mating. Transgenic and mutation experiments have further identified components of seminal fluid that are at least in part responsible for this toxicity. Variation among males in their tendency for matings to be toxic to their partners has also been documented, but here for the first time we identify polymorphism within particular genes conferring differential post-mating female mortality. Such polymorphism is important, as it raises the challenge of whether sexual conflict models can provide means for maintenance of polymorphism. Using a set of second chromosome extraction lines, we scored differences in post-mating female fecundity and longevity subsequent to mating, and identified significant among-line differences. Seventy polymorphisms in ten male reproductive genes were scored and permutation tests were used to identify significant associations between genotype and phenotype. One polymorphism upstream of PEBII and an amino acid substitution in CG17331 were both associated with male-induced female mortality. The same allele of CG17331 that is toxic to females also induces greater refractoriness to remating in the females, providing an example of an allele-specific sexual conflict. Postcopulatory sexual selection could lead to sexual conflict by favouring males that prevent their mates from mating, even when there is a viability cost to those females. PMID:16612893

  20. Targeted Knockdown of Hepatic SOAT2 with Antisense Oligonucleotides Stabilizes Atherosclerotic Plaque in ApoB100-only LDLr−/− Mice

    PubMed Central

    Melchior, John T.; Olson, John D.; Kelley, Kathryn L.; Wilson, Martha D.; Sawyer, Janet K.; Link, Kerry M.; Rudel, Lawrence L.

    2015-01-01

    Objective To test the hypothesis that the attenuation of CO packaging into apoB-containing lipoproteins will arrest progression of pre-existing atherosclerotic lesions. Approach and Results Atherosclerosis was induced in apoB-100 only, LDLr−/− mice by feeding a diet enriched in cis-monounsaturated fatty acids (cis-MUFAs) for 24 weeks. A subset of mice was then sacrificed to quantify the extent of atherosclerosis. The remaining mice were continued on the same diet (controls) or assigned to the following treatments for 16 weeks: (1) a diet enriched in n-3 polyunsaturated fatty acids, (2) the cis-MUFA diet plus bi-weekly injections of an antisense oligonucleotide (ASO) specific to hepatic SOAT2; or (3) the cis-MUFA diet and bi-weekly injections of a non-targeting hepatic ASO. Extent of atherosclerotic lesions in the aorta was monitored morphometrically in vivo with magnetic resonance imaging (MRI) and ex vivo histologically and immunochemically. Hepatic knockdown of SOAT2 via ASO treatment arrested lesion growth and stabilized lesions. Conclusions Hepatic knockdown of SOAT2 in apoB100-only, LDLr−/− mice resulted in remodeling of aortic atherosclerotic lesions into a stable phenotype, suggesting SOAT2 is a viable target for treatment of atherosclerosis. PMID:26229140

  1. K2V2O2(AsO4)2

    PubMed Central

    Belkhiri, Sabrina; Mezaoui, Djillali; Roisnel, Thierry

    2012-01-01

    The vanadium oxide arsenate with formula K2V2O2(AsO4)2, dipotassium divanadium(IV) dioxide diarsenate, has been synthesized by solid-state reaction in an evacuated silica ampoule. Its structure is isotypic with K2V2O2(PO4)2. The framework is built up from corner-sharing VO6 octa­hedra and AsO4 tetra­hedra, creating an infinite [VAsO8]∞ chain running along the a- and c-axis directions. The K+ cations are located in hexa­gonal tunnels, which are delimited by the connection of the [VAsO8]∞ chains. PMID:22807696

  2. Structural features of two novel alluaudite-like arsenates Cd1.16Zn2.34(AsO4)1.5(HAsO4)(H2AsO4)0.5 and Cd0.74Mg2.76(AsO4)1.5(HAsO4)(H2AsO4)0.5

    PubMed Central

    Stojanović, Jovica; Đorđević, Tamara; Karanović, Ljiljana

    2012-01-01

    Two new compounds, Cd1.16Zn2.34(AsO4)1.5(HAsO4)(H2AsO4)0.5 (1) and Cd0.74Mg2.76(AsO4)1.5(HAsO4)(H2AsO4)0.5 (2), have been prepared hydrothermally. Their crystal structures consist of chains of edge-sharing M1O4(OH0.5)2, M1aO4(OH0.5)2, M2O5(OH0.5), and M2aO5(OH0.5) octahedra (M1, M1a = Zn, Cd; M2, M2a = Zn for 1, and M1, M1a = Mg, Cd; M2, M2a = Mg for 2) that are stacked parallel to (1 0 1) and are connected by the [(AsO4)0.5(AsO3(OH))0.5]2.5− and [(AsO4)0.5(AsO2(OH)2)0.5]2− tetrahedra. These chains produce two types of channels parallel to the c-axis. Cd atoms are located in channels 2, while in channels 1 are situated hydrogen atoms of OH groups. The infrared spectra clearly show the presence of broad O—H stretching and bending vibrations centred at 3236, 2392 1575 and 1396 cm−1 in (1), and 3210, 2379 1602 and 1310 cm−1 in (2). The O—H stretching frequency is in good agreement with O⋯O distances. Furthermore, structural characteristics of compounds with similar alluaudite-like structures were discussed. PMID:23471556

  3. Structural features of two novel alluaudite-like arsenates Cd1.16Zn2.34(AsO4)1.5(HAsO4)(H2AsO4)0.5 and Cd0.74Mg2.76(AsO4)1.5(HAsO4)(H2AsO4)0.5.

    PubMed

    Stojanović, Jovica; Dorđević, Tamara; Karanović, Ljiljana

    2012-04-15

    Two new compounds, Cd1.16Zn2.34(AsO4)1.5(HAsO4)(H2AsO4)0.5 (1) and Cd0.74Mg2.76(AsO4)1.5(HAsO4)(H2AsO4)0.5 (2), have been prepared hydrothermally. Their crystal structures consist of chains of edge-sharing M1O4(OH0.5)2, M1aO4(OH0.5)2, M2O5(OH0.5), and M2aO5(OH0.5) octahedra (M1, M1a = Zn, Cd; M2, M2a = Zn for 1, and M1, M1a = Mg, Cd; M2, M2a = Mg for 2) that are stacked parallel to (1 0 1) and are connected by the [(AsO4)0.5(AsO3(OH))0.5](2.5-) and [(AsO4)0.5(AsO2(OH)2)0.5](2-) tetrahedra. These chains produce two types of channels parallel to the c-axis. Cd atoms are located in channels 2, while in channels 1 are situated hydrogen atoms of OH groups. The infrared spectra clearly show the presence of broad O-H stretching and bending vibrations centred at 3236, 2392 1575 and 1396 cm(-1) in (1), and 3210, 2379 1602 and 1310 cm(-1) in (2). The O-H stretching frequency is in good agreement with O⋯O distances. Furthermore, structural characteristics of compounds with similar alluaudite-like structures were discussed.

  4. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  5. Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers.

    PubMed

    Ye, Lingzhen; Dai, Fei; Qiu, Long; Sun, Dongfa; Zhang, Guoping

    2011-07-13

    The formation of haze is a serious quality problem in beer production. It has been shown that the use of silica elute (SE)-ve malt (absence of molecular weight (MW) ∼14000 Da) for brewing can improve haze stability in the resultant beer, and the protein was identified as a barley trypsin inhibitor of the chloroform/methanol type (BTI-CMe). The objectives of this study were to determine (1) the allelic diversity of the gene controlling BTI-CMe in cultivated and Tibetan wild barley and (2) allele-specific (AS) markers for screening SE protein type. A survey of 172 Tibetan annual wild barley accessions and 71 cultivated barley genotypes was conducted, and 104 wild accessions and 35 cultivated genotypes were identified as SE+ve and 68 wild accessions and 36 cultivated genotypes as SE-ve. The allelic diversity of the gene controlling BTI-CMe was investigated by cloning, alignment, and association analysis. It was found that there were significant differences between the SE+ve and SE-ve types in single-nucleotide polymorphisms at 234 (SNP(234)), SNP(313), and SNP(385.) Furthermore, two sets of AS markers were developed to screen SE protein type based on SNP(313). AS-PCR had results very similar to those obtained by immunoblot method. Mapping analysis showed that the gene controlling the MW∼14 kDa band was located on the short arm of chromosome 3H, at the position of marker BPB-0527 (33.302 cM) in the Franklin/Yerong DH population.

  6. Development of Nuclear Microsatellite Loci and Mitochondrial Single Nucleotide Polymorphisms for the Natterjack Toad, Bufo (Epidalea) calamita (Bufonidae), Using Next Generation Sequencing and Competitive Allele Specific PCR (KASPar).

    PubMed

    Faucher, Leslie; Godé, Cécile; Arnaud, Jean-François

    2016-01-01

    Amphibians are undergoing a major decline worldwide and the steady increase in the number of threatened species in this particular taxa highlights the need for conservation genetics studies using high-quality molecular markers. The natterjack toad, Bufo (Epidalea) calamita, is a vulnerable pioneering species confined to specialized habitats in Western Europe. To provide efficient and cost-effective genetic resources for conservation biologists, we developed and characterized 22 new nuclear microsatellite markers using next-generation sequencing. We also used sequence data acquired from Sanger sequencing to develop the first mitochondrial markers for KASPar assay genotyping. Genetic polymorphism was then analyzed for 95 toads sampled from 5 populations in France. For polymorphic microsatellite loci, number of alleles and expected heterozygosity ranged from 2 to 14 and from 0.035 to 0.720, respectively. No significant departures from panmixia were observed (mean multilocus F IS = -0.015) and population differentiation was substantial (mean multilocus F ST = 0.222, P < 0.001). From a set of 18 mitochondrial SNPs located in the 16S and D-loop region, we further developed a fast and cost-effective SNP genotyping method based on competitive allele-specific PCR amplification (KASPar). The combination of allelic states for these mitochondrial DNA SNP markers yielded 10 different haplotypes, ranging from 2 to 5 within populations. Populations were highly differentiated (G ST = 0.407, P < 0.001). These new genetic resources will facilitate future parentage, population genetics and phylogeographical studies and will be useful for both evolutionary and conservation concerns, especially for the set-up of management strategies and the definition of distinct evolutionary significant units.

  7. Allele specific-PCR and melting curve analysis showed relatively high frequency of β-casein gene A1 allele in Iranian Holstein, Simmental and native cows.

    PubMed

    Gholami, M; Hafezian, S H; Rahimi, G; Farhadi, A; Rahimi, Z; Kahrizi, D; Kiani, S; Karim, H; Vaziri, S; Muhammadi, S; Veisi, F; Ghadiri, K; Shetabi, H; Zargooshi, J

    2016-10-31

    There are two allelic forms of A1 and A2 of β-casein gene in dairy cattle. Proteolytic digestion of bovine β-casein A1 type produces bioactive peptide of β-casomorphin-7 known as milk devil. β-casomorphin-7 causes many diseases, including type 1 diabetes, cardiovascular disease syndrome, sudden death and madness. The aim of the present study was to determine the different allelic forms of β-casein gene in Iranian Holstein, Simmental and native cattle in order to identify A1 and A2 variants. The blood samples were collected randomly and DNA was extracted using modified salting out method. An 854 bp fragment including part of exon 7 and part of intron 6 of β-casein gene was amplified by allele specific polymerase chain reaction (AS-PCR). Also, the accuracy of AS-PCR genotyping has been confirmed by melting temperature curve analysis using Real-time PCR machinery. The comparison of observed allele and genotype frequency among the studied breeds was performed using the Fisher exact and Chi-squared test, respectively by SAS program. Obtained results showed the A1 allele frequencies of 50, 51.57, 54.5, 49.4 and 46.6% in Holstein, Simmental, Sistani, Taleshi and Mazandarani cattle populations, respectively. The chi-square test was shown that no any populations were in Hardy-Weinberg equilibrium for studied marker locus. Comparison and analysis of the test results for allelic frequency showed no any significant differences between breeds (P>0.05). The frequency of observed genotypes only differs significantly between Holstein and Taleshi breeds but no any statistically significant differences were found for other breeds (P>0.05). A relatively high frequency of β-casein A1 allele was observed in Iranian native cattle. Therefore, determine the genotypes and preference alleles A2 in these native and commercial cattle is recommended.

  8. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas.

    PubMed

    Krasinskas, Alyssa M; Moser, A James; Saka, Burcu; Adsay, N Volkan; Chiosea, Simion I

    2013-10-01

    KRAS codon 12 mutations are present in about 90% of ductal adenocarcinomas and in undifferentiated carcinomas of the pancreas. The role of KRAS copy number changes and resulting KRAS mutant allele-specific imbalance (MASI) in ductal adenocarcinoma (n=94), and its progression into undifferentiated carcinoma of the pancreas (n=25) was studied by direct sequencing and KRAS fluorescence in situ hybridization (FISH). Semi-quantitative evaluation of sequencing electropherograms showed KRAS MASI (ie, mutant allele peak higher than or equal to the wild-type allele peak) in 22 (18.4%) cases. KRAS FISH (performed on 45 cases) revealed a trend for more frequent KRAS amplification among cases with KRAS MASI (7/20, 35% vs 3/25, 12%, P=0.08). KRAS amplification by FISH was seen only in undifferentiated carcinomas (10/24, 42% vs 0/21 pancreatic ductal adenocarcinoma, 0%, P=0.0007). In 6 of 11 cases with both undifferentiated and well-differentiated components, transition to undifferentiated carcinoma was associated with an increase in KRAS copy number, due to amplification and/or chromosome 12 hyperploidy. Pancreatic carcinomas with KRAS MASI (compared to those without MASI) were predominantly undifferentiated (16/22, 73% vs 9/97, 9%, P<0.001), more likely to present at clinical stage IV (5/22, 23% vs 7/97, 7%, P=0.009), and were associated with shorter overall survival (9 months, 95% confidence interval, 5-13, vs 22 months, 95% confidence interval, 17-27; P=0.015) and shorter disease-free survival (5 months, 95% confidence interval, 2-8 vs 13 months, 95% confidence interval, 10-16; P=0.02). Our findings suggest that in a subset of ductal adenocarcinomas, KRAS MASI correlates with the progression to undifferentiated carcinoma of the pancreas.

  9. RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations

    PubMed Central

    Bell, Graeme D.M.; Kane, Nolan C.; Rieseberg, Loren H.; Adams, Keith L.

    2013-01-01

    Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations. PMID:23677938

  10. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci.

    PubMed Central

    Ang, L H; Deng, X W

    1994-01-01

    Previous studies suggested that the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) gene product represses photomorphogenic development in darkness and that light signals reverse this action. In this report, we used genetic analysis to investigate the regulatory hierarchical relationship of COP1 and the loci encoding the photoreceptors and other signaling components. Our results showed that cop1 mutations are epistatic to the long hypocotyl mutations hy1, hy2, hy3, and hy4, suggesting that COP1 acts downstream of the phytochromes and a blue light receptor. Although epistasis of a putative null cop1-5 mutation over a hy5 mutation implied that COP1 acts downstream of HY5, the same hy5 mutation can suppress the dark photomorphogenic phenotypes (including hypocotyl elongation and cotyledon cellular differentiation) of the weak cop1-6 mutation. This, and other allele-specific interactions between COP1 and HY5, may suggest direct physical contact of their gene products. In addition, the synthetic lethality of the weak deetiolated1 (det1) and cop1 mutations and the fact that the cop1-6 mutation is epistatic to the det1-1 mutation with respect to light control of seed germination and dark-adaptative gene expression suggested that DET1 and COP1 may act in the same pathway, with COP1 being downstream. These results, together with previous epistasis studies, support models in which light signals, once perceived by different photoreceptors, converge downstream and act through a common cascade(s) of regulatory steps, as defined by DET1, HY5, COP1, and likely others, to derepress photomorphogenic development. PMID:8038602

  11. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that polymorphisms associated with transcriptional regulation are critical for viral disease resistance was tested by selecting birds using SNPs exhibiting allele-specific expression (ASE) in response to viral challenge. Analysis indicates ASE markers account for 83% of the disease re...

  12. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  13. K0.8Ag0.2Nb4O9AsO4

    PubMed Central

    Ben Amor, Rym; Zid, Mohamed Faouzi; Driss, Ahmed

    2008-01-01

    The title compound, potassium silver tetra­niobium nona­oxide arsenate, K0.8Ag0.2Nb4O9AsO4, was prepared by a solid-state reaction at 1183 K. The structure consists of infinite (Nb2AsO14)n chains parallel to the b axis and cross-linked by corner sharing via pairs of edge-sharing octa­hedra. Each pair links together four infinite chains to form a three-dimensional framework. The K+ and Ag+ ions partially occupy several independent close positions in the inter­connected cavities delimited by the framework. K0.8Ag0.2Nb4O9AsO4 is likely to exhibit fast alkali-ion mobility and ion-exchange properties. The Wyckoff symbols of special positions are as follows: one Nb 8e, one Nb 8g, As 4c, two K 8f, one Ag 8f, one Ag 4c, one O 8g, one O 4c. PMID:21202442

  14. NaAg2Mo3O9AsO4

    PubMed Central

    Hamza, Hamadi; Zid, Mohamed Faouzi; Driss, Ahmed

    2010-01-01

    The title compound, sodium disilver arsenatotrimolybdate, Na0.93 (1)Ag2.07 (1)Mo3AsO13, was prepared by a solid-state reaction. In the crystal structure, isolated AsO4 tetra­hedra share corners with groups of three edge-sharing MoO6 octa­hedra. This arrangement leads to the formation of anionic 1 ∞[Mo3AsO13]n ribbons extending parallel to [100]. The three metal sites show occupational disorder by AgI and NaI cations, each with a different Ag:Na ratio. The metal cations are situated in the space between the ribbons and are surrounded by terminal O atoms of the ribbons in the form of distorted MO7 polyhedra (M = Ag, Na) for distances < 3.0 Å. The title compound shows weak ionic conductivity. Structural relationships between different compounds in the quaternary systems M–Sb–P–O, M–Nb–P–O and M–Mo–As–O (M is Ag or an alkali metal) are also discussed. PMID:21587345

  15. K0.78Na0.22MoO2AsO4

    PubMed Central

    Jouini, Raja; Bouzidi, Chahira; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, potassium sodium dioxidomolybden­um(VI) arsenate, K0.78Na0.22MoO2AsO4, was synthesized by a solid-state reaction route. The structure is built up from corner-sharing MoO6 octa­hedra and AsO4 tetra­hedra, creating infinite [MoAsO8]∞ chains running along the b-axis direction. As, Mo and all but one O atom are on special positions (4c) with m symmetry and K (occupancy 0.78) is on a position (4a) of -1 in the tunnels. The possible motion of the alkali cations has been investigated by means of the bond-valance sum (BVS) model. The simulation shows that the Na+ motion appears to be easier mainly along the b-axis direction. Structural relationships between the different compounds of the AMoO2AsO4 (A = Ag, Li, Na, K, Rb) series and MXO8 (M = V; X = P, As) chains are discussed. PMID:24109253

  16. Mutational analysis using oligonucleotide microarrays

    PubMed Central

    Hacia, J.; Collins, F.

    1999-01-01

    The development of inexpensive high throughput methods to identify individual DNA sequence differences is important to the future growth of medical genetics. This has become increasingly apparent as epidemiologists, pathologists, and clinical geneticists focus more attention on the molecular basis of complex multifactorial diseases. Such undertakings will rely upon genetic maps based upon newly discovered, common, single nucleotide polymorphisms. Furthermore, candidate gene approaches used in identifying disease associated genes necessitate screening large sequence blocks for changes tracking with the disease state. Even after such genes are isolated, large scale mutational analyses will often be needed for risk assessment studies to define the likely medical consequences of carrying a mutated gene.
This review concentrates on the use of oligonucleotide arrays for hybridisation based comparative sequence analysis. Technological advances within the past decade have made it possible to apply this technology to many different aspects of medical genetics. These applications range from the detection and scoring of single nucleotide polymorphisms to mutational analysis of large genes. Although we discuss published scientific reports, unpublished work from the private sector12 could also significantly affect the future of this technology.


Keywords: mutational analysis; oligonucleotide microarrays; DNA chips PMID:10528850

  17. Oligonucleotide therapeutics for human leukaemia.

    PubMed

    Gewirtz, A M

    1997-01-01

    The concept of antisense oligonucleotide 'therapeutics' has generated a great deal of controversy. Questions abound regarding the mechanism of action of these compounds, their reliability and their ultimate utility. These problems are compounded by the 'hype', which has attended their development, and the inability of workers in this area to meet the expectations raised by its most zealous proponents. Nevertheless, it is worth pointing out that there have been some notable gene disruption successes with this technique that have stood up to rigorous scrutiny. Our own work with c-myb as a target is perhaps a reasonable example. Though much remains to be accomplished before antisense drugs are commonly, and usefully, employed in the clinic, it is important to remember what motivates their development. Gene-targeted drugs have the promise of exquisite specificity and the potential to do much good with little toxicity. Accordingly, antisense oligonucleotides can serve as a paradigm of rational drug development. For all these reasons then, we believe that efforts should be increased to decipher the mechanism of action of antisense oligodeoxynucleotides, and to learn how they may be successfully employed in the clinic.

  18. Cellular Uptake and Intracellular Trafficking of Oligonucleotides: Implications for Oligonucleotide Pharmacology

    PubMed Central

    Ming, Xin; Carver, Kyle; Laing, Brian

    2014-01-01

    One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed. PMID:24383421

  19. Bromodeoxyuridine-labeled oligonucleotides as tools for oligonucleotide uptake studies.

    PubMed

    Maszewska, Maria; Kobylańska, Anna; Gendaszewska-Darmach, Edyta; Koziołkiewicz, Maria

    2002-12-01

    The mechanisms by which various oligonucleotides (ODNs) and their analogs enter cells are not fully understood. A common technique used in studies on cellular uptake of ODNs is their conjugation with fluorochromes. However, fluorescently labeled ODNs may vary from the parent compounds in charge and hydrophilicity, and they may interact differently with some components of cellular membranes. In this report, we present an alternative method based on the immunofluorescent detection of ODNs with incorporated 5-bromo-2'-deoxyuridine (BrdUrd). Localization of BrdUrd-modified ODNs has been achieved using FITC-labeled anti-BrdUrd antibodies. This technique allowed determination of the differences in cellular uptake of phosphodiester (PO) and phosphorothioate (PS) ODNs and their derivatives conjugated with cholesterol and menthol. The immunocytochemical method also has shown that the cellular uptake of some ODNs may be influenced by specific sequences that are responsible for the formation of higher-order structures.

  20. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Gravanis, Achille

    2008-08-01

    Most genotyping methods for known single-nucleotide polymorphisms (SNPs) are based on hybridization with allele-specific probes, oligonucleotide ligation reaction (OLR), primer extension or invasive cleavage. OLR offers superior specificity because it involves two recognition events; namely, the hybridization of an allele-specific probe and a common probe to adjacent positions on target DNA. OLR products can be detected by microtiter well-based colorimetric, time-resolved fluorimetric or chemiluminometric assays, electrophoresis, microarrays, microspheres, and homogeneous fluorimetric or colorimetric assays. We have developed a simple, robust, and low-cost disposable biosensor in dry-reagent format, which allows visual genotyping with no need for instrumentation. The OLR mixture contains a biotinylated common probe and an allele-specific probe with a (dA)(20) segment at the 3'-end. OLR products are denatured and applied to the biosensor next to gold nanoparticles that are decorated with oligo(dT) strands. The sensor is immersed in the appropriate buffer and all components migrate by capillary action. The OLR product is captured by immobilized streptavidin at the test zone (TZ) of the sensor and hybridizes with the oligo(dT) strands of the nanoparticles. A characteristic red line is generated due to the accumulation of nanoparticles. The excess nanoparticles are captured by immobilized oligo(dA) at the control zone of the strip, giving a second red line. We have applied successfully the proposed OLR-dipstick assay to the genotyping of four SNPs in the drug-metabolizing enzyme genes CYP2D6 ((*)3 and (*)4) and CYP2C19 ((*)2 and (*)3). The results were in agreement with direct sequencing.

  1. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  2. Adaptive resolution simulation of oligonucleotides.

    PubMed

    Netz, Paulo A; Potestio, Raffaello; Kremer, Kurt

    2016-12-21

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  3. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    PubMed

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation.

  4. An allele-specific PCR system for rapid detection and discrimination of the CYP2C19∗4A, ∗4B, and ∗17 alleles: implications for clopidogrel response testing.

    PubMed

    Scott, Stuart A; Tan, Qian; Baber, Usman; Yang, Yao; Martis, Suparna; Bander, Jeffrey; Kornreich, Ruth; Hulot, Jean-Sébastien; Desnick, Robert J

    2013-11-01

    CYP2C19 is involved in the metabolism of clinically relevant drugs, including the antiplatelet prodrug clopidogrel, which has prompted interest in clinical CYP2C19 genotyping. The CYP2C19∗4B allele is defined by both gain-of-function [c.-806C>T (∗17)] and loss-of-function [c.1A>G (∗4)] variants on the same haplotype; however, current genotyping and sequencing assays are unable to determine the phase of these variants. Thus, the aim of this study was to develop an assay that could rapidly detect and discriminate the related ∗4A, ∗4B, and ∗17 alleles. An allele-specific PCR assay, composed of four unique primer mixes that specifically interrogate the defining ∗17 and ∗4 variants, was developed by using samples (n = 20) with known genotypes, including the ∗4A, ∗4B, and/or ∗17 alleles. The assay was validated by testing 135 blinded samples, and the results were correlated with CYP2C19 genotyping and allele-specific cloning/sequencing. Importantly, among the six ∗4 carriers in the validation cohort, after allele-specific PCR testing both samples with a ∗1/∗4 genotype were reclassified to ∗1/∗4A, all three samples with a ∗4/∗17 genotype were reclassified to ∗1/∗4B, and a sample with a ∗4/∗17/∗17 genotype was reclassified to ∗4B/∗17. In conclusion, this rapid and robust allele-specific PCR assay can refine CYP2C19 genotyping and metabolizer phenotype classification by determining the phase of the defining ∗17 and ∗4 variants, which may have utility when testing CYP2C19 for clopidogrel response.

  5. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2.

    PubMed

    Zanardi, Thomas A; Han, Su-Cheol; Jeong, Eun Ju; Rime, Soyub; Yu, Rosie Z; Chakravarty, Kaushik; Henry, Scott P

    2012-11-01

    ISIS 388626, a 2'-methoxyethyl (MOE)-modified antisense oligonucleotide (ASO) that targets human sodium glucose cotransporter 2 (SGLT2) mRNA, is in clinical trials for the management of diabetes. SGLT2 plays a pivotal role in renal glucose reabsorption, and inhibition of SGLT2 is anticipated to reduce hyperglycemia in diabetic subjects by increasing urinary glucose elimination. To selectively inhibit SGLT2 in the kidney, ISIS 388626 was designed as a "shortmer" ASO, consisting of only 12 nucleotides with two 2'-MOE-modified nucleotides at the termini. Mice and monkeys received up to 30 mg/kg/week ISIS 388626 via subcutaneous injection for 6 or 13 weeks. Dose-dependent decreases in renal SGLT2 mRNA expression were observed, which correlated with dose-related increases in glucosuria without concomitant hypoglycemia. There were no histologic changes in the kidney attributed to SGLT2 inhibition after 6 or 13 weeks of treatment. The remaining changes observed in these studies were typical of those produced in these species by the administration of oligonucleotides, correlated with high doses of ISIS 388626, and were unrelated to the inhibition of SGLT2 expression. The kidney contained the highest concentration of ISIS 388626, and dose-dependent basophilic granule accumulation in tubular epithelial cells of the kidney, which is evidence of oligonucleotide accumulation in these cells, was the only histologic change identified. No changes in kidney function were observed. These results revealed only readily reversible changes after the administration of ISIS 388626 and support the continued investigation of the safety and efficacy of ISIS 388626 in human trials.

  6. Complex DNA nanostructures from oligonucleotide ensembles.

    PubMed

    Mathur, Divita; Henderson, Eric R

    2013-04-19

    The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, the DNA origami technique suffers from some limitations. Foremost among these is the limited number of useful single-stranded scaffolds of biological origin. This report describes a new approach to creating large DNA nanostructures exclusively from synthetic oligonucleotides. The essence of this approach is to replace the single-stranded scaffold in DNA origami with a library of oligonucleotides termed "scaples" (scaffold staples). Scaples eliminate the need for scaffolds of biological origin and create new opportunities for producing larger and more diverse DNA nanostructures as well as simultaneous assembly of distinct structures in a "single-pot" reaction.

  7. A Rapid Turn-around, Scalable Big Data Processing Capability for the JPL Airborne Snow Observatory (ASO) Mission

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2014-12-01

    The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years

  8. Antisense oligonucleotides as therapeutics for malignant diseases.

    PubMed

    Ho, P T; Parkinson, D R

    1997-04-01

    The continued progress in our understanding of the biology of neoplasia and in the identification, cloning, and sequencing of genes critical to tumor cell function permits the exploitation of this information to develop specific agents that may directly modulate the function of these genes or their protein products. Antisense oligonucleotides are being investigated as a potential therapeutic modality that takes direct advantage of molecular sequencing. The antisense approach uses short oligonucleotides designed to hybridize to a target mRNA transcript through Watson-Crick base pairing. The formation of this oligonucleotide: RNA heteroduplex results in mRNA inactivation and consequent inhibition of synthesis of the protein product. A fundamental attraction of the antisense approach is that this method potentially may be applied to any gene product, in theory, for the treatment of malignant and non-malignant diseases. However, this simple and attractive model has proven to be much more complex in practice. A number of important challenges in the preclinical development of antisense oligonucleotides have been identified, including stability, sequence length, cellular uptake, target sequence selection, appropriate negative controls, oligonucleotide: protein interactions, and cost of manufacture. Although the biological activity of an oligonucleotide against its molecular target is theoretically sequence-dependent, the animal pharmacokinetics and toxicology of phosphorothioate analogues directed against vastly disparate gene products appear relatively non-sequence-specific. In oncology, a number of clinical trials have been initiated with antisense oligonucleotides directed against molecular targets including: p53; bcl-2; raf kinase; protein kinase C-alpha; c-myb. The experience gained from these early clinical trials will be applicable to the next generation of antisense agents in development. These may include molecules with novel backbones or other structural

  9. The NASA Airborne Snow Observatory: Demonstration Mission-3 and the Path Forward to a Broader ASO Program

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2015-12-01

    The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the third Demonstration Mission that occurred during the intense California drought of spring 2015, a snow year far worse than the previously worst snow year on record of 2014, and an overview of the various analyses that are finally available due to the uniqueness of the ASO data. In 2015, ASO provided complete basin coverage for the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains. ASO performed its first wintertime acquisitions in the Tuolumne Basin in response to water managers' needs to quantify SWE volume in what was already realized as dire conditions. Analyses show that with ASO data, river flows and reservoir inflows from the ASO acquisition date to 1 July can be estimated with uncertainties of less than 2%. These results provide enormous value in management operational flexibility for the diversity of needs, and provide strong scientific constraints on the physical processes controlling snowmelt runoff. Snowmelt runoff models are markedly better constrained due to the now accurate knowledge of the distribution of snow water equivalent. With the ASO high-resolution spectrometer and lidar data for a snow-free acquisition, we can determine surface classifications, vegetation heights, and river networks. These data allow runoff models to be accurately and rapidly developed with unprecedented accuracy. These data are now being used to constrain models of varying complexity. Finally, we discuss the path forward on expanding ASO to cover the entire Sierra Nevada and the

  10. Theoretical and experimental study of the vibrational spectra of sarkinite Mn2(AsO4)(OH) and adamite Zn2(AsO4)(OH)

    NASA Astrophysics Data System (ADS)

    Makreski, Petre; Jovanovski, Stefan; Pejov, Ljupco; Kloess, Gert; Hoebler, Hans-Joachim; Jovanovski, Gligor

    2013-09-01

    The arsenate hydroxyl-bearing minerals sarkinite and adamite were studied with vibrational spectroscopic (IR and Raman) and quantum theoretical methods. The observed IR bands in the higher (1100-600 cm-1) and especially lower (600-450 cm-1) frequency region of AsO4 vibrations could clearly discriminate between the studied analogues. The differences between their crystal structures are much pronounced in both IR and Raman OH-stretching regions. Namely, a single strong band is found in the case of orthorhombic adamite compared to four weaker bands observed in corresponding IR and Raman spectral regions of monoclinic sarkinite. Essentially all bands in the experimental spectra, collected at both room and liquid nitrogen temperature, were tentatively assigned. To support the tentative assignment of bands in the vibrational spectra of the mentioned minerals, periodic pseudopotential plane wave density functional theory calculations were carried out. Geometry optimizations of the 3D periodic systems included both optimizations of the atomic positions within the unit cell and of the unit cell itself. In most cases, the assignments were either supported or implied by the obtained theoretical data. It is worth mentioning that this is the first experimental and theoretical study of the vibrational spectra of the very-rare sarkinite mineral.

  11. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective

    PubMed Central

    Fernandes, Stephanie A.; Douglas, Andrew G. L.; Varela, Miguel A.; Wood, Matthew J. A.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5–10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS. PMID:24349764

  12. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective.

    PubMed

    Fernandes, Stephanie A; Douglas, Andrew G L; Varela, Miguel A; Wood, Matthew J A; Aoki, Yoshitsugu

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5-10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  13. 75 FR 59695 - Foreign-Trade Zone 169-Manatee County, Florida; Extension of Subzone; Aso LLC (Adhesive Bandage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... (Adhesive Bandage Manufacturing); Sarasota County, FL An application has been submitted to the Foreign-Trade... strips per year) was approved by the Board in 2000 for the manufacture of adhesive bandages under FTZ... has at times instead used various duty suspension provisions on adhesive tape. Aso is now...

  14. Allele-specific conventional reverse-transcription polymerase chain reaction as a screening assay for discriminating influenza a H1N1 (H275Y) oseltamivir-resistant and wild-type viruses.

    PubMed

    Ngai, Karry L K; Lam, Wai-Yip; Lee, Nelson; Leung, Ting Fan; Hui, David S C; Chan, Paul K S

    2010-08-01

    In early 2008, a sudden increase in oseltamivir (Tamiflu)-resistant influenza A H1N1 viruses was reported from several European countries. This resistant virus has spread globally and accounted for more than 95% of H1N1 viruses isolated in the following influenza season. A continuous close monitoring on the prevalence of this resistant virus is necessary to rationalize the choice of antiviral agents. The resistance of this novel strain to oseltamivir is conferred by an amino acid substitution from histidine to tyrosine at position 275 (H275Y) of the neuraminidase protein. This study developed and evaluated allele-specific conventional reverse-transcription polymerase chain reaction (cRT-PCR) assays to provide a simple, rapid, and low-cost option for discriminating oseltamivir-resistant influenza A H1N1 (H275Y) mutant from wild-type viruses. The evaluation was based on 90 nasopharyngeal aspirate specimens collected before, during the initial phase and at the peak of emergence of resistance. Thirty-six (40%) of these specimens were H275Y mutant, whereas the other 54 (60%) were wild-type viruses as confirmed by sequencing of the neuraminidase gene. When applied directly on the 90 nasopharyngeal aspirate specimens, the allele-specific cRT-PCR assays achieved an unequivocal discrimination for 82 (91%) specimens. Further improvement in performance is expected when applied to cell culture isolates with a higher viral titer. These allele-specific cRT-PCR assays can be a simple, low-cost option for large-scale screening of influenza isolates.

  15. An oligonucleotide hybridization approach to DNA sequencing.

    PubMed

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  16. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure

    NASA Astrophysics Data System (ADS)

    Hata, Maki; Takakura, Shinichi; Matsushima, Nobuo; Hashimoto, Takeshi; Utsugi, Mitsuru

    2016-10-01

    At Naka-dake cone, Aso caldera, Japan, volcanic activity is raised cyclically, an example of which was a phreatomagmatic eruption in September 2015. Using a three-dimensional model of electrical resistivity, we identify a magma pathway from a series of northward dipping conductive anomalies in the upper crust beneath the caldera. Our resistivity model was created from magnetotelluric measurements conducted in November-December 2015; thus, it provides the latest information about magma reservoir geometry beneath the caldera. The center of the conductive anomalies shifts from the north of Naka-dake at depths >10 km toward Naka-dake, along with a decrease in anomaly depths. The melt fraction is estimated at 13-15% at 2 km depth. Moreover, these anomalies are spatially correlated with the locations of earthquake clusters, which are distributed within resistive blocks on the conductive anomalies in the northwest of Naka-dake but distributed at the resistive sides of resistivity boundaries in the northeast.

  17. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  18. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.

  19. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy

    PubMed Central

    Bogdanik, Laurent P.; Osborne, Melissa A.; Davis, Crystal; Martin, Whitney P.; Austin, Andrew; Rigo, Frank; Bennett, C. Frank; Lutz, Cathleen M.

    2015-01-01

    Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron 1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system. PMID:26460027

  20. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.

    PubMed

    Prickett, Adam R; Barkas, Nikolaos; McCole, Ruth B; Hughes, Siobhan; Amante, Samuele M; Schulz, Reiner; Oakey, Rebecca J

    2013-10-01

    DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.

  1. Predictive Dose-Based Estimation of Systemic Exposure Multiples in Mouse and Monkey Relative to Human for Antisense Oligonucleotides With 2′-O-(2-Methoxyethyl) Modifications

    PubMed Central

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-01

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2′-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state. PMID:25602582

  2. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs.

    PubMed

    Jiang, Jie; Zhu, Qiang; Gendron, Tania F; Saberi, Shahram; McAlonis-Downes, Melissa; Seelman, Amanda; Stauffer, Jennifer E; Jafar-Nejad, Paymaan; Drenner, Kevin; Schulte, Derek; Chun, Seung; Sun, Shuying; Ling, Shuo-Chien; Myers, Brian; Engelhardt, Jeffery; Katz, Melanie; Baughn, Michael; Platoshyn, Oleksandr; Marsala, Martin; Watt, Andy; Heyser, Charles J; Ard, M Colin; De Muynck, Louis; Daughrity, Lillian M; Swing, Deborah A; Tessarollo, Lino; Jung, Chris J; Delpoux, Arnaud; Utzschneider, Daniel T; Hedrick, Stephen M; de Jong, Pieter J; Edbauer, Dieter; Van Damme, Philip; Petrucelli, Leonard; Shaw, Christopher E; Bennett, C Frank; Da Cruz, Sandrine; Ravits, John; Rigo, Frank; Cleveland, Don W; Lagier-Tourenne, Clotilde

    2016-05-04

    Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.

  3. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    PubMed

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  4. Oligonucleotide recombination in gram negative bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any a...

  5. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  6. Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-01-01

    Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest specificity for allele discrimination because two hybridization events are required for ligation. We report the development of a DNA biosensor that offers significant advantages over currently available methods for detection of OLR products: It allows simultaneous visual discrimination of both alleles using a single ligation reaction. Detection is complete within minutes without the need for any specialized instruments. It does not involve multiple cycles of incubation and washing. The dry-reagent format minimizes the pipetting steps. The need for qualified personnel is much lower than current methods. The principle of the assay is as follows: Following PCR amplification, a single OLR is performed using a biotinylated common probe and two allele-specific probes labeled with the haptens digoxigenin and fluorescein. Ligation products corresponding to the normal and mutant allele are double-labeled with biotin and either digoxigenin or fluorescein, respectively. The products are captured by antidigoxigenin or antifluorescein antibodies, or both, that are immobilized at the two test zones of the biosensor and react with antibiotin-functionalized gold nanoparticle reporters. The excess nanoparticles bind to biotinylated albumin that is immobilized at the control zone of the biosensor. The genotype is assigned by the characteristic red lines that appear at the two test zones. The proposed DNA biosensor constitutes a significant step toward point-of-care SNP genotyping.

  7. Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O.

    PubMed

    Ramírez-Solís, Alejandro; Mukopadhyay, Rita; Rosen, Barry P; Stemmler, Timothy L

    2004-05-03

    Long-term exposure to arsenic in drinking water has been linked to cancer of the bladder, lungs, skin, kidney, nasal passages, liver, and prostate in humans. It is therefore important to understand the structural aspects of arsenic in water, as hydrated arsenic is most likely the initial form of the metalloid absorbed by cells. We present a detailed experimental and theoretical characterization of the coordination environment of hydrated arsenite. XANES analysis confirms As(III) is a stable redox form of the metalloid in solution. EXAFS analysis indicate, at neutral pH, arsenite has a nearest-neighbor coordination geometry of approximately 3 As-O bonds at an average bond length of 1.77 A, while at basic pH the nearest-neighbor coordination geometry shifts to a single short As-O bond at 1.69 A and two longer As-O bonds at 1.82 A. Long-range ligand scattering is present in all EXAFS samples; however, these data could not be fit with any degree of certainty. There is no XAS detectable interaction between As and antimony, suggesting they are not imported into cells as a multinuclear complex. XAS results were compared to a structural database of arsenite compounds to confirm that a 3 coordinate As-O complex for hydrated arsenite is the predominate species in solution. Finally, quantum chemical studies indicate arsenite in solution is solvated by 3 water molecules. These results indicate As(OH)3 as the most stable structure existing in solution at neutral pH; thus, ionic As transport does not appear to be involved in the cellular uptake process.

  8. Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ayumu; Sumita, Tatsuya; Okubo, Yasukuni; Okuwaki, Ryo; Otsubo, Makoto; Uesawa, Shimpei; Yagi, Yuji

    2016-12-01

    We resolve the density structure of a possible magma reservoir beneath Aso, an active volcano on Kyushu Island, Japan, by inverting gravity data. In the context of the resolved structure, we discuss the relationship between the fault rupture of the 2016 Kumamoto earthquake and Aso volcano. Low-density bodies were resolved beneath central Aso volcano using a three-dimensional inversion with an assumed density contrast of ±0.3 g/cm3. The resultant location of the southern low-density body is consistent with a magma reservoir reported in previous studies. No Kumamoto aftershocks occur in the southern low-density body; this aseismic anomaly may indicate a ductile feature due to high temperatures and/or the presence of partial melt. Comparisons of the location of the southern low-density body with rupture models of the mainshock, obtained from teleseismic waveform and InSAR data, suggest that the rupture terminus overlaps the southern low-density body. The ductile features of a magma reservoir could have terminated rupture propagation. On the other hand, a northern low-density body is resolved in the Asodani area, where evidence of current volcanic activity is scarce and aftershock activity is high. The northern low-density body might, therefore, be derived from a thick caldera fill in the Asodani area, or correspond to mush magma or a high-crystallinity magma reservoir that could be the remnant of an ancient intrusion.[Figure not available: see fulltext.

  9. Drug targeting: synthesis and endocytosis of oligonucleotide-neoglycoprotein conjugates.

    PubMed Central

    Bonfils, E; Depierreux, C; Midoux, P; Thuong, N T; Monsigny, M; Roche, A C

    1992-01-01

    Inhibition of gene expression by antisense oligonucleotides is limited by their low ability to enter cells. Knowing that sugar binding receptors, also called membrane lectins, efficiently internalize neoglycoproteins bearing the relevant sugar, 6-phosphomannose, for instance, oligonucleotides--substituted on their 5'-end with either a fluorescent probe or a radioactive label on the one hand, and bearing a thiol function on their 3'-end, on the other hand,--were coupled onto 6-phosphomannosylated proteins via a disulfide bridge. The oligonucleotide bound to 6-phosphomannosylated serum albumin is much more efficiently internalized roughly 20 times than the free oligonucleotide. Although most of the oligonucleotides are associated with vesicular compartments, oligonucleotides after releasing from the carrier by reduction of the disulfide bridge may find their way to reach the cytosol and then lead to an increase in the efficiency of the oligonucleotides. Images PMID:1408764

  10. Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha.

    PubMed

    Sewell, K Lea; Geary, Richard S; Baker, Brenda F; Glover, Josephine M; Mant, Timothy G K; Yu, Rosie Z; Tami, Joseph A; Dorr, F Andrew

    2002-12-01

    ISIS 104838 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that binds tumor necrosis factor-alpha (TNF-alpha) mRNA. It carries a 2'-methoxyethyl modification on the five 3' and 5' nucleotide sugars, with 10 central unmodified deoxynucleotides. ISIS 104838 was identified from a 264 ASO screen in phorbol myristate acetate-activated keratinocytes, and the dose response was assessed in lipopolysaccharide (LPS)-activated monocytes. Healthy males received multiple intravenous (i.v.) ISIS 104838 infusions in a placebo-controlled dose escalation trial (0.1-6 mg/kg). Additional volunteers received single or multiple subcutaneous (s.c.) injections. ISIS 104838 suppressed TNF-alpha protein by 85% in stimulated keratinocytes. The IC50 for TNF-alpha mRNA inhibition in stimulated monocytes was <1 microM. For i.v., C(max) occurred at the end of infusion. The effective plasma half-life was 15 to 45 min at 0.1 to 0.5 mg/kg and 1 to 1.8 h for higher doses. The apparent terminal plasma elimination half-life approximated 25 days. Obese subjects had higher plasma levels following equivalent mg/kg doses. For s.c. injections, C(max) occurred at 2 to 4 h and was lower than with equivalent i.v. dosing. Plasma bioavailability compared with i.v. was 82% following a 200 mg/ml s.c. injection. Transient activated partial thromboplastin time prolongation occurred after i.v. infusions and minimally after s.c. injections. Two subjects experienced rash, one a reversible platelet decrease, and mild injection site tenderness was noted. TNF-alpha production by peripheral blood leukocytes, induced ex vivo by LPS, was decreased by ISIS 104838 (p < 0.01). ISIS 104838, a second-generation antisense oligonucleotide, was generally well tolerated intravenously and subcutaneously. The pharmacokinetics support an infrequent dosing interval. Inhibition of TNF-alpha production ex vivo was demonstrated.

  11. Antisense oligonucleotides in therapy for neurodegenerative disorders.

    PubMed

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2015-06-29

    Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.

  12. The prebiotic synthesis of deoxythymidine oligonucleotides

    NASA Technical Reports Server (NTRS)

    Stephen-Sherwood, E.; Odom, D. G.; Oro, J.

    1974-01-01

    Deoxythymidine 5 prime-triphosphate in the presence of deoxythymidine 5 prime-phosphate, cyanamide and 4-amino-5-imidazole carboxamide polymerizes under drying conditions at moderate temperatures (60 to 90 C) to yield oligonucleotides of up to four units in length. Enzymatic analysis indicated that the majority of these oligomers contained natural 3 prime-5 prime phosphodiester bonds. This reaction offers a possible method for the formation of deoxyoligonucleotides under primitive earth conditions.

  13. Allele-specific disparity in breast cancer

    PubMed Central

    2011-01-01

    Background In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus). We report the overall difference in disparity in high-grade tumours compared to low-grade tumours (p-value < 0.001) and significant associations between disparity in multiple single loci and clinical parameters. The most significantly associated network functions within the genes represented in the loci of disparity were identified, including lipid metabolism, small-molecule biochemistry, and nervous system development and function. No evidence for over-representation of directional disparity in a list of stem cell genes was obtained, however genes appeared to be more often altered by deletion than by amplification. Conclusions Our data suggest that directional loss and amplification exist in breast cancer. These are highly associated with grade, which may indicate that they are enforced with increasing number of cell divisions. Whether there is selective pressure for some loci to be preferentially amplified or deleted remains to be confirmed. PMID:22188678

  14. Template-Directed Ligation of Peptides to Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  15. Detection of SPO11-oligonucleotide complexes from mouse testes.

    PubMed

    Pan, Jing; Keeney, Scott

    2009-01-01

    The SPO11 protein generates programmed DNA double-strand breaks (DSBs) that initiate meiotic recombination. Endonucleolytic cleavage 3' to the DSB sites releases SPO11 from DNA, leaving SPO11 covalently associated with an oligonucleotide. This chapter describes detection of the release product, SPO11-oligonucleotide complexes, from mouse testis lysates. The method for determining the size of SPO11-associated oligonucleotides is also provided.

  16. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  17. Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano

    NASA Astrophysics Data System (ADS)

    Ozawa, Taku; Fujita, Eisuke; Ueda, Hideki

    2016-11-01

    An MJMA6.5 earthquake (foreshock) and MJMA7.3 earthquake (mainshock) struck Kumamoto Prefecture on April 14, 2016, and April 16, 2016. To evaluate the effect of crustal deformation due to the earthquake on the Aso magma system, we detected crustal deformation using InSAR and GNSS. From InSAR analysis, we detected large crustal deformations along the Hinagu Fault, the Futagawa Fault, and the northeast extension of the latter fault. It extended to more than 50 km, and the maximum slant-range change exceeded 1 m. Although the obtained crustal deformation was approximately explained by the right-lateral strike-slip on the fault, its details could not be explained by such simple faulting. Additionally, we found complex surface deformation west of the Aso caldera rim, suggesting that shallow fault slips occurred in many known and unknown faults associated with the earthquake. Most of the crustal deformation could be reasonably explained by four rectangle faults located along the Futagawa Fault, in the northeast extension of the Futagawa Fault, alongside the Hinagu Fault, and in the eastern part of the Futagawa Fault. The first three of faults have high dip angles and right-lateral slip. The other was a fault with a low dip angle that branched from the shallow depth of the fault along the Futagawa Fault. The normal-dip right-lateral slip was estimated for this segment. Based on the estimated fault model, we calculated the displacement and stress field around the Aso volcano by the finite-element method (FEM) to evaluate the effects on the Aso magma system. In this calculation, we assumed a spherical soft medium located at a 6-km depth beneath the area south of the Kusasenri region as the magma system and considered only static effects. The result shows complex distributions of displacements and stresses, but we can notice the following significant points. (1) The spherical magma system deformed to an ellipsoid, and the total volume was slightly increased, less than 1%. (2

  18. Crystal growth and crystal structures of six novel phases in the Mn/As/O/Cl(Br) system, as well as magnetic properties of α-Mn3(AsO4)2

    NASA Astrophysics Data System (ADS)

    Weil, Matthias; Kremer, Reinhard K.

    2017-01-01

    Chemical vapour transport reactions (900 °C → 820 °C, Cl2 or Br2 as transport agent) of in situ formed Mn3(AsO4)2 yielded the orthoarsenates(V) α-Mn3(AsO4)2 and β-Mn3(AsO4)2 as well as the oxoarsenate(V) halide compounds Mn7(AsO4)4Cl2, Mn11(AsO4)7Cl, Mn11(AsO4)7Br and Mn5(AsO4)3Cl. The crystal structures of all six phases were determined from single crystal X-ray diffraction data. The crystal structures of α-and β-Mn3(AsO4)2 are isotypic with the corresponding phosphate phases γ- and α-Mn3(PO4)2, respectively, and are reported here for the first time. A comparative discussion with other structures of general composition M3(AsO4)2 (М = Mg; divalent first-row transition metal) is given. The unique crystal structures of Mn7(AsO4)4Cl2 and that of the two isotypic Mn11(AsO4)7X (X = Cl, Br) structures are composed of two [MnO5] polyhedra, two [MnO4Cl2] polyhedra (one with site symmetry 1 bar), two AsO4 tetrahedra, and one [MnO5] polyhedron, three [MnO6] octahedra (one with site symmetry.m.), one [MnO4X], one [MnO5X] polyhedron and four AsO4 tetrahedra, respectively. The various polyhedra of the three arsenate(V) halides are condensed into three-dimensional framework structures by corner- and edge-sharing. Mn5(AsO4)3Cl adopts the chloroapatite structure. The magnetic and thermal properties of pure polycrystalline samples of a-Mn3(AsO4)2 were investigated in more detail. The magnetic susceptibility proves all Mn atoms to be in the oxidation state +2 yielding an effective magnetic moment per Mn atom of 5.9 μB. Long-range antiferromagnetic ordering is observed below 8.2 K consistent with the negative Curie-Weiss temperature of -50 K derived from the high temperature susceptibility data. Chemical vapour transport reactions of in situ formed Mn3(AsO4)2 using Cl2 or Br2 as transport agents led to crystal growth of six phases structurally determined for the first time: α-Mn3(AsO4)2, β-Mn3(AsO4)2, Mn7(AsO4)4Cl2, Mn11(AsO4)7Cl, Mn11(AsO4)7Br and Mn5(AsO4)3Cl.

  19. Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase.

    PubMed

    Boltz, Valerie F; Ambrose, Zandrea; Kearney, Mary F; Shao, Wei; Kewalramani, Vineet N; Maldarelli, Frank; Mellors, John W; Coffin, John M

    2012-12-01

    It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.

  20. Fluidized landslides induced by extreme rainfall along basaltic caldera cliff of Mt. Aso in July 2012

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Matsushi, Yuki; Furuya, Gen; Saito, Hitoshi

    2013-04-01

    In the end of the rainy season of 2012, a extreme rainfall affected western Japan in July and induced hundreds of fluidized landslides claiming casualties of more than 20. Measured trigger precipitation was recorded by the nearby ground-based station of the AMeDAS network (Automated Meteorological Data Acquisition System)as about 80 mm/h for consecutive 4 hours. Analysis of Radar-Raingauge Analyzed Precipitation-operated by the Japan Meteorological Agency showed landslide affected area almost coincided with the ones of heavier precipitation. Most of the landslides took place along the outer caldera rim and flank of the central cone of Mt. Aso, a basaltic active volcano. Most of the landslides slid on the boundary of strongly weathered soils, which used to be new volcanic accretion materials. Outstanding features of these landslides are: (1) This area had been affected by similar heavy rainfall decades ago, however, again a number of landslides took place in the nearby past scars; (2) Many of the soil slide bodies are shallow less than 5 meters deep and possibly immediately transformed into debris flows or mud flows and traveled long distance to reach the downslope communities; (3) Visual observation of the sources showed the high possibility that some of the slides were apparently induced by liquefaction. Similar cases were reported of past 2 landslide disasters in Japan. This strongly suggests that excessive rainfall can trigger numerous mud flows of unexpected reach. We conducted close field study at a typical soil slide - mud flow site. It originally initiated as debris or soil slide on a thin steep bedding plane of about 34 degrees consisting of coarser accretion materials. Needle penetration test showed comparatively weaker strength in the layer. It is underlain by a layer of finer materials. Such a higher permeability contrast could contribute to higher susceptibility of excess pore pressure generation. We took soil samples from the vicinity of sliding

  1. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  2. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  3. Disulfide-linked oligonucleotide phosphorothioates - Novel analogues of nucleic acids

    NASA Technical Reports Server (NTRS)

    Wu, Taifeng; Orgel, Leslie E.

    1991-01-01

    The synthesis of phosphorothioate analogs of oligonucleotides by the oxidation of deoxyadenosine 3',5'-bisphosphorothioate (3) was attempted. Cyclization of 3 is much more efficient than oligomerization under all the conditions investigated. However, a preformed oligonucleotide carrying a 5'-terminal phosphorotioate group undergoes efficient chain-extension when oxidized in the presence of 3.

  4. Oligonucleotide therapies for disorders of the nervous system.

    PubMed

    Khorkova, Olga; Wahlestedt, Claes

    2017-03-01

    Oligonucleotide therapies are currently experiencing a resurgence driven by advances in backbone chemistry and discoveries of novel therapeutic pathways that can be uniquely and efficiently modulated by the oligonucleotide drugs. A quarter of a century has passed since oligonucleotides were first applied in living mammalian brain to modulate gene expression. Despite challenges in delivery to the brain, multiple oligonucleotide-based compounds are now being developed for treatment of human brain disorders by direct delivery inside the blood brain barrier (BBB). Notably, the first new central nervous system (CNS)-targeted oligonucleotide-based drug (nusinersen/Spinraza) was approved by US Food and Drug Administration (FDA) in late 2016 and several other compounds are in advanced clinical trials. Human testing of brain-targeted oligonucleotides has highlighted unusual pharmacokinetic and pharmacodynamic properties of these compounds, including complex active uptake mechanisms, low systemic exposure, extremely long half-lives, accumulation and gradual release from subcellular depots. Further work on oligonucleotide uptake, development of formulations for delivery across the BBB and relevant disease biology studies are required for further optimization of the oligonucleotide drug development process for brain applications.

  5. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  6. Redetermination of eveite, Mn2AsO4(OH), based on single-crystal X-ray diffraction data

    PubMed Central

    Yang, Yongbo W.; Stevenson, Ryan A.; Siegel, Alesha M.; Downs, Gordon W.

    2011-01-01

    The crystal structure of eveite, ideally Mn2(AsO4)(OH) [dimanganese(II) arsenate(V) hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH)2] octa­hedra (..2 symmetry) extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetra­hedra (..m symmetry) through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH)] trigonal bipyramids (..m symmetry) are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968 ▶). Am. Mineral. 53, 1841–1845], all non-H atoms were refined with anisotropic displacement param­eters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite. PMID:22199466

  7. Na3Co2(AsO4)(As2O7): a new sodium cobalt arsenate

    PubMed Central

    Guesmi, Abderrahmen; Driss, Ahmed

    2012-01-01

    In the title compound, tris­odium dicobalt arsenate diarsenate, Na3Co2AsO4As2O7, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3):0.28 (3) and 0.940 (6):0.060 (6), respectively]. The main structural feature is the association of the CoO6 octa­hedra in the ab plane, forming Co4O20 units, which are corner- and edge-connected via AsO4 and As2O7 arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na+ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number. PMID:22807699

  8. Wyllieite-type Ag1.09Mn3.46(AsO4)3

    PubMed Central

    Frigui, Wafa; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    Single crystals of wyllieite-type silver(I) manganese(II) tris­orthoarsenate(V), Ag1.09Mn3.46(AsO4)3, were grown by a solid-state reaction. The three-dimensional framework is made up from four Mn2+/Mn3+ cations surrounded octa­hedrally by O atoms. The MnO6 octa­hedra are linked through edge- and corner-sharing. Three independent AsO4 tetra­hedra are linked to the framework through common corners, delimiting channels along [100] in which two partly occupied Ag+ sites reside, one on an inversion centre and with an occupancy of 0.631 (4), the other on a general site and with an occupancy of 0.774 (3), both within distorted tetra­hedral environments. One of the Mn sites is also located on an inversion centre and is partly occupied, with an occupancy of 0.916 (5). Related compounds with alluaudite-type or rosemaryite-type structures are compared and discussed. PMID:22719272

  9. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  10. The spherulites™: a promising carrier for oligonucleotide delivery

    PubMed Central

    Mignet, Nathalie; Brun, Armelle; Degert, Corinne; Delord, Brigitte; Roux, Didier; Hélène, Claude; Laversanne, René; François, Jean-Christophe

    2000-01-01

    Concentric multilamellar microvesicles, named spherulites™, were evaluated as an oligonucleotide carrier. Up to 80% oligonucleotide was encapsulated in these vesicles. The study was carried out on two different spherulite™ formulations. The spherulite™ size and stability characteristics are presented. Delivery of encapsulated oligonucleotide was performed on a rat hepatocarcinoma and on a lymphoblastoid T cell line, both expressing the luciferase gene. We showed that spherulites™ were able to transfect both adherent and suspension cell lines and deliver the oligonucleotide to the nucleus. Moreover, 48–62% luciferase inhibition was obtained in the rat hepatocarcinoma cell line when the antisense oligonucleotide targeted to the luciferase coding region was encapsulated at 500 nM concentration in spherulites™ of different compositions. PMID:10931929

  11. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  12. Coexistence of magnetic fluctuations and superconductivity in SmFe0.95Co0.05AsO seen in 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Long, G.; Demarco, M.; Chudyk, M.; Steiner, J.; Coffey, D.; Zeng, H.; Li, Y. K.; Cao, G. H.; Xu, Z. A.

    2011-08-01

    The Mössbauer spectra (MS) of powder samples of SmFe1-xCoxAsO (x = 0.0, 0.05, and 0.1) were measured in applied fields up to 9 T and at temperatures up to 298 K. SmFeAsO is magnetically ordered with TN = 137 K and has a hyperfine magnetic field of (4.98 ± 0.18) T at 4.2 K. In applied magnetic fields, the MS is consistent with a distribution of hyperfine magnetic fields of width Happlied+Hhyperfine. This arises because the angles between the direction of the ordered field in the crystallites making up the sample are randomly distributed about the direction of the applied field. The MS of the superconductors SmFe0.95Co0.05AsO (TC≃5 K) and SmFe0.9Co0.1AsO (TC≃17 K) are well described by a single peak from room temperature to 4.2 K indicating the absence of static magnetic order. However, the half width at half maximum, Γ, of the peak in SmFe0.95Co0.05AsO increases with decreasing temperature from its high temperature value, 0.13 mm/s at 25 K, to 0.25 mm/s at 10 K. No such temperature dependence is seen in SmFe0.9Co0.1AsO. We analyze this temperature dependence in terms of a fluctuating hyperfine magnetic field model whose frequency at 4.2 K is found to be ˜5-10 MHz, giving direct evidence of coexisting magnetic fluctuations and superconductivity at the interface in the phase diagram between the regions with magnetic and superconducting order. In a 5 T applied field, SmFe0.95Co0.05AsO is no longer superconducting; however, the temperature-dependent fluctuating magnetic field is still present and largely unchanged. The absence of fluctuations in superconducting SmFe0.9Co0.1AsO and their presence in superconducting SmFe0.95Co0.05AsO in zero applied field and in nonsuperconducting SmFe0.95Co0.05AsO at 5 T suggests that magnetic order is in competition with superconductivity in SmFe1-xCoxAsO.

  13. Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder.

    PubMed

    Tortajada-Genaro, Luis A; Mena, Salvador; Niñoles, Regina; Puigmule, Marta; Viladevall, Laia; Maquieira, Ángel

    2016-03-01

    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance.

  14. Conjugation of fluorescent proteins with DNA oligonucleotides.

    PubMed

    Lapiene, Vidmantas; Kukolka, Florian; Kiko, Kathrin; Arndt, Andreas; Niemeyer, Christof M

    2010-05-19

    This work describes the synthesis of covalent ssDNA conjugates of six fluorescent proteins, ECFP, EGFP, E(2)GFP, mDsRed, Dronpa, and mCherry, which were cloned with an accessible C-terminal cystein residue to enable site-selective coupling using a heterobispecific cross-linker. The resulting conjugates revealed similar fluorescence emission intensity to the unconjugated proteins, and the functionality of the tethered oligonucleotide was proven by specific Watson-Crick base pairing to cDNA-modified gold nanoparticles. Fluorescence spectroscopy analysis indicated that the fluorescence of the FP is quenched by the gold particle, and the extent of quenching varied with the intrinsic spectroscopic properties of FP as well as with the configuration of surface attachment. Since this study demonstrates that biological fluorophores can be selectively incorporated into and optically coupled with nanoparticle-based devices, applications in DNA-based nanofabrication can be foreseen.

  15. Abiotic formation of oligonucleotides on basalt surfaces

    NASA Astrophysics Data System (ADS)

    Otroshchenko, V. A.; Vasilyeva, N. V.; Kopilov, A. M.

    1985-06-01

    The complication and further evolution of abiotic syntheses products occurred under environmental influences at the prebiological stage. From this point of view, the influence of some types of irradiation on the organic molecules adsorbed on the surfaces of volcanic rocks, appeared to be of great importance. In this connection, the effect of gamma rays on the AMP molecules adsorbed on mineral surfaces such as cinders and ashes has been studied. It has been shown that they can polymerize with the formation of oligonucleotides. The treatment of oligomers obtained by venom phosphodiesterase has shown that a polymeric product has mainly 3' 5' and 2' 5' bonds between nucleotides. The results obtained have been discussed from the evolutionary aspect.

  16. High frequency of SLC22A12 variants causing renal hypouricemia 1 in the Czech and Slovak Roma population; simple and rapid detection method by allele-specific polymerase chain reaction.

    PubMed

    Gabrikova, Dana; Bernasovska, Jarmila; Sokolova, Jitka; Stiburkova, Blanka

    2015-10-01

    Renal hypouricemia is a rare heterogeneous inherited disorder characterized by impaired tubular uric acid transport with severe complications, such as acute kidney injury. Type 1 and 2 are caused by loss-of-function mutations in the SLC22A12 and SLC2A9 gene, respectively. A cohort of 881 randomly chosen ethnic Roma from two regions in Eastern Slovakia and two regions in the Czech Republic participated. Genomic DNA was isolated from buccal swabs and/or from blood samples. The c.1245_1253del and c.1400C>T genotypes were determined using polymerase chain reaction with allele-specific primers in a multiplex arrangement and/or direct sequencing of exon 7 and 9. Allele frequencies and genotypes were tested for Hardy-Weinberg equilibrium using the Chi-square test. 25 subjects were heterozygous and three were homozygous for the c.1245_1253del, while 92 subjects were heterozygous and two were homozygous for the c.1400C>T. Moreover, two participants were compound heterozygotes. Frequencies of the c.1245_1253del and c.1400C>T variants were 1.87 and 5.56 %, respectively. Our finding confirms an uneven geographical and ethnic distribution of SLC22A12 mutant variants. We found that the c.1245_1253del and c.1400C>T variants were present in the Czech and Slovak Roma population at unexpectedly high frequencies. Renal hypouricemia should be kept in mind during differential diagnostic on Roma patients with low serum uric acid concentrations.

  17. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction

    PubMed Central

    Xu, Lian; Hunter, Zachary R.; Yang, Guang; Zhou, Yangsheng; Cao, Yang; Liu, Xia; Morra, Enrica; Trojani, Alessandra; Greco, Antonino; Arcaini, Luca; Varettoni, Maria; Brown, Jennifer R.; Tai, Yu-Tzu; Anderson, Kenneth C.; Munshi, Nikhil C.; Patterson, Christopher J.; Manning, Robert J.; Tripsas, Christina K.; Lindeman, Neal I.

    2013-01-01

    By whole-genome and/or Sanger sequencing, we recently identified a somatic mutation (MYD88 L265P) that stimulates nuclear factor κB activity and is present in >90% of Waldenström macroglobulinemia (WM) patients. MYD88 L265P was absent in 90% of immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS) patients. We therefore developed conventional and real-time allele-specific polymerase chain reaction (AS-PCR) assays for more sensitive detection and quantification of MYD88 L265P. Using either assay, MYD88 L265P was detected in 97 of 104 (93%) WM and 13 of 24 (54%) IgM MGUS patients and was either absent or rarely expressed in samples from splenic marginal zone lymphoma (2/20; 10%), CLL (1/26; 4%), multiple myeloma (including IgM cases, 0/14), and immunoglobulin G MGUS (0/9) patients as well as healthy donors (0/40; P < 1.5 × 10−5 for WM vs other cohorts). Real-time AS-PCR identified IgM MGUS patients progressing to WM and showed a high rate of concordance between MYD88 L265P ΔCT and BM disease involvement (r = 0.89, P = .008) in WM patients undergoing treatment. These studies identify MYD88 L265P as a widely present mutation in WM and IgM MGUS patients using highly sensitive and specific AS-PCR assays with potential use in diagnostic discrimination and/or response assessment. The finding of this mutation in many IgM MGUS patients suggests that MYD88 L265P may be an early oncogenic event in WM pathogenesis. PMID:23321251

  18. H19-DMR allele-specific methylation analysis reveals epigenetic heterogeneity of CTCF binding site 6 but not of site 5 in head-and-neck carcinomas: a pilot case-control analysis.

    PubMed

    De Castro Valente Esteves, Leda Isabel; De Karla Cervigne, Nilva; Do Carmo Javaroni, Afonso; Magrin, José; Kowalski, Luiz Paulo; Rainho, Cláudia Aparecida; Rogatto, Silvia Regina

    2006-02-01

    Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylation-sensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.

  19. [Detection of JAK2V617F mutation rate by real-time fluorescent quantitative PCR using allele specific primer and TaqMan-MGB probe for dual inhibiting amplification of wild type alleles].

    PubMed

    Liang, Guo-Wei; Shao, Dong-Hua; He, Mei-Ling; Cao, Qing-Yun

    2012-12-01

    This study was purposed to develop a real-time PCR assay for sensitive quantification of JAK2V617F allele burden in peripheral blood and to evaluate the clinical value of this method. Both allele-specific mutant reverse primer and wild-type TaqMan-MGB probe were used for dual-inhibiting amplification of wild-type alleles in a real-time PCR, and then the JAK2V617F mutant alleles were amplified specially. The standard curve for quantification of JAK2V617F was established by percentages of JAK2V617F alleles with threshold cycle (Ct) values in a real-time PCR. Furthermore, 89 apparent healthy donors were tested by this method. The results showed that the quantitative lower limit of this method for JAK2V617F was 0.1%, and the intra- and inter-assay average variability for quantifying percentage of JAK2V617F in total DNA was 4.1% and 6.1%, respectively. Two JAK2V617F-positive individuals were identified (the percentage of JAK2V617F alleles were 0.64% and 0.98%, respectively) using this method in blood from 89 apparently healthy donors. It is concluded that the developed method with highly sensitive and reproducible quantification of JAK2V617F mutant burden can be used clinically for diagnosis and evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms. Moreover, this technique can be also used for quantitative detection of variety of single nucleotide mutation.

  20. Direct oligonucleotide-photosensitizer conjugates for photochemical delivery of antisense oligonucleotides.

    PubMed

    Yuan, Ahu; Laing, Brian; Hu, Yiqiao; Ming, Xin

    2015-04-18

    Activation of photosensitizers in endosomes enables release of therapeutic macromolecules into the cytosol of the target cells for pharmacological actions. In this study, we demonstrate that direct conjugation of photosensitizers to oligonucleotides (ONs) allows spatial and temporal co-localization of the two modalities in the target cells, and thus leads to superior functional delivery of ONs. Further, light-activated delivery of an anticancer ON caused cancer cell killing via modulation of an oncogene and photodynamic therapy.

  1. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    PubMed

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

  2. A facile method for the construction of oligonucleotide microarrays.

    PubMed

    Sethi, Dalip; Kumar, A; Gupta, K C; Kumar, P

    2008-11-19

    In recent years, the oligonucleotide-based microarray technique has emerged as a powerful and promising tool for various molecular biological studies. Here, a facile protocol for the construction of an oligonucleotide microarray is demonstrated that involves immobilization of oligonucleotide-trimethoxysilyl conjugates onto virgin glass microslides. The projected immobilization strategy reflects high immobilization efficiency ( approximately 36-40%) and signal-to-noise ratio ( approximately 98), and hybridization efficiency ( approximately 32-35%). Using the proposed protocol, aminoalkyl, mercaptoalkyl, and phosphorylated oligonucleotides were immobilized onto virgin glass microslides. Briefly, modified oligonucleotides were reacted first with 3-glycidyloxypropyltriethoxysilane (GOPTS), and subsequently, the resultant conjugates were directly immobilized onto the virgin glass surface by making use of silanization chemistry. The constructed microarrays were then used for discrimination of base mismatches. On subjecting to different pH and thermal conditions, the microarray showed sufficient stability. Application of this chemistry to manufacture oligonucleotide probe-based microarrays for detection of bacterial meningitis is demonstrated. Single-step reaction for the formation of conjugates with the commercially available reagent (GOPTS), omission of capping step and surface modification, and efficient immobilization of oligonucleotides onto the virgin glass surface are the key features of the proposed strategy.

  3. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  4. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  5. Coordination of Advanced Solar Observatory (ASO) Science Working Group (SWG) for the study of instrument accommodation and operational requirements on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1989-01-01

    The objectives are to coordinate the activities of the Science Working Group (SWG) of the Advanced Solar Observatory (ASO) for the study of instruments accommodation and operation requirements on board space station. In order to facilitate the progress of the objective, two conferences were organized, together with two small group discussions.

  6. Electronic properties of highly-active Ag3AsO4 photocatalyst and its band gap modulation: an insight from hybrid-density functional calculations.

    PubMed

    Reunchan, Pakpoom; Boonchun, Adisak; Umezawa, Naoto

    2016-08-17

    The electronic structures of highly active Ag-based oxide photocatalysts Ag3AsO4 and Ag3PO4 are studied by hybrid-density functional calculations. It is revealed that Ag3AsO4 and Ag3PO4 are indirect band gap semiconductors. The Hartree-Fock mixing parameters are fitted for experimental band gaps of Ag3AsO4 (1.88 eV) and Ag3PO4 (2.43 eV). The smaller electron effective mass and the lower valence band edge of Ag3AsO4 are likely to be responsible for the superior photocatalytic oxidation reaction to Ag3PO4. The comparable lattice constant and analogous crystal structure between the two materials allow the opportunities of fine-tuning the band gap of Ag3AsxP1-xO4 using a solid-solution approach. The development of Ag3AsxP1-xO4 should be promising for the discovery of novel visible-light sensitized photocatalysts.

  7. Method for the preparation of size marker for synthetic oligonucleotides

    SciTech Connect

    Jing, G.Z.; Liu, A.; Leung, W.C.

    1986-01-01

    Terminal deoxynucleotidyltransferase was used for the addition of (..cap alpha..-/sup 32/P)dCTP to the 3'-OH termini of oligo(dT)/sub 12-18/. A collection of oligonucleotides with chain lengths ranging continuously from 13-mer to over 100-mer was generated. The reaction mixture was then mixed with oligo(dT)/sub 12-18/ labeled with (..gamma..-/sup 32/P)ATP by T/sub 4/ polynucleotide kinase. A sequence ladder with the bottom base as 12-mer was then formed. These oligonucleotides served as size marker for the purification and identification of oligonucleotides on polyacrylamide gel.

  8. Retro-1 Analogues Differentially Affect Oligonucleotide Delivery and Toxin Trafficking.

    PubMed

    Yang, Bing; Ming, Xin; Abdelkafi, Hajer; Pons, Valerie; Michau, Aurelien; Gillet, Daniel; Cintrat, Jean-Christophe; Barbier, Julien; Juliano, Rudy

    2016-11-21

    Retro-1 is a small molecule that displays two important biological activities: First, it blocks the actions of certain toxins by altering their intracellular trafficking. Second, it enhances the activity of oligonucleotides by releasing them from entrapment in endosomes. This raises the question of whether the two actions involve the same cellular target. Herein we report the effects of several Retro-1 analogues on both toxins and oligonucleotides. We found analogues that affect toxins but not oligonucleotides and vice-versa, while Retro-1 is the only compound that affects both. This indicates that the molecular target(s) involved in the two processes are distinct.

  9. Therapeutic oligonucleotides and delivery technologies: Research topics in Japan.

    PubMed

    Murakami, Masahiro

    2016-01-01

    Oligonucleotides have been gaining considerable attention as promising and effective candidate therapeutics against various diseases. This special issue is aimed at providing a better understanding of the recent progress in the development of oligonucleotide-based therapeutics to encourage further research and innovation in this field to achieve these advancements. Several Japanese scientists have been invited to contribute to this issue by describing their recent findings, overviews, insights, or commentaries on rational designing of therapeutic oligonucleotide molecules and their novel delivery technologies, especially nanocarrier systems.

  10. Nekodake stratovolcano formed at the edge of caldera before the huge pyroclastic eruptions of Aso, Japan: petrological constraints on magma supply system

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Hasenaka, T.; Mori, Y.

    2011-12-01

    Volcanic activities prior to caldera-forming eruptions give important constraints on the magma supply system leading to catastrophic eruptions. Nekodake volcano located in the eastern end of Aso Caldera, Central Kyushu, Japan, was considered to have been active during the post-caldera period. However, the stratigraphic relations and radiometric ages suggest that the Nekodake volcano was active during the caldera forming periods, Aso-1, Aso-2, Aso-3 and Aso-4 pyroclastic flows. In the history of the activities of the Aso volcano, there are some parasitic eruptive activities between pyroclastic flows. However, the relationship between those activities and the pyroclastic flow eruptions is not clear. The purpose of this study is to clarify the petrological relation between magmas of the Nekodake volcano and those of Aso pyroclastic flows. We investigated geological features of the Nekodake volcano, and conducted whole rock chemical analysis and the petrographical description of the volcanic products of Nekodake. We classified the Nekodake volcanic products into four groups from phenocryst assemblage, and two groups from the chemical composition. We found a correlation between petrographical groups and compositional groups. For example, incompatible elements are abundant in olivine group (olivine + 2 pyroxene + plagioclases). Nekodake volcanic products and the caldera-forming products show contrasting differentiation trends on the Harker diagrams. MgO, Al2O3, and CaO contents are high and TiO2, P2O5, and Fe2O3 are low in Nekodake products compared with those in caldera-forming products. Incompatible elements of Nekodake volcanic products show characteristically lower values (K20:0. 6 wt.% - 1.5 wt.%, Rb: 14.2 - 50.0 ppm, Zr: 90.7 ppm -129.2 ppm) than those of caldera-forming products (K20: 1.2 wt.%- 5.0 wt.%, Rb: 21.2 - 165.0 ppm, Zr: 93.76 ppm -321.0 ppm). These data show that the magma reservoir of Nekodake volcano and that of the gigantic pyroclastic eruptions are

  11. Li3Al(MoO2)2O2(AsO4)2

    PubMed Central

    Hajji, Mounir; Zid, Mohamed Faouzi; Driss, Ahmed

    2009-01-01

    Single crystals of trilithium(I) aluminium(III) bis­[dioxidomolybdenum(VI)] dioxide bis­[arsenate(V)], Li3AlMo2As2O14, have been prepared by solid-state reaction at 788 K. The structure consists of AsO4 tetra­hedra, AlO6 octa­hedra and Mo2O10 groups sharing corners to form a three-dimensional framework containing channels running respectively along the [100] and [010] directions, where the Li+ ions are located. This structure is compared with compounds having (MX 2O12)n chains (M = Mo, Al and X = P, As) and others containing M 2O10 (M = Mo, Fe) dimers. PMID:21582037

  12. K0.12Na0.54Ag0.34Nb4O9AsO4

    PubMed Central

    Chérif, Saïda Fatma; Zid, Mohamed Faouzi; Driss, Ahmed

    2011-01-01

    Potassium sodium silver tetra­niobium nona­oxide arsenate, K0.12Na0.54Ag0.34Nb4AsO13, synthesized by solid-state reaction at 1123 K, adopts a three-dimensional framework delimiting tunnels running along [001] in which occupationally disordered sodium, silver, and potassium ions are located. Of the 11 atoms in the asymmetric unit (two Nb, one As, one Ag, one K, one Na and fiveO), nine are located on special positions: one Nb and the K, Ag, Na and two O atoms are situated on mirror planes, the other Nb is on a twofold rotation axis, and the As atom and one O atom are on sites of m2m symmetry. PMID:21522808

  13. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  14. The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 2]·7H 2O—A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Keeffe, Eloise C.

    2011-10-01

    The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 2]·7H 2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm -1 assigned to the ν1 (SO 4) 2- symmetric stretching mode and Raman bands at 1077 and 1097 cm -1 may be attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm -1 are assigned to carbonate CO 32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm -1 is assigned to the ν1 (SO 4) 2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm -1 is attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm -1 are assigned to the ν1 (AsO 4) 3- symmetric stretching and ν3 (AsO 4) 3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm -1 are attributed to the ν3 (AsO 4) 3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm -1 and is assigned to the ν1 (AsO 4) 3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.

  15. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand

    PubMed Central

    2013-01-01

    Background Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. Methods This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. Results The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Conclusions Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such

  16. Polyphosphorylation and non-enzymatic template-directed ligation of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Oligonucleotide 5'-polyphosphates are formed under potentially prebiotic conditions from oligonucleotide 5'-phosphates and sodium trimetaphosphate. Oligonucleotides activated as polyphosphates undergo template-directed ligation. We believe that these reactions could have produced longer oligonucleotide products from shorter substrates under prebiotic conditions.

  17. Sequence-dependent theory of oligonucleotide hybridization kinetics

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-05-07

    A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions.

  18. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  19. Tritium labeling of antisense oligonucleotides by exchange with tritiated water.

    PubMed Central

    Graham, M J; Freier, S M; Crooke, R M; Ecker, D J; Maslova, R N; Lesnik, E A

    1993-01-01

    We describe a simple, efficient, procedure for labeling oligonucleotides to high specific activity (< 1 x 10(8) cpm/mumol) by hydrogen exchange with tritiated water at the C8 positions of purines in the presence of beta-mercaptoethanol, an effective radical scavenger. Approximately 90% of the starting material is recovered as intact, labeled oligonucleotide. The radiolabeled compounds are stable in biological systems; greater than 90% of the specific activity is retained after 72 hr incubation at 37 degrees C in serum-containing media. Data obtained from in vitro cellular uptake experiments using oligonucleotides labeled by this method are similar to those obtained using 35S or 14C-labeled compounds. Because this protocol is solely dependent upon the existence of purine residues, it should be useful for radiolabeling modified as well as unmodified phosphodiester oligonucleotides. Images PMID:8367289

  20. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  1. Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots.

    PubMed

    Weichelt, Richard; Leubner, Susanne; Henning-Knechtel, Anja; Mertig, Michael; Gaponik, Nikolai; Schmidt, Thorsten-Lars; Eychmüller, Alexander

    2016-09-01

    Currently, DNA nanotechnology offers the most programmable, scalable, and accurate route for the self-assembly of matter with nanometer precision into 1, 2, or 3D structures. One example is DNA origami that is well suited to serve as a molecularly defined "breadboard", and thus, to organize various nanomaterials such as nanoparticles into hybrid systems. Since the controlled assembly of quantum dots (QDs) is of high interest in the field of photonics and other optoelectronic applications, a more detailed view on the functionalization of QDs with oligonucleotides shall be achieved. In this work, four different methods are presented to characterize the functionalization of thiol-capped cadmium telluride QDs with oligonucleotides and for the precise quantification of the number of oligonucleotides bound to the QD surface. This study enables applications requiring the self-assembly of semiconductor-oligonucleotide hybrid materials and proves the conjugation success in a simple and straightforward manner.

  2. SERS beacons for multiplexed oligonucleotide detection

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Cullum, Brian M.

    2007-09-01

    Gold-based surface-enhanced Raman scattering (SERS) beacons have been developed, which represent a simple, biocompatible and rapid means of performing multiplexed DNA sequence detection in a non-arrayed format. These SERS beacons consist of a simple stem-loop oligonucleotide probe in its native form with one end attached to a SERS active dye molecule and the other to a gold nanoparticle, approximately 50 nm in diameter. The probe sequence is designed to achieve a stem-loop structure, with the loop portion complementary to the target sequence, similar to fluorescent molecular beacons. In the absence of the target DNA sequence, the SERS signal of the associated dye molecule is detected, representing the "ON" state of the probe. When the target sequence is hybridized to the probe, which results in an open conformation, its respective reporter dye is separated from the gold nanoparticle, producing diminished SERS signal. In this paper, the fabrication and characterization of these SERS beacons is described. We also demonstrate selective hybridization of a target sequence to one beacon in a mixture, revealing their potential for use in a multiplexed fashion.

  3. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.

  4. Antisense oligonucleotide therapeutics for human leukemia.

    PubMed

    Gewirtz, A M

    1998-01-01

    The development of reliable gene disruption strategies, and their application in living cells, has proven to be an extraordinary important advance for cell and molecular biologists. Using the various available approaches, the specific functions of any given gene may now be investigated directly in the relevant cell type. Application of similar experimental tools in a clinical setting might prove to be equally valuable and could well form the basis of a monumental advance in the practice of clinical medicine. This seems particularly true at the present time because much progress has been made in understanding the molecular pathogenesis of many diseases, including cancer. For these reasons a tremendous amount of interest has been generated in the use of oligodeoxynucleotides to modify gene expression. However, in spite of some notable successes which are detailed in this review, oligonucleotides have generated controversy in regard to their mechanism of action, reliability, and ultimate therapeutic utility. Nevertheless, the potential power of the "antisense" approach remains undisputed, and its ultimate therapeutic utility is far reaching. Accordingly, the problems associated with the use of these compounds are clearly worth solving. It remains the hope of many laboratories that the day will soon come when these techniques will make an important contribution to the management of chronic myelogenous leukemia and other neoplastic disorders.

  5. Antisense oligonucleotide therapeutics for human leukemia.

    PubMed

    Gewirtz, A M

    1997-01-01

    The development of reliable gene disruption strategies, and their application in living cells, has proven to be an extraordinarily important advance for cell and molecular biologists. Using the various available approaches, the specific functions of any given gene may now be investigated directly in the relevant cell type. Application of similar experimental tools in a clinical setting might prove to be equally valuable and could well form the basis of a monumental advance in the practice of clinical medicine. This seems particularly true at the present time since much progress has been made in understanding the molecular pathogenesis of many diseases, including cancer. For these reasons a tremendous amount of interest has been generated in the use of oligodeoxynucleotides to modify gene expression. However, in spite of some notable successes which are detailed in this review, oligonucleotides have generated controversy in regards to their mechanism of action, reliability, and ultimate therapeutic utility. Nevertheless, the potential power of the "antisense" approach remains undisputed, and its ultimate therapeutic utility is far reaching. Accordingly, the problems associated with the use of these compounds are clearly worth solving. It remains the hope of many laboratories that the day will soon come when these techniques will make an important contribution to the management of CML and other neoplastic disorders.

  6. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

  7. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.

  8. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  9. Syntheses of oligonucleotide derivatives with P(V) porphyrin and their properties.

    PubMed

    Shimidzu, T; Segawa, H; Kitamura, M; Nimura, A

    1992-01-01

    Two types of oligonucleotide derivatives which are substituted by P(V) porphyrin at the phosphorus atom of an internucleotidic linkage and at the 5'-terminal internucleotidic linkage via a spacer were synthesized (Fig. 1), and hybridization capabilities of them with complementary oligonucleotides were evaluated. A novel method for a sensing of oligonucleotide by the fluorescence quenching via photo-induced electron transfer between the P(V) porphyrin labeled oligonucleotide and pyrene-labeled one on the oligonucleotide template is reported.

  10. Nanogels for Oligonucleotide Delivery to the Brain

    PubMed Central

    Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V.

    2009-01-01

    Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the blood–brain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine (“nanogel”). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain. PMID:14733583

  11. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  12. Inhibition of STAT3 with the Generation 2.5 Antisense Oligonucleotide, AZD9150, Decreases Neuroblastoma Tumorigenicity and Increases Chemosensitivity.

    PubMed

    Odate, Seiichi; Veschi, Veronica; Yan, Shuang; Lam, Norris; Woessner, Richard; Thiele, Carol J

    2017-04-01

    Purpose: Neuroblastoma is a pediatric tumor of peripheral sympathoadrenal neuroblasts. The long-term event-free survival of children with high-risk neuroblastoma is still poor despite the improvements with current multimodality treatment protocols. Activated JAK/STAT3 pathway plays an important role in many human cancers, suggesting that targeting STAT3 is a promising strategy for treating high-risk neuroblastoma.Experimental Design: To evaluate the biologic consequences of specific targeting of STAT3 in neuroblastoma, we assessed the effect of tetracycline (Tet)-inducible STAT3 shRNA and the generation 2.5 antisense oligonucleotide AZD9150 which targets STAT3 in three representative neuroblastoma cell line models (AS, NGP, and IMR32).Results: Our data indicated that Tet-inducible STAT3 shRNA and AZD9150 inhibited endogenous STAT3 and STAT3 target genes. Tet-inducible STAT3 shRNA and AZD9150 decreased cell growth and tumorigenicity. In vivo, STAT3 inhibition by Tet-inducible STAT3 shRNA or AZD9150 alone had little effect on growth of established tumors. However, when treated xenograft tumor cells were reimplanted into mice, there was a significant decrease in secondary tumors in the mice receiving AZD9150-treated tumor cells compared with the mice receiving ntASO-treated tumor cells. This indicates that inhibition of STAT3 decreases the tumor-initiating potential of neuroblastoma cells. Furthermore, inhibition of STAT3 significantly increased neuroblastoma cell sensitivity to cisplatin and decreased tumor growth and increased the survival of tumor-bearing mice in vivoConclusions: Our study supports the development of strategies targeting STAT3 inhibition in combination with conventional chemotherapy for patients with high-risk neuroblastoma. Clin Cancer Res; 23(7); 1771-84. ©2016 AACR.

  13. Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology.

    PubMed

    Tanaka, Tsuyoshi; Hatakeyama, Keiichi; Sawaguchi, Masahiro; Iwadate, Akihito; Mizutani, Yasushi; Sasaki, Kazuhiro; Tateishi, Naofumi; Takeyama, Haruko; Matsunaga, Tadashi

    2006-09-05

    A thin film transistor (TFT) photosensor fabricated by semiconductor integrated circuit (IC) technology was applied to DNA chip technology. The surface of the TFT photosensor was coated with TiO2 using a vapor deposition technique for the fabrication of optical filters. The immobilization of thiolated oligonucleotide probes onto a TiO2-coated TFT photosensor using gamma-aminopropyltriethoxysilane (APTES) and N-(gamma-maleimidobutyloxy) sulfosuccinimide ester (GMBS) was optimized. The coverage value of immobilized oligonucleotides reached a plateau at 33.7 pmol/cm2, which was similar to a previous analysis using radioisotope-labeled oligonucleotides. The lowest detection limits were 0.05 pmol/cm2 for quantum dot and 2.1 pmol/cm2 for Alexa Fluor 350. Furthermore, single nucleotide polymorphism (SNP) detection was examined using the oligonucleotide-arrayed TFT photosensor. A SNP present in the aldehyde dehydrogenase 2 (ALDH2) gene was used as a target. The SNPs in ALDH2*1 and ALDH2*2 target DNA were detected successfully using the TFT photosensor. DNA hybridization in the presence of both ALDH2*1 and ALDH2*2 target DNA was observed using both ALDH2*1 and ALDH2*2 detection oligonucleotides-arrayed TFT photosensor. Use of the TFT photosensor will allow the development of a disposable photodetecting device for DNA chip systems.

  14. Predicting oligonucleotide-directed mutagenesis failures in protein engineering

    PubMed Central

    Wassman, Christopher D.; Tam, Phillip Y.; Lathrop, Richard H.; Weiss, Gregory A.

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed ‘cross-hybridization’, as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries. PMID:15585664

  15. Target mRNA inhibition by oligonucleotide drugs in man

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2012-01-01

    Oligonucleotide delivery in vivo is commonly seen as the principal hurdle to the successful development of oligonucleotide drugs. In an analysis of 26 oligonucleotide drugs recently evaluated in late-stage clinical trials we found that to date at least half have demonstrated suppression of the target mRNA and/or protein levels in the relevant cell types in man, including those present in liver, muscle, bone marrow, lung, blood and solid tumors. Overall, this strongly implies that the drugs are being delivered to the appropriate disease tissues. Strikingly we also found that the majority of the drug targets of the oligonucleotides lie outside of the drugable genome and represent new mechanisms of action not previously investigated in a clinical setting. Despite the high risk of failure of novel mechanisms of action in the clinic, a subset of the targets has been validated by the drugs. While not wishing to downplay the technical challenges of oligonucleotide delivery in vivo, here we demonstrate that target selection and validation are of equal importance for the success of this field. PMID:22989709

  16. Growth of superconducting NdFe0.88Co0.12AsO films by metal-organic chemical vapor deposition and post arsenic diffusion

    NASA Astrophysics Data System (ADS)

    Corrales-Mendoza, I.; Bartolo-Pèrez, P.; Sánchez-Reséndiz, V. M.; Gallardo-Hernández, S.; Conde-Gallardo, A.

    2015-01-01

    Metal-organic chemical vapor deposition (MOCVD) and post-deposition arsenic diffusion processes were successfully employed to grow superconducting NdFe0.88Co0.12AsO thin films. First, by employing iron, cobalt and neodymium metal-organic precursors, a precursor film is grown by MOCVD on (001)-oriented LaAlO3 substrates. Subsequently, the arsenic is incorporated during an annealing of these precursor films in the presence of a NdFe0.9Co0.1AsO pellet. The chemical composition and crystallographic results indicate the formation of the cobalt-doped NdFeAsO polycrystalline phase. The secondary ion mass spectroscopy indicates a homogeneous arsenic diffusion process. The resistance and magnetization measurements as a function of temperature indicate a superconducting transition ˜15 \\text{K} .

  17. A new method for As(V) removal from waters by precipitation of mimetite Pb5(AsO4)3Cl on Pb-activated zeolite

    NASA Astrophysics Data System (ADS)

    Manecki, Maciej; Buszkiewicz, Urszula

    2016-04-01

    A new method for removal of arsenate AsO43- ions from aqueous solutions is proposed. The principle of the method stems from precipitation of very insoluble crystalline lead arsenate apatite (mimetite Pb5(AsO4)3Cl) induced by bringing in contact Pb-activated zeolite and As-contaminated water in the presence of Cl-. Zeolite is activated by sorption of Pb2+ followed by washing with water to remove the excess of Pb and to desorbe weakly adsorbed ions. Lead adsorbed on zeolite is bound strong enough to prevent desorption by water but weak enough to undergo desorption induced by heterogeneous precipitation of mimetite nanocrystals on the surface of zeolite. The experiment consisted of two steps. In the first step, aliquots of 0.5 g of natural clinoptilolite zeolite (from Zeocem a.s., Bystré, Slovak Republic) were reacted with 40 mL of solutions containing 20, 100, 500, and 2000 mg Pb/L (pH =4.5; reaction for 30 minutes followed by centrifugation). The amount of Pb sorbed was calculated from the drop of Pb concentration in solution. Centrifuged zeolite was washed three times by mixing with 10 mL of DDI water, followed by centrifugation. No Pb was detected in the water after second washing. Wet pulp resulting from this stage was exposed to solutions containing 70 mg/L Cl- and various concentrations of AsO43- (2 and 100 mg As/L; pH=4). Complete removal of As was observed for 2 mg As/L solutions mixed with zeolite-20 and zeolite-100. The precipitation of mimetite Pb5(AsO4)3Cl in the form of hexagonal crystals ca. 0.25 μm in size was observed using SEM/EDS. This work is partially funded by AGH research grant no 11.11.140.319.

  18. Raman spectroscopy of the multi-anion mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2012-02-01

    The mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6, a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm -1, assigned to the symmetric stretching mode of the AsO 43- anion. Raman bands at 809 and 819 cm -1 are assigned to the antisymmetric stretching mode of AsO 43-. The sulphate anion is characterised by bands at 1000 cm -1 ( ν1), and at 1031, 1082 and 1139 cm -1 ( ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm -1 with bands observed at 2850, 2868, 2918 cm -1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm -1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

  19. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  20. Origin and mode of emplacement of lithic-rich breccias at Aso Volcano, Japan: Geological, paleomagnetic, and petrological reconstruction

    NASA Astrophysics Data System (ADS)

    Furukawa, Kuniyuki; Uno, Koji; Shinmura, Taro; Miyoshi, Masaya; Kanamaru, Tatsuo; Inokuchi, Hiroo

    2014-04-01

    Takajosan breccia rocks are distributed around the southwestern caldera rim of the Aso Volcano in Japan. They are characterized by coarse lithic breccias with a pumiceous matrix. The proximal coarse lithic breccias are divided into the lower massive unit and the upper stratified unit. The lower massive lithic breccias tend to transform laterally into tuff breccias and pumiceous lapilli tuffs. Paleomagnetic results showed that all of the deposits were deposited at high temperatures of 175-560 °C. This was also supported by geological characteristics such as spatter clasts, clasts with a bread-crust texture, and weakly welded parts. These features clearly show that the deposits originated from pyroclastic density currents (PDCs). The dense lithic-rich lithofacies, low vesicularity of pumice, lack of plinian fall deposits, and radial distribution indicate that the deposits were derived from boil-over PDCs rather than plinian column-collapse PDCs. The SiO2 contents of the matrix glasses of the proximal lower massive breccia showed a progressive decrease from the bottom toward the upper part. We interpret that this chemical variation corresponds to chemical zonation of the magma chamber. This indicates that the massive deposits aggraded progressively from the base upwards (progressive aggradation), rather than through en masse freezing. The vertical lithofacies changes of the proximal breccias from the lower massive to the upper stratified units indicate that a sustained current in a quasi-steady state switched to an unsteady current with the progression of the volcanic activity.

  1. Redetermination of the cubic struvite analogue Cs[Mg(OH2)6](AsO4)

    PubMed Central

    Weil, Matthias

    2009-01-01

    In contrast to the previous refinement from photographic data [Ferrari et al. (1955 ▶). Gazz. Chim. Ital. 84, 169–174], the present redetermination of the title compound, caesium hexa­aqua­magnesium arsenate(V), revealed the Cs atom to be on Wyckoff position 4d instead of Wyckoff position 4b of space group F 3m. The structure can be derived from the halite structure. The centres of the complex [Mg(OH2)6] octa­hedra and the AsO4 tetra­hedra (both with 3m symmetry) are on the respective Na and Cl positions. The building units are connected to each other by O—H⋯O hydrogen bonds. The Cs+ cations (3m symmetry) are located in the voids of this arrangement and exhibit a regular cubocta­hedral 12-coordination to the O atoms of the water mol­ecules. The O atom bonded to As has 2mm site symmetry (Wyckoff position 24f) and the water-mol­ecule O atom has m site symmetry (Wyckoff position 48h). PMID:21581464

  2. Versatile functionalization of nanoelectrodes by oligonucleotides via pyrrole electrochemistry.

    PubMed

    Descamps, Emeline; Nguyen, Khoa; Bouchain-Gautier, Christelle; Filoramo, Arianna; Goux-Capes, Laurence; Goffman, Marcello; Bourgoin, Jean-Philippe; Mailley, Pascal; Livache, Thierry

    2010-11-15

    Surface modification at the nanometer scale is a challenge for the future of molecular electronics. In particular, the precise anchoring and electrical addressing of biological scaffolds such as complex DNA nanonetworks is of importance for generating bio-directed assemblies of nano-objects for nanocircuit purposes. Herein, we consider the individual modification of nanoelectrodes with different oligonucleotide sequences by an electrochemically driven co-polymerization process of pyrrole and modified oligonucleotide sequences bearing pyrrole monomers. We demonstrate that this one-step technique presents the advantages of simplicity, localization of surface modification, mechanical, biological and chemical stability of the coatings, and high lateral resolution.

  3. Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer.

    PubMed

    Duffy, A G; Makarova-Rusher, O V; Ulahannan, S V; Rahma, O E; Fioravanti, S; Walker, M; Abdullah, S; Raffeld, M; Anderson, V; Abi-Jaoudeh, N; Levy, E; Wood, B J; Lee, S; Tomita, Y; Trepel, J B; Steinberg, S M; Revenko, A S; MacLeod, A R; Peer, C J; Figg, W D; Greten, T F

    2016-10-01

    The eukaryotic translation initiation factor 4E (eIF4E) is a potent oncogene that is found to be dysregulated in 30% of human cancer, including colorectal carcinogenesis (CRC). ISIS 183750 is a second-generation antisense oligonucleotide (ASO) designed to inhibit the production of the eIF4E protein. In preclinical studies we found that EIF4e ASOs reduced expression of EIF4e mRNA and inhibited proliferation of colorectal carcinoma cells. An additive antiproliferative effect was observed in combination with irinotecan. We then performed a clinical trial evaluating this combination in patients with refractory cancer. No dose-limiting toxicities were seen but based on pharmacokinetic data and tolerability the dose of irinotecan was reduced to 160 mg/m(2) biweekly. Efficacy was evaluated in 15 patients with irinotecan-refractory colorectal cancer. The median time of disease control was 22.1 weeks. After ISIS 183750 treatment, peripheral blood levels of eIF4E mRNA were decreased in 13 of 19 patients. Matched pre- and posttreatment tumor biopsies showed decreased eIF4E mRNA levels in five of nine patients. In tumor tissue, the intracellular and stromal presence of ISIS 183750 was detected by IHC in all biopsied patients. Although there were no objective responses stable disease was seen in seven of 15 (47%) patients who were progressing before study entry, six of whom were stable at the time of the week 16 CT scan. We were also able to confirm through mandatory pre- and posttherapy tumor biopsies penetration of the ASO into the site of metastasis.

  4. Oligonucleotide labelling using a fluorogenic "click" reaction with a hemicarboxonium salt.

    PubMed

    Maether, Marie-Pierre; Lapin, Kristie; Muntean, Andreea; Payrastre, Corinne; Escudier, Jean-Marc

    2013-10-17

    Two fluorescent streptocyanine labelled oligonucleotides have been synthesized by a simple "click" reaction between a non-fluorescent hemicarboxonium salt and aminoalkyl functionalized thymidines within the oligonucleotide and their spectrophotometric properties have been studied.

  5. Validation of the Swine Protein-Annotated Oligonucleotide Microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specificity and utility of the Swine Protein-Annotated Oligonucleotide Microarray, or Pigoligoarray (www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed i...

  6. Gene expression profiling in peanut using oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have a moderately significant number of ESTs been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate l...

  7. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  8. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  9. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    PubMed Central

    Belov, Sergey S; Tarasenko, Yulia V; Silnikov, Vladimir N

    2014-01-01

    Summary An efficient solid-phase-supported peptide synthesis (SPPS) of morpholinoglycine oligonucleotide (MorGly) mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits. PMID:24991266

  10. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

    PubMed Central

    Timofeev, E; Kochetkova, S V; Mirzabekov, A D; Florentiev, V L

    1996-01-01

    Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well. PMID:8774893

  11. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.

    PubMed

    Lim, M C G; Zhong, Z W

    2009-10-01

    This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

  12. Ratiometric detection of oligonucleotide stoichiometry on multifunctional gold nanoparticles by whispering gallery mode biosensing.

    PubMed

    Wu, F C; Wu, Y; Niu, Z; Vollmer, F

    2015-05-07

    A label-free method is developed to ratiometrically determine the stoichiometry of oligonucleotides attached to the surface of gold nanoparticle (GNP) by whispering gallery mode biosensing. Utilizing this scheme, it is furthermore shown that the stoichiometric ratio of GNP attached oligonucleotide species can be controlled by varying the concentration ratio of thiolated oligonucleotides that are used to modify the GNP.

  13. Synthesis and anti-HIV activity of thiocholesteryl-coupled phosphodiester antisense oligonucleotides incorporated into immunoliposomes.

    PubMed

    Zelphati, O; Wagner, E; Leserman, L

    1994-09-01

    Encapsulation of oligonucleotides in antibody-targeted liposomes (immunoliposomes) which bind to target cells permits intracellular delivery of the oligonucleotides. This approach circumvents problems of extracellular degradation by nucleases and poor membrane permeability which free phosphodiester oligonucleotides are subject to, but leaves unresolved the inefficiency of encapsulation of oligonucleotides in liposomes. We have coupled oligonucleotides to cholesterol via a reversible disulfide bond. This modification of oligonucleotides improved their association with immunoliposomes by a factor of about 10 in comparison to unmodified oligonucleotides. The presence of cholesteryl-modified oligonucleotides incorporated in the bilayer of liposomes did not interfere with the coupling of the targeting protein to the liposome surface. Free or cholesterol coupled oligonucleotides associated with liposomes and directed against the tat gene of HIV-1 were tested for inhibition of HIV-1 proliferation in acutely infected cells. We demonstrate that the cholesteryl-modified as well as unmodified oligonucleotides acquire the target specificity of the antibody on the liposome. Their antiviral activity when delivered into cells is sequence-specific. The activity of these modified or unmodified oligonucleotides to inhibit the replication of HIV was the same on an equimolar basis (EC50 around 0.1 microM). Cholesterol coupled oligonucleotides thus offer increased liposome association without loss of antiviral activity.

  14. Transpiration characteristics of forests and shrubland under land cover change within the large caldera of Mt. Aso, Japan

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Inoue, A.; Maruyama, A.

    2013-12-01

    Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.

  15. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications.

    PubMed

    Spinelli, Nicolas; Defrancq, Eric; Morvan, François

    2013-06-07

    Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.

  16. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  17. The molecular basis of hereditary fructose intolerance in Italian children.

    PubMed

    Santamaria, R; Scarano, M I; Esposito, G; Chiandetti, L; Izzo, P; Salvatore, F

    1993-10-01

    We investigated the molecular defects of the aldolase B gene in five unrelated patients affected by hereditary fructose intolerance. The techniques used were DNA amplification, direct sequencing and allele-specific oligonucleotide (ASO) hybridization. The most frequent substitutions found in the hereditary fructose intolerance alleles analysed were the A174D and the A149P mutations, which account for 50% and 30% of the alleles, respectively. In two unrelated families, we found a rare mutation, the MD delta 4 previously described only in one British family, which may be an important cause of the disease in Italy.

  18. Oligonucleotide Immobilization and Hybridization on Aldehyde-Functionalized Poly(2-hydroxyethyl methacrylate) Brushes.

    PubMed

    Bilgic, Tugba; Klok, Harm-Anton

    2015-11-09

    DNA biosensing requires high oligonucleotide binding capacity interface chemistries that can be tuned to maximize probe presentation as well as hybridization efficiency. This contribution investigates the feasibility of aldehyde-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA) brush-based interfaces for oligonucleotide binding and hybridization. These polymer brushes, which allow covalent immobilization of oligonucleotides, are prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of HEMA followed by a postpolymerization oxidation step to generate side chain aldehyde groups. A series of polymer brushes covering a range of film thicknesses and grafting densities was investigated with regard to their oligonucleotide binding capacity as well as their ability to support oligonucleotide hybridization. Densely grafted brushes were found to have probe oligonucleotide binding capacities of up to ∼30 pmol/cm(2). Increasing the thickness of these densely grafted brush films, however, resulted in a decrease in the oligonucleotide binding capacity. Less densely grafted brushes possess binding capacities of ∼10 pmol/cm(2), which did not significantly depend on film thickness. The oligonucleotide hybridization efficiencies, however, were highest (93%) on those brushes that present the lowest surface concentration of the probe oligonucleotide. These results highlight the importance of optimizing the probe oligonucleotide surface concentration and binding interface chemistry. The versatility and tunability of the PHEMA-based brushes presented herein makes these films a very attractive platform for the immobilization and hybridization of oligonucleotides.

  19. Electrophoresis for genotyping: temporal thermal gradient gel electrophoresis for profiling of oligonucleotide dissociation.

    PubMed Central

    Day, I N; O'Dell, S D; Cash, I D; Humphries, S E; Weavind, G P

    1995-01-01

    Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia. Images PMID:7630718

  20. Inhibition of HTLV-III by exogenous oligonucleotides

    SciTech Connect

    Goodchild, J.; Zamecnik, P.C.

    1989-02-21

    A method is described of detecting the presence of HTLV-III virus in a sample by demonstrating inhibition of replication of the virus in cells which are normally killed by the HTLV-III virus after the cells have been (a) combined with the sample and an oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication and capable of hybridizing with at least the highly conserved region, the highly conserved region of the HTLV-III genome being a nucleotide sequence present in the genomes of HTLV-III isolates and the oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication being complementary to a region of the HTLV-III genome.

  1. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  2. Detection of high-resolution Raman spectra in short oligonucleotides

    NASA Astrophysics Data System (ADS)

    Bairamov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Lahderanta, E.; Lipsanen, H.; Bairamov, B. Kh.

    2014-06-01

    High-resolution spectra of single-chain short oligonucleotides d(20G, 20T), where d is a deoxyribonucleoside, G is guanine, and T is thymine, have been obtained by the highly sensitive nonresonant Raman scattering method of biomacromolecules. In addition to their own multifunctional significance, short oligonucleotides attract interest as ideal model objects for revealing poorly studied peculiarities of tertiary and quaternary structures of DNA. The detection of narrow spectral lines has allowed determining the characteristic time scale and makes it possible to study the dynamics of fast relaxation processes of vibrational motions of atoms in biomacromolecules. It has been found that the FWHM of the narrowest 1355.4 cm-1 spectral line attributed to the vibrations of the dT methyl group is 14.6 cm-1. The corresponding lifetime is 0.38 ps.

  3. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  4. Fracturing during ductile-brittle transition and development of flow banding in the Takanoobane Rhyolite lava of Aso volcano, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.

    2014-12-01

    Flow banding, which is characterized by deformation of highly vesicular part, is ubiquitously observed in rhyolite lavas. To explore the origin of the highly vesicular part, we examined Takanoobane rhyolite lava (TR lava) in Aso caldera, Japan, which effused at 51+/-5 ka (Matsumoto et al., 1991). The highly vesicular parts characterized by ductile deformation are well developed in the central crystalline layer, at which the parts tend to be flattened with an increasing of distance from the source. The part develops into flow bands. The highly vesicular parts are also recognized around fractures that developed perpendicular to the flow direction, and adjacent to phenocrysts. The highly vesicular part is composed of cavities with mainly <100 μm in diameter. Microscopic observation and the SEM image show that the cavities have ragged walls characterized by the protrusion of groundmass crystals and phenocrysts. Smith et al. (2001) described such cavities in detail using three silicic lavas in Japan, and proposed that the cavities were formed by failure of the magma by flow during ductile-brittle transition. The authors described the fracturing mechanism as cavitation, and considered that groundmass adjacent to phenocryst also appears to act as a site of strong cavitation because of the steep strain gradient between deforming matrix and non-deforming phenocrysts. The similarity of the textures means that the highly vesicular part in TR lava was also formed by cavitation during ductile-brittle transition. The part would be deformed and flattened with progression of lava deformation. We analyzed the anisotropy of magnetic susceptibility (AMS) to estimate the deformation style of TR lava. The results show that the highly vesicular part was deformed by pure shear strain. We established the following model for the development of flow banding. In TR lava, the highly vesicular parts were formed by failure of the magma during ductile-brittle transition during and/or after lava

  5. P-chiral oligonucleotides in biological recognition processes.

    PubMed

    Guga, Piotr

    2007-01-01

    Internucleotide phosphodiester linkages in non-modified oligonucleotides are quickly degraded by nucleolytic enzymes present in the cells and this feature practically eliminates natural DNA and RNA molecules from medical applications and from many structural and mechanistic studies. P-chiral oligonucleotide analogs, in which one of the non-bridging phosphate oxygen atoms is substituted with another heteroatom (e.g. S, Se) or a chemical group (e.g. CH3, BH3(-)), have significantly greater nuclease resistance and also offer important possibilities for detailed studies of interactions with other biomolecules at the molecular level. Notably, these substitutions do not disrupt hydrogen bonding between nucleobases and affect the overall geometry of the oligomers to only low or moderate extent, although important changes of hydration patterns and changes of interactions with metal ions are observed. Such the probes, including isotopomeric species labeled with a heavy oxygen isotope, possessing phosphorus atoms of selected absolute configurations, have been used for elucidation of the mode of action of many enzymes (nucleases, transferases, kinases), ribozymes and DNA-zymes, as well as for investigations on thermodynamic stability of nucleic acids complexes (duplexes, triplexes, i-motif) and for studies on a mechanism of conformational changes of B-Z type. They are also useful tools for analysis of interactions of the phosphoryl oxygen atoms in natural precursors with functional groups of proteins. The synthetic routes to stereodefined forms of selected types of P-chiral oligonucleotides are presented, as well as recently developed methods for their configurational analysis at micromolar concentration. Selected examples of application of diastereomerically pure P-chiral oligonucleotides for structural, biochemical and biological experiments are discussed.

  6. Induction of Radiosensitization by Antisense Oligonucleotide Gene Therapy

    DTIC Science & Technology

    2002-07-01

    Miraglia L and Strobl JS: Sensitization of breast cancer cells to ionizing radiation by protein kinase C inhibition. Proc. of the 9 0 ,h American Assoc...sensitizes human tumor cells to ionizing radiation . Radiat Res 129:345-350. O’Brian C, Vogel VG, Singletary SE and Ward NE (1989) Elevated protein...Antisense Oligonucleotides, Ionizing Radiation , Breast Cancer, Abbreviations: IR, ionizing radiation ; PKC, protein kinase C; MCF-7, Michigan Cancer

  7. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  8. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    PubMed

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  9. Serotyping of Human Group A Rotavirus with Oligonucleotide Probes

    DTIC Science & Technology

    1990-01-01

    Cold Spring Harbor , other oligonucleotides, HuG8Ac and HuG9Ac...HuG8Ac (5’ NY: Cold Spring Harbor Laboratory, 1988;5l1-159 CGA ACT ATC TUC TAT CTC TGT CTC T 3’) was based 9. Bastardo JW, McKimm-Bresckin JL, Sonza...Coulson BS, Unicomb LE, Pitson GA, Bishop RE Simple and specific manual. Cold Spring Harbor , NY Cold Spring Harbor Laboratory. enzyme

  10. The Design of Oligonucleotides Which Attack Specific Gene Targets

    DTIC Science & Technology

    1989-12-08

    identify by block number) FIELD GROUP SUB-GROUP ’" DNA Recognition; 06 03 Triplet helix formation, <r: " 19 ABSTRACT (Continue on reverse if necessary and...Such local triplet bonding schemes give rise to H bonding between the triplex forming oligonucleotide and the purine of the underlying Watson Crick ...identify by block number) During the first year of Navy support, we have refined our understanding of triple helix formation and in the process, have

  11. Oligonucleotide Frequencies of Barcoding Loci Can Discriminate Species across Kingdoms

    PubMed Central

    Shukla, Virendra; Tuli, Rakesh

    2010-01-01

    Background DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species. Methodology and Principal Findings A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR. Conclusions/Significance Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies. PMID:20808837

  12. Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

    PubMed

    Linshiz, Gregory; Yehezkel, Tuval Ben; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2008-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.

  13. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  14. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  15. Microarray oligonucleotide probe designer (MOPeD): A web service.

    PubMed

    Patel, Viren C; Mondal, Kajari; Shetty, Amol Carl; Horner, Vanessa L; Bedoyan, Jirair K; Martin, Donna; Caspary, Tamara; Cutler, David J; Zwick, Michael E

    2010-11-01

    Methods of genomic selection that combine high-density oligonucleotide microarrays with next-generation DNA sequencing allow investigators to characterize genomic variation in selected portions of complex eukaryotic genomes. Yet choosing which specific oligonucleotides to be use can pose a major technical challenge. To address this issue, we have developed a software package called MOPeD (Microarray Oligonucleotide Probe Designer), which automates the process of designing genomic selection microarrays. This web-based software allows individual investigators to design custom genomic selection microarrays optimized for synthesis with Roche NimbleGen's maskless photolithography. Design parameters include uniqueness of the probe sequences, melting temperature, hairpin formation, and the presence of single nucleotide polymorphisms. We generated probe databases for the human, mouse, and rhesus macaque genomes and conducted experimental validation of MOPeD-designed microarrays in human samples by sequencing the human X chromosome exome, where relevant sequence metrics indicated superior performance relative to a microarray designed by the Roche NimbleGen proprietary algorithm. We also performed validation in the mouse to identify known mutations contained within a 487-kb region from mouse chromosome 16, the mouse chromosome 16 exome (1.7 Mb), and the mouse chromosome 12 exome (3.3 Mb). Our results suggest that the open source MOPeD software package and website (http://moped.genetics.emory.edu/) will make a valuable resource for investigators in their sequence-based studies of complex eukaryotic genomes.

  16. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    NASA Astrophysics Data System (ADS)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  17. ASO: Antistreptolysin O titer

    MedlinePlus

    ... or glomerulonephritis , a form of kidney disease Caused rheumatic fever in a person with signs and symptoms The ... and/or go untreated, however, complications ( sequelae ), namely rheumatic fever and glomerulonephritis, can develop in some people, especially ...

  18. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems.

    PubMed

    Varizhuk, Anna M; Kaluzhny, Dmitry N; Novikov, Roman A; Chizhov, Alexandr O; Smirnov, Igor P; Chuvilin, Andrey N; Tatarinova, Olga N; Fisunov, Gleb Y; Pozmogova, Galina E; Florentiev, Vladimir L

    2013-06-21

    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.

  19. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    NASA Astrophysics Data System (ADS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  20. A Raman spectroscopic study of the arsenate mineral chenevixite Cu2Fe23+(AsO4)2(OH)4ṡH2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lana, Cristiano; Xi, Yunfei

    2015-01-01

    We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)3- stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)3- bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers.

  1. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6

    NASA Astrophysics Data System (ADS)

    Ben Smida, Youssef; Marzouki, Riadh; Georges, Samuel; Kutteh, Ramzi; Avdeev, Maxim; Guesmi, Abderrahmen; Zid, Mohamed Faouzi

    2016-07-01

    A new sodium cobalt (II) arsenate Na4Co7(AsO4)6 has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO6, CoO4 and AsO4 polyhedra, with interconnecting channels along [100] in which the Na+ cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz-5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10-5 S cm-1 and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations.

  2. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    PubMed

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.

  3. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries

    NASA Astrophysics Data System (ADS)

    Schmidt, Thorsten L.; Beliveau, Brian J.; Uca, Yavuz O.; Theilmann, Mark; da Cruz, Felipe; Wu, Chao-Ting; Shih, William M.

    2015-11-01

    Synthetic oligonucleotides are the main cost factor for studies in DNA nanotechnology, genetics and synthetic biology, which all require thousands of these at high quality. Inexpensive chip-synthesized oligonucleotide libraries can contain hundreds of thousands of distinct sequences, however only at sub-femtomole quantities per strand. Here we present a selective oligonucleotide amplification method, based on three rounds of rolling-circle amplification, that produces nanomole amounts of single-stranded oligonucleotides per millilitre reaction. In a multistep one-pot procedure, subsets of hundreds or thousands of single-stranded DNAs with different lengths can selectively be amplified and purified together. These oligonucleotides are used to fold several DNA nanostructures and as primary fluorescence in situ hybridization probes. The amplification cost is lower than other reported methods (typically around US$ 20 per nanomole total oligonucleotides produced) and is dominated by the use of commercial enzymes.

  4. Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics.

    PubMed

    Menzi, Mirjam; Lightfoot, Helen L; Hall, Jonathan

    2015-01-01

    Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine-oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.

  5. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  6. Nanoparticle-bridge assay for amplification-free electrical detection of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Teimouri, Manouchehr

    The aim of this research is to investigate a highly sensitive, fast, inexpensive, and field-applicable amplification-free nanoparticle-based oligonucleotide detection method which does not rely on any enzymatic or signal amplification process. In this approach, target oligonucleotide strands are detected through the formation of nanoparticle satellites which make an electrical path between two electrodes. This method enables an extremely sensitive oligonucleotide detection because even a few oligonucleotide strands can form a single nanoparticle satellite which can solely generates an electrical output signal. Results showed that this oligonucleotide detection method can detect oligonucleotide single strands at concentrations as low as 50 femtomolar without any amplification process. This detection method can be implemented in many fields such as biodefense, food safety, clinical research, and forensics.

  7. Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred

    SciTech Connect

    Barr, C.L.; Kennedy, J.L.; Pakstis, A.J.

    1994-03-15

    Genetic linkage studies of a kindred from Sweden segregating for schizophrenia have been performed using a genetic model (autosomal dominant, f - 0.72, q - 0.02, phenocopies=0.001) as described in Kennedy et al., 1988. Analyses of the restriction fragment length polymorphism (RFLP), allele-specific oligonucleotides (ASO), and short tandem repeat (STR also called microsatellite) data for 180 polymorphisms (individual probe-enzyme, ASO, or STR systems) at 155 loci have been completed using the MLINK and LIPED programs. Linkage to schizophrenia was excluded, under the given model, at 47 loci; indeterminate lod scores occurred at 108 loci. The total exclusion region across 20 chromosomes is estimated at 330 cM; 211 cM excluded by pairwise analyses and 119 cM previously excluded by multipoint analyses. 37 refs., 2 tabs.

  8. New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves.

    PubMed

    Lietard, Jory; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François

    2008-01-04

    The synthesis of cyclic, branched, and bicyclic oligonucleotides was performed by copper-catalyzed azide-alkyne cycloaddition assisted by microwaves in solution and on solid support. For that purpose, new phosphoramidite building blocks and new solid supports were designed to introduce alkyne and bromo functions into the same oligonucleotide by solid-phase synthesis on a DNA synthesizer. The bromine atom was then substituted by sodium azide to yield azide oligonucleotides. Cyclizations were found to be more efficient in solution than on solid support. This method allowed the efficient preparation of cyclic (6- to 20-mers), branched (with one or two dangling sequences), and bicyclic (2 x 10-mers) oligonucleotides.

  9. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  10. Diels-Alder cycloadditions in water for the straightforward preparation of peptide–oligonucleotide conjugates

    PubMed Central

    Marchán, Vicente; Ortega, Samuel; Pulido, Daniel; Pedroso, Enrique; Grandas, Anna

    2006-01-01

    The Diels-Alder reaction between diene-modified oligonucleotides and maleimide-derivatized peptides afforded peptide–oligonucleotide conjugates with high purity and yield. Synthesis of the reagents was easily accomplished by on-column derivatization of the corresponding peptides and oligonucleotides. The cycloaddition reaction was carried out in mild conditions, in aqueous solution at 37°C. The speed of the reaction was found to vary depending on the size of the reagents, but it can be completed in 8–10 h by reacting the diene-oligonucleotide with a small excess of maleimide-peptide. PMID:16478710

  11. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Pu, Chang-En; Wang, Ching-Ho

    2014-12-15

    Avian oncogenic viruses include the avian leukosis virus (ALV), reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). Multiple oncogenic viral infections are frequently seen, with even Marek's disease vaccines reported to be contaminated with ALV and REV. The gross lesions caused by avian oncogenic viruses often overlap, making differentiation diagnosis based on histopathology difficult. The objective of this study is to develop a rapid approach to simultaneously differentiate, subgroup and pathotype the avian oncogenic viruses. The oligonucleotide microarray was employed in this study. Particular DNA sequences were recognized using specific hybridization between the DNA target and probe on the microarray, followed with colorimetric development through enzyme reaction. With 10 designed probes, ALV-A, ALV-E, ALV-J, REV, MDV pathogenic and vaccine strains were clearly discriminated on the microarray with the naked eyes. The detection limit was 27 copy numbers, which was 10-100 times lower than multiplex PCR. Of 102 field samples screened using the oligonucleotide microarray, 32 samples were positive for ALV-E, 17 samples were positive for ALV-J, 6 samples were positive for REV, 4 samples were positive for MDV, 7 samples were positive for both ALV-A and ALV-E, 5 samples were positive for ALV-A, ALV-E and ALV-J, one sample was positive for both ALV-J and MDV, and 3 samples were positive for both REV and MDV. The oligonucleotide microarray, an easy-to-use, high-specificity, high-sensitivity and extendable assay, presents a potent technique for rapid differential diagnosis of avian oncogenic viruses and the detection of multiple avian oncogenic viral infections under field conditions.

  12. In vivo site-directed mutagenesis using oligonucleotides.

    PubMed

    Storici, F; Lewis, L K; Resnick, M A

    2001-08-01

    Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.

  13. PCR amplfication on a microarray of gel-immobilized oligonucleotides : detection of bacterial toxin- and drug-resistent genes and their mutations.

    SciTech Connect

    Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2000-10-01

    PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency, the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.

  14. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  15. Inhibition Of Molecular And Biological Processes Using Modified Oligonucleotides

    DOEpatents

    Kozyavkin, Sergei A.; Malykh, Andrei G.; Polouchine, Nikolai N.; Slesarev, Alexei I.

    2003-04-15

    A method of inhibiting at least one molecular process in a sample, comprising administering to the sample an oligonucleotide or polynucleotide containing at least one monomeric unit having formula (I): wherein A is an organic moiety, n is at least 1, and each X is independently selected from the group consisting of --NRCOCONu, --NHCOCR.sub.2 CR.sub.2 CONu, --NHCOCR.dbd.CRCONu, and --NHCOSSCONu, wherein each R independently represents H or a substituted or unsubstituted alkyl group, and Nu represents a nucleophile, or a salt of the compound.

  16. Oligonucleotide primers for PCR amplification of coelomate introns.

    PubMed

    Jarman, Simon N; Ward, Robert D; Elliott, Nicholas G

    2002-09-01

    Abstract Seven novel oligonucleotide primer pairs for polymerase chain reaction amplification of introns from nuclear genes in coelomates were designed and tested. Each pair bound to adjacent exons that are separated by a single intron in most coelomate species. The primer sets amplified introns in species as widely separated by the course of evolution as oysters (Mollusca: Protostoma) and salmon (Chordata: Deuterostoma). Each primer set was tested on a further 6 coelomate species and found to amplify introns in most cases. These primer sets may therefore be useful tools for developing nuclear DNA markers in diverse coelomate species for studies of population genetics, phylogenetics, or genome mapping.

  17. Oligonucleotide microarray for subtyping of influenza A viruses

    NASA Astrophysics Data System (ADS)

    Klotchenko, S. A.; Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Chervyakova, O. V.; Smirnova, E. A.; Kushnareva, E. V.; Strochkov, V. M.; Taylakova, E. T.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Sansyzbay, A. R.

    2012-02-01

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  18. Monoclinic structure of hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series

    NASA Astrophysics Data System (ADS)

    Giera, Alicja; Manecki, Maciej; Borkiewicz, Olaf; Zelek, Sylwia; Rakovan, John; Bajda, Tomasz; Marchlewski, Tomasz

    2016-04-01

    Seven samples of hydroxyl analogues of pyromorphite-mimetite solid solutions series were synthesized from aqueous solutions at 80° C in a computer-controlled chemistate: 200 mL aqueous solutions of 0.05M Pb(NO3)2 and 0.03M KH2AsO4 and/or KH2PO4 were dosed with a 0.25 mL/min rate to a glass beaker, which initially contained 100 mL of distilled water. Constant pH of 8 was maintained using 2M KOH. The syntheses yielded homogeneous fine-grained white precipitates composition of which was close to theoretical Pb10[(PO4)6-x(AsO4)x](OH)2, where x = 0, 1, 2, 3, 4, 5, 6. High-resolution powder X-ray diffraction data were obtained in transmission geometry at the beamline 11-BM at the Advanced Photon Source (Argonne National Laboratory in Illinois, USA). The structure Rietveld refinements based on starting parameters of either hexagonal hydroxylpyromorphite or monoclinic mimetite-M were performed using GSAS+EXPGUI software. Apatite usually crystallizes in the hexagonal crystal system with the space group P63/m. For the first time, however, the lowering of the hexagonal to monoclinic crystal symmetry was observed in the hydroxyl variety of pyromorphite-mimetite solid solution series. This is indicated by better fitting of the modeled monoclinic structure to the experimental data. The same is not the case for analogous calcium hydroxylapatite series Ca5(PO4)3OH - Ca5(AsO4)3OH (Lee et al. 2009). Systematical linear increase of unit cell parameters is observed with As substitution from a=9.88, b=19.75, and c=7.43 for Pb10(PO4)6(OH)2 to a=10.23, b=20.32, and c=7.51 for Pb10(AsO4)6(OH)2. A strong pseudohexagonal character (γ ≈ 120° and b ≈ 2a) of the analyzed monoclinic phases was established. This work is partially funded by AGH research grant no 11.11.140.319 and partially by Polish NCN grant No 2011/01/M/ST10/06999. Lee Y.J., Stephens P.W., Tang Y., Li W., Philips B.L., Parise J.B., Reeder R.J., 2009. Arsenate substitution in hydroxylapatite: Structural characterization

  19. Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end.

    PubMed Central

    Wang, L H; Duesberg, P; Beemon, K; Vogt, P K

    1975-01-01

    The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses... Images PMID:170411

  20. [The arsenate Na3Fe2(AsO4) 3: structural study at low temperature and simulation of conduction properties of alkaline cations].

    PubMed

    Ouerfelli, Najoua; Guesmi, Abderrahmen; Mazza, Daniele; Zid, Mohamed Faouzi; Driss, Ahmed

    2008-05-01

    The crystal structure of the low-temperature garnet-like form of trisodium diiron(III) triarsenate, Na(3)Fe(2)(AsO(4))(3), exhibits a three-dimensional framework with small tunnels running along the [111] direction, in which the Na(+) cations are located. This study demonstrates the structural origins of the different ionic conductivities of the low- and high-temperature forms. Sodium conduction properties are simulated by means of the bond-valence-sum (BVS) model; the correlations between the low- and high-temperature crystal structures are discussed. The As, Fe and Na atoms lie on special positions (Wyckoff symbols 24d, 16a and 24c, respectively).

  1. Effect of glycine substitution on the ferroelectric phase of betaine arsenate [(CH 3) 3NCH 2COO·H 3AsO 4

    NASA Astrophysics Data System (ADS)

    Dekola, T.; Ribeiro, J. L.; Klöpperpieper, A.

    2011-09-01

    The present work reports an experimental investigation on the influence of glycine (NH 2CH 2COOH) substitution in the polar properties and the critical dynamics of the molecular ferroelectric betaine arsenate, (CH 3) 3NCH 2COO·H 3AsO 4. The dielectric dispersion (20 Hz<ν<3 MHz) and the thermally induced displacement currents are investigated in detail over the extended Curie region of the system (130 K< T<100 K). The results obtained for a single crystal with nominal glycine content of 20% are analyzed, compared with those obtained for pure betaine arsenate and discussed within the scope of a phenomenological Landau model previously used to describe a system with competing ferroelectric and structural instabilities.

  2. Light-generated oligonucleotide arrays for rapid DNA sequence analysis.

    PubMed Central

    Pease, A C; Solas, D; Sullivan, E J; Cronin, M T; Holmes, C P; Fodor, S P

    1994-01-01

    In many areas of molecular biology there is a need to rapidly extract and analyze genetic information; however, current technologies for DNA sequence analysis are slow and labor intensive. We report here how modern photolithographic techniques can be used to facilitate sequence analysis by generating miniaturized arrays of densely packed oligonucleotide probes. These probe arrays, or DNA chips, can then be applied to parallel DNA hybridization analysis, directly yielding sequence information. In a preliminary experiment, a 1.28 x 1.28 cm array of 256 different octanucleotides was produced in 16 chemical reaction cycles, requiring 4 hr to complete. The hybridization pattern of fluorescently labeled oligonucleotide targets was then detected by epifluorescence microscopy. The fluorescence signals from complementary probes were 5-35 times stronger than those with single or double base-pair hybridization mismatches, demonstrating specificity in the identification of complementary sequences. This method should prove to be a powerful tool for rapid investigations in human genetics and diagnostics, pathogen detection, and DNA molecular recognition. Images PMID:8197176

  3. Multipathogen oligonucleotide microarray for environmental and biodefense applications.

    PubMed

    Sergeev, Nikolay; Distler, Margaret; Courtney, Shannon; Al-Khaldi, Sufian F; Volokhov, Dmitriy; Chizhikov, Vladimir; Rasooly, Avraham

    2004-11-01

    Food-borne pathogens are a major health problem. The large and diverse number of microbial pathogens and their virulence factors has fueled interest in technologies capable of detecting multiple pathogens and multiple virulence factors simultaneously. Some of these pathogens and their toxins have potential use as bioweapons. DNA microarray technology allows the simultaneous analysis of thousands of sequences of DNA in a relatively short time, making it appropriate for biodefense and for public health uses. This paper describes methods for using DNA microarrays to detect and analyze microbial pathogens. The FDA-1 microarray was developed for the simultaneous detection of several food-borne pathogens and their virulence factors including Listeria spp., Campylobacter spp., Staphylococcus aureus enterotoxin genes and Clostridium perfringens toxin genes. Three elements were incorporated to increase confidence in the microarray detection system: redundancy of genes, redundancy of oligonucleotide probes (oligoprobes) for a specific gene, and quality control oligoprobes to monitor array spotting and target DNA hybridization. These elements enhance the reliability of detection and reduce the chance of erroneous results due to the genetic variability of microbes or technical problems with the microarray. The results presented demonstrate the potential of oligonucleotide microarrays for detection of environmental and biodefense relevant microbial pathogens.

  4. Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice.

    PubMed

    Takai, Shinji; Yoshino, Masafumi; Takao, Kazumasa; Yoshikawa, Kazunori; Jin, Denan

    2017-02-09

    To study the role of periostin in adhesion formation, the effect of periostin antisense oligonucleotide (PAO) on adhesion formation was evaluated in mice. Under anesthesia, the serous membrane of the cecum was abraded, and the adhesion score and mRNA levels of periostin and its related factors were determined after surgery. Saline, 40 mg/kg of negative sense oligonucleotide (NSO), or 40 mg/kg of PAO were injected into the abdomen after surgery, and the adhesion score and mRNA levels were evaluated 14 days later. Filmy adhesion formation was observed 1 day after surgery, and the adhesion score increased gradually to 14 days. The mRNA levels of periostin, transforming growth factor (TGF)-β, and collagen I increased gradually from 3 days to 14 days. The adhesion score of PAO was significantly lower than of saline or NSO 14 days after surgery. The mRNA levels of periostin, TGF-β, and collagen I were also significantly attenuated by treatment with PAO compared with saline or NSO. Thus, these results demonstrated that the periostin mRNA level increased in the abraded cecum, and PAO prevented adhesion formation along with attenuation of the periostin mRNA level.

  5. Portable system for microbial sample preparation and oligonucleotide microarray analysis.

    SciTech Connect

    Bavykin, S. G.; Akowski, J. P.; Zakhariev, V. M.; Barsky, V. E.; Mirzabekov, A. D.; Perov, A. N.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2001-02-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.

  6. Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons.

    PubMed Central

    Rocha, E P; Viari, A; Danchin, A

    1998-01-01

    We present a general analysis of oligonucleotide usage in the complete genome of Bacillus subtilis . Several datasets were built in order to assign various biological contexts to the biased use of words and to reveal local asymmetries in word usage that may be coupled with replication, the control of gene expression and the restriction/modification system. This analysis was complemented by cross-comparisons with the complete genomes of Escherichia coli , Haemophilus influenzae and Methanococcus jannaschii . We have observed a large number of biased oligonucleotides for words of size up to 8, throughout the datasets and species, indicating that such long strict words play an important role as biological signals. We speculate that some of them are involved in interactions with DNA and/or RNA polymerases. An extensive analysis of palindrome abundances and distributions provides the surprising result that prophage-like elements embedded in the genome exhibit a smaller avoidance of restriction sites. This may reinforce a recently proposed hypothesis of a selfish gene phenomena in the transfer of restriction/modification systems in bacteria. PMID:9611243

  7. DOTAP/UDCA vesicles: novel approach in oligonucleotide delivery.

    PubMed

    Ruozi, Barbara; Battini, Renata; Montanari, Monica; Mucci, Adele; Tosi, Giovanni; Forni, Flavio; Vandelli, Maria Angela

    2007-03-01

    The relatively hydrophilic bile acid, ursodeoxycholic acid (UDCA), was used as an additive to DOTAP cationic liposomes to evaluate the effect on the cellular uptake of an oligonucleotide. Nuclear magnetic resonance studies were applied to estimate the relative amount of incorporated UDCA into the lipidic bilayers. DOTAP or DOTAP-UDCA vesicles (MixVes; DOTAP/UDCA molar ratios 1:0.25, 1:0.5, 1:1, and 1:2) formed complexes with 5'-fluorescein conjugated 29-mer phosphorothioate oligonucleotides (PS-ODNs) and studied using gel electrophoresis. In addition, the complexes were tested after transfection to assess the cellular uptake and the localization of the oligo in a HaCaT cell line by the use of cytofluorimetric and confocal microscopic analysis. DOTAP lipid formulated in the presence of a defined amount of UDCA forms more stable, flexible, and active MixVes. In particular, the MixVes at 1:0.25 and 1:0.5 molar ratios increase and modify the cellular uptake of PS-ODNs if compared with DOTAP liposomes 3 hours after the transfection studies. Moreover, the in vitro data suggest that these new formulations are not toxic.

  8. Gas-phase Dissociation of homo-DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Stucki, Silvan R.; Désiron, Camille; Nyakas, Adrien; Marti, Simon; Leumann, Christian J.; Schürch, Stefan

    2013-12-01

    Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS3 of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.

  9. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    PubMed Central

    Sun, Hongguang; Zhu, Xun; Lu, Patrick Y; Rosato, Roberto R; Tan, Wen; Zu, Youli

    2014-01-01

    Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy. PMID:25093706

  10. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  11. Reproducible and inexpensive probe preparation for oligonucleotide arrays.

    PubMed

    Zhang, Y; Price, B D; Tetradis, S; Chakrabarti, S; Maulik, G; Makrigiorgos, G M

    2001-07-01

    We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.

  12. Spatially Defined Oligonucleotide Arrays. Technical Report for Phase II

    SciTech Connect

    2000-06-15

    The goal of the Human Genome Project is to sequence all 3 billion base pairs of the human genome. Progress in this has been rapid; GenBank{reg_sign} finished 1994 with 286 million bases of sequence and grew by 2470 in the first quarter of 1995. The challenge to the scientific community is to understand the biological relevance of this genetic information. In most cases the sequence being generated for any single region of the genome represents the genotype of a single individual. A complete understanding of the function of specific genes and other regions of the genome and their role in human disease and development will only become apparent when the sequence of many more individuals is known. Access to genetic information is ultimately limited by the ability to screen DNA sequence. Although the pioneering sequencing methods of Sanger et al. (15) and Maxam and Gilbert (11) have become standard in virtually all molecular biology laboratories, the basic protocols remain largely unchanged. The throughput of this sequencing technology is now becoming the rate-limiting step in both large-scale sequencing projects such as the Human Genome Project and the subsequent efforts to understand genetic diversity. This has inspired the development of advanced DNA sequencing technologies (9), Incremental improvements to Sanger sequencing have been made in DNA labeling and detection. High-speed electrophoresis methods using ultrathin gels or capillary arrays are now being more widely employed. However, these methods are throughput-limited by their sequential nature and the speed and resolution of separations. This limitation will become more pronounced as the need to rapidly screen newly discovered genes for biologically relevant polymorphisms increases. An alternative to gel-based sequencing is to use high-density oligonucleotide probe arrays. Oligonucleotide probe arrays display specific oligonucleotide probes at precise locations in a high density, information-rich format (5

  13. Application of the ASLP technology to a novel platform for rapid and noise-free multiplexed SNP genotyping.

    PubMed

    Shin, Sung Chul; Kim, Gahee; Yang, Hee-Bum; Park, Kwan Woo; Kang, Byoung-Cheorl; Park, Hyun Gyu

    2014-04-15

    A novel multiplexing method, which relies on universal amplification of separated ligation-dependent probes (ASLP), has been developed to genotype single-nucleotide polymorphisms (SNPs). The ASLP technique employs two allele-specific oligonucleotides (ASO), modified with universal forward primer sequences at the 5'-end and a common locus-specific oligonucleotide (LSO) extended with a universal separation (US) sequence at the 3'-end. In the process, allele-specific ligation first takes place when target genomic DNA is hybridized by perfectly matching the ASO together with the LSO. A separation probe, which consists of a universal reverse primer sequence labeled with biotin at the 5'-end and complementary sequence of US at the 3'-end, is then applied to the resulting ligation product. During the extension reaction of the separation probe, the ligated probes dissociate from target genomic DNA in the form of a double-stranded DNA and are separated from the reaction mixture, which includes genomic DNA and unligated probes, by simply using streptavidin-coated magnetic beads. PCR amplification of the separated ligation products is then carried out by using universal primers and the PCR products are hybridized on a DNA microarray using the RecA protein. The advantageous features of the new method were demonstrated by using it to genotype 15 SNP markers for cultivar identification of pepper in a convenient and correct manner.

  14. Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides

    DOEpatents

    Golova, Julia B.; Chernov, Boris K.

    2010-04-27

    New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.

  15. In vivo generation of highly abundant sequence-specific oligonucleotides for antisense and triplex gene regulation.

    PubMed Central

    Noonberg, S B; Scott, G K; Garovoy, M R; Benz, C C; Hunt, C A

    1994-01-01

    Antisense and triplex oligonucleotides continue to demonstrate potential as mediators of gene-specific repression of protein synthesis. However, inefficient and heterogeneous cellular uptake, intracellular sequestration, and rapid intracellular and extracellular degradation represent obstacles to their eventual clinical utility. Efficient cellular delivery of targeted ribozymes can present similar problems. In this report we describe a system for circumventing these obstacles and producing large quantities of short, sequence-specific RNA oligonucleotides for use in these gene regulation strategies. The oligonucleotides are generated from a vector containing promoter, capping, and termination sequences from the human small nuclear U6 gene, surrounding a synthetic sequence incorporating the oligonucleotide of interest. In vivo, these oligonucleotides are produced constitutively and without cell type specificity in levels up to 5 x 10(6) copies per cell, reach steady-state levels of expression within 9 hours post-transfection, and are still readily detectable 7 days post-transfection. In addition, these oligonucleotides are retained in the nucleus, obtain a 5' gamma-monomethyl phosphate cap, and have an intracellular half-life of approximately one hour. This expression vector provides a novel and efficient method of intracellular delivery of antisense or triplex RNA oligonucleotides (and/or ribozymes) for gene regulation, as well as a cost-effective means of comparing the biological activity arising from a variety of different potential oligonucleotide sequences. Images PMID:8052538

  16. Ex vivo regulation of specific gene expression by nanomolar concentration of double-stranded dumbbell oligonucleotides.

    PubMed Central

    Clusel, C; Ugarte, E; Enjolras, N; Vasseur, M; Blumenfeld, M

    1993-01-01

    Inhibition of specific transcriptional regulatory proteins is a new approach to control gene expression. Transcriptional activity of DNA-binding proteins can be inhibited by the use of double-stranded (ds) oligodeoxynucleotides that compete for the binding to their specific target sequences in promoters and enhancers. As a model, we used phosphodiester dumbbell oligonucleotides containing a binding site for the liver-enriched transcription factor HNF-1 (Hepatocyte Nuclear Factor 1). Binding affinity of HNF-1 to dumbbell oligonucleotides was the same as that to ds oligonucleotides, as determined by gel retardation assays. HNF-1 dumbbells specifically inhibited in vitro transcription driven by the albumin promoter by more than 90%. HNF-1-dependent activation of a CAT reporter plasmid was specifically inhibited when the HNF-1 dumbbell oligonucleotide was added at nM concentration to transiently transfected C33 cells. On the contrary, HNF-1 ds oligonucleotides, which displayed the same activity as the dumbbell oligonucleotides in the in vitro assays, were no more effective in the ex vivo experiments. These results might reflect the increased stability of the circular dumbbell oligonucleotides towards cellular nuclease degradation, as shown in vitro with nucleolytic enzymes. Dumbbell oligonucleotides containing unmodified phosphodiester bonds may efficiently compete for binding of specific transcription factors within cells, then providing a potential therapeutic tool to control disease-causing genes. Images PMID:7688452

  17. The MOX/SUC precursor strategies: robust ways to construct functionalized oligonucleotides.

    PubMed

    Polushin, N

    2001-01-01

    The use of phosphoramidites bearing one or more methoxyoxalamido (MOX) or succinimido (SUC) reactive groups for construction of functionalized oligonucleotides is described. The efficiency of the new precursor strategy was demonstrated in the synthesis of oligonucleotide containing up to 16 imidazole residues.

  18. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  19. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    PubMed

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  20. Optical detection and discrimination of cystic fibrosis-related genetic mutations using oligonucleotide-nanoparticle conjugates.

    PubMed

    Murphy, Deirdre; Redmond, Gareth

    2005-03-01

    Novel methods for application of oligonucleotide-gold nanoparticle conjugates to selective colorimetric detection and discrimination of cystic fibrosis (CF) related genetic mutations in model oligonucleotide systems are presented. Three-strand oligonucleotide complexes are employed, wherein two probe oligonucleotide-gold nanoparticle conjugates are linked together by a third target oligonucleotide strand bearing the CF-related mutation(s). By monitoring the temperature dependence of the optical properties of the complexes, either in solution or on silica gel plates, melting behaviors may be accurately and reproducibly compared. Using this approach, fully complementary sequences are successfully distinguished from mismatched sequences, with single base mismatch resolution, for Delta F 508, M470V, R74W and R75Q mutations.

  1. Recommendations for safety pharmacology evaluations of oligonucleotide-based therapeutics.

    PubMed

    Berman, Cindy L; Cannon, Keri; Cui, Yi; Kornbrust, Douglas J; Lagrutta, Armando; Sun, Sunny Z; Tepper, Jeff; Waldron, Gareth; Younis, Husam S

    2014-08-01

    This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities. 1) Safety pharmacology testing, as described in the International Conference on Harmonisation (ICH) S7 guidance, is as applicable to ONs as it is to small molecule drugs and biotherapeutics. 2) Study design considerations for ONs are similar to those for other classes of drugs. In general, as with other therapeutics, studies should evaluate the drug product administered via the clinical route. Species selection should ideally consider relevance of the model with regard to the endpoints of interest, pharmacological responsiveness, and continuity with the nonclinical development program. 3) Evaluation of potential effects in the core battery (cardiovascular, central nervous, and respiratory systems) is recommended. In general: a. In vitro human ether-a-go-go-related gene (hERG) testing does not provide any specific value and is not warranted. b. Emphasis should be placed on in vivo evaluation of cardiovascular function, typically in nonhuman primates (NHPs). c. Due to the low level of concern, neurologic and respiratory function can be assessed concurrently with cardiovascular safety pharmacology evaluation in NHPs, within repeat-dose toxicity studies, or as stand-alone studies. In the latter case, rodents are most commonly used. 4) Other dedicated safety pharmacology studies, beyond the core battery, may have limited value for ONs. Although ONs can accumulate in the kidney and liver

  2. Monitoring integrity and localization of modified single-stranded RNA oligonucleotides using ultrasensitive fluorescence methods

    PubMed Central

    Hadwiger, Philipp; Wagner, Ernst; Lamb, Don C.

    2017-01-01

    Short single-stranded oligonucleotides represent a class of promising therapeutics with diverse application areas. Antisense oligonucleotides, for example, can interfere with various processes involved in mRNA processing through complementary base pairing. Also RNA interference can be regulated by antagomirs, single-stranded siRNA and single-stranded microRNA mimics. The increased susceptibility to nucleolytic degradation of unpaired RNAs can be counteracted by chemical modification of the sugar phosphate backbone. In order to understand the dynamics of such single-stranded RNAs, we investigated their fate after exposure to cellular environment by several fluorescence spectroscopy techniques. First, we elucidated the degradation of four differently modified, dual-dye labeled short RNA oligonucleotides in HeLa cell extracts by fluorescence correlation spectroscopy, fluorescence cross-correlation spectroscopy and Förster resonance energy transfer. We observed that the integrity of the oligonucleotide sequence correlates with the extent of chemical modifications. Furthermore, the data showed that nucleolytic degradation can only be distinguished from unspecific effects like aggregation, association with cellular proteins, or intramolecular dynamics when considering multiple measurement and analysis approaches. We also investigated the localization and integrity of the four modified oligonucleotides in cultured HeLa cells using fluorescence lifetime imaging microscopy. No intracellular accumulation could be observed for unmodified oligonucleotides, while completely stabilized oligonucleotides showed strong accumulation within HeLa cells with no changes in fluorescence lifetime over 24 h. The integrity and accumulation of partly modified oligonucleotides was in accordance with their extent of modification. In highly fluorescent cells, the oligonucleotides were transported to the nucleus. The lifetime of the RNA in the cells could be explained by a balance between

  3. Mg6.75(OH)3(H0.166AsO4)3(HAsO4), a member of the M 1- xM′6(OH)3(H2x/3AsO4)3(HAsO4) family (M,M′ = Co; Ni)

    PubMed Central

    Weil, Matthias

    2013-01-01

    In the structure of the title compound, magnesium hydroxide hydrogenarsenate (6.75/3/4), two different Mg2+ ions, one located on a site with symmetry 3m. (occupancy 3/4) and one on a general position, as well as two different AsO3(OH) tetra­hedra (symmetry .m. with partial occupancy for the H atom for one, and symmetry 3m. with full occupancy for the H atom for the other) and one OH− ion (site symmetry .m.) are present. Both Mg2+ ions are octa­hedrally surrounded by O atoms. The MgO6 octa­hedra belonging to the partially occupied Mg2+ sites share faces, forming chains along [001]. The other type of MgO6 octa­hedra share corners and faces under formation of strands parallel to [001] whereby individual strands are linked through common corner atoms. The two types of AsO3(OH) tetra­hedra inter­link the strands and the chains, building up a three-dimensional framework resembling that of the mineral dumortierite. The OH groups were assigned on basis of bond-valence calculations and crystal chemical considerations. PMID:23723752

  4. Rapid large-scale oligonucleotide selection for microarrays.

    PubMed

    Rahmann, Sven

    2002-01-01

    We present the first algorithm that selects oligonucleotide probes (e.g. 25-mers) for microarray experiments on a large scale. For example, oligos for human genes can be found within 50 hours. This becomes possible by using the longest common substring as a specificity measure for candidate oligos. We present an algorithm based on a suffix array with additional information that is efficient both in terms of memory usage and running time to rank all candidate oligos according to their specificity. We also introduce the concept of master sequences to describe the sequences from which oligos are to be selected. Constraints such as oligo length, melting temperature, and self-complementarity are incorporated in the master sequence at a preprocessing stage and thus kept separate from the main selection problem. As a result, custom oligos can now be designed for any sequenced genome, just as the technology for on-site chip synthesis is becoming increasingly mature.

  5. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  6. Targeted gene correction with 5' acridine-oligonucleotide conjugates.

    PubMed

    de Piédoue, G; Andrieu-Soler, C; Concordet, J P; Maurisse, R; Sun, J-S; Lopez, B; Kuzniak, I; Leboulch, P; Feugeas, J-P

    2007-01-01

    Single-stranded oligonucleotides (SSOs) mediate gene repair of punctual chromosomal mutations at a low frequency. We hypothesized that enhancement of DNA binding affinity of SSOs by intercalating agents may increase the number of corrected cells. Several biochemical modifications of SSOs were tested for their capability to correct a chromosomally integrated and mutated GFP reporter gene in human 293 cells. SSOs of 25 nucleotide length conjugated with acridine at their 5' end increased the efficiency of gene correction up to 10-fold compared to nonmodified SSOs. Acridine and psoralen conjugates were both evaluated, and acridine-modified SSOs were the most effective. Conjugation with acridine at the 3' end of the SSO inhibited gene correction, whereas flanking the SSO by acridine on both sides provided an intermediate level of correction. These results suggest that increasing the stability of hybridization between SSO and its target without hampering a 3' extension improves gene targeting, in agreement with the "annealing-integration" model of DNA repair.

  7. Association of branched oligonucleotides into the i-motif.

    PubMed

    Robidoux, S; Klinck, R; Gehring, K; Damha, M J

    1997-12-01

    The unique architecture of branched oligonucleotides mimicking lariat RNA introns [Wallace and Edmons, Proc. Natl. Acad. Sci. USA 80, 950-954 (1983)] was exploited to study compounds that associate as two parallel duplexes with intercalating C/C+ base pairs (i-motif DNA) [Gehring et al. Nature 363, 561-565 (1993)]. The formation of a branched cytosine tetrad was induced by joining the 5'-ends of pair of pentadeoxycytidine strands with a branching riboadenosine (rA) linker. This arrangement causes the orientation of the dC strands to be parallel, and forces the formation of a C/C+ duplex that self-associates into i-DNA. Presence of the i-motif in this structure is supported by thermal denaturation, native gel electrophoresis, CD, and NMR spectroscopy.

  8. Recent Methods for Purification and Structure Determination of Oligonucleotides

    PubMed Central

    Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers. PMID:27999357

  9. Predicting the Kinetics of RNA Oligonucleotides Using Markov State Models.

    PubMed

    Pinamonti, Giovanni; Zhao, Jianbo; Condon, David E; Paul, Fabian; Noè, Frank; Turner, Douglas H; Bussi, Giovanni

    2017-02-14

    Nowadays different experimental techniques, such as single molecule or relaxation experiments, can provide dynamic properties of biomolecular systems, but the amount of detail obtainable with these methods is often limited in terms of time or spatial resolution. Here we use state-of-the-art computational techniques, namely, atomistic molecular dynamics and Markov state models, to provide insight into the rapid dynamics of short RNA oligonucleotides, to elucidate the kinetics of stacking interactions. Analysis of multiple microsecond-long simulations indicates that the main relaxation modes of such molecules can consist of transitions between alternative folded states, rather than between random coils and native structures. After properly removing structures that are artificially stabilized by known inaccuracies of the current RNA AMBER force field, the kinetic properties predicted are consistent with the time scales of previously reported relaxation experiments.

  10. OligoCalc: an online oligonucleotide properties calculator

    PubMed Central

    Kibbe, Warren A.

    2007-01-01

    We developed OligoCalc as a web-accessible, client-based computational engine for reporting DNA and RNA single-stranded and double-stranded properties, including molecular weight, solution concentration, melting temperature, estimated absorbance coefficients, inter-molecular self-complementarity estimation and intra-molecular hairpin loop formation. OligoCalc has a familiar ‘calculator’ look and feel, making it readily understandable and usable. OligoCalc incorporates three common methods for calculating oligonucleotide-melting temperatures, including a nearest-neighbor thermodynamic model for melting temperature. Since it first came online in 1997, there have been more than 900 000 accesses of OligoCalc from nearly 200 000 distinct hosts, excluding search engines. OligoCalc is available at http://basic.northwestern.edu/biotools/OligoCalc.html, with links to the full source code, usage patterns and statistics at that link as well. PMID:17452344

  11. Triplex-forming oligonucleotide target sequences in the human genome

    PubMed Central

    Goñi, J. Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of the genome allows us to demonstrate that the largest relative concentration of TTS is found in regulatory regions, especially in promoter zones, which suggests a tremendous potentiality for triplex strategy in the control of gene expression. The dependence of the stability and selectivity of the triplexes on the length of the TTS is also analysed using knowledge-based rules. PMID:14726484

  12. Insights to primitive replication derived from structures of small oligonucleotides

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Fox, G. E.

    1995-01-01

    Available information on the structure of small oligonucleotides is surveyed. It is observed that even small oligomers typically exhibit defined structures over a wide range of pH and temperature. These structures rely on a plethora of non-standard base-base interactions in addition to the traditional Watson-Crick pairings. Stable duplexes, though typically antiparallel, can be parallel or staggered and perfect complementarity is not essential. These results imply that primitive template directed reactions do not require high fidelity. Hence, the extensive use of Watson-Crick complementarity in genes rather than being a direct consequence of the primitive condensation process, may instead reflect subsequent selection based on the advantage of accuracy in maintaining the primitive genetic machinery once it arose.

  13. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    PubMed

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  14. Oligonucleotide synthesis catalyzed by the Zn/2+/ ion

    NASA Technical Reports Server (NTRS)

    Sawai, H.; Orgel, L. E.

    1975-01-01

    Results of experiments are reported in which Zn(2+) ion catalyzed the formation of oligonucleotides from nucleoside phosphorimidazolides in aqueous solution, even in the absence of a template. Specifically, the imidazolides (ImpU or ImpA) polymerized to form ImpApA, and pApA, pApApA, and pApApApA, or the analogous uracil compounds. In addition, the expected hydrolysis products of the hydrolysis of ImpA were formed (pA, imidazole). Judging from the ratio of pA(n) over pA (with and without zinc ion), this ion increased the efficiency of phosphodiester-bond formation by up to 10 times. Possible mechanisms for the reaction are tentatively proposed.

  15. A note on oligonucleotide expression values not being normally distributed.

    PubMed

    Hardin, Johanna; Wilson, Jason

    2009-07-01

    Novel techniques for analyzing microarray data are constantly being developed. Though many of the methods contribute to biological discoveries, inability to properly evaluate the novel techniques limits their ability to advance science. Because the underlying distribution of microarray data is unknown, novel methods are typically tested against the assumed normal distribution. However, microarray data are not, in fact, normally distributed, and assuming so can have misleading consequences. Using an Affymetrix technical replicate spike-in data set, we show that oligonucleotide expression values are not normally distributed for any of the standard methods for calculating expression values. The resulting data tend to have a large proportion of skew and heavy tailed genes. Additionally, we show that standard methods can give unexpected and misleading results when the data are not well approximated by the normal distribution. Robust methods are therefore recommended when analyzing microarray data. Additionally, new techniques should be evaluated with skewed and/or heavy-tailed data distributions.

  16. Patterns of oligonucleotide distribution within DNA and RNA functional sites

    SciTech Connect

    Kolchanov, N.A.; Kel, A.E.; Ponomarenko, M.P.; Romachenko, A.G.; Likchachev, J.; Milanesi, L.; Lim, H.

    1993-12-31

    Patterns of short oligonucleotide distribution within DNA and RNA functional sites have been analyzed using ``Site-Video`` computer system. The group of DNA functional sites involved nucleosome binding sites, gyrase cleavage sites, promoters of E. coli and men. The group of RNA functional sites involved donor and acceptor splice sites of men, translation initiation sites of E. coli and men and translation frame shift site sites. Analysis of these samples of nucleotide sequences have been carried out by the ``Site-Video`` computer system. For each type of site specific set of patterns of oligonucleotide distribution important for the functioning and recognition have been revealed. At the same time, the number of specific patterns revealed in RNA sites was significantly higher than those in DNA sites. On the base of the results obtained, the script of functional sites for evolutionary emergency have been prompted. According to it, two types of context feature selection took place: (1) positive selection targeted to the appearance of the definite types of context features in particular regions of functional sites;and (2) negative selection targeted to the elimination of definite types of context features in particular regions of functional sites. The authors suppose that evolutionary formation of any functional site is a multistep process realized via combination of positive and negative selections. Negative selection, via fixation of a specific pattern of mutations, eliminates false signals of regulatory proteins binding with the functional site. Positive selection leads to the appearance of local context features (signals) which provide for the specificity and efficiency of the site functioning.

  17. Stereospecificity of Oligonucleotide Interactions Revisited: No Evidence for Heterochiral Hybridization and Ribozyme/DNAzyme Activity

    PubMed Central

    Hoehlig, Kai; Bethge, Lucas; Klussmann, Sven

    2015-01-01

    A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications. PMID:25679211

  18. Oligonucleotides designed to inhibit TLR9 block Herpes simplex virus type 1 infection at multiple steps.

    PubMed

    Sauter, Monica M; Gauger, Joshua J L; Brandt, Curtis R

    2014-09-01

    Herpes simplex virus type 1 (HSV-1) is an important human pathogen which requires activation of nuclear factor-kappa B (NFκB) during its replication cycle. The persistent nature of HSV-1 infection, and the emergence of drug-resistant strains, highlights the importance of research to develop new antiviral agents. Toll-like receptors (TLRs) play a prominent role during the early antiviral response by recognizing viral nucleic acid and gene products, activating NFκB, and stimulating the production of inflammatory cytokines. We demonstrate a significant effect on HSV-1 replication in ARPE-19 and Vero cells when oligonucleotides designed to inhibit TLR9 are added 2h prior to infection. A greater than 90% reduction in the yield of infectious virus was achieved at oligonucleotide concentrations of 10-20 μM. TLR9 inhibitory oligonucleotides prevented expression of essential immediate early herpes gene products as determined by immunofluorescence microscopy and Western blotting. TLR9 oligonucleotides also interfered with viral attachment and entry. A TLR9 inhibitory oligonucleotide containing five adjacent guanosine residues (G-ODN) exhibited virucidal activity and inhibited HSV-1 replication when added post-infection. The antiviral effect of the TLR9 inhibitory oligonucleotides did not depend on the presence of TLR9 protein, suggesting a mechanism of inhibition that is not TLR9 specific. TLR9 inhibitory oligonucleotides also reduced NFκB activity in nuclear extracts. Studies using these TLR inhibitors in the context of viral infection should be interpreted with caution.

  19. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  20. Resonant raman scattering in complexes of nc-Si/SiO2 quantum dots and oligonucleotides

    NASA Astrophysics Data System (ADS)

    Bairamov, F. B.; Poloskin, E. D.; Kornev, A. A.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Röder, C.; Sprung, C.; Lipsanen, H.; Bairamov, B. Kh.

    2014-11-01

    We report on the functionalization of nanocrystalline nc-Si/SiO2 semiconductor quantum dots (QDs) by short d(20G, 20T) oligonucleotides. The obtained complexes have been studied by Raman spectroscopy techniques with high spectral and spatial resolution. A new phenomenon of multiband resonant light scattering on single oligonucleotide molecules has been discovered, and peculiarities of this effect related to the nonradiative transfer of photoexcitation from nc-Si/SiO2 quantum dots to d(20G, 20T) oligonucleotide molecules have been revealed.

  1. Method for promoting specific alignment of short oligonucleotides on nucleic acids

    DOEpatents

    Studier, F. William; Kieleczawa, Jan; Dunn, John J.

    1996-01-01

    Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.

  2. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology.

    PubMed Central

    Guschin, D Y; Mobarry, B K; Proudnikov, D; Stahl, D A; Rittmann, B E; Mirzabekov, A D

    1997-01-01

    The utility of parallel hybridization of environmental nucleic acids to many oligonucleotides immobilized in a matrix of polyacrylamide gel pads on a glass slide (oligonucleotide microchip) was evaluated. Oligonucleotides complementary to small-subunit rRNA sequences of selected microbial groups, encompassing key genera of nitrifying bacteria, were shown to selectively retain labeled target nucleic acid derived from either DNA or RNA forms of the target sequences. The utility of varying the probe concentration to normalize hybridization signals and the use of multicolor detection for simultaneous quantitation of multiple probe-target populations were demonstrated. PMID:9172361

  3. Oligonucleotide-mediated gene repair at DNA level: the potential applications for gene therapy.

    PubMed

    Liu, Chang-Mei; Liu, De-Pei; Liang, Chih-Chuan

    2002-10-01

    Mutations in gene sequence can cause many genetic disorders, and researchers have attempted to develop treatments or cures at the DNA level for these diseases. Several strategies including triple-helix-forming oligonucleotides (TFOs), chimeric RNA/DNA oligonucleotide (RDO), and short single-stranded oligodeoxynucleotide (ODN) have been used to correct the dysfunctional genes in situ in the chromosome. Experimental data from cells and animal models suggest that all these strategies can repair the mutations in situ at DNA level. More effective structures of oligonucleotide, efficient delivery systems, and gene correction efficiency should be improved. Development of these strategies holds great potentials for treatments of genetic defects and other disorders.

  4. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  5. Effect of hydrostatic pressure on the superconducting transition temperature and superfluid density of SmFeAsO0.85 and PrFe0.925Co0.075AsO superconductors

    NASA Astrophysics Data System (ADS)

    Dong, X. L.; Lu, W.; Yang, J.; Yi, W.; Li, Z. C.; Zhang, C.; Ren, Z. A.; Che, G. C.; Sun, L. L.; Zhou, F.; Zhou, X. J.; Zhao, Z. X.

    2010-12-01

    We have measured magnetic susceptibility of iron pnictide superconductors SmFeAsO0.85 and PrFe0.925Co0.075AsO under hydrostatic pressure up to 1.15 GPa. The superconducting transition temperature (TC) deceases linearly and the Meissner signal size also decreases with increasing pressure for SmFeAsO0.85 . In contrast, the TC of PrFe0.925Co0.075AsO initially increases with pressure then saturates above ˜0.8GPa . Meanwhile its Meissner signal exhibits the similar pressure dependence. Our results indicate that the pressure dependences of TC and superfluid density in both systems are positively correlated which suggests that these quaternary iron-based superconductors are not conventional BCS ones.

  6. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  7. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2((III))(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area.

    PubMed

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L

    2017-01-05

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905cm(-1) are assigned to the antisymmetric stretching vibrations of AsO4(3-). The IR bands at 1021, 1086 and 1136cm(-1) correspond to the possible antisymmetric and symmetric stretching vibrations of SO4(2-). The Raman bands at 807, 843 and 875cm(-1) clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO4(3-) (807 and 843cm(-1)) and the antisymmetric vibration (ν3) (875cm(-1)). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate.

  8. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2(III)(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area

    NASA Astrophysics Data System (ADS)

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L.

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905 cm- 1 are assigned to the antisymmetric stretching vibrations of AsO43 -. The IR bands at 1021, 1086 and 1136 cm- 1 correspond to the possible antisymmetric and symmetric stretching vibrations of SO42 -. The Raman bands at 807, 843 and 875 cm- 1 clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO43 - (807 and 843 cm- 1) and the antisymmetric vibration (ν3) (875 cm- 1). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate.

  9. Deuteron NMR study of dynamics and of coexistence of paraelectric and ferroelectric phases in Rb0.90(ND4)0.10D2AsO4

    NASA Astrophysics Data System (ADS)

    Pinto, Nicholas J.; Howell, Francis L.; Schmidt, V. Hugo

    1993-09-01

    The deuteron glass Rb1-x(ND4)xD2AsO4 (DRADA) is a mixed crystal of RbD2AsO4 (DRDA) and ND4D2AsO4 (DADA). Deuteron nuclear magnetic resonance has been performed on the acid and ammonium deuterons. The crystal studied has an ammonium concentration (x=0.10) that puts it in the coexistence region of the phase diagram. Line-shape measurements of the ammonium deuterons show the coexistence of the ferroelectric (FE) and paraelectric (PE) phases as the temperature is lowered below the ferroelectric-phase-transition temperature Tc. The acid deuteron line shape on the other hand is found to broaden as the temperature is reduced but is unaffected by the ferroelectric transition. Spin-lattice-relaxation measurements have been performed and the activation energies for the relaxation processes have been computed. The relaxation-rate anomaly for acid deuterons in the ferroelectric-transition range indicates a short correlation length for the FE phase in the coexistence region of the phase diagram.

  10. Flux Pinning Properties and Magnetic Relaxation of Superconducting SmFe0.9Co0.1AsO

    NASA Astrophysics Data System (ADS)

    Zhuang, J. C.; Sun, Y.; Ding, Y.; Yuan, F. F.; Liu, J. T.; Shi, Z. X.; Li, X. W.

    2012-12-01

    Magnetic Co ion doped SmFeAsO polycrystal was synthesized via solid-state reaction. Resistivity, SEM and magnetic hysteresis loops (MHLs) were measured to investigate magnetic properties of the sample. Critical current densities as well as the flux pinning forces densities were estimated from MHLs. This paper reports for the first time the research of superconducting MHLs as well as magnetic relaxation properties of SmFe0.9Co0.1AsO. Results suggest that: (i) A tail effect in the resistivity measurement together with the rapid decrease in critical current densities at low fields shows the evidence for granularity of the sample; (ii) The asymmetry of the MHLs may be caused by the Bean-Livingstone (BL) surface pinning or granular nature, and none of theoretical models are suitable to the scaling behaviors of flux pinning forces densities; (iii) The anomalous tendency of the temperature dependence of magnetic relaxation rate as well as the effective pinning energy were observed, which may be attributed to the competition between the bulk pinning and the BL surface pinning.

  11. Orthogonal ion pairing reversed phase liquid chromatography purification of oligonucleotides with bulky fluorophores.

    PubMed

    Anacleto, Concordio; Ouye, Randall; Schoenbrunner, Nancy

    2014-02-14

    A dual labeled oligonucleotide used as TaqMan® or 5' nuclease probe for in vitro diagnostic has been purified through orthogonal ion-pairing reversed phase chromatography, using polymeric semi-preparative and preparative PRP-1 column. We studied the mechanism of separation of oligonucleotides using ion-pairing reversed phase chromatography. We found that elution profiles of dye labeled oligonucleotides can be controlled by use of specific ion-pairing reagents. Here, we report a method for purification of an oligonucleotide containing an internally positioned rhodamine dye using two orthogonal chromatographic steps, in which the primary step resolves mostly by differences in hydrophobicity by using a weak ion-pairing reagent, and a secondary step uses a strong ion-pairing reagent for separation of length variants. Purification is demonstrated for both 1 and 15μmol scale syntheses, and amenable to further scale up for commercial lot production.

  12. The Fidelity of Template-Directed Oligonucleotide Ligation and the Inevitability of Polymerase Function

    NASA Astrophysics Data System (ADS)

    James, Kenneth D.; Ellington, Andrew D.

    1999-08-01

    The first living systems may have employed template-directed oligonucleotide ligation for replication. The utility of oligonucleotide ligation as a mechanism for the origin and evolution of life is in part dependent on its fidelity. We have devised a method for evaluating ligation fidelity in which ligation substrates are selected from random sequence libraries. The fidelities of chemical and enzymatic ligation are compared under a variety of conditions. While reaction conditions can be found that promote high fidelity copying, departure from these conditions leads to error-prone copying. In particular, ligation reactions with shorter oligonucleotide substrates are less efficient but more faithful. These results support a model for origins in which there was selective pressure for template-directed oligonucleotide ligation to be gradually supplanted by mononucleotide polymerization.

  13. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    PubMed

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  14. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    PubMed

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  15. Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells

    SciTech Connect

    Plesner, P.; Goodchild, J.; Kalckar, H.M.; Zamecnik, P.C.

    1987-04-01

    Endogenous oligonucleotides were found in trichloroacetic acid extracts of hamster lung fibroblasts and Tetrahymena cells. Peaks of radioactivity that eluted with retention times similar to oligonucleotide markers (5- to 50-mer) were found by HPLC in cells labeled briefly with /sup 32/Pi. Only minute amounts of UV-absorbing material were detected, consistent with a rapid turnover of phosphate groups. The /sup 32/P-labeled material also migrated as oligonucleotides on 20% polyacrylamide gels; it was not hydrolyzed by alkaline phosphatase but was digested by snake venom phosphodiesterase, S1 nuclease, and pancreatic RNase and was phosphorylated by T4 polynucleotide kinase. The /sup 32/P-labeled material isolated by HPLC was alkali labile and the hydrolyzate ran as nucleotides on paper chromatography. It is concluded that the oligonucleotides are mainly oligoribonucleotides, but it is possible that oligodeoxynucleotides are also present.

  16. Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype

    SciTech Connect

    Martell, M.; Le Gall, I.; Millasseau, P.; Dausset, J.; Cohen, D.

    1988-04-01

    Comparison of two different HLA-DQ..beta..gene sequences from two DR4 individuals, probably corresponding to DQw3.2 (DQR4) and DQw3.1 (DQR5) specificities, has shown several nucleotide variations. Eight oligonucleotides (24 bases long), derived from these polymorphic areas, have been synthesized. Each oligonucleotide was hybridized to BamHI-digested DNA samples from eight families with HLA-DR4 individuals. Four polymorphic BamHI fragments were detected. Two of eight oligonucleotides gave a single signal (8.9 kilobases) on DQw3.2-positive haplotypes. The authors used one of these oligonucleotides in a genomic DNA dot hybridization and detected a hybridization signal only in DQw3.2-positive individuals. A very simple test like this allows the screening of a large population sample within a very short period.

  17. Elasticity of the transition state for oligonucleotide hybridization

    PubMed Central

    Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.

    2017-01-01

    Despite its fundamental importance in cellular processes and abundant use in biotechnology, we lack a detailed understanding of the kinetics of nucleic acid hybridization. In particular, the identity of the transition state, which determines the kinetics of the two-state reaction, remains poorly characterized. Here, we used optical tweezers with single-molecule fluorescence to observe directly the binding and unbinding of short oligonucleotides (7–12 nt) to a complementary strand held under constant force. Binding and unbinding rate constants measured across a wide range of forces (1.5–20 pN) deviate from the exponential force dependence expected from Bell's equation. Using a generalized force dependence model, we determined the elastic behavior of the transition state, which we find to be similar to that of the pure single-stranded state. Our results indicate that the transition state for hybridization is visited before the strands form any significant amount of native base pairs. Such a transition state supports a model in which the rate-limiting step of the hybridization reaction is the alignment of the two strands prior to base pairing. PMID:27903889

  18. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    PubMed Central

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-01-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours. PMID:27217242

  19. Linear model for fast background subtraction in oligonucleotide microarrays

    PubMed Central

    2009-01-01

    Background One important preprocessing step in the analysis of microarray data is background subtraction. In high-density oligonucleotide arrays this is recognized as a crucial step for the global performance of the data analysis from raw intensities to expression values. Results We propose here an algorithm for background estimation based on a model in which the cost function is quadratic in a set of fitting parameters such that minimization can be performed through linear algebra. The model incorporates two effects: 1) Correlated intensities between neighboring features in the chip and 2) sequence-dependent affinities for non-specific hybridization fitted by an extended nearest-neighbor model. Conclusion The algorithm has been tested on 360 GeneChips from publicly available data of recent expression experiments. The algorithm is fast and accurate. Strong correlations between the fitted values for different experiments as well as between the free-energy parameters and their counterparts in aqueous solution indicate that the model captures a significant part of the underlying physical chemistry. PMID:19917117

  20. Kinetic Hairpin Oligonucleotide Blockers for Selective Amplification of Rare Mutations

    PubMed Central

    Jia, Yanwei; Sanchez, J. Aquiles; Wangh, Lawrence J.

    2014-01-01

    Detection of rare mutant alleles in an excess of wild type alleles is increasingly important in cancer diagnosis. Several methods for selective amplification of a mutant allele via the polymerase chain reaction (PCR) have been reported, but each of these methods has its own limitations. A common problem is that Taq DNA polymerase errors early during amplification generate false positive mutations which also accumulate exponentially. In this paper, we described a novel method using hairpin oligonucleotide blockers that can selectively inhibit the amplification of wild type DNA during LATE-PCR amplification. LATE-PCR generates double-stranded DNA exponentially followed by linear amplification of single-stranded DNA. The efficiency of the blocker is optimized by adjusting the LATE-PCR temperature cycling profile. We also demonstrate that it is possible to minimize false positive signals caused by Taq DNA polymerase errors by using a mismatched excess primer plus a modified PCR profile to preferentially enrich for mutant target sequences prior to the start of the exponential phase of LATE-PCR amplification. In combination these procedures permit amplification of specific KRAS mutations in the presence of more than 10,000 fold excess of wild type DNA without false positive signals. PMID:25082368

  1. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    PubMed

    Canello, Tamar; Ovadia, Haim; Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  2. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-05-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours.

  3. Splice-switching antisense oligonucleotides as therapeutic drugs

    PubMed Central

    Havens, Mallory A.; Hastings, Michelle L.

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials. PMID:27288447

  4. The development of bioactive triple helix-forming oligonucleotides.

    PubMed

    Seidman, Michael M; Puri, Nitin; Majumdar, Alokes; Cuenoud, Bernard; Miller, Paul S; Alam, Rowshon

    2005-11-01

    We are developing triple helix-forming oligonucleotides (TFOs) as gene targeting reagents in mammalian cells. We have described psoralen-conjugated TFOs containing 2'-O-methyl (2'OMe) and 2'-O-aminoethoxy (AE) ribose substitutions. TFOs with a cluster of 3-4 AE residues, with all other sugars as 2'OMe, were bioactive in a gene knockout assay in mammalian cells. In contrast, TFOs with one or two clustered, or three dispersed, AE residues were inactive. Thermal stability analysis of the triplexes indicated that there were only incremental differences between the active and inactive TFOs. However the active and inactive TFOs could be distinguished by their association kinetics. The bioactive TFOs showed markedly greater on-rates than the inactive TFOs. It appears that the on-rate is a better predictor of TFO bioactivity than thermal stability. Our data are consistent with a model in which a cluster of 3-4 AE residues stabilizes the nucleation event that precedes formation of a complete triplex. It is likely that triplexes in cells are much less stable than triplexes in vitro probably as a result of elution by chromatin-associated translocases and helicases. Consequently the biologic assay will favor TFOs that can bind and rebind genomic targets quickly.

  5. Molecular architectures for electrocatalytic amplification of oligonucleotide hybridization.

    PubMed

    Mir, Mònica; Alvarez, Marta; Azzaroni, Omar; Tiefenauer, Louis; Knoll, Wolfgang

    2008-09-01

    In this work, we describe a new platform suitable for electrocatalytic amplification of oligonucleotide hybridization based on the use of supramolecular bioconjugates incorporating ferrocene-labeled streptavidin. Our goals were aimed at designing a biosensing platform which could support highly reproducible and stable electrocatalytic amplification with maximum efficiency. The use of nonlabeled streptavidin as an underlying layer promotes a major improvement on the characteristics of the amplified electrochemical signal. In addition, the electrocatalytic current can be easily amplified by tuning the concentration of electron donor species in solution. Because of the fact that the redox labels are bioconjugated to the DNA strands, increasing the ionic strength does not lead to the loss of redox labels. More importantly, increasing the concentration of donors only involves the magnification of the signal without implying the permeation of donors (thus reducing the efficient electrocatalysis). This approach represents a major improvement on the use of electrocatalytically amplified DNA-sensing platforms, thus overcoming any possible limitation in connection with the reproducibility and reliability of this well-established method.

  6. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.

    PubMed

    Echigoya, Yusuke; Yokota, Toshifumi

    2014-02-01

    Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein. One major challenge has been its limited applicability. Multiple exon skipping has recently emerged as a potential solution. Indeed, many DMD patients need exon skipping of multiple exons in order to restore the reading frame, depending on how many base pairs the mutated exon(s) and adjacent exons have. Theoretically, multiple exon skipping could be used to treat approximately 90%, 80%, and 98% of DMD patients with deletion, duplication, and nonsense mutations, respectively. In addition, multiple exon skipping could be used to select deletions that optimize the functionality of the truncated dystrophin protein. The proof of concept of systemic multiple exon skipping using a cocktail of AOs has been demonstrated in dystrophic dog and mouse models. Remaining challenges include the insufficient efficacy of systemic treatment, especially for therapies that target the heart, and limited long-term safety data. Here we review recent preclinical developments in AO-mediated multiple exon skipping and discuss the remaining challenges.

  7. Template-directed synthesis of oligonucleotides under eutectic conditions

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Miller, S. L.

    1991-01-01

    One of the most important sets of model prebiotic experiments consists of reactions that synthesize complementary oligonucleotides from preformed templates under nonenzymatic conditions. Most of these experiments are conducted at 4 degrees C using 0.01-0.1 M concentrations of activated nucleotide monomer and template (monomer equivalent). In an attempt to extend the conditions under which this type of reaction can occur, we have concentrated the reactants by freezing at -18 degrees C, which is close to the NaCl-H2O eutectic at -21 degrees C. The results from this set of experiments suggest that successful syntheses can occur with poly(C) concentrations as low at 5 x 10(-4) M and 2MeImpG concentrations at 10(-3) M. It was also anticipated that this mechanism might allow the previously unsuccessful poly(A)-directed synthesis of oligo(U)s to occur. However, no template effect was seen with the poly(A) and ImpU system. The failure of these conditions to allow template-directed synthesis of oligo(U)s supports the previously proposed idea that pyrimidines may not have been part of the earliest genetic material. Because of the low concentrations of monomer and template that would be expected from prebiotic syntheses, this lower temperature could be considered a more plausible geologic setting for template-directed synthesis than the standard reaction conditions.

  8. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. III. Synthesis and investigation of properties of oligonucleotides, bearing bifunctional non-nucleotide insert].

    PubMed

    Kupriushkin, M S; Pyshnyĭ, D V

    2012-01-01

    Non-nucleotide phosporamidites were synthetized, having branched backbone with different position of functional groups. Obtained phosphoramidite monomers contain intercalator moiety--6-chloro-2-methoxyacridine, and additional hydroxyl residue protected with dimethoxytrityl group or with tert-butyldimethylsilyl group for post-synthetic modification. Synthesized oligothymidilates contain one or more modified units in different positions of sequence. Melting temperature and thermodynamic parameters of formation of complementary duplexes formed by modified oligonucleotides was defined (change in enthalpy and entropy). The introduction of intercalating residue causes a significant stabilization of DNA duplexes. It is shown that the efficiency of the fluorescence of acridine residue in the oligonucleotide conjugate significantly changes upon hybridization with DNA.

  9. In vitro characterization of two novel biodegradable vectors for the delivery of radiolabeled antisense oligonucleotides.

    PubMed

    von Guggenberg, Elisabeth; Shahhosseini, Soraya; Koslowsky, Ingrid; Lavasanifar, Afsaneh; Murray, David; Mercer, John

    2010-12-01

    The development of antisense oligonucleotides suitable for tumor targeting applications is hindered by low stability and bioavailability of oligonucleotides in vivo and by the absence of efficient and safe vectors for oligonucleotide delivery. Stabilization in vivo has been achieved through chemical modification of oligonucleotides by various means, but effective approaches to enhance their intracellular delivery are lacking. This study reports on the characterization in vitro of a fully phosphorothioated 20-mer oligonucleotide, complementary to p21 mRNA, radiolabeled with fluorine-18 using a thiol reactive prosthetic group. The potential of two novel synthetic block copolymers containing grafted polyamines on their hydrophobic blocks for vector-assisted cell delivery was studied in vitro. Extensive cellular uptake studies were performed in human colon carcinoma cell lines with enhanced or deficient p21 expression to evaluate and compare the uptake mechanism of naked and vectorized radiolabeled formulations. Uptake studies with the two novel biodegradable vectors showed a moderate increase in cell uptake of the radiofluorinated antisense oligonucleotide. The two vectors show, however, promising advantages over conventional lipidic vectors regarding their biocompatibility and subcellular distribution.

  10. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.

    PubMed

    Hong, Bang-Xing; Jiang, Li-Fang; Hu, Yu-Shan; Fang, Dan-Yun; Guo, Hui-Yu

    2004-09-01

    A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections.

  11. Improving signal intensities for genes with low-expression on oligonucleotide microarrays

    PubMed Central

    Ramdas, Latha; Cogdell, David E; Jia, Jack Y; Taylor, Ellen E; Dunmire, Valerie R; Hu, Limei; Hamilton, Stanley R; Zhang, Wei

    2004-01-01

    Background DNA microarrays using long oligonucleotide probes are widely used to evaluate gene expression in biological samples. These oligonucleotides are pre-synthesized and sequence-optimized to represent specific genes with minimal cross-hybridization to homologous genes. Probe length and concentration are critical factors for signal sensitivity, particularly when genes with various expression levels are being tested. We evaluated the effects of oligonucleotide probe length and concentration on signal intensity measurements of the expression levels of genes in a target sample. Results Selected genes of various expression levels in a single cell line were hybridized to oligonucleotide arrays of four lengths and four concentrations of probes to determine how these critical parameters affected the intensity of the signal representing their expression. We found that oligonucleotides of longer length significantly increased the signals of genes with low-expression in the target. High-expressing gene signals were also boosted but to a lesser degree. Increasing the probe concentration, however, did not linearly increase the signal intensity for either low- or high-expressing genes. Conclusions We conclude that the longer the oligonuclotide probe the better the signal intensities of low expressing genes on oligonucleotide arrays. PMID:15196312

  12. DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides

    PubMed Central

    Stomakhin, Andrey A.; Vasiliskov, Vadim A.; Timofeev, Edward; Schulga, Dennis; Cotter, Richard J.; Mirzabekov, Andrei D.

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA–8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10–15°C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA–8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed. PMID:10666462

  13. 2-O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analog of 2-O-[2-(Methoxy)ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNA

    SciTech Connect

    Prakash, T.P.; Manoharan, M.; Fraser, A.S.; Kawasaki, A.M.; Lesnik, E.; Sioufi, N.; Leeds, J.M.; Teplova, M.; Egli, M.

    2010-03-08

    A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.

  14. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.

    PubMed Central

    Jankowsky, E; Schwenzer, B

    1996-01-01

    Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353

  15. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.

  16. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    SciTech Connect

    Zhu, G.; Live, D.; Bax, A.

    1994-12-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1{prime} and C1{prime} atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3{prime}-endo and C2{prime}-endo conformations of the sugars and syn and anti bases arrangements.

  17. Development of LNA oligonucleotide-PCR clamping technique in investigating the community structures of plant-associated bacteria.

    PubMed

    Ikenaga, Makoto; Tabuchi, Masakazu; Oyama, Takuya; Akagi, Isao; Sakai, Masao

    2015-01-01

    Simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is major limitation in investigating the community structures of plant-associated bacteria. Although locked nucleic acid (LNA) oligonucleotides was designed to selectively amplify the bacterial small subunit rRNA genes by applying the PCR clamping technique, those for plastids were applicable only for particular plants, while those for mitochondria were available throughout most plants. To widen the applicable range, new LNA oligonucleotides specific for plastids were designed, and the efficacy was investigated. PCR without LNA oligonucleotides predominantly amplified the organelle genes, while bacterial genes were predominantly observed in having applied the LNA oligonucleotides. Denaturing gradient gel electrophoresis (DGGE) analysis displayed additional bacterial DGGE bands, the amplicons of which were prepared using the LNA oligonucleotides. Thus, new designed LNA oligonucleotides specific for plastids were effective and have widened the scope in investigating the community structures of plant-associated bacteria.

  18. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    PubMed

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  19. 'Specific' oligonucleotides often recognize more than one gene: the limits of in situ hybridization applied to GABA receptors.

    PubMed

    Mladinic, M; Didelon, F; Cherubini, E; Bradbury, A

    2000-05-15

    As exquisite probes for gene sequences, oligonucleotides are one of the most powerful tools of recombinant molecular biology. In studying the GABA receptor subunits in the neonatal hippocampus we have used oligonucleotide probes in in situ hybridization and cloning techniques. The oligonucleotides used and assumed to be specific for the target gene, actually recognized more than one gene, leading to surprising and contradictory results. In particular, we found that a GABA(A)-rho specific oligonucleotide recognized an abundant, previously unknown, transcription factor in both in situ and library screening, while oligos 'specific' for GABA(A) subunits were able to recognize 30 additional unrelated genes in library screening. This suggests that positive results obtained with oligonucleotides should be interpreted with caution unless confirmed by identical results with oligonucleotides from different parts of the same gene, or cDNA library screening excludes the presence of other hybridizing species.

  20. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi

    2014-04-01

    The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with

  1. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-08-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

  2. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    PubMed Central

    Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.

    2016-01-01

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  3. Liposome-encapsulated polyethylenimine/oligonucleotide polyplexes prepared by reverse-phase evaporation technique.

    PubMed

    Ko, Young Tag; Bickel, Ulrich

    2012-06-01

    Liposome-encapsulated polyplex system represents a promising delivery system for oligonucleotide-based therapeutics such as siRNA and asODN. Here, we report a novel method to prepare liposome-encapsulated cationic polymer/oligonucleotide polyplexes based on the reverse-phase evaporation following organic extraction of the polyplexes. The polyplexes of polyethylenimine and oligonucleotide were first formed in aqueous buffer at an N/P ratio of 6. The overall positively charged polyplexes were then mixed with the anionic phospholipids in overall organic media. The overall organic environment and electrostatic interaction between anionic phospholipids and positively charged polyplexes resulted in inverted micelle-like particles with the polyplexes in the core. After phase separation, the hydrophobic particles were recovered in organic phase. Reverse-phase evaporation of the organic solvent in the presence of hydrophilic polymer-grafted lipids resulted in a stable aqueous dispersion of hydrophilic lipid-coated particles with the polyplex in the core. Transmission electron microscopy visualization revealed spherical structures with heavily stained polyplex cores surrounded by lightly stained lipid coats. The lipid-coated polyplex particles showed colloidal stability, complete protection of the loaded oligonucleotide molecules from enzymatic degradation, and high loading efficiency of more than 80%. Thus, this technique represents an alternative method to prepare lipid-coated polyplex particles as a delivery system of oligonucleotide therapeutics.

  4. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids.

    PubMed Central

    Southern, E M; Case-Green, S C; Elder, J K; Johnson, M; Mir, K U; Wang, L; Williams, J C

    1994-01-01

    Arrays of oligonucleotides corresponding to a full set of complements of a known sequence can be made in a single series of base couplings in which each base in the complement is added in turn. Coupling is carried out on the surface of a solid support such as a glass plate, using a device which applies reagents in a defined area. The device is displaced by a fixed movement after each coupling reaction so that consecutive couplings overlap only a portion of previous ones. The shape and size of the device and the amount by which it is displaced at each step determines the length of the oligonucleotides. Certain shapes create arrays of oligonucleotides from mononucleotides up to a given length in a single series of couplings. The array is used in a hybridisation reaction to a labelled target sequence, and shows the hybridisation behaviour of every oligonucleotide in the target sequence with its complement in the array. Applications include sequence comparison to test for mutation, analysis of secondary structure, and optimisation of PCR primer and antisense oligonucleotide design. Images PMID:7514785

  5. An activated triple bond linker enables 'click' attachment of peptides to oligonucleotides on solid support.

    PubMed

    Wenska, Malgorzata; Alvira, Margarita; Steunenberg, Peter; Stenberg, Asa; Murtola, Merita; Strömberg, Roger

    2011-11-01

    A general procedure, based on a new activated alkyne linker, for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition ('click' reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into 'clickable' azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals.

  6. A novel, one-step amplification and oligonucleotide ligation procedure for multiplex genetic typing

    SciTech Connect

    Eggerding, F.A.

    1994-09-01

    A new technique, coupled amplification and oligonucleotide ligation (CAL), has been developed for simultaneous multiplex amplification and genotyping of DNA. CAL is a biphasic method which combines in one assay DNA amplification by the polymerase chain reaction (PCR) with DNA genotyping by the oligonucleotide ligation assay (OLA). By virtue of a difference in the melting temperatures of PCR primer-target DNA and OLA probe-target DNA hybrids, the method allows preferential amplification of DNA during stage I and oligonucleotide ligation during stage II of the reaction. In stage I target DNA is amplified using high-melting primers in a two-step PCR cycle that employs a 72{degrees}C anneal-elongation step. In stage II genotyping of PCR products by competitive oligonucleotide ligation with oligonucleotide probes located between PCR primers is accomplished by several cycles of denaturation at 94{degrees}C followed by anneal-ligation at 55{degrees}C. Ligation products are fluorochrome-labeled at their 3{prime}-ends and analyzed electrophoretically on a fluorescent DNA sequencer. The CAL procedure has been used for multiplex detection of 30 cystic fibrosis mutations and for analysis of ras gene point mutations. Because mutation detection occurs concurrently with target amplification, the technique is rapid, highly sensitive and specific, easily automatable, and requires minimal sample processing.

  7. Aspects of oligonucleotide and peptide sequencing with MALDI and electrospray mass spectrometry.

    PubMed

    Owens, D R; Bothner, B; Phung, Q; Harris, K; Siuzdak, G

    1998-09-01

    Biopolymer sequencing with mass spectrometry has become increasingly important and accessible with the development of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). Here we examine the use of sequential digestion for the rapid identification of proteolytic fragments, in turn highlighting the general utility of enzymatic MALDI ladder sequencing and ESI tandem mass spectrometry. Analyses were performed on oligonucleotides ranging in size from 2 to 50 residues, on peptides ranging in size from 7 to 44 residues and on viral coat proteins. MALDI ladder sequencing using exonuclease digestion generated a uniform distribution of ions and provided complete sequence information on the oligonucleotides 2-30 nucleic acid residues long. Only partial sequence information was obtained on the longer oligonucleotides. C-terminal peptide ladder sequencing typically provided information from 4 to 7 amino acids into the peptide. Sequential digestion, or endoprotease followed by exoprotease exposure, was also successfully applied to a trypsin digest of viral proteins. Analysis of ladder sequenced peptides by LCMS generated less information than in the MALDI-MS analysis and ESI-MS2 normally provided partial sequence information on both the small oligonucleotides and peptides. In general, MALDI ladder sequencing offered information on a broader mass range of biopolymers than ESI-MS2 and was relatively straightforward to interpret, especially for oligonucleotides.

  8. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

  9. In vivo potentialities of EWS-Fli-1 targeted antisense oligonucleotides-nanospheres complexes.

    PubMed

    Maksimenko, Andrei; Polard, Valerie; Villemeur, Marie; Elhamess, Hind; Couvreur, Patrick; Bertrand, Jean-Remi; Aboubakar, Malam; Gottikh, Marina; Malvy, Claude

    2005-11-01

    The EWS/FLI-1 fusion gene, resulting from a t(11;22) translocation, plays a key role in the pathogenesis of Ewing sarcoma. Previously, we have shown that antisense oligonucleotides designed against EWS-Fli-1 inhibited tumor growth in nude mice provided they were delivered intratumorally by nanocapsules or by CTAB-coated nanospheres. In this study, we have used two types of nanospheres (designated as type 1 and type 2 nanospheres) stabilized with chitosan for both intratumoral and systemic administration of oligonucleotides. Inhibition of the tumor growth in vivo was found to be dependent on the carrier type as well as on antisense oligonucleotide modification. Indeed, whereas both types of nanospheres were efficient in reducing tumor growth after intratumoral injection, we have obtained only with type 2 nanospheres an antitumoral effect after intravenous injection in a preliminary experiment. Additionally, the anticancer efficacy of a localized modification of the EWS-Fli-1 phosphodiester/phosphorothioate chimeric antisense oligonucleotide was demonstrated. In cell culture the oligonucleotides inhibit cell growth by their antisense activity. Further investigations are needed in vivo to learn the mechanism of action of the complexes.

  10. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  11. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    PubMed Central

    Verdugo, Ricardo A; Medrano, Juan F

    2006-01-01

    Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis): Affymetrix430 2.0 (75.6%), ABI Genome Survey (81.24%), Agilent (79.33%), Codelink (78.09%), Sentrix (90.47%); and four array-ready oligosets: Sigma (47.95%), Operon v.3 (69.89%), Operon v.4 (84.03%), and MEEBO (84.03%). The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here reveals that the

  12. Structural and vibrational study and superprotonic behavior of the new solid acid: K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48

    NASA Astrophysics Data System (ADS)

    Chouchene, Samia; Jaouadi, Khaled; Mhiri, Tahar; Zouari, Nabil

    2016-12-01

    The new compound K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48 crystallizes in the tetragonal system I 4 bar 2d with lattice parameters a = 7.606(5) Å and c = 7.401(5) Å. This material has a unit cell volume of 428.16 Å3 and four formula units per cell. The main feature of the structure is the coexistence of two groups with a motive (NH4/K)+-H2(P/As)O4-. In this structure, there are two types of hydrogen bonding (Osbnd H⋯O and Nsbnd H⋯O) which contributes to their stability. The infrared spectra of K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48 recorded at room temperature in the frequency range 4000-400 cm-1 confirm the presence of two different anions (AsO43- and PO43-) in the same crystal. A calorimetric study of the title compound shows two distinct endothermal peaks which are detected at 248 and 490 K. Samples were examined by impedance and modulus spectroscopy techniques. The first transition (248 K) is attributed to a antiferroelectric-paraelectric type. A high temperature phase transition (490 K) leading to a superionic-protonic phase was found, characterized by an unusual high conductivity. The conductivity relaxation parameters associated with the high-disorder protonic conduction have been determined from analysis of the M″/M″max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism.

  13. Toward a new paradigm of DNA writing using a massively parallel sequencing platform and degenerate oligonucleotide

    PubMed Central

    Hwang, Byungjin; Bang, Duhee

    2016-01-01

    All synthetic DNA materials require prior programming of the building blocks of the oligonucleotide sequences. The development of a programmable microarray platform provides cost-effective and time-efficient solutions in the field of data storage using DNA. However, the scalability of the synthesis is not on par with the accelerating sequencing capacity. Here, we report on a new paradigm of generating genetic material (writing) using a degenerate oligonucleotide and optomechanical retrieval method that leverages sequencing (reading) throughput to generate the desired number of oligonucleotides. As a proof of concept, we demonstrate the feasibility of our concept in digital information storage in DNA. In simulation, the ability to store data is expected to exponentially increase with increase in degenerate space. The present study highlights the major framework change in conventional DNA writing paradigm as a sequencer itself can become a potential source of making genetic materials. PMID:27876825

  14. Using Fluorophore-labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions

    PubMed Central

    Anderson, Brian J.; Larkin, Chris; Guja, Kip; Schildbach, Joel F.

    2011-01-01

    Changes in fluorescence emission intensity and anisotropy can reflect changes in the environment and molecular motion of a fluorophore. Researchers can capitalize on these characteristics to assess the affinity and specificity of DNA-binding proteins using fluorophore-labeled oligonucleotides. While there are many advantages to measuring binding using fluorescent oligonucleotides, there are also some distinct disadvantages. Here we describe some of the relevant issues for the novice, illustrating key points using data collected with the F plasmid relaxase domain and a variety of labeled oligonucleotides. Topics include selection of a fluorophore, experimental design using a fluorometer equipped with an automatic titrating unit, and analysis of direct binding and competition assays. PMID:19152864

  15. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

    PubMed Central

    D'Agata, Roberta; Palladino, Pasquale

    2017-01-01

    Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays. PMID:28144559

  16. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation.

    PubMed Central

    Escudé, C; Giovannangeli, C; Sun, J S; Lloyd, D H; Chen, J K; Gryaznov, S M; Garestier, T; Hélène, C

    1996-01-01

    Oligonucleotide analogs with N3'-->P5' phosphoramidate linkages bind to the major groove of double-helical DNA at specific oligopurine.oligopyrimidine sequences. These triple-helical complexes are much more stable than those formed by oligonucleotides with natural phosphodiester linkages. Oligonucleotide phosphoramidates containing thymine and cytosine or thymine, cytosine, and guanine bind strongly to the polypurine tract of human immunodeficiency virus proviral DNA under physiological conditions. Site-specific cleavage by the Dra I restriction enzyme at the 5' end of the polypurine sequence was inhibited by triplex formation. A eukaryotic transcription assay was used to investigate the effect of oligophosphoramidate binding to the polypurine tract sequence on transcription of the type 1 human immunodeficiency virus nef gene under the control of a cytomegalovirus promoter. An efficient arrest of RNA polymerase II was observed at the specific triplex site at submicromolar concentrations. Images Fig. 2 Fig. 3 PMID:8633072

  17. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Sebastiani, F.; Longo, M.; Orecchini, A.; Comez, L.; De Francesco, A.; Muthmann, M.; Teixeira, S. C. M.; Petrillo, C.; Sacchetti, F.; Paciaroni, A.

    2015-07-01

    The dynamics of the human oligonucleotide AG3(T2AG3)3 has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  18. Kinetic effects on signal normalization in oligonucleotide microchips with labeled immobilized probes.

    PubMed

    Pan'kov, S V; Chechetkin, V R; Somova, O G; Antonova, O V; Moiseeva, O V; Prokopenko, D V; Yurasov, R A; Gryadunov, D A; Chudinov, A V

    2009-10-01

    Among various factors affecting operation of oligonucleotide microchips, the variations in concentration and in homogeneous distribution of immobilized probes over the cells are one of the most important. The labeling of immobilized probes ensures the complete current monitoring on the probe distribution and is reliable and convenient. Using hydrogel-based oligonucleotide microchips, the applicability of Cy3-labeled immobilized probes for quality control and signal normalization after hybridization with Cy5-labeled target DNA was investigated. This study showed that proper signal normalization should be different in thermodynamic conditions and in transient regime with hybridization far from saturation. This kinetic effect holds for both hydrogel-based and surface oligonucleotide microchips. Besides proving basic features, the technique was assessed on a sampling batch of 50 microchips developed for identifying mutations responsible for rifampicin and isoniazid resistance of Mycobacterium tuberculosis.

  19. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study

    SciTech Connect

    Sebastiani, F.; Comez, L.; Sacchetti, F.; Orecchini, A.; Petrillo, C.; Paciaroni, A.; De Francesco, A.; Teixeira, S. C. M.

    2015-07-07

    The dynamics of the human oligonucleotide AG{sub 3}(T{sub 2}AG{sub 3}){sub 3} has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  20. Hydrolysis of microporous polyamide-6 membranes as substrate for in situ synthesis of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tang, Jianxin; He, Nongyue; Nie, Libo; Xiao, Pengfeng; Chen, Hong

    2004-02-01

    This article provides a novel method of preparing substrate for in situ synthesis of oligonucleotide by hydrolyzing microporous polyamide-6 membranes in a 0.01 mol/l/NaOH/(H 2O-CH 3OH) mixture medium with refluxing about 36 h. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) demonstrated the emergence of amines (NH 2) on the surface. Optimum hydrolyzing conditions were determined through the ultra-violet (UV) spectra. A pH value of 12 and a hydrolysis time of 36 h are the preferred conditions for the modification. The treated membrane can be applied to in situ synthesis of oligonucleotide and, for example, the oligonucleotide probes of 5 '-AAC CAC CAA ACA CAC-3 ' were successfully synthesized on the hydrolyzed membrane. The single step coupling efficiency determined by ultraviolet (UV) spectra is above 98%.

  1. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: a neutron scattering study.

    PubMed

    Sebastiani, F; Longo, M; Orecchini, A; Comez, L; De Francesco, A; Muthmann, M; Teixeira, S C M; Petrillo, C; Sacchetti, F; Paciaroni, A

    2015-07-07

    The dynamics of the human oligonucleotide AG3(T2AG3)3 has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  2. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  3. Myelin Basic Protein and a Multiple Sclerosis-related MBP-peptide Bind to Oligonucleotides

    PubMed Central

    Rozenblum, Guido Tomás; Kaufman, Tomás; Vitullo, Alfredo Daniel

    2014-01-01

    Aptamer ligands for myelin basic protein (MBP) were obtained using the systematic evolution of ligand by exponential enrichment (SELEX) method. Two clones were isolated from a pool of oligonucleotides and tested for MBP targeting. Using purified MBP, we demonstrated the binding activity of the aptamers and we also showed the affinity of MBP for oligonucleotides of specific length. Moreover, one selected aptamer competitively inhibited the binding of an MBP-specific antibody to MBP and the aptamer was found more sensitive than a commercial antibody. In addition, we showed the ability of the aptamer to detect myelin-rich regions in paraffin-embedded mouse brain tissue. Therefore, the MBP-binding activity of the selected oligonucleotide may prove useful as a tool for life science and medical research for myelin detection and might be a good lead for testing it in autoimmune diseases such as multiple sclerosis. PMID:25202925

  4. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  5. Fluorite-related one-dimensional units in natural bismuth oxysulfates: the crystal structures of Bi14O16(SO4)5 and Bi30O33(SO4)9(AsO4)2.

    PubMed

    Pinto, Daniela; Garavelli, Anna; Bindi, Luca

    2015-10-01

    The crystal structures of two new natural Bi oxysulfates with the formula Bi14O16(SO4)5 [labelled new phase I; monoclinic, space group C2, a = 21.658 (4), b = 5.6648 (9), c = 15.092 (3) Å, β = 119.433 (11)° and Z = 2] and Bi30O33(SO4)9(AsO4)2 [labelled new phase II; triclinic, space group P1, a = 5.670 (3), b = 13.9408 (9), c = 22.7908 (18) Å, α = 80.903 (5), β = 82.854 (14), γ = 78.27 (2)° and Z = 1] from the high-temperature fumarole deposit of the La Fossa crater at Vulcano (Aeolian Islands, Italy) are reported. The structures are built up by a combination of fluorite-related Bi-O units and isolated (SO4)(2-) tetrahedra (new phase I) or both (SO4)(2-) and (AsO4)(3-) tetrahedra (new phase II). Owing to the effect of stereoactive lone pairs of Bi(3+), Bi-O units in both the structures can be suitably described in terms of oxo-centered OBi4 tetrahedra. The structure of Bi14O16(SO4)5 is based upon one-dimensional [O16Bi14](10+) ribbons formed by six chains of edge-sharing OBi4 tetrahedra extending along [010]. In the structure of Bi30O33(SO4)9(AsO4)2 the same ribbon type coexists with another one-dimensional ribbon formed by seven chains of edge-sharing OBi4 tetrahedra and with the composition [O17Bi16](14+). Ribbons of the same type are joined by (SO4)(2-) and (AsO4)(3-) tetrahedra along [010] – if a reduced triclinic unit-cell setting is considered – so forming two different (001) slabs which alternate to each other along [001] and are joined by additional (SO4)(2-) tetrahedra. New phase I represents the natural analogues of synthetic Bi14O16(SO4)5, but with an ordered structure model.

  6. Sedimentation analysis of novel DNA structures formed by homo-oligonucleotides.

    PubMed

    Hatters, D M; Wilson, L; Atcliffe, B W; Mulhern, T D; Guzzo-Pernell, N; Howlett, G J

    2001-07-01

    Sedimentation velocity analysis has been used to examine the base-specific structural conformations and unusual hydrogen bonding patterns of model oligonucleotides. Homo-oligonucleotides composed of 8-28 residues of dA, dT, or dC nucleotides in 100 mM sodium phosphate, pH 7.4, at 20 degrees C behave as extended monomers. Comparison of experimentally determined sedimentation coefficients with theoretical values calculated for assumed helical structures show that dT and dC oligonucleotides are more compact than dA oligonucleotides. For dA oligonucleotides, the average width (1.7 nm), assuming a cylindrical model, is smaller than for control duplex DNA whereas the average rise per base (0.34 nm) is similar to that of B-DNA. For dC and dT oligonucleotides, there is an increase in the average widths (1.8 nm and 2.1 nm, respectively) whereas the average rise per base is smaller (0.28 nm and 0.23 nm, respectively). A significant shape change is observed for oligo dC(28) at lower temperatures (10 degrees C), corresponding to a fourfold decrease in axial ratio. Optical density, circular dichroism, and differential scanning calorimetry data confirm this shape change, attributable from nuclear magnetic resonance analysis to i-motif formation. Sedimentation equilibrium studies of oligo dG(8) and dG(16) reveal extensive self-association and the formation of G-quadruplexes. Continuous distribution analysis of sedimentation velocity data for oligo dG(16) identifies the presence of discrete dimers, tetramers, and dodecamers. These studies distinguish the conformational and colligative properties of the individual bases in DNA and their inherent capacity to promote specific folding pathways.

  7. Sedimentation analysis of novel DNA structures formed by homo-oligonucleotides.

    PubMed Central

    Hatters, D M; Wilson, L; Atcliffe, B W; Mulhern, T D; Guzzo-Pernell, N; Howlett, G J

    2001-01-01

    Sedimentation velocity analysis has been used to examine the base-specific structural conformations and unusual hydrogen bonding patterns of model oligonucleotides. Homo-oligonucleotides composed of 8-28 residues of dA, dT, or dC nucleotides in 100 mM sodium phosphate, pH 7.4, at 20 degrees C behave as extended monomers. Comparison of experimentally determined sedimentation coefficients with theoretical values calculated for assumed helical structures show that dT and dC oligonucleotides are more compact than dA oligonucleotides. For dA oligonucleotides, the average width (1.7 nm), assuming a cylindrical model, is smaller than for control duplex DNA whereas the average rise per base (0.34 nm) is similar to that of B-DNA. For dC and dT oligonucleotides, there is an increase in the average widths (1.8 nm and 2.1 nm, respectively) whereas the average rise per base is smaller (0.28 nm and 0.23 nm, respectively). A significant shape change is observed for oligo dC(28) at lower temperatures (10 degrees C), corresponding to a fourfold decrease in axial ratio. Optical density, circular dichroism, and differential scanning calorimetry data confirm this shape change, attributable from nuclear magnetic resonance analysis to i-motif formation. Sedimentation equilibrium studies of oligo dG(8) and dG(16) reveal extensive self-association and the formation of G-quadruplexes. Continuous distribution analysis of sedimentation velocity data for oligo dG(16) identifies the presence of discrete dimers, tetramers, and dodecamers. These studies distinguish the conformational and colligative properties of the individual bases in DNA and their inherent capacity to promote specific folding pathways. PMID:11423421

  8. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    DOEpatents

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  9. Purification of specific chromatin regions using oligonucleotides: capture hybridization analysis of RNA targets (CHART).

    PubMed

    Davis, Christopher P; West, Jason A

    2015-01-01

    Identification of genomic binding sites and proteins associated with noncoding RNAs will lead to more complete mechanistic characterization of the regulatory activities of noncoding RNAs. Capture hybridization analysis of RNA targets (CHART) is a powerful technique wherein specific RNA molecules are isolated from cross-linked nuclear extracts using complementary, biotinylated capture oligonucleotides, allowing subsequent identification of genomic DNA and proteins cross-linked to the RNA of interest. Here, we describe the procedure for CHART and list strategies to optimize nuclear extract preparation, capture oligonucleotide design, and isolation of nucleic acids and proteins enriched through CHART.

  10. Evaluation of an rRNA-derived oligonucleotide probe for culture confirmation of Neisseria gonorrhoeae.

    PubMed Central

    Rossau, R; Duhamel, M; Van Dyck, E; Piot, P; Van Heuverswyn, H

    1990-01-01

    The reliability of an rRNA-derived oligonucleotide probe for Neisseria gonorrhoeae was tested with 187 N. gonorrhoeae isolates, 81 Neisseria meningitidis isolates, and several strains of other bacterial species. The probe proved to be 100% specific and 100% sensitive. N. gonorrhoeae cells could also be reliably identified in contaminated cultures with the oligonucleotide probe. The 2.6-megadalton cryptic plasmid used as a probe for N. gonorrhoeae was shown to be less sensitive, detecting 179 of 181 N. gonorrhoeae isolates. Images PMID:1693630

  11. Transcriptional inhibition of the bacteriophage T7 early promoter region by oligonucleotide triple helix formation.

    PubMed

    Ross, C; Samuel, M; Broitman, S L

    1992-12-30

    We have identified a purine-rich triplex binding sequence overlapping a -35 transcriptional early promoter region of the bacteriophage T7. Triplex-forming oligonucleotide designed to bind this target was annealed to T7 templates and introduced into in vitro transcription systems under conditions favoring specific initiation from this promoter. These templates demonstrated significant transcriptional inhibition relative to naked genomic templates and templates mixed with non-triplex-forming oligonucleotide. It is suggested that triplex formation along this target interferes with transcriptional initiation, and this mechanism may hold potential to disrupt bacteriophage T7 early transcription in vivo.

  12. Complementary addressed modification and cleavage of a single stranded DNA fragment with alkylating oligonucleotide derivatives.

    PubMed Central

    Vlassov, V V; Zarytova, V F; Kutiavin, I V; Mamaev, S V; Podyminogin, M A

    1986-01-01

    A single stranded DNA fragment was modified with alkylating derivatives of oligonucleotides complementary to a certain nucleotide sequences in the fragment. The derivatives carried aromatic 2-chloroethylamino groups at their 3'- or 5'-terminal nucleotide residues. Some of the derivatives carried both alkylating group and intercalating phenazine group which stabilized complementary complexes. It was found that these oligonucleotide derivatives modify the DNA fragment in a specific way near the target complementary nucleotide sequences, and the DNA fragment can be cleaved at the alkylated nucleotides positions. Alkylating derivatives carrying phenazine groups were found to be the most efficient in reaction with the DNA fragment. Images PMID:3714471

  13. [Oligonucleotide analogues bearing an acyclonucleoside linked by an internucleotide amide bond].

    PubMed

    Kochetkova, S V; Fillipova, E A; Kolganova, N A; Timofeev, E N; Florent'ev, V L

    2008-01-01

    Oligonucleotide analogues bearing an acyclocytidine linked to thymidine by an amide (3'-O-CH2-CO-N-5') bond were synthesized. Melting curves of duplexes formed by modified oligonucleotides and complementary natural oligomers were obtained and thermodynamic parameters of their formation were measured. Replacement of dCpT by a modified dinucleotide only moderately decreased the melting temperature of these modified duplexes in comparison with unmodified duplexes containing complementary natural bases. CD spectra of modified duplexes were studied, and the duplex spatial structures are discussed. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.

  14. Oligonucleotide-templated chemical reactions: pushing the boundaries of a nature-inspired process.

    PubMed

    Percivalle, Claudia; Bartolo, Jean-François; Ladame, Sylvain

    2013-01-07

    Widespread in nature, oligonucleotide-templated reactions of phosphodiester bond formation have inspired chemists who are now applying this elegant strategy to the catalysis of a broad range of otherwise inefficient reactions. This review highlights the increasing diversity of chemical reactions that can be efficiently catalysed by an oligonucleotide template, using Watson-Crick base-pairing to bring both reagents in close enough proximity to react, thus increasing significantly their effective molarity. The applications of this elegant concept for nucleic acid sensing and controlled organic synthesis will also be discussed.

  15. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    PubMed

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye.

  16. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.

    PubMed

    McQuistan, Adam; Zaitouna, Anita J; Echeverria, Elena; Lai, Rebecca Y

    2014-05-11

    We incorporated short thiolated oligonucleotides as passivating diluents in the fabrication of electrochemical peptide-based (E-PB) sensors, with the goal of creating a negatively charged layer capable of resisting non-specific adsorption of matrix contaminants. The E-PB HIV sensors fabricated using these diluents were found to be more specific and selective, while retaining attributes similar to the sensor fabricated without these diluents. Overall, these results highlight the advantages of using oligonucleotides as anti-fouling diluents in self-assembled monolayer-based sensors.

  17. Azide-alkyne "click" reaction performed on oligonucleotides with the universal nucleoside 7-octadiynyl-7-deaza-2'-deoxyinosine.

    PubMed

    Ming, Xin; Leonard, Peter; Heindl, Dieter; Seela, Frank

    2008-01-01

    Oligonucleotides containing 7-substituted 7-deaza-2'- deoxyinosine derivatives bearing alkynyl groups were prepared. The octa-1,7-diynyl derivative was functionalized with the non-fluorescent 3- azidocoumarin by the Huisgen-Sharpless-Meldal cycloaddition to afford a highly fluorescent oligonucleotide conjugate. The ambiguous base pairing character and the clickable side chain allows the incorporation of almost any reporter molecule to DNA.

  18. Oligonucleotides Containing Aminated 2'-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA.

    PubMed

    Lou, Chenguang; Samuelsen, Simone V; Christensen, Niels Johan; Vester, Birte; Wengel, Jesper

    2017-04-05

    Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.

  19. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy.

    PubMed

    Nöll, Gilbert; Su, Qiang; Heidel, Björn; Yu, Yaming

    2014-01-01

    The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.

  20. [Prognostic significance of sequencing-based MRD detection in multiple myeloma].

    PubMed

    Takamatsu, Hiroyuki

    2015-08-01

    Stem cell transplantation in conjunction with therapeutic agents such as proteasome inhibitors and immunomodulatory drugs can dramatically improve response rates and the prognoses of patients with multiple myeloma (MM). However, most patients with MM are considered to be incurable, and relapse owing to minimal residual disease (MRD) is the main cause of death among these patients. We utilized a deep sequencing method, which employs consensus primers and next-generation sequencing (NGS), to amplify and sequence all rearranged immunoglobulin gene segments present in a myeloma clone. This technique has been shown to have 1-2 log greater sensitivity than both allele-specific oligonucleotide-polymerase chain reaction (ASO-PCR) (sensitivity 10(-5)) and multiparameter flow cytometry (MFC) (sensitivity at least 10(-4)). To investigate the value of sensitive detection of MRD in autograft by NGS, we compared progression-free survival (PFS) in 11 MRDNGS(-) cases (Group 1) with that in 12 MRDNGS(+) cases in which MRD was not detected by ASO-PCR (MRDASO(-)) (Group 2). Neither group received any post-ASCT therapy. Group 1 showed a better PFS than Group 2 (P=0.027). MRD-negativity in autografts, as revealed by NGS, is more closely associated with durable remission of MM than that revealed by ASO-PCR.

  1. K1+2x Ni1-x Fe2(AsO4)3 (x = 0,125): un nouvel arséniate à structure de type α-CrPO4.

    PubMed

    Ben Smail, Ridha; Zid, Mohamed Faouzi

    2017-02-01

    A new arsenate K1+2x Ni1-x Fe2(AsO4)3 (x = 1/8) {potassium nickel diiron(III) tris-[arsenate(V)]} was synthesized using a flux method and its crystal structure was determined from single-crystal X-ray diffraction data. This material was also characterized by qualitative energy dispersive X-ray spectroscopy (EDS) analysis. The crystal structure belongs to the α-CrPO4-structure type, space group Imma. It consists of a three-dimensional-framework built up from FeO6 and Ni0.875□1.25O6-octa-hedra and AsO4-tetra-hedra that are sharing corners and/or edges, generating tunnels running along the [010] and [001] directions in which the potassium cations are located. The proposed structural model was validated by bond-valence-sum calculations, charge-distribution (CHARDI) and Madelung energy analyses.

  2. K1+2xNi1−xFe2(AsO4)3 (x = 0,125): un nouvel arséniate à structure de type α-CrPO4

    PubMed Central

    Zid, Mohamed Faouzi

    2017-01-01

    A new arsenate K1+2xNi1−xFe2(AsO4)3 (x = 1/8) {potassium nickel diiron(III) tris­[arsenate(V)]} was synthesized using a flux method and its crystal structure was determined from single-crystal X-ray diffraction data. This material was also characterized by qualitative energy dispersive X-ray spectroscopy (EDS) analysis. The crystal structure belongs to the α-CrPO4-structure type, space group Imma. It consists of a three-dimensional-framework built up from FeO6 and Ni0.875□1.25O6-octa­hedra and AsO4-tetra­hedra that are sharing corners and/or edges, generating tunnels running along the [010] and [001] directions in which the potassium cations are located. The proposed structural model was validated by bond-valence-sum calculations, charge-distribution (CHARDI) and Madelung energy analyses. PMID:28217351

  3. Spectroscopic characterization and solubility investigation on the effects of As(V) on mineral structure tooeleite (Fe6(AsO3)4SO4(OH)4·H2O)

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Deng, Shiming; Zhao, Fenghua; Cheng, Hongfei; Frost, Ray L.

    2015-01-01

    Tooeleite is an unique ferric arsenite sulfate mineral, which has the potential significance of directly fixing As(III) as mineral trap. The tooeleite and various precipitates were hydrothermally synthesized under the different of initial As(III)/As(V) molar ratios and characterized by XRD, FTIR, XPS and SEM. The crystallinity of tooeleite decreases with the amount of As(V). The precipitate is free of any crystalline tooeleite at the level of that XRD could detect when the ratio of As(III)/As(V) of 7:3 and more. The characteristic bands of tooeleite are observed in 772, 340, 696 and 304 cm-1, which are assigned to the ν1, ν2, ν3 and ν4 vibrations of AsO33-. These intensities of bands gradually decreases with the presence of As(V) and its increasing. An obviously wide band is observed in 830 cm-1, which is the ν1 vibration of AsO4. The result of XPS reveals that the binding energies of As3d increase from 44.0 eV to 45.5 eV, which indicates that the amount of As(V) in the precipitates increases. The concentrations of arsenic released of these precipitates are 350-650 mg/L. The stability of tooeleite decreases by comparison when the presence of coexisting As(V) ions.

  4. Effects of stray light on the fidelity of photodirected oligonucleotide array synthesis.

    PubMed

    Garland, Peter B; Serafinowski, Pawel J

    2002-10-01

    Fabrication of high density oligonucleotide arrays using metal on glass photolithographic masks is inflexible and expensive. Maskless methods using computer-controlled projection have been proposed and implemented, but associated stray light effects on photodirected oligonucleotide synthesis and their analysis have not been reported. We have developed a theoretical approach: it predicts that the stray light content of the output of digital micromirror devices and other spatial light modulators of similar performance (contrast ratio approximately 400) will cause extensive random base insertions. For example, use of a digital micromirror device for synthesis of a 20mer array will result in the majority of oligonucleotide chains being 21mers or 22mers. This chain lengthening effect of stray light would not be preventable when synthesis involves a directly photosensitive 5'-blocking group. If the 5'-blocking group is acid labile and released with photogenerated acid, the presence of low concentrations of weak base will prevent the effect of stray light. We have demonstrated experimentally the anticipated chain lengthening effect of stray light on photoacid-dependent synthesis of oligonucleotides and prevention of the effect by low concentrations of n-octylamine. The application of these findings should facilitate the development of maskless fabrication and availability of high density and high fidelity user-designed arrays for research applications.

  5. Development of a 37K high-density oligo-nucleotide microarray for rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a rainbow trout high-density oligonucleotide microarray by using all the available tentative consensus (TC) sequences from the Rainbow Trout Gene Index database (The Computational Biology and Functional Genomics Lab., Dana Farber Cancer Institute and Harvard School of Public Heal...

  6. Identification of enterotoxigenic Escherichia coli isolates with enzyme-labeled synthetic oligonucleotide probes.

    PubMed Central

    Medon, P P; Lanser, J A; Monckton, P R; Li, P; Symons, R H

    1988-01-01

    Commercially available kits containing alkaline phosphatase-labeled oligonucleotide probes for Escherichia coli heat-stable enterotoxins (STI-H, STI-P, and STII) and the heat-labile enterotoxin were compared with bioassays and radiolabeled recombinant DNA probes to identify enterotoxigenic E. coli from 100 clinical isolates. There was very good agreement between the three methods. PMID:3053766

  7. Methods for the Preparation of Large Quantities of Complex Single-Stranded Oligonucleotide Libraries

    PubMed Central

    Murgha, Yusuf E.; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification. PMID:24733454

  8. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    PubMed

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  9. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.

    PubMed

    Reshat, Reshat; Priestley, Catherine C; Gooderham, Nigel J

    2012-11-01

    Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.

  10. Tetrahedron-structured DNA and functional oligonucleotide for construction of an electrochemical DNA-based biosensor.

    PubMed

    Bu, Nan-Nan; Tang, Chun-Xia; He, Xi-Wen; Yin, Xue-Bo

    2011-07-21

    Tetrahedron-structured DNA (ts-DNA) in combination with a functionalized oligonucleotide was used to develop a "turn-on" biosensor for Hg(2+) ions. The ts-DNA provided an improved sensitivity and was used to block the active sites.

  11. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    PubMed

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes.

  12. Drug evaluation: ISIS-301012, an antisense oligonucleotide for the treatment of hypercholesterolemia.

    PubMed

    Burnett, John R

    2006-10-01

    ISIS-301012 is an antisense oligonucleotide inhibitor of apolipoprotein B-100, which is being developed by Isis Pharmaceuticals Inc for the potential treatment of hypercholesterolemia. A subcutaneous injectable formulation is currently undergoing phase 11 clinical trials, while phase I trials are underway with an oral formulation of the drug.

  13. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy

    PubMed Central

    Hildyard, John CW; Wells, Dominic J

    2016-01-01

    Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3’UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations. PMID:27525173

  14. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    PubMed

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  15. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    PubMed

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  16. Chimeric RNase H-competent oligonucleotides directed to the HIV-1 Rev response element.

    PubMed

    Prater, Chrissy E; Saleh, Anthony D; Wear, Maggie P; Miller, Paul S

    2007-08-15

    Chimeric oligo-2'-O-methylribonucleotides containing centrally located patches of contiguous 2'-deoxyribonucleotides and terminating in a nuclease resistant 3'-methylphosphonate internucleotide linkage were prepared. The oligonucleotides were targeted to the 3'-side of HIV Rev response element (RRE) stem-loop IIB RNA, which is adjacent to the high affinity Rev protein binding site and is critical to virus function. Thermal denaturation experiments showed that chimeric oligonucleotides form very stable duplexes with a complementary single-stranded RNA, and gel electrophoretic mobility shift assays (EMSA) showed that they bind with high affinity and specificity to RRE stem-loop II RNA (K(D) approximately 200 nM). The chimeric