Science.gov

Sample records for allele-specific oligonucleotide probes

  1. Human leukocyte antigen haplotype phasing by allele-specific enrichment with peptide nucleic acid probes

    PubMed Central

    Murphy, Nicholas M; Pouton, Colin W; Irving, Helen R

    2014-01-01

    Targeted capture of large fragments of genomic DNA that enrich for human leukocyte antigen (HLA) system haplotypes has utility in haematopoietic stem cell transplantation. Current methods of HLA matching are based on inference or familial studies of inheritance; and each approach has its own inherent limitations. We have designed and tested a probe–target-extraction method for capturing specific HLA haplotypes by hybridization of peptide nucleic acid (PNA) probes to alleles of the HLA-DRB1 gene. Short target fragments contained in plasmids were initially used to optimize the method followed by testing samples of genomic DNA from human subjects with preselected HLA haplotypes and obtained approximately 10% enrichment for the specific haplotype. When performed with high-molecular-weight genomic DNA, 99.0% versus 84.0% alignment match was obtained for the specific haplotype probed. The allele-specific target enrichment that we obtained can facilitate the elucidation of haplotypes between the 65 kb separating the HLA-DRB1 and the HLA-DQA1 genes, potentially spanning a total distance of at least 130 kb. Allele-specific target enrichment with PNA probes is a straightforward technique that has the capability to improve the resolution of DNA and whole genome sequencing technologies by allowing haplotyping of enriched DNA and crucially, retaining the DNA methylation profile. PMID:24936514

  2. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    PubMed

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  3. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  4. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA.

    PubMed

    Billard, A; Laval, V; Fillinger, S; Leroux, P; Lachaise, H; Beffa, R; Debieu, D

    2012-02-01

    The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.

  5. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  6. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    PubMed

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  7. Microarray oligonucleotide probe designer (MOPeD): A web service.

    PubMed

    Patel, Viren C; Mondal, Kajari; Shetty, Amol Carl; Horner, Vanessa L; Bedoyan, Jirair K; Martin, Donna; Caspary, Tamara; Cutler, David J; Zwick, Michael E

    2010-11-01

    Methods of genomic selection that combine high-density oligonucleotide microarrays with next-generation DNA sequencing allow investigators to characterize genomic variation in selected portions of complex eukaryotic genomes. Yet choosing which specific oligonucleotides to be use can pose a major technical challenge. To address this issue, we have developed a software package called MOPeD (Microarray Oligonucleotide Probe Designer), which automates the process of designing genomic selection microarrays. This web-based software allows individual investigators to design custom genomic selection microarrays optimized for synthesis with Roche NimbleGen's maskless photolithography. Design parameters include uniqueness of the probe sequences, melting temperature, hairpin formation, and the presence of single nucleotide polymorphisms. We generated probe databases for the human, mouse, and rhesus macaque genomes and conducted experimental validation of MOPeD-designed microarrays in human samples by sequencing the human X chromosome exome, where relevant sequence metrics indicated superior performance relative to a microarray designed by the Roche NimbleGen proprietary algorithm. We also performed validation in the mouse to identify known mutations contained within a 487-kb region from mouse chromosome 16, the mouse chromosome 16 exome (1.7 Mb), and the mouse chromosome 12 exome (3.3 Mb). Our results suggest that the open source MOPeD software package and website (http://moped.genetics.emory.edu/) will make a valuable resource for investigators in their sequence-based studies of complex eukaryotic genomes.

  8. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    PubMed

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  9. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  10. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  11. Evaluation of an rRNA-derived oligonucleotide probe for culture confirmation of Neisseria gonorrhoeae.

    PubMed Central

    Rossau, R; Duhamel, M; Van Dyck, E; Piot, P; Van Heuverswyn, H

    1990-01-01

    The reliability of an rRNA-derived oligonucleotide probe for Neisseria gonorrhoeae was tested with 187 N. gonorrhoeae isolates, 81 Neisseria meningitidis isolates, and several strains of other bacterial species. The probe proved to be 100% specific and 100% sensitive. N. gonorrhoeae cells could also be reliably identified in contaminated cultures with the oligonucleotide probe. The 2.6-megadalton cryptic plasmid used as a probe for N. gonorrhoeae was shown to be less sensitive, detecting 179 of 181 N. gonorrhoeae isolates. Images PMID:1693630

  12. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  13. [Detection of JAK2V617F mutation rate by real-time fluorescent quantitative PCR using allele specific primer and TaqMan-MGB probe for dual inhibiting amplification of wild type alleles].

    PubMed

    Liang, Guo-Wei; Shao, Dong-Hua; He, Mei-Ling; Cao, Qing-Yun

    2012-12-01

    This study was purposed to develop a real-time PCR assay for sensitive quantification of JAK2V617F allele burden in peripheral blood and to evaluate the clinical value of this method. Both allele-specific mutant reverse primer and wild-type TaqMan-MGB probe were used for dual-inhibiting amplification of wild-type alleles in a real-time PCR, and then the JAK2V617F mutant alleles were amplified specially. The standard curve for quantification of JAK2V617F was established by percentages of JAK2V617F alleles with threshold cycle (Ct) values in a real-time PCR. Furthermore, 89 apparent healthy donors were tested by this method. The results showed that the quantitative lower limit of this method for JAK2V617F was 0.1%, and the intra- and inter-assay average variability for quantifying percentage of JAK2V617F in total DNA was 4.1% and 6.1%, respectively. Two JAK2V617F-positive individuals were identified (the percentage of JAK2V617F alleles were 0.64% and 0.98%, respectively) using this method in blood from 89 apparently healthy donors. It is concluded that the developed method with highly sensitive and reproducible quantification of JAK2V617F mutant burden can be used clinically for diagnosis and evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms. Moreover, this technique can be also used for quantitative detection of variety of single nucleotide mutation.

  14. Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes.

    PubMed Central

    Seriwatana, J; Echeverria, P; Taylor, D N; Sakuldaipeara, T; Changchawalit, S; Chivoratanond, O

    1987-01-01

    Alkaline phosphatase-conjugated (AP) 26-base oligonucleotide DNA probes were compared with the same probes labeled with gamma-32P for the identification of heat-labile (LT) and heat-stable (ST) enterotoxigenic Escherichia coli (ETEC). The AP oligonucleotide probes were as sensitive as the radiolabeled (RL) probes in detecting LT and STA-2 target cell DNA, but the AP ST probe, which differed from STA-1 by two bases, was less sensitive than the RL probe in detecting STA-1 DNA (6.25 versus 0.78 ng). Of 94 ETEC that were identified with the RL probe, the AP probes detected 93% (28 of 30) of ST, 73% (25 of 34) of LT, and 67% (20 of 30) of LTST ETEC. When colony lysates of these ETEC were examined, the AP probes identified all 94 ETEC. In examinations of stool blots, the RL and AP probes were shown to have sensitivities of 71 and 59%, specificities of 91 and 86%, positive predictive values of 87 and 73%, and negative predictive values of 86 and 74%, respectively. AP oligonucleotide probes to detect ETEC were less sensitive in detecting ETEC by colony or stool blot hybridization than the RL probes but could be used by laboratories without access to radioisotopes to examine colony lysates. Images PMID:3305559

  15. Kinetic effects on signal normalization in oligonucleotide microchips with labeled immobilized probes.

    PubMed

    Pan'kov, S V; Chechetkin, V R; Somova, O G; Antonova, O V; Moiseeva, O V; Prokopenko, D V; Yurasov, R A; Gryadunov, D A; Chudinov, A V

    2009-10-01

    Among various factors affecting operation of oligonucleotide microchips, the variations in concentration and in homogeneous distribution of immobilized probes over the cells are one of the most important. The labeling of immobilized probes ensures the complete current monitoring on the probe distribution and is reliable and convenient. Using hydrogel-based oligonucleotide microchips, the applicability of Cy3-labeled immobilized probes for quality control and signal normalization after hybridization with Cy5-labeled target DNA was investigated. This study showed that proper signal normalization should be different in thermodynamic conditions and in transient regime with hybridization far from saturation. This kinetic effect holds for both hydrogel-based and surface oligonucleotide microchips. Besides proving basic features, the technique was assessed on a sampling batch of 50 microchips developed for identifying mutations responsible for rifampicin and isoniazid resistance of Mycobacterium tuberculosis.

  16. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  17. Identification of enterotoxigenic Escherichia coli isolates with enzyme-labeled synthetic oligonucleotide probes.

    PubMed Central

    Medon, P P; Lanser, J A; Monckton, P R; Li, P; Symons, R H

    1988-01-01

    Commercially available kits containing alkaline phosphatase-labeled oligonucleotide probes for Escherichia coli heat-stable enterotoxins (STI-H, STI-P, and STII) and the heat-labile enterotoxin were compared with bioassays and radiolabeled recombinant DNA probes to identify enterotoxigenic E. coli from 100 clinical isolates. There was very good agreement between the three methods. PMID:3053766

  18. Computer selection of oligonucleotide probes from amino acid sequences for use in gene library screening.

    PubMed

    Yang, J H; Ye, J H; Wallace, D C

    1984-01-11

    We present a computer program, FINPROBE, which utilizes known amino acid sequence data to deduce minimum redundancy oligonucleotide probes for use in screening cDNA or genomic libraries or in primer extension. The user enters the amino acid sequence of interest, the desired probe length, the number of probes sought, and the constraints on oligonucleotide synthesis. The computer generates a table of possible probes listed in increasing order of redundancy and provides the location of each probe in the protein and mRNA coding sequence. Activation of a next function provides the amino acid and mRNA sequences of each probe of interest as well as the complementary sequence and the minimum dissociation temperature of the probe. A final routine prints out the amino acid sequence of the protein in parallel with the mRNA sequence listing all possible codons for each amino acid.

  19. Serotyping of Human Group A Rotavirus with Oligonucleotide Probes

    DTIC Science & Technology

    1990-01-01

    Cold Spring Harbor , other oligonucleotides, HuG8Ac and HuG9Ac...HuG8Ac (5’ NY: Cold Spring Harbor Laboratory, 1988;5l1-159 CGA ACT ATC TUC TAT CTC TGT CTC T 3’) was based 9. Bastardo JW, McKimm-Bresckin JL, Sonza...Coulson BS, Unicomb LE, Pitson GA, Bishop RE Simple and specific manual. Cold Spring Harbor , NY Cold Spring Harbor Laboratory. enzyme

  20. Reproducible and inexpensive probe preparation for oligonucleotide arrays.

    PubMed

    Zhang, Y; Price, B D; Tetradis, S; Chakrabarti, S; Maulik, G; Makrigiorgos, G M

    2001-07-01

    We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.

  1. probeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016

    PubMed Central

    Greuter, Daniel; Loy, Alexander; Horn, Matthias; Rattei, Thomas

    2016-01-01

    probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase. PMID:26586809

  2. Allele-specific DNA methylation: beyond imprinting.

    PubMed

    Tycko, Benjamin

    2010-10-15

    Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive-affecting many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quantitative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF to pinpoint functional regulatory polymorphisms influencing disease susceptibility.

  3. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    PubMed

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  4. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    PubMed

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  5. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-10-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  6. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-01-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  7. Selection of optimal oligonucleotide probes for microarrays usingmultiple criteria, global alignment and parameter estimation.

    SciTech Connect

    Li, Xingyuan; He, Zhili; Zhou, Jizhong

    2005-10-30

    The oligonucleotide specificity for microarray hybridizationcan be predicted by its sequence identity to non-targets, continuousstretch to non-targets, and/or binding free energy to non-targets. Mostcurrently available programs only use one or two of these criteria, whichmay choose 'false' specific oligonucleotides or miss 'true' optimalprobes in a considerable proportion. We have developed a software tool,called CommOligo using new algorithms and all three criteria forselection of optimal oligonucleotide probes. A series of filters,including sequence identity, free energy, continuous stretch, GC content,self-annealing, distance to the 3'-untranslated region (3'-UTR) andmelting temperature (Tm), are used to check each possibleoligonucleotide. A sequence identity is calculated based on gapped globalalignments. A traversal algorithm is used to generate alignments for freeenergy calculation. The optimal Tm interval is determined based on probecandidates that have passed all other filters. Final probes are pickedusing a combination of user-configurable piece-wise linear functions andan iterative process. The thresholds for identity, stretch and freeenergy filters are automatically determined from experimental data by anaccessory software tool, CommOligo_PE (CommOligo Parameter Estimator).The program was used to design probes for both whole-genome and highlyhomologous sequence data. CommOligo and CommOligo_PE are freely availableto academic users upon request.

  8. Evaluation of "at risk" alpha 1-antitrypsin genotype SZ with synthetic oligonucleotide gene probes.

    PubMed Central

    Nukiwa, T; Brantly, M; Garver, R; Paul, L; Courtney, M; LeCocq, J P; Crystal, R G

    1986-01-01

    Alpha 1-antitrypsin (alpha 1AT), a 52,000-mol-wt serum glycoprotein produced by hepatocytes and mononuclear phagocytes, functions as the major inhibitor of neutrophil elastase. The alpha 1AT haplotype S is associated with childhood liver disease and/or adult emphysema when inherited with the Z haplotype to give the phenotype SZ. To accurately identify the SZ phenotype at the level of genomic DNA, four 32P-labeled 19-mer synthetic oligonucleotide probes were prepared; two to identify the M and S difference in exon III, and two to identify the M and Z difference in exon V. These probes were hybridized with various cloned DNAs and genomic DNAs cut with the restriction endonucleases BgII and EcoRI; the genomic DNAs represented all six possible phenotype combinations of the M, S, and Z haplotypes (MM, MS, MZ, SS, ZZ, and SZ). Using the four probes to evaluate 42 samples of genomic DNA, the "at risk" SZ and ZZ phenotypes were correctly identified in all cases, as were the "not at risk" phenotypes SS, MS, MM, and MZ, demonstrating that both exon III and exon V directed probes are necessary to properly identify all of the major "at risk" alpha 1AT genes. However, when used to evaluate a very rare family carrying a null allele, these four oligonucleotide probes misidentified the "at risk" null-null and S null phenotypes as "not at risk" MM and SM combinations. These observations indicate that oligonucleotide gene probes yielded reliable and accurate assessment of "at risk" alpha 1AT genotypes in almost all situations, but in the context of prenatal diagnosis and genetic counseling this approach must be used with caution and in combination with family studies so as not to misidentify rare genotypes that may be associated with a risk for disease. Images PMID:3484754

  9. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution. 2: Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1995-01-01

    We have prepared a (P-32)-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  10. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution: II. Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.

    1995-01-01

    We have prepared a [32P]-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  11. Wash-free magnetic oligonucleotide probes-based NMR sensor for detecting the Hg ion.

    PubMed

    Ma, Wenwei; Hao, Changlong; Ma, Wei; Xing, Changrui; Yan, Wenjing; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2011-12-14

    An easily applied and sensitive sensor for the detection of heavy metal ion residues based entirely on magnetic nanoparticle and oligonucleotide was developed. The tool is established on the relaxation of magnetic nanoparticles with different dispersion states. The target analyte, Hg ions, induce the aggregation of the MNP oligonucleotide probes. Accordingly, the light produced by the magnetic relaxation image and the transverse relaxation time (T(2)) all change due to the effect of the aggregation. The limit of qualitative detection of the sensor is 0.15 ppt. The recoveries from test samples range between 97.1-101.8%. Using the nuclear resonance instrument, the method is a high throughput and sensitive sensor.

  12. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes.

    PubMed Central

    Sørensen, A H; Torsvik, V L; Torsvik, T; Poulsen, L K; Ahring, B K

    1997-01-01

    Two new oligonucleotide probes targeting the 16S rRNA of the methanogenic genus Methanosarcina were developed. The probes have the following sequences (Escherichia coli numbering): probe SARCI551, 5'-GAC CCAATAATCACGATCAC-3', and probe SARCI645, 5'-TCCCGGTTCCAAGTCTGGC-3'. In situ hybridization with the fluorescently labelled probes required several modifications of standard procedures. Cells of Methanosarcina mazeii S-6 were found to lyse during the hybridization step if fixed in 3% formaldehyde and stored in 50% ethanol. Lysis was, however, not observed with cells fixed and stored in 1.6% formaldehyde-0.85% NaCl. Extensive autofluorescence of the cells was found upon hybridization in the presence of 5 mM EDTA, but successful hybridization could be obtained without addition of this compound. The mounting agent Citifluor AF1, often used in conjugation with the fluorochrome fluorescein, was found to wash the labelled probes out of the cells. Stable labelling could be obtained with rhodamine-labelled probes when the specimen was mounted in immersion oil, and high hybridization intensities of the Methanosarcina cells were found even in the presence of biomass from an anaerobic reactor. The inherent high autofluorescence of the biomass could be lowered by use of a highly specific narrow-band filter. The probes were found to be specific for Methanosarcina and useful for detection of this genus in samples from anaerobic reactors. PMID:9251192

  13. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria.

    PubMed

    Blasco, Lucía; Ferrer, Sergi; Pardo, Isabel

    2003-08-08

    A rapid method for the identification of lactic acid bacteria (LAB) from wine has been developed. This method is based on fluorescence in situ hybridisation (FISH), using fluorescent oligonucleotide probes, homologous to 16S rDNA of those species of LAB commonly found in wines. The protocol for the specific detection of these bacteria was established through the hybridisation of 36 reference strains. The specificity of the probes was evaluated by using pure cultures. Probes were used to identify species in different wines, making it evident that direct identification and quantification from natural samples without culturing is also possible. The results show that FISH is a promising technique for the rapid identification of LAB, allowing positive identification in a few hours (4-16 h).

  14. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-07-04

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency.

  15. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  16. Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes.

    PubMed

    Macnaughton, S J; O'Donnell, A G; Embley, T M

    1994-10-01

    The application of whole-cell hybridization using labelled oligonucleotide probes in microbial systematics and ecology is limited by difficulties in permeabilizing many Gram-positive organisms. In this investigation paraformaldehyde treatment, acid methanolysis and acid hydrolysis were evaluated as a means of permeabilizing mycolic-acid-containing actinomycetes prior to hybridization with a fluorescently labelled oligonucleotide probe designed to bind to a conserved sequence of bacterial 16S rRNA. Methods were evaluated on stationary-phase cultures of Gordona bronchialis, Mycobacterium fortuitum, Nocardia asteroides, N. brasiliensis, Rhodococcus equi, R. erythropolis, R. fascians, R. rhodochrous and Tsukamurella paurometabola, none of which could be probed following 4% (w/v) paraformaldehyde fixation. For comparison and to test the general applicability of mild acid pretreatments, Bacillus subtilis, Lactobacillus plantarum, Escherichia coli and Pseudomonas putida were also studied. The data showed that most of the mycolic-acid-containing organisms were successfully permeabilized by mild acid hydrolysis in 1 M HCl at 37 degrees C. Cells were treated for different lengths of time. In general, the mycolic-acid-containing organisms required between 30 and 50 min hydrolysis, whereas B. subtilis, E. coli and P. putida were rendered permeable in only 10 min. Interestingly, L. plantarum could not be permeabilized using acid hydrolysis even after 60 min exposure to 1 M HCl.

  17. Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA

    PubMed Central

    Vinogradova, O.A.

    2010-01-01

    The analysis of DNA nucleotide polymorphisms is one of the main goals of DNA diagnostics. DNA–dependent enzymes (DNA polymerases and DNA ligases) are widely used to enhance the sensitivity and reliability of systems intended for the detection of point mutations in genetic material. In this article, we have summarized the data on the selectiveness of DNA–dependent enzymes and on the structural factors in enzymes and DNA which influence the effectiveness of mismatch discrimination during enzymatic conversion of oligonucleotide probes on a DNA template. The data presented characterize the sensitivity of a series of DNA–dependent enzymes that are widely used in the detection of noncomplementary base pairs in nucleic acid substrate complexes. We have analyzed the spatial properties of the enzyme–substrate complexes. These properties are vital for the enzymatic reaction and the recognition of perfect DNA–substrates. We also discuss relevant approaches to increasing the selectivity of enzyme–dependent reactions. These approaches involve the use of modified oligonucleotide probes which “disturb” the native structure of the DNA–substrate complexes. PMID:22649627

  18. Non-radioactive detection of oligonucleotide probes by photochemical amplification of dioxetanes.

    PubMed Central

    Schubert, F; Knaf, A; Möller, U; Cech, D

    1995-01-01

    We describe a new method of non-radioactive labelling and detection of oligonucleotide probes. The approach is based on a simple chemical principle. Oligonucleotides labelled with methylene blue (a photosensitizer) are hybridized on a membrane to immobilized DNA target sequences. After hybridization and stringency washing 2(-)[3-(hydroxyphenyl)methoxymethylene] adamantane is added to the membrane and the membrane is irradiated with a tungsten lamp light source through a cut-off filter. Thermally stable dioxetanes are amplified during irradiation at the positions of the labelled probe. These amplified dioxetanes are detected using chemically triggered chemiluminescent decay. Signals are recorded on commercial X-ray film. Detection is possible immediately after the last washing step and a hard copy of the blot is obtained within 1 h. Dependent on the level of the target sequences, the sensitivity of the method allows detection of 0.3 pg single-stranded M13mp18(+) plasmid DNA in dot blots and 75 pg in Southern blots. Additional immunological reaction steps and washing steps with blocking reagents and buffers are avoided. Furthermore, expensive reagents and equipment for physical detection are not necessary. The method might be particularly useful for fast routine analysis in forensic and medical applications. The synthesis of the olefin, conditions of hybridization and the protocol of detection are described in detail. Images PMID:8524657

  19. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  20. Localization of miRNAs by In Situ Hybridization in Plants Using Conventional Oligonucleotide Probes.

    PubMed

    Hernández-Castellano, Sara; Nic-Can, Geovanny I; De-la-Peña, Clelia

    2017-01-01

    Among the epigenetic mechanisms studied with a greater interest in the last decade are the microRNAs (miRNAs). These small noncoding RNA sequences that are approximately 17-22 nucleotides in length play an essential role in many biological processes of various organisms, including plants. The analysis of spatiotemporal expression of miRNAs provides a better understanding of the role of these small molecules in plant development, cell differentiation, and other processes; but such analysis is also an important method for the validation of biological functions. In this work, we describe the optimization of an efficient protocol for the spatiotemporal analysis of miRNA by in situ hybridization using different plant tissues embedded in paraffin. Instead of LNA-modified probes that are typically used for this work, we use conventional oligonucleotide probes that yield a high specificity and clean distribution of miRNAs.

  1. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.

    PubMed

    Astakhova, I Kira; Wengel, Jesper

    2013-01-14

    Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2'-O-propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM).

  2. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  3. Rapid and multiplexed transcript analysis of microbial cultures using capillary electophoresis-detectable oligonucleotide probe pools.

    PubMed

    Rautio, Jari J; Kataja, Kari; Satokari, Reetta; Penttilä, Merja; Söderlund, Hans; Saloheimo, Markku

    2006-06-01

    A rapid assay for multiplex transcript analysis based on solution hybridization with pools of oligonucleotide probes was developed. In this assay called TRAC (transcript analysis with aid of affinity capture) the mRNAs to be studied are hybridized with gene-specific detection probe pools and biotinylated oligo(dT) and captured on streptavidin-coated magnetic particles. Unbound sample material and nonspecifically bound detection probes are removed and the target-specific probes are eluted and detected by capillary electrophoresis. Simultaneous treatment of 96 samples was automated using a magnetic bead particle processor. The assay enabled detection of in vitro transcribed RNA at the level of 30 amol (20 pg) and over a 300-fold linear range. Besides extracted RNA, crude cell lysates were directly used as samples. The assay was used for transcriptional analysis of selected mRNAs in the filamentous fungus Trichoderma reesei in two experimental conditions. TRAC analysis was highly reproducible, providing expression results that were consistent with conventional Northern blot analysis. The whole procedure starting from sample collecting can be carried out in 2 h, making this assay suitable for high-throughput analysis of a limited set of mRNAs e.g. in gene expression monitoring of production organism in microbial bioprocesses.

  4. High-Throughput Genotyping with TaqMan Allelic Discrimination and Allele-Specific Genotyping Assays.

    PubMed

    Heissl, Angelika; Arbeithuber, Barbara; Tiemann-Boege, Irene

    2017-01-01

    Real-time PCR-based genotyping methods, such as TaqMan allelic discrimination assays and allele-specific genotyping, are particularly useful when screening a handful of single nucleotide polymorphisms in hundreds of samples; either derived from different individuals, tissues, or pre-amplified DNA. Although real-time PCR-based methods such as TaqMan are well-established, alternative methods, like allele-specific genotyping, are powerful alternatives, especially for genotyping short tandem repeat (STR) length polymorphisms. Here, we describe all relevant aspects when developing an assay for a new SNP or STR using either TaqMan or allele-specific genotyping, respectively, such as primer and probe design, optimization of reaction conditions, the experimental procedure for typing hundreds of samples, and finally the data evaluation. Our goal is to provide a guideline for developing genotyping assays using these two approaches that render reliable and reproducible genotype calls involving minimal optimization.

  5. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  6. Fluorescent oligonucleotide probe based on G-quadruplex scaffold for signal-on ultrasensitive protein assay.

    PubMed

    Wu, Zai-Sheng; Hu, Peng; Zhou, Hui; Shen, Guoli; Yu, Ruqin

    2010-03-01

    This work reported the G-quadruplex structure of pyrene-labeled G-rich DNA probe and its application in the immunoglobulin E (IgE) detection, providing plausibly an insight into the biological function of human telomere. Based on the intermolecular G-quadruplex, a terminal-single-pyrene-labeled oligonucleotide signaling probe was developed and a novel protein assay strategy was proposed via combining specific DNA cleavage by S1 nuclease with target-recognizing aptamer. This assay platform not only circumvented the optimization of specific sites for reporter attachment and the pyrene monomer fluorescence quenching by flanking nucleotide bases but also presented a signal-on mechanism. Thus, ultrasensitive homogeneous detection of IgE was successfully conducted. A linear dynamic range of 4.72 x 10(-12) to 7.56 x 10(-9)m, a regression coefficient of 0.9941 and a detection limit of 9.45 x 10(-14)m were given. Additionally, a preliminary concept of the single-pyrene-labeled excimer fluorescence probes associated with G-quadruplex for screening biological markers was described. Importantly, the unexpected structural property of G-quadruplex discovered seems to provide valuable information to allow understanding of the structure and function of human telomere and exploring of useful structure-based anticancer drug.

  7. A new strategy for site-specific alkylation of DNA using oligonucleotides containing an abasic site and alkylating probes.

    PubMed

    Sato, Norihiro; Tsuji, Genichiro; Sasaki, Yoshihiro; Usami, Akira; Moki, Takuma; Onizuka, Kazumitsu; Yamada, Ken; Nagatsugi, Fumi

    2015-10-14

    Selective chemical reactions with DNA, such as its labelling, are very useful in many applications. In this paper, we discuss a new strategy for the selective alkylation of DNA using an oligonucleotide containing an abasic site and alkylating probes. We designed three probes consisting of 2-AVP as a reactive moiety and three kinds of binding moiety with high affinity to duplex DNA. Among these probes, Hoechst-AVP probe exhibited high selectivity and efficient reactivity to thymine bases at the site opposite an abasic site in DNA. Our method is potentially useful for inducing site-directed reactions aimed at inhibiting polymerase reactions.

  8. Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes.

    PubMed Central

    Hsu, F C; Shieh, Y S; van Duin, J; Beekwilder, M J; Sobsey, M D

    1995-01-01

    F-specific (F+) RNA coliphages are prevalent in sewage and other fecal wastes of humans and animals. There are four antigenically distinct serogroups of F+ RNA coliphages, and those predominating in humans (groups II and III) differ from those predominating in animals (groups I and IV). Hence, it may be possible to distinguish between human and animal wastes by serotyping F+ RNA coliphage isolates. Because serotyping is laborious and requires scarce antiserum reagents, we investigated genotyping using synthetic oligonucleotide probes as an alternative approach to distinguishing the four groups of F+ RNA coliphages. Oligoprobes I, II, III, IV, A, and B were selected to detect group I, II, III, IV, I plus II, and III plus IV phages, respectively. Methods for phage transfer from zones of lysis on a host cell lawn to candidate membrane filters and fixation of genomic nucleic acid on the membranes were optimized. The oligoprobes, which were end labeled with digoxigenin, were applied in DNA-RNA hybridization, and hybrids were observed by colorimetric, immunoenzymatic detection. Of 203 isolates of F+ RNA coliphages from environmental samples of water, wastes, and shellfish, 99.5 and 96.6% could be classified into each group by serotyping and genotyping, respectively. Probes A and B correctly identified 100% of the isolates. On the basis of these results, this method for genotyping F+ RNA coliphages appears to be practical and reliable for typing isolates in field samples. PMID:8526509

  9. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation.

    PubMed

    Prince, J A; Feuk, L; Howell, W M; Jobs, M; Emahazion, T; Blennow, K; Brookes, A J

    2001-01-01

    We recently introduced a generic single nucleotide polymorphism (SNP) genotyping method, termed DASH (dynamic allele-specific hybridization), which entails dynamic tracking of probe (oligonucleotide) to target (PCR product) hybridization as reaction temperature is steadily increased. The reliability of DASH and optimal design rules have not been previously reported. We have now evaluated crudely designed DASH assays (sequences unmodified from genomic DNA) for 89 randomly selected and confirmed SNPs. Accurate genotype assignment was achieved for 89% of these worst-case-scenario assays. Failures were determined to be caused by secondary structures in the target molecule, which could be reliably predicted from thermodynamic theory. Improved design rules were thereby established, and these were tested by redesigning six of the failed DASH assays. This involved reengineering PCR primers to eliminate amplified target sequence secondary structures. This sophisticated design strategy led to complete functional recovery of all six assays, implying that SNPs in most if not all sequence contexts can be effectively scored by DASH. Subsequent empirical support for this inference has been evidenced by approximately 30 failure-free DASH assay designs implemented across a range of ongoing genotyping programs. Structured follow-on studies employed standardized assay conditions, and revealed that assay reproducibility (733 duplicated genotypes, six different assays) was as high as 100%, with an assay accuracy (1200 genotypes, three different assays) that exceeded 99.9%. No post-PCR assay failures were encountered. These findings, along with intrinsic low cost and high flexibility, validate DASH as an effective procedure for SNP genotyping.

  10. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  11. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Zhu, Tong; Chang, Hur-Song; Wang, Xun; Feldman, Lewis J.

    2002-01-01

    Studies of plant tropisms, the directed growth toward or away from external stimuli such as light and gravity, began more than a century ago. Yet biochemical, physiological, and especially molecular mechanisms of plant tropic responses remain for the most part unclear. We examined expression of 8,300 genes during early stages of the gravitropic response using high-density oligonucleotide probe microarrays. Approximately 1.7% of the genes represented on the array exhibited significant expression changes within the first 30 min of gravity stimulation. Among gravity-induced genes were a number of genes previously implicated to be involved in gravitropism. However, a much larger number of the identified genes have not been previously associated with gravitropism. Because reorientation of plants may also expose plants to mechanical perturbations, we also compared the effects of a gentle mechanical perturbation on mRNA levels during the gravity response. It was found that approximately 39% of apparently gravity-regulated genes were also regulated by the mechanical perturbation caused by plant reorientation. Our study revealed the induction of complex gene expression patterns as a consequence of gravitropic reorientation and points to an interplay between the gravitropic and mechanical responses and to the extreme sensitivity of plants to even very gentle mechanical perturbations.

  12. Microarray-based long oligonucleotides probe designed for Brucella Spp. detection and identification of antibiotic susceptibility pattern.

    PubMed

    Khazaei, Zahra; Najafi, Ali; Piranfar, Vahhab; Mirnejad, Reza

    2016-04-01

    Brucella spp. is a common zoonotic infection referred to as Brucellosis, and it is a serious public health problem around the world. There are currently six classical species (pathogenic species in both animals and humans) within the genus Brucella. The ability and practicality facilitated by a microarray experiment help us to recognize Brucella spp. and its antibiotic resistant gene. Rapid phenotypic determination of antibiotic resistance is not possible by disk diffusion methods. Thus, evaluating antibiotics pattern and Brucella detection appear necessary technique by molecular methods in brucellosis. So, the aim of this study was to design a microarray long oligonucleotides probe and primer for the complete diagnosis of Brucella spp. and obtaining genetic profiles for antibiotic resistance in bacteria at the same time. In this study, we designed 16 antibiotic-resistant gene solid-phase primers with similar melting temperatures of 60 °C and 16 long oligonucleotide probes. These primers and probes can identify tetracycline-, chloramphenicol-, and aminoglycoside-resistant genes, respectively. The design of microarray probes is a versatile process that be done in a wide range of selections. Since the long oligo microarray probes are the best choices for specific diagnosis and definite treatment, this group of probes was designed in the present survey.

  13. Hairpin oligonucleotides anchored terbium ion: a fluorescent probe to specifically detect lead(II) at sub-nM levels.

    PubMed

    Wei, Yueteng; Liu, Ru; Wang, Yaling; Zhao, Yuliang; Cai, Zhifang; Gao, Xueyun

    2013-04-21

    A terbium based fluorescent probe was synthesized by coordinating terbium ions with a designed oligonucleotides (5'-ATATGGGGGATAT-3', termed GH5). GH5 improved the fluorescence of terbium ions by four orders of magnitude. The fluorescence enhancement of terbium ions by different oligonucleotides sequences indicated that the polyguanine loop of the hairpin GH5 is key to enhance terbium ion emission. The quantum yield of Tb-GH5 probe was 10.5% and the probe was photo-stable. The result of conductivity titration indicated that the stoichiometry of the probe is 3.5 Tb: 1 GH5, which is confirmed by fluorescence titration. This probe had high sensitivity and specificity for the detection of lead ions. The fluorescence intensity of this probe was linear with respect to lead concentration over a range 0.3-2.1 nM (R(2) = 0.99). The limit of detection for lead ions was 0.1 nM at a signal-to-noise ratio of 3.

  14. Microarray-based long oligonucleotides probe designed for Brucella Spp. detection and identification of antibiotic susceptibility pattern

    PubMed Central

    Khazaei, Zahra; Najafi, Ali; Piranfar, Vahhab; Mirnejad, Reza

    2016-01-01

    Brucella spp. is a common zoonotic infection referred to as Brucellosis, and it is a serious public health problem around the world. There are currently six classical species (pathogenic species in both animals and humans) within the genus Brucella. The ability and practicality facilitated by a microarray experiment help us to recognize Brucella spp. and its antibiotic resistant gene. Rapid phenotypic determination of antibiotic resistance is not possible by disk diffusion methods. Thus, evaluating antibiotics pattern and Brucella detection appear necessary technique by molecular methods in brucellosis. So, the aim of this study was to design a microarray long oligonucleotides probe and primer for the complete diagnosis of Brucella spp. and obtaining genetic profiles for antibiotic resistance in bacteria at the same time. In this study, we designed 16 antibiotic-resistant gene solid-phase primers with similar melting temperatures of 60 °C and 16 long oligonucleotide probes. These primers and probes can identify tetracycline-, chloramphenicol-, and aminoglycoside-resistant genes, respectively. The design of microarray probes is a versatile process that be done in a wide range of selections. Since the long oligo microarray probes are the best choices for specific diagnosis and definite treatment, this group of probes was designed in the present survey. PMID:27280008

  15. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment.

    PubMed

    Pawar, Maroti G; Srivatsan, Seergazhi G

    2013-11-21

    The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.

  16. Multiplexed quantification of bacterial 16S rRNA by solution hybridization with oligonucleotide probes and affinity capture.

    PubMed

    Satokari, Reetta M; Kataja, Kari; Söderlund, Hans

    2005-07-01

    Multiplexed and quantitative analysis of nucleic acid sequences in complex mixtures is essential in various applications of microbiological research. We have developed a method based on solution hybridization between biotinylated nucleic acid targets and multiple fluorophore-labeled oligonucleotide probes of distinct sizes. The biotin-nucleic acid-probe complexes are captured on magnetic streptavidin-coated microparticles and washed. The hybridized probes are eluted and their identity and quantity are determined by capillary electrophoresis. The signal intensities of the recorded probes correspond to the amount of target nucleic acid in the mixture, and the size indicates the target. Based on this principle and 16S rRNA-specific oligonucleotide probes, we set up an application for the relative quantification of different groups of clostridia and related organisms in a mixed bacterial population. The lower detection limit is 0.05 ng of total RNA and the linear range of measurement is 10(2). The method allowed accurate and highly repeatable quantification of the proportion of clostridia in human feces. Further, we discuss other applications of the method such as quantitative transcriptional analysis of eukaryotic microorganisms, which can be performed without conversion of mRNA to cDNA.

  17. New Oligonucleotide Probes for ND-FISH Analysis to Identify Barley Chromosomes and to Investigate Polymorphisms of Wheat Chromosomes

    PubMed Central

    Tang, Shuyao; Qiu, Ling; Xiao, Zhiqiang; Fu, Shulan; Tang, Zongxiang

    2016-01-01

    Oligonucleotide probes that can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) analysis are convenient tools for identifying chromosomes of wheat (Triticum aestivum L.) and its relatives. New oligonucleotide probes, Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.1, Oligo-s120.2, Oligo-s120.3, Oligo-275.1, Oligo-275.2, Oligo-k566 and Oligo-713, were designed based on the repetitive sequences HVT01, pTa71, pTa-s120, pTa-275, pTa-k566 and pTa-713. All these probes can be used for ND-FISH analysis and some of them can be used to detect polymorphisms of wheat chromosomes. Probes Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.3, Oligo-275.1, Oligo-k566 and Oligo-713 can, respectively, replace the roles of their original sequences to identify chromosomes of some barley (Hordeum vulgare ssp. vulgare) and the common wheat variety Chinese Spring. Oligo-s120.1, Oligo-s120.2 and Oligo-275.2 produced different hybridization patterns from the ones generated by their original sequences. In addition, Oligo-s120.1, Oligo-s120.2 and Oligo-s120.3, which were derived from pTa-s120, revealed different signal patterns. Likewise, Oligo-275.1 and Oligo-275.2, which were derived from pTa-275, also displayed different hybridization patterns. These results imply that differently arranged or altered structural statuses of tandem repeats might exist on different chromosome regions. These new oligonucleotide probes provide extra convenience for identifying some wheat and barley chromosomes, and they can display polymorphisms of wheat chromosomes. PMID:27929398

  18. Pigeons: A Novel GUI Software for Analysing and Parsing High Density Heterologous Oligonucleotide Microarray Probe Level Data

    PubMed Central

    Lai, Hung-Ming; May, Sean T.; Mayes, Sean

    2014-01-01

    Genomic DNA-based probe selection by using high density oligonucleotide arrays has recently been applied to heterologous species (Xspecies). With the advent of this new approach, researchers are able to study the genome and transcriptome of a non-model or an underutilised crop species through current state-of-the-art microarray platforms. However, a software package with a graphical user interface (GUI) to analyse and parse the oligonucleotide probe pair level data is still lacking when an experiment is designed on the basis of this cross species approach. A novel computer program called Pigeons has been developed for customised array data analysis to allow the user to import and analyse Affymetrix GeneChip® probe level data through XSpecies. One can determine empirical boundaries for removing poor probes based on genomic hybridisation of the test species to the Xspecies array, followed by making a species-specific Chip Description File (CDF) file for transcriptomics in the heterologous species, or Pigeons can be used to examine an experimental design to identify potential Single-Feature Polymorphisms (SFPs) at the DNA or RNA level. Pigeons is also focused around visualization and interactive analysis of the datasets. The software with its manual (the current release number version 1.2.1) is freely available at the website of the Nottingham Arabidopsis Stock Centre (NASC). PMID:27605027

  19. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    PubMed Central

    Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT

    2009-01-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539

  20. Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry.

    PubMed Central

    Simon, N; LeBot, N; Marie, D; Partensky, F; Vaulot, D

    1995-01-01

    Because of their tiny size (0.2 to 2 microns), oceanic picophytoplanktonic cells (either cultured strains or natural communities) are difficult to identify, and some basic questions concerning their taxonomy, physiology, and ecology are still largely unanswered. The present study was designed to test the suitability of in situ hybridization with rRNA fluorescent probes detected by flow cytometry for the identification of small photosynthetic eukaryotes. Oligonucleotide probes targeted against regions of the 18S rRNAs of Chlorophyta lineage (CHLO probe) and of non-Chlorophyta (NCHLO probe) algal species were designed. The CHLO and NCHLO probes, which differed by a single nucleotide, allowed discrimination of chlorophyte from nonchlorophyte cultured strains. The sensitivity of each probe was dependent upon the size of the cells and upon their growth stage. The mean fluorescence was 8 to 80 times higher for specifically labeled than for nonspecifically labeled cells in exponential growth phase, but it decreased sharply in stationary phase. Such taxon-specific probes should increase the applicability of flow cytometry for the rapid identification of cultured pico- and nanoplanktonic strains, especially those that lack taxonomically useful morphological features. PMID:7618862

  1. The Human OligoGenome Resource: a database of oligonucleotide capture probes for resequencing target regions across the human genome.

    PubMed

    Newburger, Daniel E; Natsoulis, Georges; Grimes, Sue; Bell, John M; Davis, Ronald W; Batzoglou, Serafim; Ji, Hanlee P

    2012-01-01

    Recent exponential growth in the throughput of next-generation DNA sequencing platforms has dramatically spurred the use of accessible and scalable targeted resequencing approaches. This includes candidate region diagnostic resequencing and novel variant validation from whole genome or exome sequencing analysis. We have previously demonstrated that selective genomic circularization is a robust in-solution approach for capturing and resequencing thousands of target human genome loci such as exons and regulatory sequences. To facilitate the design and production of customized capture assays for any given region in the human genome, we developed the Human OligoGenome Resource (http://oligogenome.stanford.edu/). This online database contains over 21 million capture oligonucleotide sequences. It enables one to create customized and highly multiplexed resequencing assays of target regions across the human genome and is not restricted to coding regions. In total, this resource provides 92.1% in silico coverage of the human genome. The online server allows researchers to download a complete repository of oligonucleotide probes and design customized capture assays to target multiple regions throughout the human genome. The website has query tools for selecting and evaluating capture oligonucleotides from specified genomic regions.

  2. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes.

    PubMed

    Du, Pei; Zhuang, Lifang; Wang, Yanzhi; Yuan, Li; Wang, Qing; Wang, Danrui; Dawadondup; Tan, Lijun; Shen, Jian; Xu, Haibin; Zhao, Han; Chu, Chenggen; Qi, Zengjun

    2017-02-01

    In comparison with general FISH for preparing probes in terms of time and cost, synthesized oligonucleotide (oligo hereafter) probes for FISH have many advantages such as ease of design, synthesis, and labeling. Low cost and high sensitivity and resolution of oligo probes greatly simplify the FISH procedure as a simple, fast, and efficient method of chromosome identification. In this study, we developed new oligo and oligo multiplex probes to accurately and efficiently distinguish wheat (Triticum aestivum, 2n = 6x, AABBDD) and Thinopyrum bessarabicum (2n = 2x = 14, JJ) chromosomes. The oligo probes contained more nucleotides or more repeat units that produced stronger signals for more efficient chromosome painting. Four Th. bessarabicum-specific oligo probes were developed based on genomic DNA sequences of Th. bessarabicum chromosome arm 4JL, and one of them (oligo DP4J27982) was pooled with the oligo multiplex #1 to simultaneously detect wheat and Th. bessarabicum chromosomes for quick and accurate identification of Chinese Spring (CS) - Th. bessarabicum alien chromosome introgression lines. Oligo multiplex #4 revealed chromosome variations among CS and eight wheat cultivars by a single round of FISH analysis. This research demonstrated the high efficiency of using oligos and oligo multiplexes in chromosome identification and manipulation.

  3. Quantification of Gordona amarae Strains in Foaming Activated Sludge and Anaerobic Digester Systems with Oligonucleotide Hybridization Probes

    PubMed Central

    de los Reyes, M. Fiorella; de los Reyes, Francis L.; Hernandez, Mark; Raskin, Lutgarde

    1998-01-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  4. Novel oligonucleotide probes for in situ detection of pederin-producing endosymbionts of Paederus riparius rove beetles (Coleoptera: Staphylinidae).

    PubMed

    Kador, Matthias; Horn, Marcus A; Dettner, Konrad

    2011-06-01

    Bacterial endosymbionts from female Paederus rove beetles are hitherto uncultured, phylogenetically related to Pseudomonas sp., and produce the polyketide pederin, which exhibits strong cytotoxic effects and antitumoral activities. The location of such endosymbionts inside beetles and on beetles' eggs is hypothesized based on indirect evidence rather than elucidated. Thus, an endosymbiont-specific and a competitor oligonucleotide probe (Cy3-labelled PAE444 and unlabelled cPAE444, respectively) were designed and utilized for FISH with semi-thin sections of Paederus riparius eggs. Cy3-PAE444-positive cells were densely packed and covered the whole eggshell. Hundred percent of EUB338-Mix-positive total bacterial cells were PAE444 positive, indicating a biofilm dominated by Paederus endosymbionts. Analysis of different egg deposition stadiums by electron microscopy and pks (polyketide synthase gene, a structural gene associated with pederin biosynthesis)-PCR supported results obtained by FISH and revealed that the endosymbiont-containing layer is applied to the eggshell inside the efferent duct. These findings suggest that P. riparius endosymbionts are located inside unknown structures of the female genitalia, which allow for a well-regulated release of endosymbionts during oviposition. The novel oligonucleotide probes developed in this study will facilitate (1) the identification of symbiont-containing structures within genitalia of their beetle hosts and (2) directed cultivation approaches in the future.

  5. Highly specific identification of single nucleic polymorphism in M. tuberculosis using smart probes and single-molecule fluorescence spectroscopy in combination with blocking oligonucleotides

    NASA Astrophysics Data System (ADS)

    Friedrich, Achim; Müller, Matthias; Nolte, Oliver; Wolfrum, Jürgen; Sauer, Markus; Hoheisel, Jörg D.; Knemeyer, Jens-Peter; Marme, Nicole

    2008-02-01

    In this article we present a method for the highly specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis. This approach applies fluorescently labeled hairpin-structured oligonucleotides (smart probes) and confocal single-molecule fluorescence spectroscopy. Smart probes are fluorescently labeled at the 5'-end. The dye's fluorescence is quenched in the closed hairpin conformation due to close proximity of the guanosine residues located at the 3'-end. As a result of the hybridization to the complementary target sequence the hairpin structure and thus fluorescence quenching gets lost and a strong fluorescence increase appears. To enhance the specificity of the SNP detection unlabeled "blocking oligonucleotides" were added to the sample. These oligonucleotides hybridizes to the DNA sequence containing the mismatch thus masking this sequence and hereby preventing the smart probe from hybridizing to the mismatched sequence.

  6. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe.

    PubMed

    Gao, Zhong Feng; Chen, Dong Mei; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications.

  7. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.

    PubMed

    Frischer, M E; Floriani, P J; Nierzwicki-Bauer, S A

    1996-10-01

    The use of 16S rRNA targeted gene probes for the direct analysis of microbial communities has revolutionized the field of microbial ecology, yet a comprehensive approach for the design of such probes does not exist. The development of 16S rRNA targeted oligonucleotide probes for use with fluorescence in situ hybridization (FISH) procedures has been especially difficult as a result of the complex nature of the rRNA target molecule. In this study a systematic comparison of 16S rRNA targeted oligonucleotide gene probes was conducted to determine if target location influences the hybridization efficiency of oligonucleotide probes when used with in situ hybridization protocols for the detection of whole microbial cells. Five unique universal 12-mer oligonucleotide sequences, located at different regions of the 16S rRNA molecule, were identified by a computer-aided sequence analysis of over 1000 partial and complete 16S rRNA sequences. The complements of these oligomeric sequences were chemically synthesized for use as probes and end labeled with either [gamma-32P]ATP or the fluorescent molecule tetramethylrhodamine-5/-6. Hybridization sensitivity for each of the probes was determined by hybridization to heat-denatured RNA immobilized on blots or to formaldehyde fixed whole cells. All of the probes hybridized with equal efficiency to denatured RNA. However, the probes exhibited a wide range of sensitivity (from none to very strong) when hybridized with whole cells using a previously developed FISH procedure. Differential hybridization efficiencies against whole cells could not be attributed to cell wall type, since the relative probe efficiency was preserved when either Gram-negative or -positive cells were used. These studies represent one of the first attempts to systematically define criteria for 16S rRNA targeted probe design for use against whole cells and establish target site location as a critical parameter in probe design.

  8. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  9. Characterization of the Cricket Hindgut Microbiota with Fluorescently Labeled rRNA-Targeted Oligonucleotide Probes

    PubMed Central

    Santo Domingo, Jorge W.; Kaufman, Michael G.; Klug, Michael J.; Tiedje, James M.

    1998-01-01

    Most cricket hindgut microorganisms (60 to 80%) were detected with a universal fluorescent rRNA-targeted probe and found to be eubacteria. Group-specific probes showed that the hindguts of five different cricket species harbor similar bacterial groups, although in different proportions, and that different diets shifted the structure of the hindgut microbial community. The Bacteroides-Prevotella probe, of the eight eubacterial probes tested, stained the largest percentage of cells in all crickets. PMID:16349506

  10. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    PubMed

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  11. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  12. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry.

    PubMed

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-11-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder.

  13. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry

    PubMed Central

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-01-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449

  14. Empirical Establishment of Oligonucleotide Probe Design Criteria; Use of Microarrays with Different Probe Sizes for Monitoring Gene Expression; Temporal Transcriptomic Analysis as Desulfovibrio vulgaris Hildenborough Transitions into Stationary Phase during Electron Donor Depletion

    SciTech Connect

    He, Q.; He, Z.; Huang, K. H.; Alm, E. J.; Wan, X. F.; Hazen, T. C.; Arkin, A. P.; Wall, J. D.; Zhou, J. Z.; Fields, M. W.

    2005-07-15

    In order to experimentally establish the criteria for designing gene-specific and group-specific oligonucleotide probes, an oligonucleotide array was constructed that contained perfect match (PM) and mismatch (MM) probes (50mers and 70mers) based upon 4 genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were examined. Little hybridization was observed at a probe-target identity of <85% for both 50mer and 70mer probes........Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and these criteria should provide valuable information for the development of new software and algorithms for microarray-based studies.; Microarrays with oligonucleotides of different lengths were used to monitor gene expression at a wholegenome level. To determine what length of oligonucleotide is a better alternative to PCR-generated probes, the performance of oligonucleotide probes was systematically compared to that of their PCR-generated counterparts for 96 genes from Shewanella oneidensis MR-1 in terms of overall signal intensity, numbers of genes detected, specificity, sensitivity, and differential gene expression under experimental conditions. .......To evaluate differential gene expression under experimental conditions, S. oneidensis MR-1 cells were exposed to low- or high-pH conditions for 30 and 60 min, and the transcriptional profiles detected by oligonucleotide probes (50-mer, 60-mer, and 70-mer) were closely correlated with those detected by the PCR probes. The results demonstrated that 70-mer oligonucleotides can provide the performance most comparable to the performance obtained with PCR-generated probes.; Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the

  15. A novel single-labeled fluorescent oligonucleotide probe for silver(I) ion detection in water, drugs, and food.

    PubMed

    Bian, Liujiao; Ji, Xu; Hu, Wei

    2014-05-28

    Due to the high toxicity of silver(I) ions, a method for the rapid, sensitive, and selective detection for silver(I) ions in water, pharmaceutical products, and food is of great importance. Herein, a novel single-labeled fluorescent oligonucleotide (OND) probe based on cytosine-Ag(I)-cytosine coordination and the inherent fluorescence quenching ability of the G-quadruplex is designed to detect silver(I) ions. The formation of a hairpin structure in the OND-Ag(I) complex brings the hexachloro fluorescein (HEX) labeled at the 5'-end of the OND probe close to the G-quadruplex located at the 3'-end of the OND probe, leading to a fluorescence quenching due to photoinduced electron transfer between HEX and the G-quadruplex. Through this method, silver(I) ions can be detected quantitatively, the linear response range is from 1 to 100 nmol/L with a detection limit of 50 pmol/L, and no obvious interference occurs with other metal ions with a 10-fold concentration. This assay is simple, sensitive, and selective, and it can be used to detect silver(I) ions in actual water, drug, and food samples.

  16. Application of DNA fingerprinting with digoxigenated oligonucleotide probe (CAC)5 to analysis of the genetic variation within Taenia taeniaeformis.

    PubMed

    Okamoto, M; Ueda, H; Hayashi, M; Oku, Y; Kurosawa, T; Kamiya, M

    1995-04-01

    DNA from T. taeniaeformis digested with the restriction endonuclease was hybridized with digoxigenated oligonucleotide probe (CAC)5. Metacestode and adult showed same clear multibanding patterns, which were characteristic of multilocus DNA fingerprinting. The fingerprinting patterns were quite different from those of the rodent hosts. Genetic variations in 4 laboratory-reared isolates of T. taeniaeformis, including 3 isolates which have been reported to be indistinguishable by infectivity, morphology and protein composition of metacestode, were investigated using this technique. Each of the 4 isolates exhibited isolate-specific fingerprinting patterns and were easily distinguished from one another, thus it was considered that (CAC)5 was a highly resolvable and informative probe for cestodes. However, it was also indicated that (CAC)5 was so sensitive that applying fingerprinting with (CAC)5 to taxonomical or phylogenetic analysis was limited where habitat of the host was restricted to the small area. In comparison to fingerprinting with 32P-labeled (CAC)5, fingerprinting with digoxigenated (CAC)5 represented more and sharper bands. It was considered that a digoxigenated probe was more useful for genetic analysis of cestodes.

  17. Designation of Streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes.

    PubMed

    Stackebrandt, E; Witt, D; Kemmerling, C; Kroppenstedt, R; Liesack, W

    1991-05-01

    The 16S and 23S rRNA of various Streptomyces species were partially sequenced and screened for the presence of stretches that could define all members of the genus, groups of species, or individual species. Nucleotide 929 (Streptomyces ambofaciens nomenclature [J.L. Pernodet, M.T. Alegre, F. Boccard, and M. Guerineau, Gene 79:33-46, 1989]) is a nucleotide highly unique to Streptomyces species which, in combination with flanking regions, allowed the designation of a genus-specific probe. Regions 158 through 203 of the 16S rRNA and 1518 through 1645 of the 23S rRNA (helix 54 [Pernodet et al., Gene 79:33-46, 1989]) have a high potential to define species, whereas the degree of variation in regions 982 through 998 and 1102 through 1122 of the 16S rRNA is less pronounced but characteristic for at least certain species. Alone or in combination with each other, these regions may serve as target sites for synthetic oligonucleotide probes and primers to be used in the determination of pure cultures and in the characterization of community structures. The specificity of several probes is demonstrated by dot blot hybridization.

  18. Use of a multiplexed CMOS microarray to optimize and compare oligonucleotide binding to DNA probes synthesized or immobilized on individual electrodes.

    PubMed

    Maurer, Karl; Yazvenko, Nina; Wilmoth, Jodi; Cooper, John; Lyon, Wanda; Danley, David

    2010-01-01

    The CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the DNA probes, and other factors that impacted fluorescence quenching and electrical conductivity. Optimized results were compared against those obtained using a microarray with the same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the quenching effects of the Ppy and the platinum electrode.

  19. Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides lutzii in yeast and mycelial phase

    PubMed Central

    Arantes, Thales Domingos; Theodoro, Raquel Cordeiro; Teixeira, Marcus de Melo; Bagagli, Eduardo

    2017-01-01

    BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5’ end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5’ end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4’,6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis. PMID:28177048

  20. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization.

    PubMed

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-08-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.

  1. Allele-specific chemical genetics: concept, strategies, and applications.

    PubMed

    Islam, Kabirul

    2015-02-20

    The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.

  2. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  3. Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep1156 16S rRNA probe in combination with helper and competitor oligonucleotides.

    PubMed

    Saunier, Katiana; Rougé, Carole; Lay, Christophe; Rigottier-Gois, Lionel; Doré, Joël

    2005-07-01

    Target site inaccessibility represents a significant problem for fluorescent in situ hybridisation (FISH) of 16S rRNA oligonucleotide probes. For this reason, the Clep1156 probe targeting 16S rRNA of the Clostridium leptum phylogenetic subgroup used for dot blot experiments could not be used until now for FISH. Considering that bacteria from the C. leptum subgroup are very abundant in the human faecal microbiota and may play a significant role in host health, we have used unlabelled helper and competitor oligonucleotides to improve the 16S rRNA in situ accessibility and specificity of the Clep1156 probe and applied this approach to enumerate C. leptum bacteria in this ecosystem. Nine C. leptum target strains and five non-target strains were selected to develop and validate the helper-competitor strategy. Depending on the target strains, the use of helpers enhanced the fluorescence intensity signal of Clep1156 from 0.4-fold to 8.4-fold with a mean value of 3.6-fold, switching this probe from the brightness class V-VI (masked sites) to III-IV (accessible sites). The simultaneous use of helper and competitor oligonucleotides with Clep1156 probe allowed the expected specificity without disturbing in situ accessibility. Quantified by FISH combined with flow cytometry, C. leptum bacteria in human faecal samples (n=22) represented 19 +/- 7% of bacteria on average [4.9-37.5]. We conclude that helper oligonucleotides are very useful to circumvent the problem of target site in situ accessibility, especially when probe design is limited to only one 16S rRNA area and that helpers and competitors may be efficiently combined.

  4. Probing the microenvironments in the grooves of Z-DNA using dan-modified oligonucleotides.

    PubMed

    Kimura, Takumi; Kawai, Kiyohiko; Majima, Tetsuro

    2006-04-14

    The environment-sensitive fluorophore dan (6-dimethylamino-2-acyl-naphthalene)- modified dC or dG bases were introduced into the Z-DNA forming sequence. It was demonstrated that both grooves of Z-DNA are more hydrated than those of B-DNA. Dan will be useful for probing the microenvironments in the grooves among the DNA polymorphs.

  5. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole.

    PubMed

    Tlili, Chaker; Korri-Youssoufi, Hafsa; Ponsonnet, Laurence; Martelet, Claude; Jaffrezic-Renault, Nicole J

    2005-11-15

    We report a new approach for detecting DNA hybridisation using non faradaic electrochemical impedance spectroscopy. The technique was applied to a system of DNA probes bearing amine groups that are immobilized by covalent grafting on a supporting polypyrrole matrix functionalised with activated ester groups. The kinetics of the attachment of the ss-DNA probe was monitored using the temporal evolution of the open circuit potential (OCP). This measurement allows the determination of the time necessary for the chemical reaction of ss-DNA probe into the polypyrrole backbone. The hybridisation reactions with the DNA complementary target and non complementary target were investigated by non faradaic electrochemical impedance spectroscopy. Results show a significant modification in the Nyquist plot upon addition of the complementary target whereas, in presence of the non complementary target, the Nyquist plot is not modified. The spectra, in the form of Nyquist plot, were analysed with the Randles circuit. The transfer charge resistance R(2) shows a linear variation versus the complementary target concentration. Sensitivity and detection limit (0.2nM) were determined and detection limit was lower of one order of magnitude than that obtained with the same system and measuring variation of the oxidation current at constant potential.

  6. Programmable oligonucleotide probes design and applications for in situ and in vivo RNA imaging in cells

    NASA Astrophysics Data System (ADS)

    Cheglakov, Zoya

    Unequal spreading of mRNA is a frequent experience observed in varied cell lines. The study of cellular processes dynamics and precise localization of mRNAs offers a vital toolbox to target specific proteins in precise cytoplasmic areas and provides a convenient instrument to uncover their mechanisms and functions. Latest methodological innovations have allowed imaging of a single mRNA molecule in situ and in vivo. Today, Fluorescent In Situ Hybridization (FISH) methods allow the studying of mRNA expression and offer a vital toolbox for accurate biological models. Studies enable analysis of the dynamics of an individual mRNA, have uncovered the multiplex RNA transport systems. With all current approaches, a single mRNA tracking in the mammalian cells is still challenging. This thesis describes mRNA detection methods based on programmable fluorophore-labeled DNA structures complimentary to native targets providing an accurate mRNA imaging in mammalian cells. First method represents beta-actin (ACTB) transcripts in situ detection in human cells, the technique strategy is based on programmable DNA probes, amplified by rolling circle amplification (RCA). The method reports precise localization of molecule of interest with an accuracy of a single-cell. Visualization and localization of specific endogenous mRNA molecules in real-time in vivo has the promising to innovate cellular biology studies, medical analysis and to provide a vital toolbox in drugs invention area. Second method described in this thesis represents miR-21 miRNA detection within a single live-cell resolution. The method using fluorophore-labeled short synthetic DNAs probes forming a stem-loop shape and generating Fluorescent Resonance Energy Transfer (FRET) as a result of target-probes hybridization. Catalytic nucleic acid (DNAzymes) probes are cooperative tool for precise detection of different mRNA targets. With assistance of a complementary fluorophore-quencher labeled substrate, the DNAzymes provide

  7. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate

  8. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  9. Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S-allele-specific PCR analysis.

    PubMed

    Jie, Qi; Shupeng, Gai; Jixiang, Zhang; Manru, Gu; Huairui, Shu

    2005-08-01

    A cDNA of 417 bp encoding an S-RNase gene, named PA S3, was isolated from apricot, Prunus aremeniaca. Nine S-alleles, S1-S9, were recognized by S-allele-specific PCR and confirmed by Southern blot analysis using PA S3 as probe. The S-genotypes of the six cultivars were determined and the results of self- and cross-pollination tests among the six cultivars were consistent with the predicted S-haplotypes by PCR analysis.

  10. Oligonucleotide probes for detection and differentiation of Staphylococcus aureus strains containing genes for enterotoxins A, B, and C and toxic shock syndrome toxin 1.

    PubMed Central

    Neill, R J; Fanning, G R; Delahoz, F; Wolff, R; Gemski, P

    1990-01-01

    Different synthetic DNA nucleotide sequences were evaluated as gene probes for the specific detection and differentiation of Staphylococcus aureus strains encoding enterotoxins A (SEA), B (SEB), and C (SEC) and toxic shock syndrome toxin 1 (TSST-1). Identification of sequences unique to each toxin, based on knowledge of their nucleotide sequences, led to preparation of the specific 18-base oligonucleotide probes EA1 (encoding amino acids 177 to 182 of SEA), EB2 (encoding amino acids 105 to 110 of SEB), EC5 (encoding amino acids 125 to 131 of SEC1), and TS1 (encoding amino acids 160 to 166 of TSST-1). In colony blot hybridization analyses, these probes hybridized specifically with DNA from strains that produced the respective toxin serotypes. An excellent (greater than or equal to 93%) correlation between hybridization results (genotype) and toxin protein detection by an enzyme-linked immunosorbent assay (phenotype) was observed in the characterization of both reference and clinical strains of S. aureus for SEA, SEB, and TSST-1. A lower correlation (64%) for SEC reflected a lack of sensitivity in detecting toxin production. Our findings demonstrate that molecular DNA hybridization with synthetic oligonucleotide probes provides another approach for establishing the toxigenicity of S. aureus. Images PMID:2380378

  11. An integrated approach for the design and synthesis of oligonucleotide probes and their interfacing to a QCM-based RNA biosensor.

    PubMed

    Tedeschi, Lorena; Citti, Lorenzo; Domenici, Claudio

    2005-05-15

    The quantitative determination of specific cellular messenger-RNA is extremely important both in basic and applied research, especially in diagnostic and pharmacological fields. In order to perform a direct and easy quantification of transcripts on cell extracts, the feasibility of an analytical device able to selectively detect a defined target RNA in a complex mixture while avoiding labelling, retrotranscription and amplification steps, has been explored. In particular, several aspects necessary to obtain good selectivity in target recognition, stability, reusability and sensitivity of a gene specific biosensor were considered. For the development of suitable probe-receptors, analysis of the nucleotide sequence of the target mRNA was carried out to localise the preferred binding regions. As criteria for optimisation, we selected accessibility and uniqueness. Oligonucleotide probes, designed to specifically bind these sequences, were synthesised by using particular monomers producing nuclease-resistant RNA strands with high affinity towards the target. Quartz crystal microbalance (QCM) technology was selected to realise a microgravimetric sensor able to bind the RNA under investigation through a complementary oligonucleotide probe. Covalent immobilisation of bioreceptor molecules to the transducer sensitive surface ensured a stable integration between the two. The binding ability of immobilised probes was tested evaluating their annealing behaviour with both complementary oligonucleotides and full-length target mRNA. The conditions necessary for the regeneration of biosensor were also assessed. Measurements of shift in QCM resonant frequency, performed by hybridisation experiments in liquido, demonstrate that a label-free RNA-biosensor with high specificity, reusability and the ability to give quantitative information, can be realised.

  12. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    PubMed

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  13. Simultaneous detection of several oligonucleotides by time-resolved fluorometry: the use of a mixture of categorized microparticles in a sandwich type mixed-phase hybridization assay.

    PubMed

    Hakala, H; Virta, P; Salo, H; Lönnberg, H

    1998-12-15

    Porous, uniformly sized (50 micrometer) glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as a solid phase to construct a sandwich type hybridization assay that allowed simultaneous detection of up to six oligonucleotides from a single sample. The assay was based on categorization of the particles by two organic prompt fluorophores, viz. fluorescein and dansyl, and quantification of the oligonucleotide hybridization by time-resolved fluorometry. Accordingly, allele-specific oligodeoxyribonucleotide probes were assembled on the particles by conventional phosphoramidite strategy using a non-cleavable linker, and the category defining fluorescein and/or dansyl tagged building blocks were inserted in the 3'-terminal sequence. An oligonucleotide bearing a photoluminescent europium(III) chelate was hybridized to the complementary 3'-terminal sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound allele-specific probes via the 5'-terminal sequence of the target. After hybridization each individual particle was subjected to three different fluorescence intensity measurements. The intensity of the prompt fluorescence signals of fluorescein and dansyl defined the particle category, while the europium(III) chelate emission quantified the hybridization. The length of the complementary region between the target oligonucleotide and the particle-bound probe was optimized to achieve maximal selectivity. Furthermore, the kinetics of hybridization and the effect of the concentration of the target oligomer on the efficiency of hybridization were evaluated. By this approach the possible presence of a three base deletion (DeltaF508), point mutation (G542X) and point deletion (1078delT) related to cystic fibrosis could unequivocally be detected from a single sample.

  14. Oligonucleotide probes containing pyrimidine analogs reveal diminished hydrogen bonding capacity of the DNA adduct O⁶-methyl-G in DNA duplexes.

    PubMed

    Angelov, Todor; Dahlmann, Heidi A; Sturla, Shana J

    2013-10-15

    Oligonucleotide hybridization probes containing nucleoside analogs offer a potential strategy for binding specific DNA sequences that bear pro-mutagenic O(6)-G alkylation adducts. To optimize O(6)-Me-G-targeting probes, an understanding of how base pairs with O(6)-Me-G are stabilized is needed. In this study, we compared the ability of O(6)-Me-G and G to hydrogen bond with three pyrimidine-like nucleobases (Z, 4-thio-U, and 3-deaza-C) bearing varied hydrogen bond donor and acceptor groups. We found that duplexes containing the pyrimidine analog nucleoside:G pairs were more thermodynamically stable than those containing pyrimidine analog nucleoside:O(6)-alkyl-G pairs. Thus, hydrogen bonding alone was not sufficient to impart selectivity to probes that target O(6)-G alkylation adducts in DNA.

  15. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode.

    PubMed

    Němcová, Kateřina; Sebest, Peter; Havran, Luděk; Orság, Petr; Fojta, Miroslav; Pivoňková, Hana

    2014-09-01

    In this paper, we present an electrochemical DNA-protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded ONs bearing a dT20 tail labeled with Os,bipy are specifically recognized by the tumor suppressor p53 protein according to the presence or absence of a specific binding site (p53CON) in the double-stranded segment. We demonstrate the applicability of the Os,bipy-labeled probes in titration as well as competition MBIP assays to evaluate p53 relative affinity to various sequence-specific or structurally distinct unlabeled DNA substrates upon modulation of the p53-DNA binding by monoclonal antibodies used for the immunoprecipitation. To detect the p53-bound osmium-labeled probes, we took advantage of a catalytic peak yielded by Os,bipy-modified DNA at the mercury-based electrodes, allowing facile determination of subnanogram quantities of the labeled oligonucleotides. Versatility of the electrochemical MBIP technique and its general applicability in studies of any DNA-binding protein is discussed.

  16. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  17. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation.

    PubMed

    Singh, Purnima; Wu, Xiwei; Lee, Dong-Hoon; Li, Arthur X; Rauch, Tibor A; Pfeifer, Gerd P; Mann, Jeffrey R; Szabó, Piroska E

    2011-04-01

    To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.

  18. Flow Cytometric Analysis of Characteristics of Hybridization of Species-Specific Fluorescent Oligonucleotide Probes to rRNA of Marine Nanoflagellates

    PubMed Central

    Rice, J.; Sleigh, M. A.; Burkill, P. H.; Tarran, G. A.; O'Connor, C. D.; Zubkov, M. V.

    1997-01-01

    Identification problems restrict quantitative ecological research on specific nanoflagellates. Identification by specific oligonucleotide probes permits use of flow cytometry for enumeration and measurement of size of nanoflagellates in statistically meaningful samples. Flow cytometry also permits measurement of intensity of probe binding by cells. Five fluorescent probes targeted to different regions of the small subunit rRNA of the common marine flagellate Paraphysomonas vestita all hybridized with cells of this flagellate. Cells fixed with trichloroacetic acid gave detectable signals at a probe concentration of 15 aM and specific fluorescence increased almost linearly to 1.5 fM, but at higher concentrations nonspecific binding increased sharply. Three flagellates, P. vestita, Paraphysomonas imperforata, and Pteridomonas danica, all bound a general eukaryotic probe approximately in proportion to their cell size, but the specific P. vestita probe gave 14 times more fluorescence with P. vestita than with either of the other flagellates. Cell fluorescence increased during the early growth of a batch culture and decreased toward the stationary phase; cell size changed in a comparable manner. Cell fluorescence intensity may allow inferences about growth rate, but whether fluorescence (assumed to reflect ribosome number) merely correlates with cell biomass or changes in a more complex manner remains unresolved. PMID:16535558

  19. Discrimination between Gyrodactylus salaris, G. derjavini and G. truttae (Platyhelminthes: Monogenea) using restriction fragment length polymorphisms and an oligonucleotide probe within the small subunit ribosomal RNA gene.

    PubMed

    Cunningham, C O; McGillivray, D M; MacKenzie, K; Melvin, W T

    1995-07-01

    The small subunit ribosomal RNA (srRNA) gene was amplified from Gyrodactylus salaris using the polymerase chain reaction (PCR), cloned, and the complete gene sequence of 1966 bp determined. The V4 region of the srRNA gene was identified and amplified from single specimens of G. salaris, G. derjavini and G. truttae. Comparison of the V4 sequences from these three species revealed sequence differences from which restriction fragment length polymorphisms (RFLPs) were predicted and an oligonucleotide probe (GsV4) specific to G. salaris designed. Digestion of the amplified V4 region of the srRNA gene with Hae III and either Alw I, BstY I, Dde I or Mbo I provided a means of discriminating between G. salaris, G. derjavini and G. truttae. The GsV4 probe was used to detect the srRNA gene from G. salaris in Southern and dot blots of the amplified V4 region.

  20. Design and validation of an oligonucleotide probe for the detection of protozoa from the order Trichomonadida using chromogenic in situ hybridization.

    PubMed

    Mostegl, Meike Marissa; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Dinhopl, Nora; Kulda, Jaroslav; Liebhart, Dieter; Hess, Michael; Weissenböck, Herbert

    2010-07-15

    Infections with protozoal parasites of the order Trichomonadida are often observed in veterinary medicine. Based on the trichomonad species involved these infections are either asymptomatic or can lead to sometimes serious disease. To further study protozoal agents of the order Trichomonadida the establishment of a method to detect trichomonads directly in the tissue, allowing parasite-lesion correlation, is necessary. Here we describe the design and evaluation of an oligonucleotide probe for chromogenic in situ hybridization, theoretically allowing detection of all hitherto known members of the order Trichomonadida. The probe was designed on a region of the 18S ribosomal RNA gene homologue for all representatives of the order Trichomonadida available in the GenBank. Functionality of the probe was proven using protozoal cultures containing different trichomonads (Monocercomonas colubrorum, Hypotrichomonas acosta, Pentatrichomonas hominis, Trichomitus batrachorum, Trichomonas gallinae, Tetratrichomonas gallinarum, Tritrichomonas foetus, and Tritrichomonas augusta). Furthermore, three different tissue sections containing either T. gallinae, T. foetus or Histomonas meleagridis were tested positive. Additionally, to rule out cross-reactivity of the probe a large number of different pathogenic protozoal agents, fungi, bacteria and viruses were tested and gave negative results. The probe presented here can be considered an important tool for diagnosis of all to date described relevant protozoal parasites of the order Trichomonadida in tissue samples.

  1. Superiorities of time-correlated single-photon counting against standard fluorimetry in exploiting the potential of fluorochromized oligonucleotide probes for biomedical investigation

    NASA Astrophysics Data System (ADS)

    Lamperti, Marco; Nardo, Luca; Bondani, Maria

    2015-05-01

    Site-specific fluorescence-resonance-energy-transfer donor-acceptor dual-labelled oligonucleotide probes are widely used in state-of-art biotechnological applications. Such applications include their usage as primers in polymerase chain reaction. However, the steady-state fluorescence intensity signal emitted by these molecular tools strongly depends from the specificities of the probe conformation. For this reason, the information which can be reliably inferred by steady-state fluorimetry performed on such samples is forcedly confined to a semi-qualitative level. Namely, fluorescent emission is frequently used as ON/OFF indicator of the probe hybridization state, i.e. detection of fluorescence signals indicates either hybridization to or detachment from the template DNA of the probe. Nonetheless, a fully quantitative analysis of their fluorescence emission properties would disclose other exciting applications of dual-labelled probes in biosensing. Here we show how time-correlated single-photon counting can be applied to get rid of the technical limitations and interpretational ambiguities plaguing the intensity analysis, and to derive information on the template DNA reaching single-base.

  2. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference.

    PubMed

    Lombardi, Maria Stella; Jaspers, Leonie; Spronkmans, Christine; Gellera, Cinzia; Taroni, Franco; Di Maria, Emilio; Donato, Stefano Di; Kaemmerer, William F

    2009-06-01

    Use of RNA interference to reduce huntingtin protein (htt) expression in affected brain regions may provide an effective treatment for Huntington disease (HD), but it remains uncertain whether suppression of both wild-type and mutant alleles in a heterozygous patient will provide more benefit than harm. Previous research has shown suppression of just the mutant allele is achievable using siRNA targeted to regions of HD mRNA containing single nucleotide polymorphisms (SNPs). To determine whether more than a minority of patients may be eligible for an allele-specific therapy, we genotyped DNA from 327 unrelated European Caucasian HD patients at 26 SNP sites in the HD gene. Over 86% of the patients were found to be heterozygous for at least one SNP among those tested. Because the sites are genetically linked, one cannot use the heterozygosity rates of the individual SNPs to predict how many sites (and corresponding allele-specific siRNA) would be needed to provide at least one treatment possibility for this percentage of patients. By computing all combinations, we found that a repertoire of allele-specific siRNA corresponding to seven sites can provide at least one allele-specific siRNA treatment option for 85.6% of our sample. Moreover, we provide evidence that allele-specific siRNA targeting these sites are readily identifiable using a high throughput screening method, and that allele-specific siRNA identified using this method indeed show selective suppression of endogenous mutant htt protein in fibroblast cells from HD patients. Therefore, allele-specific siRNA are not so rare as to be impractical to find and use therapeutically.

  3. Large scale explorative oligonucleotide probe selection for thousands of genetic groups on a computing grid: application to phylogenetic probe design using a curated small subunit ribosomal RNA gene database.

    PubMed

    Jaziri, Faouzi; Peyretaillade, Eric; Missaoui, Mohieddine; Parisot, Nicolas; Cipière, Sébastien; Denonfoux, Jérémie; Mahul, Antoine; Peyret, Pierre; Hill, David R C

    2014-01-01

    Phylogenetic Oligonucleotide Arrays (POAs) were recently adapted for studying the huge microbial communities in a flexible and easy-to-use way. POA coupled with the use of explorative probes to detect the unknown part is now one of the most powerful approaches for a better understanding of microbial community functioning. However, the selection of probes remains a very difficult task. The rapid growth of environmental databases has led to an exponential increase of data to be managed for an efficient design. Consequently, the use of high performance computing facilities is mandatory. In this paper, we present an efficient parallelization method to select known and explorative oligonucleotide probes at large scale using computing grids. We implemented a software that generates and monitors thousands of jobs over the European Computing Grid Infrastructure (EGI). We also developed a new algorithm for the construction of a high-quality curated phylogenetic database to avoid erroneous design due to bad sequence affiliation. We present here the performance and statistics of our method on real biological datasets based on a phylogenetic prokaryotic database at the genus level and a complete design of about 20,000 probes for 2,069 genera of prokaryotes.

  4. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Gravanis, Achille

    2008-08-01

    Most genotyping methods for known single-nucleotide polymorphisms (SNPs) are based on hybridization with allele-specific probes, oligonucleotide ligation reaction (OLR), primer extension or invasive cleavage. OLR offers superior specificity because it involves two recognition events; namely, the hybridization of an allele-specific probe and a common probe to adjacent positions on target DNA. OLR products can be detected by microtiter well-based colorimetric, time-resolved fluorimetric or chemiluminometric assays, electrophoresis, microarrays, microspheres, and homogeneous fluorimetric or colorimetric assays. We have developed a simple, robust, and low-cost disposable biosensor in dry-reagent format, which allows visual genotyping with no need for instrumentation. The OLR mixture contains a biotinylated common probe and an allele-specific probe with a (dA)(20) segment at the 3'-end. OLR products are denatured and applied to the biosensor next to gold nanoparticles that are decorated with oligo(dT) strands. The sensor is immersed in the appropriate buffer and all components migrate by capillary action. The OLR product is captured by immobilized streptavidin at the test zone (TZ) of the sensor and hybridizes with the oligo(dT) strands of the nanoparticles. A characteristic red line is generated due to the accumulation of nanoparticles. The excess nanoparticles are captured by immobilized oligo(dA) at the control zone of the strip, giving a second red line. We have applied successfully the proposed OLR-dipstick assay to the genotyping of four SNPs in the drug-metabolizing enzyme genes CYP2D6 ((*)3 and (*)4) and CYP2C19 ((*)2 and (*)3). The results were in agreement with direct sequencing.

  5. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.

    PubMed

    Zhu, Zhiqiang; Su, Yuanyuan; Li, Jiang; Li, Di; Zhang, Jiong; Song, Shiping; Zhao, Yun; Li, Genxi; Fan, Chunhai

    2009-09-15

    We report a highly sensitive electrochemical sensor for the detection of Hg(2+) ions in aqueous solution by using a thymine (T)-rich, mercury-specific oligonucleotide (MSO) probe and gold nanoparticles (Au NPs)-based signal amplification. The MSO probe contains seven thymine bases at both ends and a "mute" spacer in the middle, which, in the presence of Hg(2+), forms a hairpin structure via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. The thiolated MSO probe is immobilized on Au electrodes to capture free Hg(2+) in aqueous media, and the MSO-bound Hg(2+) can be electrochemically reduced to Hg(+), which provides a readout signal for quantitative detection of Hg(2+). This direct immobilization strategy leads to a detection limit of 1 microM. In order to improve the sensitivity, MSO probe-modified Au NPs are employed to amplify the electrochemical signals. Au NPs are comodified with the MSO probe and a linking probe that is complementary to a capture DNA probe immobilized on gold electrodes. We demonstrated that this Au NPs-based sensing strategy brings about an amplification factor of more than 3 orders of magnitude, leading to a limit of detection of 0.5 nM (100 ppt), which satisfactorily meets the sensitivity requirement of U.S. Environmental Protection Agency (EPA). This Au NPs-based Hg(2+) sensor also exhibits excellent selectivity over a spectrum of interference metal ions. Considering the high sensitivity and selectivity of this sensor, as well as the cost-effective and portable features of electrochemical techniques, we expect this Au NPs amplified electrochemical sensor will be a promising candidate for field detection of environmentally toxic mercury.

  6. Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans

    PubMed Central

    McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan

    2010-01-01

    The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549

  7. A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Sato, M; Sakabe, M; Naito, E; Yamanouchi, H; Suzuki, T

    2001-02-01

    We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.

  8. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  9. Detection of harmful algal bloom causing microalgae using covalently immobilised capture oligonucleotide probes on glass and poly(dimethylsiloxane) surfaces

    NASA Astrophysics Data System (ADS)

    Bruce, Karen L.; Ellis, Amanda V.; Leterme, Sophie C.; Khodakov, Dmitriy A.; Lenehan, Claire E.

    2013-12-01

    Harmful algal bloom (HAB) events have been on the rise in the last few decades with some of the causative microalgae exhibiting toxic properties. Therefore, detection is essential in order to prevent mortality of aquatic life and poisoning events from consumption of these biotoxins. Here, oligonucleotide modified glass and poly(dimethylsiloxane) (PDMS) surfaces have been developed for the detection of the HAB causing microalgae, Alexandrium catenella, in a model system. Our preliminary studies show that the glass surface offers superior stability and analytical response when compared to those prepared from PDMS.

  10. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https

  11. Development and evaluation of two novel oligonucleotide probes based on 16S rRNA sequence for the identification of Salmonella in foods.

    PubMed

    Lin, C K; Tsen, H Y

    1995-05-01

    DNA sequence in the V3 to V6 region of the 16S rRNA gene of Salmonella enteritidis was determined. By comparison of this sequence with those of Escherichia coli and Proteus vulgaris obtained from GenBank/EMBL database, three oligonucleotides termed as 16S I, 16S II and 16S III were synthesized. Hybridization of these oligonucleotides with 325 Salmonella isolates and some non-Salmonella isolates including the Salmonella closely related species of the family of Enterobacteriaceae showed that 16S II could not be used as a Salmonella specific-probe. 16S I and 16S III hybridized with all the Salmonella isolates tested, the former also hybridizing with Citrobacter spp. and the latter hybridizing with Klebsiella pneumoniae as well as Serratia marcescens. Since enrichment of the target cells in food samples was usually required prior to the DNA hybridization assay, the interference from those non-Salmonella isolates could be prevented by enrichment by culturing in lactose-combined tetrathionate (CTET) broth followed by Gram-negative (GN) broth at 37 degrees C and/or 43 degrees C. Such a culture step could inhibit the growth of Klebsiella spp., Ser. marcescens and/or Citrobacter spp. and allowed the specific detection of Salmonella.

  12. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    PubMed Central

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  13. Fluorescent Whole-Cell Hybridization with 16S rRNA-Targeted Oligonucleotide Probes To Identify Brucella spp. by Flow Cytometry

    PubMed Central

    Fernández-Lago, Luis; Vallejo, F. Javier; Trujillano, Ignacio; Vizcaíno, Nieves

    2000-01-01

    A whole-cell hybridization assay with fluorescent oligonucleotide probes derived from the 16S rRNA sequence of Brucella abortus in combination with flow cytometry has been developed. With the three fluorescent probes selected, a positive signal was observed with all the representative strains of the species and biovars of Brucella and with a total of nine different Brucella clinical isolates. Using the B9 probe in the hybridization assay, it was possible to discriminate between Brucella suis biovars 2, 3, 4, and 5 and almost all the other Brucella spp. On the basis of differences in fluorescence intensities, no discrimination was established between Brucella spp. and other phylogenetically related microorganisms. No positive fluorescence signals were detected with any of the bacteria showing serological cross-reactions with Brucella spp. and with a total of 17 clinical isolates not belonging to the genus Brucella. These results suggest that the 16S rRNA whole-cell hybridization technique could be a valuable diagnostic tool for the detection and identification of Brucella spp. PMID:10878084

  14. Allele-specific copy number profiling by next-generation DNA sequencing.

    PubMed

    Chen, Hao; Bell, John M; Zavala, Nicolas A; Ji, Hanlee P; Zhang, Nancy R

    2015-02-27

    The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual's colon cancer.

  15. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  16. Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo.

    PubMed

    Lee, Ji-Su; Chang, Eun Hyuk; Koo, Ok Jae; Jwa, Dong Hwan; Mo, Won Min; Kwak, Geon; Moon, Hyo Won; Park, Hwan Tae; Hong, Young Bin; Choi, Byung-Ok

    2017-04-01

    Charcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited. In this study, we investigated whether regulation of a mutant allele by an allele-specific small interfering RNA (siRNA) can alleviate the demyelinating neuropathic phenotype of CMT. We designed 19 different allele-specific siRNAs for Trembler J (Tr-J) mice harboring a naturally occurring mutation (Leu16Pro) in Pmp22. Using a luciferase assay, we identified an siRNA that specifically and selectively reduced the expression level of the mutant allele and reversed the low viability of Schwann cells caused by mutant Pmp22 over-expression in vitro. The in vivo efficacy of the allele-specific siRNA was assessed by its intraperitoneal injection to postnatal day 6 of Tr-J mice. Administration of the allele-specific siRNA to Tr-J mice significantly enhanced motor function and muscle volume, as assessed by the rotarod test and magnetic resonance imaging analysis, respectively. Increases in motor nerve conduction velocity and compound muscle action potentials were also observed in the treated mice. In addition, myelination, as evidenced by toluidine blue staining and electron microscopy, was augmented in the sciatic nerves of the mice after allele-specific siRNA treatment. After validating suppression of the Pmp22 mutant allele at the mRNA level in the Schwann cells of Tr-J mice, we observed increased expression levels of myelinating proteins such as myelin basic protein and myelin protein zero. These data indicate that selective suppression of the Pmp22 mutant allele by non-viral delivery of siRNA alleviates the demyelinating neuropathic phenotypes of CMT in vivo, implicating allele-specific siRNA treatment as a potent therapeutic strategy for dominantly inherited peripheral neuropathies.

  17. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.

    PubMed

    de Santiago, Ines; Liu, Wei; Yuan, Ke; O'Reilly, Martin; Chilamakuri, Chandra Sekhar Reddy; Ponder, Bruce A J; Meyer, Kerstin B; Markowetz, Florian

    2017-02-24

    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.

  18. Correction of hair shaft defects through allele-specific silencing of mutant Krt75

    PubMed Central

    Liu, Ying; Snedecor, Elizabeth R.; Zhang, Xu; Xu, Yan-Feng; Huang, Lan; Jones, Evan; Zhang, Lianfeng; Clark, Richard A.; Roop, Dennis R.; Qin, Chuan; Chen, Jiang

    2015-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele specific siRNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific shRNA persistently suppressed this phenotype. The phenotypic correction was associated with significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of the mutant keratin genes. PMID:26763422

  19. Predictive long-range allele-specific mapping of regulatory variants and target transcripts.

    PubMed

    Lee, Kibaick; Lee, Seulkee; Bang, Hyoeun; Choi, Jung Kyoon

    2017-01-01

    Genome-wide association studies (GWASs) have identified a large number of noncoding associations, calling for systematic mapping to causal regulatory variants and their distal target genes. A widely used method, quantitative trait loci (QTL) mapping for chromatin or expression traits, suffers from sample-to-sample experimental variation and trans-acting or environmental effects. Instead, alleles at heterozygous loci can be compared within a sample, thereby controlling for those confounding factors. Here we introduce a method for chromatin structure-based allele-specific pairing of regulatory variants and target transcripts. With phased genotypes, much of allele-specific expression could be explained by paired allelic cis-regulation across a long range. This approach showed approximately two times greater sensitivity than QTL mapping. There are cases in which allele imbalance cannot be tested because heterozygotes are not available among reference samples. Therefore, we employed a machine learning method to predict missing positive cases based on various features shared by observed allele-specific pairs. We showed that only 10 reference samples are sufficient to achieve high prediction accuracy with a low sampling variation. In conclusion, our method enables highly sensitive fine mapping and target identification for trait-associated variants based on a small number of reference samples.

  20. AlleleSeq: analysis of allele-specific expression and binding in a network framework.

    PubMed

    Rozowsky, Joel; Abyzov, Alexej; Wang, Jing; Alves, Pedro; Raha, Debasish; Harmanci, Arif; Leng, Jing; Bjornson, Robert; Kong, Yong; Kitabayashi, Naoki; Bhardwaj, Nitin; Rubin, Mark; Snyder, Michael; Gerstein, Mark

    2011-08-02

    To study allele-specific expression (ASE) and binding (ASB), that is, differences between the maternally and paternally derived alleles, we have developed a computational pipeline (AlleleSeq). Our pipeline initially constructs a diploid personal genome sequence (and corresponding personalized gene annotation) using genomic sequence variants (SNPs, indels, and structural variants), and then identifies allele-specific events with significant differences in the number of mapped reads between maternal and paternal alleles. There are many technical challenges in the construction and alignment of reads to a personal diploid genome sequence that we address, for example, bias of reads mapping to the reference allele. We have applied AlleleSeq to variation data for NA12878 from the 1000 Genomes Project as well as matched, deeply sequenced RNA-Seq and ChIP-Seq data sets generated for this purpose. In addition to observing fairly widespread allele-specific behavior within individual functional genomic data sets (including results consistent with X-chromosome inactivation), we can study the interaction between ASE and ASB. Furthermore, we investigate the coordination between ASE and ASB from multiple transcription factors events using a regulatory network framework. Correlation analyses and network motifs show mostly coordinated ASB and ASE.

  1. Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu; Xu, Yanfeng; Huang, Lan; Jones, Evan C; Zhang, Lianfeng; Clark, Richard A; Roop, Dennis R; Qin, Chuan; Chen, Jiang

    2016-01-01

    Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele-specific small interfering RNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific short hairpin RNA (shRNA) persistently suppressed this phenotype. The phenotypic correction was associated with a significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of mutant keratin genes.

  2. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  3. Synthesis and characterization of 8-methoxy-2'- deoxyadenosine-containing oligonucleotides to probe the syn glycosidic conformation of 2'-deoxyadenosine within DNA.

    PubMed Central

    Eason, R G; Burkhardt, D M; Phillips, S J; Smith, D P; David, S S

    1996-01-01

    The synthesis of 8-methoxy-2'-deoxyadenosine (moA) protected at N6 as an N,N-dimethylformamidine derivative and incorporation of the modified nucleoside into oligodeoxynucleotides via the phosphoramidite method are described. UV thermal denaturation studies were conducted on duplexes containing moA:G, moA:C and moA:T base pairs to determine the thermodynamic stability of duplexes containing moA relative to their adenosine (A)-containing counterparts. In the case of moA:G base pairs the effect of moA substitution is sequence dependent. In A:G mismatch-containing sequences, which have been shown by structural characterization to have a syn conformational preference at the glycosidic bond of A, moA substitution results in stabilization of the duplex. In contrast, in sequences where the A in the A:G mismatch has been shown to prefer the anti conformation moA substitution is destabilizing to the duplex. Thus moA may be a useful probe for investigating the conformational preferences of the N-glycosidic bond of adenosine within DNA. In addition, moA nucleoside is more resistant to acid-catalyzed depurination than previously described 8-bromo-2'-deoxyadenosine, allowing for facile incorporation into oligonucleotides via automated solid phase DNA synthesis. PMID:8600457

  4. High levels of Gardnerella vaginalis detected with an oligonucleotide probe combined with elevated pH as a diagnostic indicator of bacterial vaginosis.

    PubMed Central

    Sheiness, D; Dix, K; Watanabe, S; Hillier, S L

    1992-01-01

    We have demonstrated a new approach to diagnosing bacterial vaginosis (BV) that is based on measuring the concentration of Gardnerella vaginalis in vaginal fluid with DNA probes. G. vaginalis is virtually always present at high concentrations in women who have BV but is also detected frequently in normal women, usually at concentrations of less than 10(7) CFU/ml of vaginal fluid. Elevated vaginal pH is another sensitive indicator of BV, although it can occur in conjunction with other conditions. We have proposed that quantitative measurements of G. vaginalis using specific DNA probes can serve as a useful aid in diagnosing BV, provided the vaginal pH is above 4.5. To test this hypothesis, a group of 113 women were first evaluated for BV by the standard set of clinical signs. Vaginal washes were collected, and aliquots were analyzed by quantitative culture for the concentration of G. vaginalis. Portions of these same samples were immobilized on nylon filters, along with standards for quantitation. The filters were incubated with a radiolabelled oligonucleotide specific for G. vaginalis 16S rRNA, and the subsequent autoradiographs were examined to determine levels of G. vaginalis in each sample. G. vaginalis at concentrations of greater than or equal to 2 x 10(7) CFU/ml and vaginal pH of greater than 4.5 were then analyzed for concurrence with the diagnoses based on clinical criteria. Results of this slot blot analysis gave a sensitivity of 95%, correctly categorizing 41 of 43 BV-positive specimens, and a specificity of 99%, correctly identifying 69 of 70 BV-negative specimens, compared with diagnosis based on clinical criteria. Images PMID:1372621

  5. One-year monitoring of an oligonucleotide fluorescence in situ hybridization probe panel laboratory-developed test for bladder cancer detection

    PubMed Central

    Tinawi-Aljundi, Rima; King, Lauren; Knuth, Shannon T; Gildea, Michael; Ng, Carrie; Kahl, Josh; Dion, Jacqueline; Young, Chris; Schervish, Edward W; Frontera, J Rene; Hafron, Jason; Kernen, Kenneth M; Di Loreto, Robert; Aurich-Costa, Joan

    2015-01-01

    Background Previously, we had developed and manufactured an oligonucleotide fluorescence in situ hybridization (OligoFISH) probe panel based on the most clinically sensitive chromosomes found in a reference set of bladder carcinoma cases. The panel was clinically validated for use as a diagnostic and monitoring assay for bladder cancer, reaching 100% correlation with the results of the UroVysion test. After 1 year of using this probe panel, we present here the comparison of cytology, cystoscopy, and pathology findings to the OligoFISH probe panel results to calculate its clinical performance. Materials and methods In order to calculate clinical performance, we compared the OligoFISH results to the cytology and cystoscopy/pathology findings for 147 initial diagnoses and 399 recurrence monitorings. Finally, we compared clinical performance to published values for the UroVysion test, including both low- and high-grade tumors. Results Chromosomes 3, 6, 7, and 20 were highly involved in bladder carcinoma aneuploidy. At the initial diagnosis, we obtained 90.5% (95% confidence interval [CI]: 84.5%–94.7%) accuracy, 96.8% sensitivity (95% CI: 91.0%–99.3%), 79.2% specificity (95% CI: 65.9%–87.8%), 89.2% positive predictive value (PPV; 95% CI: 81.5%–94.5%), and 93.3% negative predictive value (NPV; 95% CI: 81.7%–97.3%). When monitoring for recurrence, we obtained 85.2% accuracy (95% CI: 81.3%–88.5%), 82.0% sensitivity (95% CI: 76.0%–87.1%), 88.4% specificity (95% CI: 83.2%–92.5%), 87.7% PPV (95% CI: 82.1%–92.0%), and 83.0% NPV (95% CI: 77.3%–87.8%). When looking at low- and high-grade tumors, the test showed 100% sensitivity for high-grade tumors (95% CI: 92.5%–100%) and 87.5% sensitivity (95% CI: 68.8%–95.5%) for low-grade tumors. All the clinical parameters for the OligoFISH panel were higher than the UroVysion test’s published performance. We found significantly higher clinical sensitivity and NPV at initial diagnosis and significantly higher

  6. Human leukocyte antigen typing using a knowledge base coupled with a high-throughput oligonucleotide probe array analysis.

    PubMed

    Zhang, Guang Lan; Keskin, Derin B; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S; Leppanen, Scott; Milford, Edgar L; Reinherz, Ellis L; Brusic, Vladimir

    2014-01-01

    Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world's populations, benefiting both global public health and personalized health care.

  7. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-07-28

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.

  8. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus

    PubMed Central

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes. PMID:27465215

  9. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  10. Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome.

    PubMed

    Kadota, Mitsutaka; Yang, Howard H; Hu, Nan; Wang, Chaoyu; Hu, Ying; Taylor, Philip R; Buetow, Kenneth H; Lee, Maxwell P

    2007-05-18

    Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.

  11. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  12. Visualized detection of single-base difference in multiplexed loop-mediated isothermal amplification amplicons by invasive reaction coupled with oligonucleotide probe-modified gold nanoparticles.

    PubMed

    Lu, Yan; Ma, Xueping; Wang, Jianping; Sheng, Nan; Dong, Tianhui; Song, Qinxin; Rui, Jianzhong; Zou, Bingjie; Zhou, Guohua

    2017-04-15

    Loop-mediated isothermal amplification (LAMP) is a well-developed DNA amplification method with an ultra-high sensitivity, but it is difficult to recognize a single-base difference (like genotyping) in target-specific amplicons by conventional detection ways, such as the intercalation of dyes into dsDNA amplicons or the increase of solution turbidity along with the polymerization process. To allow genotyping based on LAMP suitable for POCT (point-of-care testing) or on-site testing, here we proposed a highly specific and cost-effective method for detecting a single-base difference in LAMP amplicons. The method includes three key steps, sequence amplifier to amplify multiple fragments containing the single nucleotide polymorphisms (SNPs) of interest, allele identifier to recognize a targeted base in the amplicons by invasive reaction, and signal generator to yield signals by hybridization-induced assembly of oligonucleotide probe-modified gold nanoparticles. Because the allele identifier is sensitive to one base difference, it is possible to use multiplexed LAMP (mLAMP) to generate amplicon mixtures for multiple SNP typing. Genotyping of 3 different SNPs (CYP2C19*2, CYP2C19*3 and MDR1-C3435T) for guiding the dosage of clopidogrel is successfully carried out in a 3-plex LAMP on real clinical samples. As our method relies on the naked-eye detection and constant-temperature reaction, no expensive instrument is required for both target amplification and sequence identification, thus much suitable for inexpensive gene-guided personalized medicine in source-limited regions.

  13. PCR/oligonucleotide probe typing of HLA class II alleles in a Filipino population reveals an unusual distribution of HLA haplotypes.

    PubMed Central

    Bugawan, T. L.; Chang, J. D.; Klitz, W.; Erlich, H. A.

    1994-01-01

    We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population. PMID:8304349

  14. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    SciTech Connect

    LaSalle, J.; Flint, A.; Lalande, M.

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  15. Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-01-01

    Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest specificity for allele discrimination because two hybridization events are required for ligation. We report the development of a DNA biosensor that offers significant advantages over currently available methods for detection of OLR products: It allows simultaneous visual discrimination of both alleles using a single ligation reaction. Detection is complete within minutes without the need for any specialized instruments. It does not involve multiple cycles of incubation and washing. The dry-reagent format minimizes the pipetting steps. The need for qualified personnel is much lower than current methods. The principle of the assay is as follows: Following PCR amplification, a single OLR is performed using a biotinylated common probe and two allele-specific probes labeled with the haptens digoxigenin and fluorescein. Ligation products corresponding to the normal and mutant allele are double-labeled with biotin and either digoxigenin or fluorescein, respectively. The products are captured by antidigoxigenin or antifluorescein antibodies, or both, that are immobilized at the two test zones of the biosensor and react with antibiotin-functionalized gold nanoparticle reporters. The excess nanoparticles bind to biotinylated albumin that is immobilized at the control zone of the biosensor. The genotype is assigned by the characteristic red lines that appear at the two test zones. The proposed DNA biosensor constitutes a significant step toward point-of-care SNP genotyping.

  16. Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications.

    PubMed

    Yu, Chih-Chieh; Qiu, Wanglong; Juang, Caroline S; Mansukhani, Mahesh M; Halmos, Balazs; Su, Gloria H

    2017-01-01

    Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.

  17. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  18. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  19. Determination of ABO genotypes by real-time PCR using allele-specific primers.

    PubMed

    Muro, Tomonori; Fujihara, Junko; Imamura, Shinji; Nakamura, Hiroaki; Kimura-Kataoka, Kaori; Toga, Tomoko; Iida, Reiko; Yasuda, Toshihiro; Takeshita, Haruo

    2012-01-01

    ABO grouping of biological specimens is informative for identifying victims and narrowing down suspects. In Japan and elsewhere, ABO grouping as well as DNA profiling plays an essential role in crime investigations. In the present study, we developed a new method for ABO genotyping using allele-specific primers and real-time PCR. The method allows for the detection of three single nucleotide polymorphisms (SNPs) at nucleotide positions 261, 796, and 803 in the ABO gene and the determination of six major ABO genotypes. This method required less than 2 h for accurate ABO genotyping using 2.0 ng of DNA. This method could be applicable for rapid and simple screening of forensic samples.

  20. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers.

    PubMed

    Groner, William D; Christy, Megan E; Kreiner, Catherine M; Liljegren, Sarah J

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  1. Genotyping of benzimidazole resistant and susceptible isolates of Haemonchus contortus from sheep by allele specific PCR.

    PubMed

    Mohanraj, Karthik; Subhadra, Subhra; Kalyanasundaram, Aravindan; Ilangopathy, Manikkavasagan; Raman, Muthusamy

    2017-03-01

    Extensive and indiscriminate use of the benzimidazole class of drugs has led to the onset of anthelmintic resistance. In tropical countries like India, Haemonchus contortus is the most pathogenic parasite infecting sheep and goats. The widespread presence of resistant helminths (especially H. contortus) threatens the livestock farming. The use of various drugs has led to single nucleotide polymorphism that causes specific amino acid substitutions in β-tubulin protein of H. contortus to confer resistance. This emphasizes the need for a survey on the present status of resistance in India. In this study, allele specific PCR was employed to screen the presence of a SNP, a thymine-to-adenine transversion which leads to substitution of amino acid in codon 200 of β-tubulin gene that is correlated specifically with BZ resistance. Third stage larvae (L3) from pooled faecal cultures of four organized sheep farms served as a source of genomic DNA for identification of H. contortus and further genotype analysis. A total of 1000 larvae was screened, out of which 673 larvae were identified as H. contortus. Among 673 H. contortus larvae, 539 larvae (80 %) were genotyped as homozygous resistant (rr) and remaining 134 (20 %) were heterozygous susceptible (Sr) by allele specific PCR. The concluded resistance status reasons out the failure of anthelmintic drug in treating ruminants. Immediate steps are needed to avoid further aggravation of the problem. Target selective treatment by reviewing the resistance status of individual drugs, appropriate use of anthelmintic drugs and other control strategies will provide a pragmatic option for delaying the further spread of anthelmintic resistance.

  2. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  3. Allele-specific methylation occurs at genetic variants associated with complex disease.

    PubMed

    Hutchinson, John N; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results.

  4. Allele-specific analysis of DNA replication origins in mammalian cells

    PubMed Central

    Bartholdy, Boris; Mukhopadhyay, Rituparna; Lajugie, Julien; Aladjem, Mirit I.; Bouhassira, Eric E.

    2015-01-01

    The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity. PMID:25987481

  5. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis.

    PubMed

    Nieminen, Taina T; Pavicic, Walter; Porkka, Noora; Kankainen, Matti; Järvinen, Heikki J; Lepistö, Anna; Peltomäki, Päivi

    2016-10-25

    Allele-specific expression (ASE) of the Adenomatous Polyposis Coli (APC) gene occurs in up to one-third of families with adenomatous polyposis (FAP) that have screened mutation-negative by conventional techniques. To advance our understanding of the genomic basis of this phenomenon, 54 APC mutation-negative families (21 with classical FAP and 33 with attenuated FAP, AFAP) were investigated. We focused on four families with validated ASE and scrutinized these families by sequencing of the blood transcriptomes (RNA-seq) and genomes (WGS). Three families, two with classical FAP and one with AFAP, revealed deep intronic mutations associated with pseudoexons. In all three families, intronic mutations (c.646-1806T>G in intron 6, c.1408+729A>G in intron 11, and c.1408+731C>T in intron 11) created new splice donor sites resulting in the insertion of intronic sequences (of 127 bp, 83 bp, and 83 bp, respectively) in the APC transcript. The respective intronic mutations were absent in the remaining polyposis families and the general population. Premature stop of translation as the predicted consequence as well as co-segregation with polyposis supported the pathogenicity of the pseudoexons. We conclude that next generation sequencing on RNA and genomic DNA is an effective strategy to reveal and validate pseudoexons that are regularly missed by traditional screening methods and is worth considering in apparent mutation-negative polyposis families.

  6. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions

    PubMed Central

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2014-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  7. Utilising polymorphisms to achieve allele-specific genome editing in zebrafish

    PubMed Central

    Capon, Samuel J.; Baillie, Gregory J.; Bower, Neil I.; da Silva, Jason A.; Paterson, Scott; Hogan, Benjamin M.; Simons, Cas

    2017-01-01

    ABSTRACT The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites) and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19). To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected ‘heterozygotes’ compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs) present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model. PMID:27895053

  8. Regulatory Divergence in Drosophila melanogaster and D. simulans, a Genomewide Analysis of Allele-Specific Expression

    PubMed Central

    Graze, Rita M.; McIntyre, Lauren M.; Main, Bradley J.; Wayne, Marta L.; Nuzhdin, Sergey V.

    2009-01-01

    Species-specific regulation of gene expression contributes to the development and maintenance of reproductive isolation and to species differences in ecologically important traits. A better understanding of the evolutionary forces that shape regulatory variation and divergence can be developed by comparing expression differences among species and interspecific hybrids. Once expression differences are identified, the underlying genetics of regulatory variation or divergence can be explored. With the goal of associating cis and/or trans components of regulatory divergence with differences in gene expression, overall and allele-specific expression levels were assayed genomewide in female adult heads of Drosophila melanogaster, D. simulans, and their F1 hybrids. A greater proportion of cis differences than trans differences were identified for genes expressed in heads and, in accordance with previous studies, cis differences also explained a larger number of species differences in overall expression level. Regulatory divergence was found to be prevalent among genes associated with defense, olfaction, and among genes downstream of the Drosophila sex determination hierarchy. In addition, two genes, with critical roles in sex determination and micro RNA processing, Sxl and loqs, were identified as misexpressed in hybrid female heads, potentially contributing to hybrid incompatibility. PMID:19667135

  9. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  10. Utilising polymorphisms to achieve allele-specific genome editing in zebrafish.

    PubMed

    Capon, Samuel J; Baillie, Gregory J; Bower, Neil I; da Silva, Jason A; Paterson, Scott; Hogan, Benjamin M; Simons, Cas; Smith, Kelly A

    2017-01-15

    The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites) and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19). To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected 'heterozygotes' compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs) present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model.

  11. Human Y-chromosome haplotyping by allele-specific polymerase chain reaction.

    PubMed

    Gayden, Tenzin; Regueiro, Maria; Martinez, Laisel; Cadenas, Alicia M; Herrera, Rene J

    2008-06-01

    We describe the application of allele-specific PCR (AS-PCR) for screening biallelic markers, including SNPs, within the nonrecombining region of the human Y-chromosome (NRY). The AS-PCR method is based on the concept that the perfectly annealed primer-template complex is more stable, and therefore, more efficiently amplified under the appropriate annealing temperature than the complex with a mismatched 3'-residue. Furthermore, a mismatched nucleotide at the primer's 3'-OH end provides for a poor extension substrate for Taq DNA polymerase, allowing for discrimination between the two alleles. This method has the dual advantage of amplification and detection of alleles in a single expeditious and inexpensive procedure. The amplification conditions of over 50 binary markers, mostly SNPs, that define the major Y-haplogroups as well as their derived lineages were optimized and are provided for the first time. In addition, artificial restriction sites were designed for those markers that are not selectively amplified by AS-PCR. Our results are consistent with allele designations derived from other techniques such as RFLP and direct sequencing of PCR products.

  12. DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays.

    PubMed

    Jobs, Magnus; Howell, W Mathias; Stromqvist, Linda; Mayr, Torsten; Brookes, Anthony J

    2003-05-01

    Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8-100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support.

  13. Molecular genetic mechanisms of allelic specific regulation of murine Comt expression

    PubMed Central

    Segall, Samantha K.; Shabalina, Svetlana A.; Meloto, Carolina B.; Wen, Xia; Cunningham, Danielle; Tarantino, Lisa M.; Wiltshire, Tim; Gauthier, Josée; Tohyama, Sarasa; Martin, Loren J.; Mogil, Jeffrey S.; Diatchenko, Luda

    2015-01-01

    Abstract A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3′-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), ComtB2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3′ to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3′-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels. PMID:26067582

  14. High-throughput allele-specific expression across 250 environmental conditions

    PubMed Central

    Moyerbrailean, Gregory A.; Richards, Allison L.; Kurtz, Daniel; Kalita, Cynthia A.; Davis, Gordon O.; Harvey, Chris T.; Alazizi, Adnan; Watza, Donovan; Sorokin, Yoram; Hauff, Nancy; Zhou, Xiang; Wen, Xiaoquan; Pique-Regi, Roger; Luca, Francesca

    2016-01-01

    Gene-by-environment (GxE) interactions determine common disease risk factors and biomedically relevant complex traits. However, quantifying how the environment modulates genetic effects on human quantitative phenotypes presents unique challenges. Environmental covariates are complex and difficult to measure and control at the organismal level, as found in GWAS and epidemiological studies. An alternative approach focuses on the cellular environment using in vitro treatments as a proxy for the organismal environment. These cellular environments simplify the organism-level environmental exposures to provide a tractable influence on subcellular phenotypes, such as gene expression. Expression quantitative trait loci (eQTL) mapping studies identified GxE interactions in response to drug treatment and pathogen exposure. However, eQTL mapping approaches are infeasible for large-scale analysis of multiple cellular environments. Recently, allele-specific expression (ASE) analysis emerged as a powerful tool to identify GxE interactions in gene expression patterns by exploiting naturally occurring environmental exposures. Here we characterized genetic effects on the transcriptional response to 50 treatments in five cell types. We discovered 1455 genes with ASE (FDR < 10%) and 215 genes with GxE interactions. We demonstrated a major role for GxE interactions in complex traits. Genes with a transcriptional response to environmental perturbations showed sevenfold higher odds of being found in GWAS. Additionally, 105 genes that indicated GxE interactions (49%) were identified by GWAS as associated with complex traits. Examples include GIPR–caffeine interaction and obesity and include LAMP3–selenium interaction and Parkinson disease. Our results demonstrate that comprehensive catalogs of GxE interactions are indispensable to thoroughly annotate genes and bridge epidemiological and genome-wide association studies. PMID:27934696

  15. Characterization and machine learning prediction of allele-specific DNA methylation.

    PubMed

    He, Jianlin; Sun, Ming-an; Wang, Zhong; Wang, Qianfei; Li, Qing; Xie, Hehuang

    2015-12-01

    A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events.

  16. Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs

    PubMed Central

    Smith, Cory; Abalde-Atristain, Leire; He, Chaoxia; Brodsky, Brett R; Braunstein, Evan M; Chaudhari, Pooja; Jang, Yoon-Young; Cheng, Linzhao; Ye, Zhaohui

    2015-01-01

    Efficient and precise genome editing is crucial for realizing the full research and therapeutic potential of human induced pluripotent stem cells (iPSCs). Engineered nucleases including CRISPR/Cas9 and transcription activator like effector nucleases (TALENs) provide powerful tools for enhancing gene-targeting efficiency. In this study, we investigated the relative efficiencies of CRISPR/Cas9 and TALENs in human iPSC lines for inducing both homologous donor-based precise genome editing and nonhomologous end joining (NHEJ)-mediated gene disruption. Significantly higher frequencies of NHEJ-mediated insertions/deletions were detected at several endogenous loci using CRISPR/Cas9 than using TALENs, especially at nonexpressed targets in iPSCs. In contrast, comparable efficiencies of inducing homologous donor-based genome editing were observed at disease-associated loci in iPSCs. In addition, we investigated the specificity of guide RNAs used in the CRISPR/Cas9 system in targeting disease-associated point mutations in patient-specific iPSCs. Using myeloproliferative neoplasm patient-derived iPSCs that carry an acquired JAK2-V617F point mutation and α1-antitrypsin (AAT) deficiency patient-derived iPSCs that carry an inherited Z-AAT point mutation, we demonstrate that Cas9 can specifically target either the mutant or the wild-type allele with little disruption at the other allele differing by a single nucleotide. Overall, our results demonstrate the advantages of the CRISPR/Cas9 system in allele-specific genome targeting and in NHEJ-mediated gene disruption. PMID:25418680

  17. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation

    PubMed Central

    Do, Catherine; Lang, Charles F.; Lin, John; Darbary, Huferesh; Krupska, Izabela; Gaba, Aulona; Petukhova, Lynn; Vonsattel, Jean-Paul; Gallagher, Mary P.; Goland, Robin S.; Clynes, Raphael A.; Dwork, Andrew; Kral, John G.; Monk, Catherine; Christiano, Angela M.; Tycko, Benjamin

    2016-01-01

    Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A∗-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders. PMID:27153397

  18. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications.

    PubMed

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D Gray; Soisson, Lorraine; Diggs, Carter L; Vekemans, Johan; Cohen, Joe; Blackwelder, William C; Dube, Tina; Laurens, Matthew B; Doumbo, Ogobara K; Plowe, Christopher V

    2013-02-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02(A), a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02(A) had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen.

  19. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  20. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Wagner, Thomas; Huyuh, Hoan K.; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2002-01-01

    Beta-D-Xylopyranosyl-(4 - 2 )-oligonucleotides containing adenine and thymine as nucleohases were synthesized as a part of a systematic study of the pairing properties of pentopyranosyl oligonucleotides. Contrary to earlier expectations based on qualitative conformational criteria, Beta-D-xylopyranosyl(4 - 2 )- oligonucleotides show Watson-Crick pairing comparable in strength to that shown by pyranosyl-RNA.

  1. Analysis of genomic imprinting by quantitative allele-specific expression by Pyrosequencing(®).

    PubMed

    McKeown, Peter C; Fort, Antoine; Spillane, Charles

    2014-01-01

    Genomic imprinting is a parent-of-origin phenomenon whereby gene expression is restricted to the allele inherited from either the maternal or paternal parent. It has been described from flowering plants and eutherian mammals and may have evolved due to parental conflicts over resource allocation. In mammals, imprinted genes are responsible for ensuring correct rates of embryo development and for preventing parthenogenesis. The molecular basis of imprinting depends upon the presence of differential epigenetic marks on the alleles inherited from each parent, although in plants the exact mechanisms that control imprinting are still unclear in many cases. Recent studies have identified large numbers of candidate imprinted genes from Arabidopsis thaliana and other plants (see Chap. 7 by Köhler and colleagues elsewhere in this volume) providing the tools for more thorough investigation into how imprinted gene networks (IGNs) are regulated. Analysis of genomic imprinting in animals has revealed important information on how IGNs are regulated during development, which often involves intermediate levels of imprinting. In some instances, small but significant changes in the degree of parental bias in gene expression have been linked to developmental traits, livestock phenotypes, and human disease. As some of the imprinted genes recently reported from plants show differential rather than complete (binary) imprinting, there is a clear need for tools that can quantify the degree of allelic expression bias occurring at a transcribed locus. In this chapter, we describe the use of Quantification of Allele-Specific Expression by Pyrosequencing(®) (QUASEP) as a tool suitable for this challenge. We describe in detail the factors which ensure that a Pyrosequencing(®) assay will be suitable for giving robust QUASEP and the problems which may be encountered during the study of imprinted genes by Pyrosequencing(®), with particular reference to our work in A. thaliana and in cattle

  2. Drug targeting: synthesis and endocytosis of oligonucleotide-neoglycoprotein conjugates.

    PubMed Central

    Bonfils, E; Depierreux, C; Midoux, P; Thuong, N T; Monsigny, M; Roche, A C

    1992-01-01

    Inhibition of gene expression by antisense oligonucleotides is limited by their low ability to enter cells. Knowing that sugar binding receptors, also called membrane lectins, efficiently internalize neoglycoproteins bearing the relevant sugar, 6-phosphomannose, for instance, oligonucleotides--substituted on their 5'-end with either a fluorescent probe or a radioactive label on the one hand, and bearing a thiol function on their 3'-end, on the other hand,--were coupled onto 6-phosphomannosylated proteins via a disulfide bridge. The oligonucleotide bound to 6-phosphomannosylated serum albumin is much more efficiently internalized roughly 20 times than the free oligonucleotide. Although most of the oligonucleotides are associated with vesicular compartments, oligonucleotides after releasing from the carrier by reduction of the disulfide bridge may find their way to reach the cytosol and then lead to an increase in the efficiency of the oligonucleotides. Images PMID:1408764

  3. Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples.

    PubMed

    McCoy, Gary R; Touzet, Nicolas; Fleming, Gerard T A; Raine, Robin

    2015-07-01

    The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5' end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland.

  4. [Microchip electrophoresis coupled with multiplex allele-specific am-plification for typing multiple single nucleotide polymorphisms (SNPs) simultaneously].

    PubMed

    Wang, Wei-Peng; Zhou, Guo-Hua

    2009-02-01

    A new method of DNA adapter ligation-mediated allele-specific amplification (ALM-ASA) was developed for typing multiple single nucleotide polymorphisms (SNPs) on the platform of microchip electrophoresis. Using seven SNPs of 794C>T, 1274C>T, 2143T>C, 2766T>del, 3298G>A, 5200G>A, and 5277C>T in the interleukin 1B (IL1B) gene as a target object, a long DNA fragment containing the seven SNPs of interest was pre-amplified to enhance the specificity. The pre-amplified DNA fragment was digested by a restriction endonuclease to form sticky ends; and then the adapter was ligated to either end of the digested fragment. Using the adapter-ligated fragments as templates, a 7-plex allele-specific amplification was performed by 7 allele-specific primers and a universal primer in one tube. The allele-specific products amplified were separated by chip electrophoresis and the types of SNPs were easily discriminated by the product sizes. The seven SNPs in IL1B gene in 48 healthy Chinese were successfully typed by microchip electrophoresis and the results coincided with those by PCR-restriction fragment length polymorphism and sequencing method. The method established was accurate and can be used to type multiple SNPs simultaneously. In combination with microchip electrophoresis for readout, ALM-ASA assay can be used for fast SNP detection with a small amount of sample. Using self-prepared gel matrix and reused chips for analysis, the SNP can be typed at an ultra low cost.

  5. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    PubMed

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms.

  6. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia

    PubMed Central

    Wang, Xu; Clark, Andrew G.

    2016-01-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  7. Read-mapping using personalized diploid reference genome for RNA sequencing data reduced bias for detecting allele-specific expression

    PubMed Central

    Yuan, Shuai; Qin, Zhaohui

    2014-01-01

    Next generation sequencing (NGS) technologies have been applied extensively in many areas of genetics and genomics research. A fundamental problem when comes to analyzing NGS data is mapping short sequencing reads back to the reference genome. Most of existing software packages rely on a single uniform reference genome and do not automatically take into the consideration of genetic variants. On the other hand, large proportions of incorrectly mapped reads affect the correct interpretation of the NGS experimental results. As an example, Degner et al. showed that detecting allele-specific expression from RNA sequencing data was biased toward the reference allele. In this study, we developed a method that utilize DirectX 11 enabled graphics processing unit (GPU)’s parallel computing power to produces a personalized diploid reference genome based on all known genetic variants of that particular individual. We show that using such a personalized diploid reference genome can improve mapping accuracy and significantly reduce the bias toward reference allele in allele-specific expression analysis. Our method can be applied to any individual that has genotype information obtained either from array-based genotyping or resequencing. Besides the reference genome, no additional changes to alignment algorithm are needed for performing read mapping therefore one can utilize any of the existing read mapping tools and achieve the improved read mapping result. C++ and GPU compute shader source code of the software program is available at: http://code.google.com/p/diploid-mapping/downloads/list. PMID:25621316

  8. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  9. Design of allele-specific primers and detection of the human ABO genotyping to avoid the pseudopositive problem.

    PubMed

    Yaku, Hidenobu; Yukimasa, Tetsuo; Nakano, Shu-ichi; Sugimoto, Naoki; Oka, Hiroaki

    2008-11-01

    PCR experiments using DNA primers forming mismatch pairing with template lambda DNA at the 3' end were carried out in order to develop allele-specific primers capable of detecting SNP in genomes without generating pseudopositive amplification products, and thus avoiding the so-called pseudopositive problem. Detectable amounts of PCR products were obtained when primers forming a single or two mismatch pairings at the 3' end were used. In particular, 3' terminal A/C or T/C (primer/template) mismatches tended to allow PCR amplification to proceed, resulting in pseudopositive results in many cases. While less PCR product was observed for primers forming three terminal mismatch pairings, target DNA sequences were efficiently amplified by primers forming two mismatch pairings next to the terminal G/C base pairing. These results indicate that selecting a primer having a 3' terminal nucleotide that recognizes the SNP nucleotide and the next two nucleotides that form mismatch pairings with the template sequence can be used as an allele-specific primer that eliminates the pseudopositive problem. Trials with the human ABO genes demonstrated that this primer design is also useful for detecting a single base pair difference in gene sequences with a signal-to-noise ratio of at least 45.

  10. Rapid quantification of single-nucleotide mutations in mixed influenza A viral populations using allele-specific mixture analysis.

    PubMed

    Liu, Cindy M; Driebe, Elizabeth M; Schupp, James; Kelley, Erin; Nguyen, Jack T; McSharry, James J; Weng, Qingmei; Engelthaler, David M; Keim, Paul S

    2010-01-01

    Monitoring antiviral resistance in influenza is critical to public health epidemiology and pandemic preparedness activities. Effective monitoring requires methods to detect low-level resistance and to monitor the change in resistance as a function of time and drug treatment. Resistance-conferring single-nucleotide mutations in influenza virus are ideal targets for such methods. In the present study, fives sets of paired TaqMan allele-specific PCR (ASPCR) assays were developed and validated for quantitative single-nucleotide polymorphism (SNP) analysis. This novel method using Delta Ct is termed allele-specific mixture analysis (ASMA) or FluASMA. The FluASMA assays target L26F, V27A, A30T, and S31N mutations in the A/Albany/1/98 (H3N2) M2 gene and H275Y mutation in the A/New Caledonia/20/99 (H1N1) NA gene and have a limit of quantification of 0.25-0.50% mutant. The error for % mutant estimation was less than 10% in all FluASMA assays, with intra-run Delta Ct coefficient of variance (CoV) at

  11. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.

  12. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing.

    PubMed

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2016-11-28

    Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only.

  13. Read-mapping using personalized diploid reference genome for RNA sequencing data reduced bias for detecting allele-specific expression.

    PubMed

    Yuan, Shuai; Qin, Zhaohui

    2012-10-01

    Next generation sequencing (NGS) technologies have been applied extensively in many areas of genetics and genomics research. A fundamental problem when comes to analyzing NGS data is mapping short sequencing reads back to the reference genome. Most of existing software packages rely on a single uniform reference genome and do not automatically take into the consideration of genetic variants. On the other hand, large proportions of incorrectly mapped reads affect the correct interpretation of the NGS experimental results. As an example, Degner et al. showed that detecting allele-specific expression from RNA sequencing data was biased toward the reference allele. In this study, we developed a method that utilize DirectX 11 enabled graphics processing unit (GPU)'s parallel computing power to produces a personalized diploid reference genome based on all known genetic variants of that particular individual. We show that using such a personalized diploid reference genome can improve mapping accuracy and significantly reduce the bias toward reference allele in allele-specific expression analysis. Our method can be applied to any individual that has genotype information obtained either from array-based genotyping or resequencing. Besides the reference genome, no additional changes to alignment algorithm are needed for performing read mapping therefore one can utilize any of the existing read mapping tools and achieve the improved read mapping result. C++ and GPU compute shader source code of the software program is available at: http://code.google.com/p/diploid-mapping/downloads/list.

  14. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    PubMed

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  15. Oligonucleotide Immobilization and Hybridization on Aldehyde-Functionalized Poly(2-hydroxyethyl methacrylate) Brushes.

    PubMed

    Bilgic, Tugba; Klok, Harm-Anton

    2015-11-09

    DNA biosensing requires high oligonucleotide binding capacity interface chemistries that can be tuned to maximize probe presentation as well as hybridization efficiency. This contribution investigates the feasibility of aldehyde-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA) brush-based interfaces for oligonucleotide binding and hybridization. These polymer brushes, which allow covalent immobilization of oligonucleotides, are prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of HEMA followed by a postpolymerization oxidation step to generate side chain aldehyde groups. A series of polymer brushes covering a range of film thicknesses and grafting densities was investigated with regard to their oligonucleotide binding capacity as well as their ability to support oligonucleotide hybridization. Densely grafted brushes were found to have probe oligonucleotide binding capacities of up to ∼30 pmol/cm(2). Increasing the thickness of these densely grafted brush films, however, resulted in a decrease in the oligonucleotide binding capacity. Less densely grafted brushes possess binding capacities of ∼10 pmol/cm(2), which did not significantly depend on film thickness. The oligonucleotide hybridization efficiencies, however, were highest (93%) on those brushes that present the lowest surface concentration of the probe oligonucleotide. These results highlight the importance of optimizing the probe oligonucleotide surface concentration and binding interface chemistry. The versatility and tunability of the PHEMA-based brushes presented herein makes these films a very attractive platform for the immobilization and hybridization of oligonucleotides.

  16. In situ hybridisation for the detection of Leishmania species in paraffin wax-embedded canine tissues using a digoxigenin-labelled oligonucleotide probe

    PubMed Central

    Dinhopl, N.; Mostegl, M. M.; Richter, B.; Nedorost, N.; Maderner, A.; Fragner, K.; Weissenböck, H.

    2011-01-01

    The diagnosis of canine leishmaniosis (CanL) is currently predominantly achieved by cytological or histological identification of amastigotes in biopsy samples, demonstration of specific anti-Leishmania antibodies and PCR-based approaches. All these methods have the advantage of being sensitive and more or less specific; nevertheless, most of them also have disadvantages. A chromogenic in situ hybridisation (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 5.8S rRNA was developed for the detection of all species of Leishmania parasites in routinely paraffin wax-embedded canine tissues. This method was validated in comparison with traditional techniques (histology, PCR), on various tissues from three dogs with histological changes consistent with a florid leishmaniosis. Amastigote forms of Leishmania gave clear signals and were easily identified using ISH. Various tissues from 10 additional dogs with clinical suspicion or/and a positive serological test but without histological presence of amastigotes did not show any ISH signals. Potential cross-reactivity of the probe was ruled out by negative outcome of the ISH against selected protozoa (including the related Trypanosoma cruzi) and fungi. Thus, ISH proved to be a powerful tool for unambiguous detection of Leishmania parasites in paraffin wax-embedded tissues. PMID:21921059

  17. Citrus (Rutaceae) SNP markers based on Competitive Allele-Specific PCR; transferability across the Aurantioideae subfamily1

    PubMed Central

    Garcia-Lor, Andres; Ancillo, Gema; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    • Premise of the study: Single nucleotide polymorphism (SNP) markers based on Competitive Allele-Specific PCR (KASPar) were developed from sequences of three Citrus species. Their transferability was tested in 63 Citrus genotypes and 19 relative genera of the subfamily Aurantioideae to estimate the potential of SNP markers, selected from a limited intrageneric discovery panel, for ongoing broader diversity analysis at the intra- and intergeneric levels and systematic germplasm bank characterization. • Methods and Results: Forty-two SNP markers were developed using KASPar technology. Forty-one were successfully genotyped in all of the Citrus germplasm, where intra- and interspecific polymorphisms were observed. The transferability and diversity decreased with increasing taxonomic distance. • Conclusions: SNP markers based on the KASPar method developed from sequence data of a limited intrageneric discovery panel provide a valuable molecular resource for genetic diversity analysis of germplasm within a genus and should be useful for germplasm fingerprinting at a much broader diversity level. PMID:25202535

  18. Allele-specific impairment of GJB2 expression by GJB6 deletion del(GJB6-D13S1854).

    PubMed

    Rodriguez-Paris, Juan; Tamayo, Marta L; Gelvez, Nancy; Schrijver, Iris

    2011-01-01

    Mutations in the GJB2 gene, which encodes connexin 26, are a frequent cause of congenital non-syndromic sensorineural hearing loss. Two large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854), which truncate GJB6 (connexin 30), cause hearing loss in individuals homozygous, or compound heterozygous for these deletions or one such deletion and a mutation in GJB2. Recently, we have demonstrated that the del(GJB6-D13S1830) deletion contributes to hearing loss due to an allele-specific lack of GJB2 mRNA expression and not as a result of digenic inheritance, as was postulated earlier. In the current study we investigated the smaller del(GJB6-D13S1854) deletion, which disrupts the expression of GJB2 at the transcriptional level in a manner similar to the more common del(GJB6-D13S1830) deletion. Interestingly, in the presence of this deletion, GJB2 expression remains minimally but reproducibly present. The relative allele-specific expression of GJB2 was assessed by reverse-transcriptase PCR and restriction digestions in three probands who were compound heterozygous for a GJB2 mutation and del(GJB6-D13S1854). Each individual carried a different sequence variant in GJB2. All three individuals expressed the mutated GJB2 allele in trans with del(GJB6-D13S1854), but expression of the GJB2 allele in cis with the deletion was almost absent. Our study clearly corroborates the hypothesis that the del(GJB6-D13S1854), similar to the larger and more common del(GJB6-D13S1830), removes (a) putative cis-regulatory element(s) upstream of GJB6 and narrows down the region of location.

  19. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  20. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  1. Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species

    PubMed Central

    Arif, Mohammad; Opit, George; Mendoza-Yerbafría, Abigail; Dobhal, Shefali; Li, Zhihong; Kučerová, Zuzana; Ochoa-Corona, Francisco M.

    2015-01-01

    Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics. PMID:26086728

  2. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Reck, Folkert; Kudick, Rene; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert; Wippo, Harald

    2001-01-01

    To determine whether the remarkable chemical properties of the pyranosyl isomer of RNA as an informational Watson-Crick base-pairing system are unique to the pentopyranosyl-(4 + 2)-oligonucleotide isomer derived from the RNA-building block D-ribose, studies on the entire family of diastereoisomeric pyranosyL(4 - Z)-oligonucleotide systems deriving from D-ribose. L-lyxose. D-xylose, and L-arabinose were carried out. The result of these extended studies is unambiguous: not only pyranosyl-RNA, but all members of the pentopyranosyl(4 + 2)-oligonucleotide family are highly efficient Watson-Crick base-pairing systems. Their synthesis and pairing properties will be described in a series of publications in this journal.

  3. The delivery of therapeutic oligonucleotides

    PubMed Central

    Juliano, Rudolph L.

    2016-01-01

    The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology. PMID:27084936

  4. Absolute quantification of the alleles in somatic point mutations by bioluminometric methods based on competitive polymerase chain reaction in the presence of a locked nucleic acid blocker or an allele-specific primer.

    PubMed

    Iliadi, Alexandra; Petropoulou, Margarita; Ioannou, Penelope C; Christopoulos, Theodore K; Anagnostopoulos, Nikolaos I; Kanavakis, Emmanuel; Traeger-Synodinos, Jan

    2011-09-01

    In somatic (acquired) point mutations, the challenge is to quantify minute amounts of the mutant allele in the presence of a large excess of the normal allele that differs only in a single base pair. We report two bioluminometric methods that enable absolute quantification of the alleles. The first method exploits the ability of a locked nucleic acid (LNA) oligonucleotide to bind to and inhibit effectively the polymerase chain reaction (PCR) amplification of the normal allele while the amplification of the mutant allele remains unaffected. The second method employs allele-specific PCR primers, thereby allowing the amplification of the corresponding allele only. DNA internal standards (competitors) are added to the PCR mixture to compensate for any sample-to-sample variation in the amplification efficiency. The amplification products from the two alleles and the internal standards are quantified by a microtiter well-based bioluminometric hybridization assay using the photoprotein aequorin as a reporter. The methods allow absolute quantification of less than 300 copies of the mutant allele even in samples containing less than 1% of the mutant allele.

  5. Bivariate segmentation of SNP-array data for allele-specific copy number analysis in tumour samples

    PubMed Central

    2013-01-01

    Background SNP arrays output two signals that reflect the total genomic copy number (LRR) and the allelic ratio (BAF), which in combination allow the characterisation of allele-specific copy numbers (ASCNs). While methods based on hidden Markov models (HMMs) have been extended from array comparative genomic hybridisation (aCGH) to jointly handle the two signals, only one method based on change-point detection, ASCAT, performs bivariate segmentation. Results In the present work, we introduce a generic framework for bivariate segmentation of SNP array data for ASCN analysis. For the matter, we discuss the characteristics of the typically applied BAF transformation and how they affect segmentation, introduce concepts of multivariate time series analysis that are of concern in this field and discuss the appropriate formulation of the problem. The framework is implemented in a method named CnaStruct, the bivariate form of the structural change model (SCM), which has been successfully applied to transcriptome mapping and aCGH. Conclusions On a comprehensive synthetic dataset, we show that CnaStruct outperforms the segmentation of existing ASCN analysis methods. Furthermore, CnaStruct can be integrated into the workflows of several ASCN analysis tools in order to improve their performance, specially on tumour samples highly contaminated by normal cells. PMID:23497144

  6. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.

    PubMed

    Xu, Guojie; Wang, Xueyong; Liu, Chunsheng; Li, Weidong; Wei, Shengli; Liu, Ying; Cheng, Xiaoli; Liu, Juan

    2013-02-01

    Rhubarb (official Da-huang) is an important medicinal herb in Asia. Many adulterants of official Da-huang have been discovered in Chinese markets in recent years, which has resulted in adverse effects in medicinal treatment. Here, novel molecular markers based on a short maturase K (matK) gene were developed for authenticating official Da-huang. This study showed that all the species from official Da-huang were clustered together in one clade in the polygenetic trees based on short matK. Two highly conserved single nucleotide polymorphisms of short matK were mined in the species from official Da-huang. Based on these polymophisms, four improved specific primers of official Da-huang were successfully developed that generated reproducible specific bands. These results suggest that the short matK sequence can be considered as a favorable candidate for distinguishing official Da-huang from its adulterants. The established multiplex allele-specific PCR was determined to be simple and accurate and may serve as a preferable tool for authentication of official Da-huang. In addition, we suggest that short-sized specific bands be developed to authenticate materials used in traditional Chinese medicine.

  7. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  8. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  9. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia

    PubMed Central

    Wang, Yang; Cao, Yanfei; Huang, Xiaoye; Yu, Tao; Wei, Zhiyun; McGrath, John; Xu, Fei; Bi, Yan; Li, Xingwang; Yang, Fengping; Li, Weidong; Zou, Xia; Peng, Zhihai; Xiao, Yanzeng; Zhang, Yan; He, Lin; He, Guang

    2016-01-01

    Evidence has indicated that the incidence of colorectal cancer (CRC) among schizophrenia is lower than normal. To explore this potential protective effect, we employed an innovative strategy combining association study with allele-specific expression (ASE) analysis in MCC gene. We first genotyped four polymorphisms within MCC in 312 CRC patients, 270 schizophrenia patients and 270 controls. Using the MassArray technique, we performed ASE measurements in a second sample series consisting of 50 sporadic CRC patients, 50 schizophrenia patients and 52 controls. Rs2227947 showed significant differences between schizophrenia cases and controls, and haplotype analysis reported some significant discrepancies among these three subject groups. ASE values of rs2227948 and rs2227947 presented consistently differences between CRC (or schizophrenia) patients and controls. Of the three groups, highest frequencies of ASE in MCC were concordantly found in CRC group, whereas lowest frequencies of ASE were observed in schizophrenia group. Similar trends were confirmed in both haplotype frequencies and ASE frequencies (i.e. CRC > control > schizophrenia). We provide a first indication that MCC might confer alterative genetic susceptibility to CRC in individuals with schizophrenia promising to shed more light on the relationship between schizophrenia and cancer progression. PMID:27226254

  10. TFIIB/SUA7(E202G) is an allele-specific suppressor of TBP1(E186D)

    PubMed Central

    Chew, Boon Shang; Lehming, Norbert

    2007-01-01

    The TBP (TATA-box-binding protein), Tbp1p, plays a vital role in all three classes of transcription by RNA polymerases I–III. A TBP1(E186D) mutation had been described that affected interaction of Tbp1p with TFIIB (transcription factor IIB) and that caused slow-growth, temperature-sensitivity, 3-aminotriazole-sensitivity as well as a gal− phenotype. We used the TBP1(E186D) mutant for suppressor screens, and we isolated TFIIB/SUA7(E202G) as an allele-specific suppressor of all phenotypes caused by the TBP1(E186D) mutation. Our results show that the SUA7(E202G) mutation restored binding of TFIIB to Tbp1(E186D)p. In addition, we observed that Tbp1(E186D)p was expressed at a lower level than wild-type Tbp1p, and that SUA7(E202G) restored the protein level of Tbp1(E186D)p. This suggested that the TBP1(E186D) mutation might have generated its phenotypes by making Tbp1p the limiting factor for activated transcription. DNA microarray analysis indicated that the TBP1(E186D) temperature-sensitivity and slow-growth phenotypes might have been caused by insufficient amounts of Tbp1p for efficient transcription of the rRNA genes by RNA polymerase I. PMID:17680779

  11. EGFR mutant allelic-specific imbalance assessment in routine samples of non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Vatrano, Simona; Russo, Stefania; Bellevicine, Claudio; de Luca, Caterina; Sgariglia, Roberta; Rocco, Danilo; de Pietro, Livia; Riccardi, Fernando; Gobbini, Elisa; Righi, Luisella; Troncone, Giancarlo

    2015-09-01

    In non-small cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) gene may undergo both mutations and copy number gains. EGFR mutant allele-specific imbalance (MASI) occurs when the ratio of mutant-to-wild-type alleles increases significantly. In this study, by using a previously validated microfluidic-chip-based technology, EGFR-MASI occurred in 25/67 mutant cases (37%), being more frequently associated with EGFR exon 19 deletions (p=0.033). In a subset of 49 treated patients, we assessed whether MASI is a modifier of anti-EGFR treatment benefit. The difference in progression-free survival and overall survival between EGFR-MASI-positive and EGFR-MASI-negative groups of patients did not show a statistical significance. In conclusion, EGFR-MASI is a significant event in NSCLC, specifically associated with EGFR exon 19 deletions. However, EGFR-MASI does not seem to play a role in predicting the response to first-generation EGFR small molecules inhibitors.

  12. Allele-specific PCR typing and sequencing of the mitochondrial D-loop region in four layer breeds.

    PubMed

    Harumi, Takashi; Sano, Akiko; Minematsu, Takeo; Naito, Mitsuru

    2011-04-01

    This study aimed to investigate the ability of single nucleotide polymorphism (SNP) haplotypes in chicken mtDNA for presumption of the origins of chicken meat. We typed five SNPs of the D-loop region in mtDNA by allele-specific PCR (AS-PCR) in 556 hens, that is 233 White Leghorn (WL), 50 Dekalb-TX35 (D-TX), 140 Barred Plymouth Rock (BPR) and 133 Rhode Island Red (RIR) kept in the National Institute of Livestock and Grassland Science (NILGS, Tsukuba, Japan). Five haplotypes were observed among those chickens by AS-PCR. WL, D-TX, BPR and RIR displayed three, two, one and four SNP haplotypes, respectively. By a combination of the haplotypes by AS-PCR and the breeds, these chickens were classified into 10 groups. After the D-loop was sequenced in two chickens from every group (20 individuals), 15 SNP sites (including one insertion) and eight sequence haplotypes were observed. In conclusion, haplotype variation was observed in and among the layer breeds of the NILGS. This study demonstrates that SNP haplotypes in mtDNA should be appropriate for the presumption of the origins of chicken meat.

  13. Allele-specific polymerase chain reaction typing and sequencing of mitochondrial D-loop region in broiler chickens in Japan.

    PubMed

    Harumi, Takashi; Kobayashi, Eiji; Naito, Mitsuru

    2015-09-01

    This study aimed to comprehend a feature of single nucleotide polymorphism (SNP) in mitochondrial DNA (mtDNA) mainly of general broiler chickens in Japan. We typed two SNP sites (199C/T and 792A/G) of the D-loop region in mtDNA by allele-specific PCR (AS-PCR) in 359 broiler (182 chunky and 177 cobb) and 506 layer (233 White Leghorn, 140 Barred Plymouth Rock and 133 Rhode Island Red) chickens. The SNP of 199C or 792A by AS-PCR was observed in the chunky and cobb chickens, and not in the layers. The haplotype 199T/792G was observed in a part of cobb and all layers. By the result of AS-PCR haplotyping and the broiler brands, the D-loop region was sequenced in 44 broiler chickens (20 chunky and 24 cobb) and compared with the layers' sequence data. Among the broiler and layer chickens, 21 SNP sites (including one insertion) and 11 sequence haplotypes were observed. Haplotype variation or correspondence was observed in and between the broiler brands. This study provides important information to establish a chicken meat traceability system by SNP haplotyping of mtDNA in Japan.

  14. Simple and sensitive method for identification of human DNA by allele-specific polymerase chain reaction of FOXP2.

    PubMed

    Hiroshige, Kenichi; Soejima, Mikiko; Nishioka, Tomoki; Kamimura, Shigeo; Koda, Yoshiro

    2009-07-01

    The forkhead box P2 (FOXP2) gene is specifically involved in speech and language development in humans. The sequence is well conserved among many vertebrate species but has accumulated amino acid changes in the human lineage. The aim of this study was to develop a simple method to discriminate between human and nonhuman vertebrate DNA in forensic specimens by amplification of a human-specific genomic region. In the present study, we designed an allele-specific polymerase chain reaction (PCR) using primers to amplify smaller than 70-bp regions of FOXP2 to identify DNA as being of human or nonhuman, including ape, origin. PCR amplification was also successfully performed using fluorescence-labeled primers, and this method allows a single PCR reaction with a genomic DNA sample as small as 0.01 ng. This system also identified the presence of human DNA in two blood stains stored for 20 and 38 years. The results suggested the potential usefulness of FOXP2 as an identifier of human DNA in forensic samples.

  15. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    PubMed

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  16. Novel method for analysis of allele specific expression in triploid Oryzias latipes reveals consistent pattern of allele exclusion.

    PubMed

    Garcia, Tzintzuni I; Matos, Isa; Shen, Yingjia; Pabuwal, Vagmita; Coelho, Maria Manuela; Wakamatsu, Yuko; Schartl, Manfred; Walter, Ronald B

    2014-01-01

    Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18%) displayed a wide range of ASE levels. Interestingly the majority of genes (78%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.

  17. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects.

    PubMed

    Dinges, J R; Colleoni, C; Myers, A M; James, M G

    2001-03-01

    Starch production in all plants examined is altered by mutations of isoamylase-type starch-debranching enzymes (DBE), although how these proteins affect glucan polymer assembly is not understood. Various allelic mutations in the maize (Zea mays) gene sugary1 (su1), which codes for an isoamylase-type DBE, condition distinct kernel phenotypes. This study characterized the recessive mutations su1-Ref, su1-R4582::Mu1, and su1-st, regarding their molecular basis, chemical phenotypes, and effects on starch metabolizing enzymes. The su1-Ref allele results in two specific amino acid substitutions without affecting the Su1 mRNA level. The su1-R4582::Mu1 mutation is a null allele that abolishes transcript accumulation. The su1-st mutation results from insertion of a novel transposon-like sequence, designated Toad, which causes alternative pre-mRNA splicing. Three su1-st mutant transcripts are produced, one that is nonfunctional and two that code for modified SU1 polypeptides. The su1-st mutation is dominant to the null allele su1-R4582::Mu1, but recessive to su1-Ref, suggestive of complex effects involving quaternary structure of the SU1 enzyme. All three su1- alleles severely reduce or eliminate isoamylase-type DBE activity, although su1-st kernels accumulate less phytoglycogen and Suc than su1-Ref or su1-R4582::Mu1 mutants. The chain length distribution of residual amylopectin is significantly altered by su1-Ref and su1-R4582::Mu1, whereas su1-st has modest effects. These results, together with su1 allele-specific effects on other starch- metabolizing enzymes detected in zymograms, suggest that total DBE catalytic activity is the not the sole determinant of Su1 function and that specific interactions between SU1 and other components of the starch biosynthetic system are required.

  18. Molecular Structure of Three Mutations at the Maize sugary1 Locus and Their Allele-Specific Phenotypic Effects1

    PubMed Central

    Dinges, Jason R.; Colleoni, Christophe; Myers, Alan M.; James, Martha G.

    2001-01-01

    Starch production in all plants examined is altered by mutations of isoamylase-type starch-debranching enzymes (DBE), although how these proteins affect glucan polymer assembly is not understood. Various allelic mutations in the maize (Zea mays) gene sugary1 (su1), which codes for an isoamylase-type DBE, condition distinct kernel phenotypes. This study characterized the recessive mutations su1-Ref, su1-R4582::Mu1, and su1-st, regarding their molecular basis, chemical phenotypes, and effects on starch metabolizing enzymes. The su1-Ref allele results in two specific amino acid substitutions without affecting the Su1 mRNA level. The su1-R4582::Mu1 mutation is a null allele that abolishes transcript accumulation. The su1-st mutation results from insertion of a novel transposon-like sequence, designated Toad, which causes alternative pre-mRNA splicing. Three su1-st mutant transcripts are produced, one that is nonfunctional and two that code for modified SU1 polypeptides. The su1-st mutation is dominant to the null allele su1-R4582::Mu1, but recessive to su1-Ref, suggestive of complex effects involving quaternary structure of the SU1 enzyme. All three su1- alleles severely reduce or eliminate isoamylase-type DBE activity, although su1-st kernels accumulate less phytoglycogen and Suc than su1-Ref or su1-R4582::Mu1 mutants. The chain length distribution of residual amylopectin is significantly altered by su1-Ref and su1-R4582::Mu1, whereas su1-st has modest effects. These results, together with su1 allele-specific effects on other starch- metabolizing enzymes detected in zymograms, suggest that total DBE catalytic activity is the not the sole determinant of Su1 function and that specific interactions between SU1 and other components of the starch biosynthetic system are required. PMID:11244120

  19. Comprehensively Evaluating cis-Regulatory Variation in the Human Prostate Transcriptome by Using Gene-Level Allele-Specific Expression

    PubMed Central

    Larson, Nicholas B.; McDonnell, Shannon; French, Amy J.; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A.; Wang, Liang; Schaid, Daniel J.; Thibodeau, Stephen N.

    2015-01-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E−5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate. PMID:25983244

  20. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-04

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  1. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  2. A facile method for the construction of oligonucleotide microarrays.

    PubMed

    Sethi, Dalip; Kumar, A; Gupta, K C; Kumar, P

    2008-11-19

    In recent years, the oligonucleotide-based microarray technique has emerged as a powerful and promising tool for various molecular biological studies. Here, a facile protocol for the construction of an oligonucleotide microarray is demonstrated that involves immobilization of oligonucleotide-trimethoxysilyl conjugates onto virgin glass microslides. The projected immobilization strategy reflects high immobilization efficiency ( approximately 36-40%) and signal-to-noise ratio ( approximately 98), and hybridization efficiency ( approximately 32-35%). Using the proposed protocol, aminoalkyl, mercaptoalkyl, and phosphorylated oligonucleotides were immobilized onto virgin glass microslides. Briefly, modified oligonucleotides were reacted first with 3-glycidyloxypropyltriethoxysilane (GOPTS), and subsequently, the resultant conjugates were directly immobilized onto the virgin glass surface by making use of silanization chemistry. The constructed microarrays were then used for discrimination of base mismatches. On subjecting to different pH and thermal conditions, the microarray showed sufficient stability. Application of this chemistry to manufacture oligonucleotide probe-based microarrays for detection of bacterial meningitis is demonstrated. Single-step reaction for the formation of conjugates with the commercially available reagent (GOPTS), omission of capping step and surface modification, and efficient immobilization of oligonucleotides onto the virgin glass surface are the key features of the proposed strategy.

  3. Electrophoresis for genotyping: temporal thermal gradient gel electrophoresis for profiling of oligonucleotide dissociation.

    PubMed Central

    Day, I N; O'Dell, S D; Cash, I D; Humphries, S E; Weavind, G P

    1995-01-01

    Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia. Images PMID:7630718

  4. Allele-specific effects of ecSOD on asbestos-induced fibroproliferative lung disease in mice.

    PubMed

    Jun, Sujung; Fattman, Cheryl L; Kim, Byung-Jin; Jones, Harlan; Dory, Ladislav

    2011-05-15

    resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.

  5. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  6. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  7. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  8. Capillary and microchip gel electrophoresis for simultaneous detection of Salmonella pullorum and Salmonella gallinarum by rfbS allele-specific PCR.

    PubMed

    Jeon, Seonsook; Eo, Seong Kug; Kim, Yongseong; Yoo, Dong Jin; Kang, Seong Ho

    2007-09-30

    We report the use of capillary gel electrophoresis (CGE) based on a rfbS allele-specific polymerase chain reaction (PCR) for the analysis and simultaneous detection of Salmonella pullorum and Salmonella gallinarum, which are the major bacterial pathogens in poultry. rfbS allele-specific PCR was used to concurrently amplify two specific 147- and 187-bp DNA fragments for the simultaneous detection of S. pullorum and S. gallinarum at an annealing temperature of 54+/-1 degrees C and an MgCl(2) concentration of 2.8-5.6mM. Under an electric field of 333.3V/cm and a sieving matrix of 1.0% poly(ethyleneoxide) (M(r) 600000), the amplified PCR products were analyzed within 6min by CGE separation. This CGE assay could be translated to microchip format using programmed field strength gradients (PFSG). In the microchip gel electrophoresis with PFSG, both of the Salmonella analyses were completed within 30s, without decreasing the resolution efficiency. rfbS allele-specific PCR-microchip gel electrophoresis with the PFSG technique might be a new tool for the simultaneous detection of both S. pullorum and S. gallinarum, due to its ultra-speed and high efficiency.

  9. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries

    NASA Astrophysics Data System (ADS)

    Schmidt, Thorsten L.; Beliveau, Brian J.; Uca, Yavuz O.; Theilmann, Mark; da Cruz, Felipe; Wu, Chao-Ting; Shih, William M.

    2015-11-01

    Synthetic oligonucleotides are the main cost factor for studies in DNA nanotechnology, genetics and synthetic biology, which all require thousands of these at high quality. Inexpensive chip-synthesized oligonucleotide libraries can contain hundreds of thousands of distinct sequences, however only at sub-femtomole quantities per strand. Here we present a selective oligonucleotide amplification method, based on three rounds of rolling-circle amplification, that produces nanomole amounts of single-stranded oligonucleotides per millilitre reaction. In a multistep one-pot procedure, subsets of hundreds or thousands of single-stranded DNAs with different lengths can selectively be amplified and purified together. These oligonucleotides are used to fold several DNA nanostructures and as primary fluorescence in situ hybridization probes. The amplification cost is lower than other reported methods (typically around US$ 20 per nanomole total oligonucleotides produced) and is dominated by the use of commercial enzymes.

  10. Improving signal intensities for genes with low-expression on oligonucleotide microarrays

    PubMed Central

    Ramdas, Latha; Cogdell, David E; Jia, Jack Y; Taylor, Ellen E; Dunmire, Valerie R; Hu, Limei; Hamilton, Stanley R; Zhang, Wei

    2004-01-01

    Background DNA microarrays using long oligonucleotide probes are widely used to evaluate gene expression in biological samples. These oligonucleotides are pre-synthesized and sequence-optimized to represent specific genes with minimal cross-hybridization to homologous genes. Probe length and concentration are critical factors for signal sensitivity, particularly when genes with various expression levels are being tested. We evaluated the effects of oligonucleotide probe length and concentration on signal intensity measurements of the expression levels of genes in a target sample. Results Selected genes of various expression levels in a single cell line were hybridized to oligonucleotide arrays of four lengths and four concentrations of probes to determine how these critical parameters affected the intensity of the signal representing their expression. We found that oligonucleotides of longer length significantly increased the signals of genes with low-expression in the target. High-expressing gene signals were also boosted but to a lesser degree. Increasing the probe concentration, however, did not linearly increase the signal intensity for either low- or high-expressing genes. Conclusions We conclude that the longer the oligonuclotide probe the better the signal intensities of low expressing genes on oligonucleotide arrays. PMID:15196312

  11. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology.

    PubMed Central

    Guschin, D Y; Mobarry, B K; Proudnikov, D; Stahl, D A; Rittmann, B E; Mirzabekov, A D

    1997-01-01

    The utility of parallel hybridization of environmental nucleic acids to many oligonucleotides immobilized in a matrix of polyacrylamide gel pads on a glass slide (oligonucleotide microchip) was evaluated. Oligonucleotides complementary to small-subunit rRNA sequences of selected microbial groups, encompassing key genera of nitrifying bacteria, were shown to selectively retain labeled target nucleic acid derived from either DNA or RNA forms of the target sequences. The utility of varying the probe concentration to normalize hybridization signals and the use of multicolor detection for simultaneous quantitation of multiple probe-target populations were demonstrated. PMID:9172361

  12. 'Specific' oligonucleotides often recognize more than one gene: the limits of in situ hybridization applied to GABA receptors.

    PubMed

    Mladinic, M; Didelon, F; Cherubini, E; Bradbury, A

    2000-05-15

    As exquisite probes for gene sequences, oligonucleotides are one of the most powerful tools of recombinant molecular biology. In studying the GABA receptor subunits in the neonatal hippocampus we have used oligonucleotide probes in in situ hybridization and cloning techniques. The oligonucleotides used and assumed to be specific for the target gene, actually recognized more than one gene, leading to surprising and contradictory results. In particular, we found that a GABA(A)-rho specific oligonucleotide recognized an abundant, previously unknown, transcription factor in both in situ and library screening, while oligos 'specific' for GABA(A) subunits were able to recognize 30 additional unrelated genes in library screening. This suggests that positive results obtained with oligonucleotides should be interpreted with caution unless confirmed by identical results with oligonucleotides from different parts of the same gene, or cDNA library screening excludes the presence of other hybridizing species.

  13. Transcriptomes and shRNA Suppressors in a TP53 Allele-specific Model of Early-onset Colon Cancer in African Americans

    PubMed Central

    Weige, Charles C.; Birtwistle, Marc R.; Mallick, Himel; Yi, Nengjun; Berrong, Zuzana; Cloessner, Emily; Duff, Keely; Tidwell, Josephine; Clendenning, Megan; Wilkerson, Brent; Farrell, Christopher; Bunz, Fred; Ji, Hao; Shtutman, Michael; Creek, Kim E.; Banister, Carolyn E.; Buckhaults, Phillip J.

    2014-01-01

    African Americans are disproportionately affected by early-onset, high-grade malignancies. A fraction of this cancer health disparity can be explained by genetic differences between individuals of African or European descent. Here the wild-type Pro/Pro genotype at the TP53Pro72Arg (P72R) polymorphism (SNP: rs1042522) is more frequent in African Americans with cancer than in African Americans without cancer (51% vs 37%), and is associated with a significant increase in the rates of cancer diagnosis in African Americans. To test the hypothesis that p53 allele-specific gene expression may contribute to African American cancer disparities, p53 hemizygous knockout variants were generated and characterized in the RKO colon carcinoma cell line, which is wild-type for p53 and heterozygous at the TP53Pro72Arg locus. Transcriptome profiling, using RNAseq, in response to the DNA-damaging agent etoposide revealed a large number of p53-regulated transcripts, but also a subset of transcripts that were TP53Pro72Arg allele specific. In addition, a shRNA-library suppressor screen for p53 allele-specific escape from p53-induced arrest was performed. Several novel RNAi suppressors of p53 were identified, one of which, PRDM1β (BLIMP-1), was confirmed to be an Arg-specific transcript. PRDM1β silences target genes by recruiting H3K9 trimethyl (H3K9me3) repressive chromatin marks, and is necessary for stem cell differentiation. These results reveal a novel model for African American cancer disparity, in which the TP53 codon 72 allele influences lifetime cancer risk by driving damaged cells to differentiation through an epigenetic mechanism involving gene silencing. Implications TP53 P72R polymorphism significantly contributes to increased African American cancer disparity. PMID:24743655

  14. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  15. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  16. Analysis of allele-specific RNA transcription in FSHD by RNA-DNA FISH in single myonuclei.

    PubMed

    Masny, Peter S; Chan, On Ying A; de Greef, Jessica C; Bengtsson, Ulla; Ehrlich, Melanie; Tawil, Rabi; Lock, Leslie F; Hewitt, Jane E; Stocksdale, Jennifer; Martin, Jorge H; van der Maarel, Silvere M; Winokur, Sara T

    2010-04-01

    Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is likely caused by epigenetic alterations in chromatin involving contraction of the D4Z4 repeat array near the telomere of chromosome 4q. The precise mechanism by which deletions of D4Z4 influence gene expression in FSHD is not yet resolved. Regulatory models include a cis effect on proximal gene transcription (position effect), DNA looping, non-coding RNA, nuclear localization and trans-effects. To directly test whether deletions of D4Z4 affect gene expression in cis, nascent RNA was examined in single myonuclei so that transcription from each allele could be measured independently. FSHD and control myotubes (differentiated myoblasts) were subjected to sequential RNA-DNA FISH. A total of 16 genes in the FSHD region (FRG2, TUBB4Q, FRG1, FAT1, F11, KLKB1, CYP4V2, TLR3, SORBS2, PDLIM3 (ALP), LRP2BP, ING2, SNX25, SLC25A4 (ANT1), HELT and IRF2) were examined for interallelic variation in RNA expression within individual myonuclei. Sequential DNA hybridization with a unique 4q35 chromosome probe was then applied to confirm the localization of nascent RNA to 4q. A D4Z4 probe, labeled with a third fluorochrome, distinguished between the deleted and normal allele in FSHD nuclei. Our data do not support an FSHD model in which contracted D4Z4 arrays induce altered transcription in cis from 4q35 genes, even for those genes (FRG1, FRG2 and SLC25A4 (ANT1)) for which such an effect has been proposed.

  17. Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology.

    PubMed

    Tanaka, Tsuyoshi; Hatakeyama, Keiichi; Sawaguchi, Masahiro; Iwadate, Akihito; Mizutani, Yasushi; Sasaki, Kazuhiro; Tateishi, Naofumi; Takeyama, Haruko; Matsunaga, Tadashi

    2006-09-05

    A thin film transistor (TFT) photosensor fabricated by semiconductor integrated circuit (IC) technology was applied to DNA chip technology. The surface of the TFT photosensor was coated with TiO2 using a vapor deposition technique for the fabrication of optical filters. The immobilization of thiolated oligonucleotide probes onto a TiO2-coated TFT photosensor using gamma-aminopropyltriethoxysilane (APTES) and N-(gamma-maleimidobutyloxy) sulfosuccinimide ester (GMBS) was optimized. The coverage value of immobilized oligonucleotides reached a plateau at 33.7 pmol/cm2, which was similar to a previous analysis using radioisotope-labeled oligonucleotides. The lowest detection limits were 0.05 pmol/cm2 for quantum dot and 2.1 pmol/cm2 for Alexa Fluor 350. Furthermore, single nucleotide polymorphism (SNP) detection was examined using the oligonucleotide-arrayed TFT photosensor. A SNP present in the aldehyde dehydrogenase 2 (ALDH2) gene was used as a target. The SNPs in ALDH2*1 and ALDH2*2 target DNA were detected successfully using the TFT photosensor. DNA hybridization in the presence of both ALDH2*1 and ALDH2*2 target DNA was observed using both ALDH2*1 and ALDH2*2 detection oligonucleotides-arrayed TFT photosensor. Use of the TFT photosensor will allow the development of a disposable photodetecting device for DNA chip systems.

  18. Base Composition-Independent Hybridization in Tetramethylammonium Chloride: A Method for Oligonucleotide Screening of Highly Complex Gene Libraries

    NASA Astrophysics Data System (ADS)

    Wood, William I.; Gitschier, Jane; Lasky, Laurence A.; Lawn, Richard M.

    1985-03-01

    An oligonucleotide hybridization procedure has been developed that eliminates the preferential melting of A\\cdot T versus G\\cdot C base pairs, allowing the stringency of the hybridization to be controlled as a function of probe length only. This technique, which uses tetramethylammonium chloride, is especially helpful whenever a highly complex library is screened with a pool of oligonucleotide probes, which usually vary widely in base composition. The procedure can also be applied advantageously whenever an exact match to an oligonucleotide probe is desired, such as in screening for clones having as little as a single-base alteration generated by in vitro mutagenesis.

  19. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    PubMed

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.

  20. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    PubMed

    Chen, Dong; Yang, Zhao; Xia, Han; Huang, Jun-Fu; Zhang, Yang; Jiang, Tian-Nun; Wang, Gui-Yu; Chuai, Zheng-Ran; Fu, Wei-Ling; Huang, Qing

    2014-01-01

    Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.

  1. Characterization of allele-specific expression of the X-linked gene MAO-A in trophectoderm cells of bovine embryos produced by somatic cell nuclear transfer.

    PubMed

    Ferreira, A R; Aguiar Filho, L F C; Sousa, R V; Sartori, R; Franco, M M

    2015-10-05

    Somatic cell nuclear transfer (SCNT) may affect epigenetic mechanisms and alter the expression of genes related to embryo development and X chromosome inactivation (XCI). We characterized allele-specific expression of the X-linked gene monoamine oxidase type A (MAO-A) in the trophectoderm (TF) of embryos produced by SCNT. Total RNA was isolated from individual biopsies (N = 25), and the allele-specific expression assessed by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism. Both paternal and maternal alleles were expressed in the trophectoderm. However, a higher frequency of the mono-allelic expression of a specific allele was observed (N = 17; 68%), with the remaining samples showing the presence of mRNA from both alleles (N = 8; 32%). Considering that MAO-A is subject to XCI in bovine, our results suggest that SCNT may influence XCI because neither an imprinted (mono-allelic expression in all samples) nor a random (presence of mRNA from both alleles in all samples) pattern of XCI was observed in TF. Due to the importance of XCI in mammalian embryo development and its sensitivity to in vitro conditions, X-linked genes subject to XCI are candidates for use in the development of embryo quality molecular markers for assisted reproduction.

  2. Determination of cis/trans phase of variations in the MC1R gene with allele-specific PCR and single base extension.

    PubMed

    Mengel-From, Jonas; Børsting, Claus; Sanchez, Juan J; Eiberg, Hans; Morling, Niels

    2008-12-01

    The MC1R gene encodes a protein with key regulatory functions in the melanin synthesis. A multiplex PCR and a multiplex single base extension protocol were established for genotyping six exonic MC1R variations highly penetrant for red hair (R), four exonic MC1R variations weakly penetrant for red hair (r), two frameshift variations highly penetrant for red hair (R) and three variations in the promoter region. We genotyped 600 individuals from Denmark using either CE or MALDI-TOF MS as the detection platform. A total of 62 individuals were genotyped R/R and among the 62 individuals, 57 had red hair and five had blond hair colour. Two different R alleles may be located in cis (RR/-) position or trans (R/R) position, and the phenotype associated with RR/- and R/R may be different. Two allele-specific PCRs were established with primers targeting the -G445A variation in the MC1R promoter and the allele-specific PCR products were used in the multiplex single base extension assay. In all 62 individuals, the MC1R variants were situated in trans position. Another 18 individuals with red hair colour were either genotyped R/- or R/r, suggesting that other genes influence hair colour.

  3. A two-step method for identification of the Chinese glutinous rice Suyunuo, based on ISSR-SCAR and allele-specific markers.

    PubMed

    Lin, Y B; Zhang, Y M; Hang, Y Y; Li, M M; Zhou, G C; Shen, X L; Sun, X Q

    2016-10-05

    Suyunuo is a valuable glutinous rice variety cultivated mainly in the Lake Taihu area of China. Historically, Suyunuo was presented to emperors as a tribute, and, still today, enjoys a great reputation in China. This study aimed to develop a unique, specific molecular marker for the identification of Suyunuo rice. Polymerase chain reaction (PCR) amplification of inter-simple sequence repeat (ISSR) molecular markers was performed on Suyunuo and 11 other glutinous rice varieties that are mainly cultivated in the Yangtze River Delta region. A Suyunuo-specific band was detected in the PCR products generated from primer ISSR-807. A sequence characterized amplified region (SCAR) primer pair targeting a Suyunuo-specific band was subsequently designed. The SCAR primers amplified a target band in all individuals of Suyunuo and in four glutinous indica varieties, whereas no bands were found in the seven glutinous japonica varieties. Subsequently, sequences amplified by the SCAR primer pair were analyzed to facilitate the design of Suyunuo allele-specific primers. The allele-specific primer pair produced target bands in all individuals of Suyunuo rice but no bands in individuals of any of the other 11 rice varieties. This study provides a theoretical guideline for rice germplasm identification and innovation of other valuable rice landraces.

  4. SERS beacons for multiplexed oligonucleotide detection

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Cullum, Brian M.

    2007-09-01

    Gold-based surface-enhanced Raman scattering (SERS) beacons have been developed, which represent a simple, biocompatible and rapid means of performing multiplexed DNA sequence detection in a non-arrayed format. These SERS beacons consist of a simple stem-loop oligonucleotide probe in its native form with one end attached to a SERS active dye molecule and the other to a gold nanoparticle, approximately 50 nm in diameter. The probe sequence is designed to achieve a stem-loop structure, with the loop portion complementary to the target sequence, similar to fluorescent molecular beacons. In the absence of the target DNA sequence, the SERS signal of the associated dye molecule is detected, representing the "ON" state of the probe. When the target sequence is hybridized to the probe, which results in an open conformation, its respective reporter dye is separated from the gold nanoparticle, producing diminished SERS signal. In this paper, the fabrication and characterization of these SERS beacons is described. We also demonstrate selective hybridization of a target sequence to one beacon in a mixture, revealing their potential for use in a multiplexed fashion.

  5. Optical detection and discrimination of cystic fibrosis-related genetic mutations using oligonucleotide-nanoparticle conjugates.

    PubMed

    Murphy, Deirdre; Redmond, Gareth

    2005-03-01

    Novel methods for application of oligonucleotide-gold nanoparticle conjugates to selective colorimetric detection and discrimination of cystic fibrosis (CF) related genetic mutations in model oligonucleotide systems are presented. Three-strand oligonucleotide complexes are employed, wherein two probe oligonucleotide-gold nanoparticle conjugates are linked together by a third target oligonucleotide strand bearing the CF-related mutation(s). By monitoring the temperature dependence of the optical properties of the complexes, either in solution or on silica gel plates, melting behaviors may be accurately and reproducibly compared. Using this approach, fully complementary sequences are successfully distinguished from mismatched sequences, with single base mismatch resolution, for Delta F 508, M470V, R74W and R75Q mutations.

  6. Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2'-O-Ribonucleic Acid Modifications

    SciTech Connect

    Egli, Martin; Minasov, George; Tereshko, Valentina; Pallan, Pradeep S.; Teplova, Marianna; Inamati, Gopal B.; Lesnik, Elena A.; Owens, Steve R.; Ross, Bruce S.; Prakash, Thazha P.; Manoharan, Muthiah

    2010-03-05

    The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the

  7. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  8. Oligonucleotide conjugates for therapeutic applications

    PubMed Central

    Winkler, Johannes

    2013-01-01

    Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake machanisms and pharmacokinetic properties. PMID:23883124

  9. Oligonucleotide conjugates for therapeutic applications.

    PubMed

    Winkler, Johannes

    2013-07-01

    Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake mechanisms and pharmacokinetic properties.

  10. Analysis of Allele-Specific Expression in Mouse Liver by RNA-Seq: A Comparison With Cis-eQTL Identified Using Genetic Linkage

    PubMed Central

    Lagarrigue, Sandrine; Martin, Lisa; Hormozdiari, Farhad; Roux, Pierre-François; Pan, Calvin; van Nas, Atila; Demeure, Olivier; Cantor, Rita; Ghazalpour, Anatole; Eskin, Eleazar; Lusis, Aldons J.

    2013-01-01

    We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data. PMID:24026101

  11. CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation

    PubMed Central

    Ortiz-Estevez, Maria; Aramburu, Ander; Bengtsson, Henrik; Neuvial, Pierre; Rubio, Angel

    2012-01-01

    Summary: CalMaTe calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina. Availability: The method is available on CRAN (http://cran.r-project.org/) in the open-source R package calmate, which also includes an add-on to the Aroma Project framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22576175

  12. Detection of cariogenic bacteria genes by a combination of allele-specific polymerase chain reactions and a novel bioluminescent pyrophosphate assay.

    PubMed

    Arakawa, Hidetoshi; Karasawa, Koji; Igarashi, Takeshi; Suzuki, Shigeya; Goto, Nobuichi; Maeda, Masako

    2004-10-15

    We developed a novel bioluminescent assay for detection of pyrophosphate in polymerase chain reaction (PCR) product. The principle of this method is as follows: pyrophosphate released by PCR is converted to adenosine 5'-triphosphate (ATP) by pyruvate phosphate dikinase in the presence of the substrate pyruvate phosphate and the coenzyme adenosine 5'-monophosphate; subsequently, ATP concentration is determined by firefly luciferase reaction. The detection limit of pyrophosphate is 1.56 x 10(-15)mol/assay. Additionally, luminescent intensity reached a maximum at approximately 100 s and remained elevated beyond 10 min. This approach is applicable to the detection of cariogenic bacteria in dental plaque. Thus, the allele-specific PCR products of Streptococcus mutans and Streptococcus sobrinus developed in this study were measured via the proposed bioluminescent assay. This protocol, which does not require expensive equipment, can be utilized to rapidly monitor cariogenic bacteria in dental plaque.

  13. Allele-specific transcriptional activity of the variable number of tandem repeats of the inducible nitric oxide synthase gene is associated with idiopathic achalasia

    PubMed Central

    Grosso, Michela; Palumbo, Ilaria; Pesce, Marcella; D’Alessandro, Alessandra; Zaninotto, Giovanni; Annese, Vito; Petruzzelli, Raffaella; Izzo, Paola; Sepulveres, Rossana; Bruzzese, Dario; Esposito, Giuseppe; Cuomo, Rosario

    2016-01-01

    Background Polymorphisms of genes involved in the regulation of the immune response are risk factors for achalasia, but their contribution to disease pathogenesis is unknown. Nitric oxide is involved both in immune function and inhibitory neurotransmission. Objective The objective of this article is to assess the association and the functional relevance of the CCTTT-inducible nitric oxide synthase (NOS2) gene promoter polymorphism in achalasia. Methods Genomic DNA was isolated from 181 achalasia patients and 220 controls. Genotyping of the (CCTTT)n repeats was performed by PCR and capillary electrophoresis, and data analyzed by considering the frequency of the different alleles. HT29 cells were transfected with iNOS luciferase promoter-reporter plasmids containing different (CCTTT)n. Results The alleles’ distribution ranged from 7 to 18, with a peak frequency at 12 repeats. Analysis of the allele frequencies revealed that individuals carrying 10 and 13 CCTTT repeats were respectively less and more frequent in achalasia (OR 0.5, 95% CI 0.3–0.5 and OR 1.6, 95% CI 1–2.4, all p < 0.05). Long repeats were also significantly associated with an earlier onset of the disease (OR 1.69, 95% CI 1.13–2.53, p = 0.01). Transfection experiments revealed a similar allele-specific iNOS transcriptional activity. Conclusion The functional polymorphism (CCTTT) of NOS2 promoter is associated with achalasia, likely by an allele-specific modulation of nitric oxide production. PMID:28344787

  14. Fully automated sample preparation microsystem for genetic testing of hereditary hearing loss using two-color multiplex allele-specific PCR.

    PubMed

    Zhuang, Bin; Gan, Wupeng; Wang, Shuaiqin; Han, Junping; Xiang, Guangxin; Li, Cai-Xia; Sun, Jing; Liu, Peng

    2015-01-20

    A fully automated microsystem consisting of a disposable DNA extraction and PCR microchip, as well as a compact control instrument, has been successfully developed for genetic testing of hereditary hearing loss from human whole blood. DNA extraction and PCR were integrated into a single 15-μL reaction chamber, where a piece of filter paper was embedded for capturing genomic DNA, followed by in-situ PCR amplification without elution. Diaphragm microvalves actuated by external solenoids together with a "one-way" fluidic control strategy operated by a modular valve positioner and a syringe pump were employed to control the fluids and to seal the chamber during thermal cycling. Fully automated DNA extractions from as low as 0.3-μL human whole blood followed by amplifications of 59-bp β-actin fragments can be completed on the microsystem in about 100 min. Negative control tests that were performed between blood sample analyses proved the successful elimination of any contamination or carryover in the system. To more critically test the microsystem, a two-color multiplex allele-specific PCR (ASPCR) assay for detecting c.176_191del16, c.235delC, and c.299_300delAT mutations in GJB2 gene that accounts for hereditary hearing loss was constructed. Two allele-specific primers, one labeled with TAMRA for wild type and the other with FAM for mutation, were designed for each locus. DNA extraction from blood and ASPCR were performed on the microsystem, followed by an electrophoretic analysis on a portable microchip capillary electrophoresis system. Blood samples from a healthy donor and five persons with genetic mutations were all accurately analyzed with only two steps in less than 2 h.

  15. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  16. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  17. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  18. PCR amplfication on a microarray of gel-immobilized oligonucleotides : detection of bacterial toxin- and drug-resistent genes and their mutations.

    SciTech Connect

    Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2000-10-01

    PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency, the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.

  19. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  20. Allele-specific suppression of a defective trans-Golgi network (TGN) localization signal in Kex2p identifies three genes involved in localization of TGN transmembrane proteins.

    PubMed Central

    Redding, K; Brickner, J H; Marschall, L G; Nichols, J W; Fuller, R S

    1996-01-01

    Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery. PMID:8887651

  1. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.

    PubMed

    Hong, Bang-Xing; Jiang, Li-Fang; Hu, Yu-Shan; Fang, Dan-Yun; Guo, Hui-Yu

    2004-09-01

    A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections.

  2. Oligonucleotide-based antiviral strategies.

    PubMed

    Schubert, S; Kurreck, J

    2006-01-01

    In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.

  3. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  4. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    DOE PAGES

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; ...

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

  5. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    SciTech Connect

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; Zhou, Tongqing

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of binding at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.

  6. Molecular genetic survey of European mistletoe (Viscum album) subspecies with allele-specific and dCAPS type markers specific for chloroplast and nuclear DNA sequences.

    PubMed

    Piotrowski, Arkadiusz; Ochocka, J Renata; Stefanowicz, Justyna; ŁUczkiewicz, Maria

    2003-10-01

    The qualitative and quantitative content of mistletoe metabolites, and bioactivity of extracts is related to the subspecies of Viscum album L. These were indicated to be genetically distinct and host specific. We aimed to check (i) whether the specificity is strict and (ii) how frequently hybridization occurs among the subspecies. We designed two sets of allele-specific and dCAPS molecular genetic markers that would facilitate identification of Viscum album L. subspecies and their hybrid derivatives on the basis of chloroplast trnH(GUG)- trnK(UUU) and nuclear rDNA ITS1&2 sequences. Out of 118 plants surveyed, 103 displayed characteristics that confirmed strict host specificity of the subspecies, in addition, the results were compliant between nuclear and chloroplast markers showing no indication of hybridization among subspecies. From 15 samples that showed deviations from this model 13 came from the Mediterranean Sea basin, and only two originated from Central and Western Europe. Abbreviations. dCAPS:derived Cleaved Amplified Polymorphic Sequence ITS1&2:Internal Transcribed Spacers 1&2 MAMA:Mismatch Amplification Mutation Assay

  7. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology.

    PubMed

    Roma, Cristin; Esposito, Claudia; Rachiglio, Anna Maria; Pasquale, Raffaella; Iannaccone, Alessia; Chicchinelli, Nicoletta; Franco, Renato; Mancini, Rita; Pisconti, Salvatore; De Luca, Antonella; Botti, Gerardo; Morabito, Alessandro; Normanno, Nicola

    2013-01-01

    Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR) is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA) based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC) samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2); the maximum cycle threshold (Ct = 37); and the cut-off ΔCt value (7) for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.

  8. Use of an interspecific hybrid in identifying a new allelic specificity generated at the self-incompatibility locus after inbreeding in Lycopersicon peruvianum.

    PubMed

    Maheswaran, G; Perryman, T; Williams, E G

    1986-12-01

    An interspecific hybrid between Lycopersicon esculentum (♀) and L. peruvianum has been raised by embryo rescue in vitro and used to confirm the presence of a new S-allelic specificity in its inbred L. peruvianum parent, a plant derived by enforced bud self-pollination of a self-incompatible clone with the genotype S 1 S 2. The inbred plant showed breeding behavior characteristic of both S 2 and a second specificity which was not S 1, S 2, S 3 or S f. Two-dimensional gel electrophoresis of stylar proteins, however, showed only a single typical S-associated component with the Mr and pI characteristic of S2. The alteration in specificity, therefore, was not associated with a detectable change in an S-associated protein. The F1 interspecific hybrid showed intermediacy of vegetative and reproductive characters, relatively high fertility and full self-incompatibility. Backcrossing to L. esculentum produced only abortive seeds requiring embryo culture. Backcrosses to L. peruvianum produced a very low proportion of filled germinable seeds. Pollen of the hybrid showed superior viability and tube growth rate compared with pollen of the two parent plants.

  9. Allele-specific transcriptional activity of the variable number of tandem repeats in 5' region of the DRD4 gene is stimulus specific in human neuronal cells.

    PubMed

    Paredes, U M; Quinn, J P; D'Souza, U M

    2013-03-01

    The dopamine receptor D4 (DRD4) gene includes several variable number of tandem repeat loci that have been suggested to modulate DRD4 gene expression patterns. Previous studies showed differential basal activity of the two most common variants of a tandem repeat (120 bp per repeat unit) located in the 5' region adjacent to the DRD4 promoter in human cell lines. In this communication, we further characterized the ability of this polymorphic repeat to elicit tissue-, allele- and stimuli-specific transcriptional activity in vitro. The short and long variants of the DRD4 5' tandem repeat were cloned into a luciferase reporter gene construct containing the SV40 promoter. The luciferase constructs were cotransfected with expression vectors of two ubiquitously expressed human transcription factors (TFs), CCCTC-binding factor (CTCF) and upstream stimulatory factor 2 (USF2), into human cell lines and primary cultures of neonate rat cortex and luciferase activity measured. Overexpression with these TFs resulted in differential cell- and allele-specific transcriptional activities of the luciferase constructs. The results of our experiments show that variants of this tandem repeat in the 5' promoter of the DRD4 gene will direct differential reporter gene transcriptional activity in a cell-type-specific manner dependent on the signal pathways activated.

  10. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  11. Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA.

    PubMed

    Asari, Masaru; Watanabe, Satoshi; Matsubara, Kazuo; Shiono, Hiroshi; Shimizu, Keiko

    2009-03-01

    Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.

  12. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  13. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6.

    PubMed

    Vargas, Luis Eduardo; Parra, Carlos Alberto; Salazar, Luz Mary; Guzmán, Fanny; Pinto, Martha; Patarroyo, Manuel E

    2003-07-18

    Peptide 1585 (EVLYLKPLAGVYRSLKKQLE) has a highly conserved amino-acid sequence located in the Plasmodium falciparum main merozoite surface protein (MSP-1) C-terminal region, required for merozoite entry into human erythrocytes and therefore represents a vaccine candidate for P. falciparum malaria. Original sequence-specific binding to five HLA DRB1* alleles (0101, 0102, 0401, 0701, and 1101) revealed this peptide's specific HLA DRB1*0102 allele binding. This peptide's allele-specific binding to HLA DRB1*0102 took on broader specificity for the DRB1*0101, -0401, and -1101 alleles when lysine was replaced by glycine in position 17 (peptide 5198: EVLYLKPLAGVYRSLKG(17)QLE). Binding of the identified G(10)VYRSLKGQLE(20) C-terminal register to these alleles suggests that peptide promiscuous binding relied on fitting Y(12), L(15), and G(17) into P-1, P-4, and P-6, respectively. The implications of the findings and the future of this synthetic vaccine candidate are discussed.

  14. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  15. Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease.

    PubMed

    Matera, Ivana; Musso, Marco; Griseri, Paola; Rusmini, Marta; Di Duca, Marco; So, Man-Ting; Mavilio, Domenico; Miao, Xiaoping; Tam, Paul Hk; Ravazzolo, Roberto; Ceccherini, Isabella; Garcia-Barcelo, Merce

    2013-05-01

    RET common variants are associated with Hirschsprung disease (HSCR; colon aganglionosis), a congenital defect of the enteric nervous system. We analyzed a well-known HSCR-associated RET haplotype that encompasses linked alleles in coding and noncoding/regulatory sequences. This risk haplotype correlates with reduced level of RET expression when compared with the wild-type counterpart. As allele-specific expression (ASE) contributes to phenotypic variability in health and disease, we investigated whether RET ASE could contribute to the overall reduction of RET mRNA detected in carriers. We tested heterozygous neuroblastoma cell lines, ganglionic gut tissues (18 HSCR and 14 non-HSCR individuals) and peripheral blood mononuclear cells (PBMCs; 16 HSCR and 14 non-HSCR individuals). Analysis of the data generated by SNaPshot and Pyrosequencing revealed that the RET risk haplotype is significantly more expressed in gut than in PBMCs (P = 0.0045). No ASE difference was detected between patients and controls, irrespective of the sample type. Comparison of total RET expression levels between gut samples with and without ASE, correlated reduced RET expression with preferential transcription from the RET risk haplotype. Nonrandom RET ASE occurs in ganglionic gut regardless of the disease status. RET ASE should not be excluded as a disease mechanism acting during development.

  16. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  17. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    PubMed Central

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica; Kiialainen, Anna; Flaegstad, Trond; Jonmundsson, Gudmundur; Kanerva, Jukka; Schmiegelow, Kjeld; Gunderson, Kevin L.; Lönnerholm, Gudmar; Syvänen, Ann-Christine

    2009-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood samples of 197 children with ALL. Using a reproducible, quantitative genotyping method and stringent criteria for scoring ASE, we found that 16% of the analyzed genes display ASE in multiple ALL cell samples. For most of the genes, the level of ASE varied largely between the samples, from 1.4-fold overexpression of one allele to apparent monoallelic expression. For genes exhibiting ASE, 55% displayed bidirectional ASE in which overexpression of either of the two SNP alleles occurred. For bidirectional ASE we also observed overall higher levels of ASE and correlation with the methylation level of these sites. Our results demonstrate that CpG site methylation is one of the factors that regulates gene expression in ALL cells. PMID:18997001

  18. Natural variation in male-induced ‘cost-of-mating’ and allele-specific association with male reproductive genes in Drosophila melanogaster

    PubMed Central

    Fiumera, Anthony C; Dumont, Bethany L; Clark, Andrew G

    2006-01-01

    One of the most sharply defined sexual conflicts arises when the act of mating is accompanied by an inflated risk of death. Several reports have documented an increased death rate of female Drosophila as a result of recurrent mating. Transgenic and mutation experiments have further identified components of seminal fluid that are at least in part responsible for this toxicity. Variation among males in their tendency for matings to be toxic to their partners has also been documented, but here for the first time we identify polymorphism within particular genes conferring differential post-mating female mortality. Such polymorphism is important, as it raises the challenge of whether sexual conflict models can provide means for maintenance of polymorphism. Using a set of second chromosome extraction lines, we scored differences in post-mating female fecundity and longevity subsequent to mating, and identified significant among-line differences. Seventy polymorphisms in ten male reproductive genes were scored and permutation tests were used to identify significant associations between genotype and phenotype. One polymorphism upstream of PEBII and an amino acid substitution in CG17331 were both associated with male-induced female mortality. The same allele of CG17331 that is toxic to females also induces greater refractoriness to remating in the females, providing an example of an allele-specific sexual conflict. Postcopulatory sexual selection could lead to sexual conflict by favouring males that prevent their mates from mating, even when there is a viability cost to those females. PMID:16612893

  19. Orthogonal ion pairing reversed phase liquid chromatography purification of oligonucleotides with bulky fluorophores.

    PubMed

    Anacleto, Concordio; Ouye, Randall; Schoenbrunner, Nancy

    2014-02-14

    A dual labeled oligonucleotide used as TaqMan® or 5' nuclease probe for in vitro diagnostic has been purified through orthogonal ion-pairing reversed phase chromatography, using polymeric semi-preparative and preparative PRP-1 column. We studied the mechanism of separation of oligonucleotides using ion-pairing reversed phase chromatography. We found that elution profiles of dye labeled oligonucleotides can be controlled by use of specific ion-pairing reagents. Here, we report a method for purification of an oligonucleotide containing an internally positioned rhodamine dye using two orthogonal chromatographic steps, in which the primary step resolves mostly by differences in hydrophobicity by using a weak ion-pairing reagent, and a secondary step uses a strong ion-pairing reagent for separation of length variants. Purification is demonstrated for both 1 and 15μmol scale syntheses, and amenable to further scale up for commercial lot production.

  20. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    PubMed

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  1. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    PubMed

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  2. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  3. Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers.

    PubMed

    Ye, Lingzhen; Dai, Fei; Qiu, Long; Sun, Dongfa; Zhang, Guoping

    2011-07-13

    The formation of haze is a serious quality problem in beer production. It has been shown that the use of silica elute (SE)-ve malt (absence of molecular weight (MW) ∼14000 Da) for brewing can improve haze stability in the resultant beer, and the protein was identified as a barley trypsin inhibitor of the chloroform/methanol type (BTI-CMe). The objectives of this study were to determine (1) the allelic diversity of the gene controlling BTI-CMe in cultivated and Tibetan wild barley and (2) allele-specific (AS) markers for screening SE protein type. A survey of 172 Tibetan annual wild barley accessions and 71 cultivated barley genotypes was conducted, and 104 wild accessions and 35 cultivated genotypes were identified as SE+ve and 68 wild accessions and 36 cultivated genotypes as SE-ve. The allelic diversity of the gene controlling BTI-CMe was investigated by cloning, alignment, and association analysis. It was found that there were significant differences between the SE+ve and SE-ve types in single-nucleotide polymorphisms at 234 (SNP(234)), SNP(313), and SNP(385.) Furthermore, two sets of AS markers were developed to screen SE protein type based on SNP(313). AS-PCR had results very similar to those obtained by immunoblot method. Mapping analysis showed that the gene controlling the MW∼14 kDa band was located on the short arm of chromosome 3H, at the position of marker BPB-0527 (33.302 cM) in the Franklin/Yerong DH population.

  4. Development of Nuclear Microsatellite Loci and Mitochondrial Single Nucleotide Polymorphisms for the Natterjack Toad, Bufo (Epidalea) calamita (Bufonidae), Using Next Generation Sequencing and Competitive Allele Specific PCR (KASPar).

    PubMed

    Faucher, Leslie; Godé, Cécile; Arnaud, Jean-François

    2016-01-01

    Amphibians are undergoing a major decline worldwide and the steady increase in the number of threatened species in this particular taxa highlights the need for conservation genetics studies using high-quality molecular markers. The natterjack toad, Bufo (Epidalea) calamita, is a vulnerable pioneering species confined to specialized habitats in Western Europe. To provide efficient and cost-effective genetic resources for conservation biologists, we developed and characterized 22 new nuclear microsatellite markers using next-generation sequencing. We also used sequence data acquired from Sanger sequencing to develop the first mitochondrial markers for KASPar assay genotyping. Genetic polymorphism was then analyzed for 95 toads sampled from 5 populations in France. For polymorphic microsatellite loci, number of alleles and expected heterozygosity ranged from 2 to 14 and from 0.035 to 0.720, respectively. No significant departures from panmixia were observed (mean multilocus F IS = -0.015) and population differentiation was substantial (mean multilocus F ST = 0.222, P < 0.001). From a set of 18 mitochondrial SNPs located in the 16S and D-loop region, we further developed a fast and cost-effective SNP genotyping method based on competitive allele-specific PCR amplification (KASPar). The combination of allelic states for these mitochondrial DNA SNP markers yielded 10 different haplotypes, ranging from 2 to 5 within populations. Populations were highly differentiated (G ST = 0.407, P < 0.001). These new genetic resources will facilitate future parentage, population genetics and phylogeographical studies and will be useful for both evolutionary and conservation concerns, especially for the set-up of management strategies and the definition of distinct evolutionary significant units.

  5. Allele specific-PCR and melting curve analysis showed relatively high frequency of β-casein gene A1 allele in Iranian Holstein, Simmental and native cows.

    PubMed

    Gholami, M; Hafezian, S H; Rahimi, G; Farhadi, A; Rahimi, Z; Kahrizi, D; Kiani, S; Karim, H; Vaziri, S; Muhammadi, S; Veisi, F; Ghadiri, K; Shetabi, H; Zargooshi, J

    2016-10-31

    There are two allelic forms of A1 and A2 of β-casein gene in dairy cattle. Proteolytic digestion of bovine β-casein A1 type produces bioactive peptide of β-casomorphin-7 known as milk devil. β-casomorphin-7 causes many diseases, including type 1 diabetes, cardiovascular disease syndrome, sudden death and madness. The aim of the present study was to determine the different allelic forms of β-casein gene in Iranian Holstein, Simmental and native cattle in order to identify A1 and A2 variants. The blood samples were collected randomly and DNA was extracted using modified salting out method. An 854 bp fragment including part of exon 7 and part of intron 6 of β-casein gene was amplified by allele specific polymerase chain reaction (AS-PCR). Also, the accuracy of AS-PCR genotyping has been confirmed by melting temperature curve analysis using Real-time PCR machinery. The comparison of observed allele and genotype frequency among the studied breeds was performed using the Fisher exact and Chi-squared test, respectively by SAS program. Obtained results showed the A1 allele frequencies of 50, 51.57, 54.5, 49.4 and 46.6% in Holstein, Simmental, Sistani, Taleshi and Mazandarani cattle populations, respectively. The chi-square test was shown that no any populations were in Hardy-Weinberg equilibrium for studied marker locus. Comparison and analysis of the test results for allelic frequency showed no any significant differences between breeds (P>0.05). The frequency of observed genotypes only differs significantly between Holstein and Taleshi breeds but no any statistically significant differences were found for other breeds (P>0.05). A relatively high frequency of β-casein A1 allele was observed in Iranian native cattle. Therefore, determine the genotypes and preference alleles A2 in these native and commercial cattle is recommended.

  6. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas.

    PubMed

    Krasinskas, Alyssa M; Moser, A James; Saka, Burcu; Adsay, N Volkan; Chiosea, Simion I

    2013-10-01

    KRAS codon 12 mutations are present in about 90% of ductal adenocarcinomas and in undifferentiated carcinomas of the pancreas. The role of KRAS copy number changes and resulting KRAS mutant allele-specific imbalance (MASI) in ductal adenocarcinoma (n=94), and its progression into undifferentiated carcinoma of the pancreas (n=25) was studied by direct sequencing and KRAS fluorescence in situ hybridization (FISH). Semi-quantitative evaluation of sequencing electropherograms showed KRAS MASI (ie, mutant allele peak higher than or equal to the wild-type allele peak) in 22 (18.4%) cases. KRAS FISH (performed on 45 cases) revealed a trend for more frequent KRAS amplification among cases with KRAS MASI (7/20, 35% vs 3/25, 12%, P=0.08). KRAS amplification by FISH was seen only in undifferentiated carcinomas (10/24, 42% vs 0/21 pancreatic ductal adenocarcinoma, 0%, P=0.0007). In 6 of 11 cases with both undifferentiated and well-differentiated components, transition to undifferentiated carcinoma was associated with an increase in KRAS copy number, due to amplification and/or chromosome 12 hyperploidy. Pancreatic carcinomas with KRAS MASI (compared to those without MASI) were predominantly undifferentiated (16/22, 73% vs 9/97, 9%, P<0.001), more likely to present at clinical stage IV (5/22, 23% vs 7/97, 7%, P=0.009), and were associated with shorter overall survival (9 months, 95% confidence interval, 5-13, vs 22 months, 95% confidence interval, 17-27; P=0.015) and shorter disease-free survival (5 months, 95% confidence interval, 2-8 vs 13 months, 95% confidence interval, 10-16; P=0.02). Our findings suggest that in a subset of ductal adenocarcinomas, KRAS MASI correlates with the progression to undifferentiated carcinoma of the pancreas.

  7. RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations

    PubMed Central

    Bell, Graeme D.M.; Kane, Nolan C.; Rieseberg, Loren H.; Adams, Keith L.

    2013-01-01

    Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations. PMID:23677938

  8. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci.

    PubMed Central

    Ang, L H; Deng, X W

    1994-01-01

    Previous studies suggested that the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) gene product represses photomorphogenic development in darkness and that light signals reverse this action. In this report, we used genetic analysis to investigate the regulatory hierarchical relationship of COP1 and the loci encoding the photoreceptors and other signaling components. Our results showed that cop1 mutations are epistatic to the long hypocotyl mutations hy1, hy2, hy3, and hy4, suggesting that COP1 acts downstream of the phytochromes and a blue light receptor. Although epistasis of a putative null cop1-5 mutation over a hy5 mutation implied that COP1 acts downstream of HY5, the same hy5 mutation can suppress the dark photomorphogenic phenotypes (including hypocotyl elongation and cotyledon cellular differentiation) of the weak cop1-6 mutation. This, and other allele-specific interactions between COP1 and HY5, may suggest direct physical contact of their gene products. In addition, the synthetic lethality of the weak deetiolated1 (det1) and cop1 mutations and the fact that the cop1-6 mutation is epistatic to the det1-1 mutation with respect to light control of seed germination and dark-adaptative gene expression suggested that DET1 and COP1 may act in the same pathway, with COP1 being downstream. These results, together with previous epistasis studies, support models in which light signals, once perceived by different photoreceptors, converge downstream and act through a common cascade(s) of regulatory steps, as defined by DET1, HY5, COP1, and likely others, to derepress photomorphogenic development. PMID:8038602

  9. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that polymorphisms associated with transcriptional regulation are critical for viral disease resistance was tested by selecting birds using SNPs exhibiting allele-specific expression (ASE) in response to viral challenge. Analysis indicates ASE markers account for 83% of the disease re...

  10. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  11. Light-generated oligonucleotide arrays for rapid DNA sequence analysis.

    PubMed Central

    Pease, A C; Solas, D; Sullivan, E J; Cronin, M T; Holmes, C P; Fodor, S P

    1994-01-01

    In many areas of molecular biology there is a need to rapidly extract and analyze genetic information; however, current technologies for DNA sequence analysis are slow and labor intensive. We report here how modern photolithographic techniques can be used to facilitate sequence analysis by generating miniaturized arrays of densely packed oligonucleotide probes. These probe arrays, or DNA chips, can then be applied to parallel DNA hybridization analysis, directly yielding sequence information. In a preliminary experiment, a 1.28 x 1.28 cm array of 256 different octanucleotides was produced in 16 chemical reaction cycles, requiring 4 hr to complete. The hybridization pattern of fluorescently labeled oligonucleotide targets was then detected by epifluorescence microscopy. The fluorescence signals from complementary probes were 5-35 times stronger than those with single or double base-pair hybridization mismatches, demonstrating specificity in the identification of complementary sequences. This method should prove to be a powerful tool for rapid investigations in human genetics and diagnostics, pathogen detection, and DNA molecular recognition. Images PMID:8197176

  12. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  13. Mutational analysis using oligonucleotide microarrays

    PubMed Central

    Hacia, J.; Collins, F.

    1999-01-01

    The development of inexpensive high throughput methods to identify individual DNA sequence differences is important to the future growth of medical genetics. This has become increasingly apparent as epidemiologists, pathologists, and clinical geneticists focus more attention on the molecular basis of complex multifactorial diseases. Such undertakings will rely upon genetic maps based upon newly discovered, common, single nucleotide polymorphisms. Furthermore, candidate gene approaches used in identifying disease associated genes necessitate screening large sequence blocks for changes tracking with the disease state. Even after such genes are isolated, large scale mutational analyses will often be needed for risk assessment studies to define the likely medical consequences of carrying a mutated gene.
This review concentrates on the use of oligonucleotide arrays for hybridisation based comparative sequence analysis. Technological advances within the past decade have made it possible to apply this technology to many different aspects of medical genetics. These applications range from the detection and scoring of single nucleotide polymorphisms to mutational analysis of large genes. Although we discuss published scientific reports, unpublished work from the private sector12 could also significantly affect the future of this technology.


Keywords: mutational analysis; oligonucleotide microarrays; DNA chips PMID:10528850

  14. Oligonucleotide therapeutics for human leukaemia.

    PubMed

    Gewirtz, A M

    1997-01-01

    The concept of antisense oligonucleotide 'therapeutics' has generated a great deal of controversy. Questions abound regarding the mechanism of action of these compounds, their reliability and their ultimate utility. These problems are compounded by the 'hype', which has attended their development, and the inability of workers in this area to meet the expectations raised by its most zealous proponents. Nevertheless, it is worth pointing out that there have been some notable gene disruption successes with this technique that have stood up to rigorous scrutiny. Our own work with c-myb as a target is perhaps a reasonable example. Though much remains to be accomplished before antisense drugs are commonly, and usefully, employed in the clinic, it is important to remember what motivates their development. Gene-targeted drugs have the promise of exquisite specificity and the potential to do much good with little toxicity. Accordingly, antisense oligonucleotides can serve as a paradigm of rational drug development. For all these reasons then, we believe that efforts should be increased to decipher the mechanism of action of antisense oligodeoxynucleotides, and to learn how they may be successfully employed in the clinic.

  15. Cellular Uptake and Intracellular Trafficking of Oligonucleotides: Implications for Oligonucleotide Pharmacology

    PubMed Central

    Ming, Xin; Carver, Kyle; Laing, Brian

    2014-01-01

    One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed. PMID:24383421

  16. Bromodeoxyuridine-labeled oligonucleotides as tools for oligonucleotide uptake studies.

    PubMed

    Maszewska, Maria; Kobylańska, Anna; Gendaszewska-Darmach, Edyta; Koziołkiewicz, Maria

    2002-12-01

    The mechanisms by which various oligonucleotides (ODNs) and their analogs enter cells are not fully understood. A common technique used in studies on cellular uptake of ODNs is their conjugation with fluorochromes. However, fluorescently labeled ODNs may vary from the parent compounds in charge and hydrophilicity, and they may interact differently with some components of cellular membranes. In this report, we present an alternative method based on the immunofluorescent detection of ODNs with incorporated 5-bromo-2'-deoxyuridine (BrdUrd). Localization of BrdUrd-modified ODNs has been achieved using FITC-labeled anti-BrdUrd antibodies. This technique allowed determination of the differences in cellular uptake of phosphodiester (PO) and phosphorothioate (PS) ODNs and their derivatives conjugated with cholesterol and menthol. The immunocytochemical method also has shown that the cellular uptake of some ODNs may be influenced by specific sequences that are responsible for the formation of higher-order structures.

  17. P-chiral oligonucleotides in biological recognition processes.

    PubMed

    Guga, Piotr

    2007-01-01

    Internucleotide phosphodiester linkages in non-modified oligonucleotides are quickly degraded by nucleolytic enzymes present in the cells and this feature practically eliminates natural DNA and RNA molecules from medical applications and from many structural and mechanistic studies. P-chiral oligonucleotide analogs, in which one of the non-bridging phosphate oxygen atoms is substituted with another heteroatom (e.g. S, Se) or a chemical group (e.g. CH3, BH3(-)), have significantly greater nuclease resistance and also offer important possibilities for detailed studies of interactions with other biomolecules at the molecular level. Notably, these substitutions do not disrupt hydrogen bonding between nucleobases and affect the overall geometry of the oligomers to only low or moderate extent, although important changes of hydration patterns and changes of interactions with metal ions are observed. Such the probes, including isotopomeric species labeled with a heavy oxygen isotope, possessing phosphorus atoms of selected absolute configurations, have been used for elucidation of the mode of action of many enzymes (nucleases, transferases, kinases), ribozymes and DNA-zymes, as well as for investigations on thermodynamic stability of nucleic acids complexes (duplexes, triplexes, i-motif) and for studies on a mechanism of conformational changes of B-Z type. They are also useful tools for analysis of interactions of the phosphoryl oxygen atoms in natural precursors with functional groups of proteins. The synthetic routes to stereodefined forms of selected types of P-chiral oligonucleotides are presented, as well as recently developed methods for their configurational analysis at micromolar concentration. Selected examples of application of diastereomerically pure P-chiral oligonucleotides for structural, biochemical and biological experiments are discussed.

  18. A novel, one-step amplification and oligonucleotide ligation procedure for multiplex genetic typing

    SciTech Connect

    Eggerding, F.A.

    1994-09-01

    A new technique, coupled amplification and oligonucleotide ligation (CAL), has been developed for simultaneous multiplex amplification and genotyping of DNA. CAL is a biphasic method which combines in one assay DNA amplification by the polymerase chain reaction (PCR) with DNA genotyping by the oligonucleotide ligation assay (OLA). By virtue of a difference in the melting temperatures of PCR primer-target DNA and OLA probe-target DNA hybrids, the method allows preferential amplification of DNA during stage I and oligonucleotide ligation during stage II of the reaction. In stage I target DNA is amplified using high-melting primers in a two-step PCR cycle that employs a 72{degrees}C anneal-elongation step. In stage II genotyping of PCR products by competitive oligonucleotide ligation with oligonucleotide probes located between PCR primers is accomplished by several cycles of denaturation at 94{degrees}C followed by anneal-ligation at 55{degrees}C. Ligation products are fluorochrome-labeled at their 3{prime}-ends and analyzed electrophoretically on a fluorescent DNA sequencer. The CAL procedure has been used for multiplex detection of 30 cystic fibrosis mutations and for analysis of ras gene point mutations. Because mutation detection occurs concurrently with target amplification, the technique is rapid, highly sensitive and specific, easily automatable, and requires minimal sample processing.

  19. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  20. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  1. Adaptive resolution simulation of oligonucleotides.

    PubMed

    Netz, Paulo A; Potestio, Raffaello; Kremer, Kurt

    2016-12-21

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  2. Spatially Defined Oligonucleotide Arrays. Technical Report for Phase II

    SciTech Connect

    2000-06-15

    The goal of the Human Genome Project is to sequence all 3 billion base pairs of the human genome. Progress in this has been rapid; GenBank{reg_sign} finished 1994 with 286 million bases of sequence and grew by 2470 in the first quarter of 1995. The challenge to the scientific community is to understand the biological relevance of this genetic information. In most cases the sequence being generated for any single region of the genome represents the genotype of a single individual. A complete understanding of the function of specific genes and other regions of the genome and their role in human disease and development will only become apparent when the sequence of many more individuals is known. Access to genetic information is ultimately limited by the ability to screen DNA sequence. Although the pioneering sequencing methods of Sanger et al. (15) and Maxam and Gilbert (11) have become standard in virtually all molecular biology laboratories, the basic protocols remain largely unchanged. The throughput of this sequencing technology is now becoming the rate-limiting step in both large-scale sequencing projects such as the Human Genome Project and the subsequent efforts to understand genetic diversity. This has inspired the development of advanced DNA sequencing technologies (9), Incremental improvements to Sanger sequencing have been made in DNA labeling and detection. High-speed electrophoresis methods using ultrathin gels or capillary arrays are now being more widely employed. However, these methods are throughput-limited by their sequential nature and the speed and resolution of separations. This limitation will become more pronounced as the need to rapidly screen newly discovered genes for biologically relevant polymorphisms increases. An alternative to gel-based sequencing is to use high-density oligonucleotide probe arrays. Oligonucleotide probe arrays display specific oligonucleotide probes at precise locations in a high density, information-rich format (5

  3. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Pu, Chang-En; Wang, Ching-Ho

    2014-12-15

    Avian oncogenic viruses include the avian leukosis virus (ALV), reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). Multiple oncogenic viral infections are frequently seen, with even Marek's disease vaccines reported to be contaminated with ALV and REV. The gross lesions caused by avian oncogenic viruses often overlap, making differentiation diagnosis based on histopathology difficult. The objective of this study is to develop a rapid approach to simultaneously differentiate, subgroup and pathotype the avian oncogenic viruses. The oligonucleotide microarray was employed in this study. Particular DNA sequences were recognized using specific hybridization between the DNA target and probe on the microarray, followed with colorimetric development through enzyme reaction. With 10 designed probes, ALV-A, ALV-E, ALV-J, REV, MDV pathogenic and vaccine strains were clearly discriminated on the microarray with the naked eyes. The detection limit was 27 copy numbers, which was 10-100 times lower than multiplex PCR. Of 102 field samples screened using the oligonucleotide microarray, 32 samples were positive for ALV-E, 17 samples were positive for ALV-J, 6 samples were positive for REV, 4 samples were positive for MDV, 7 samples were positive for both ALV-A and ALV-E, 5 samples were positive for ALV-A, ALV-E and ALV-J, one sample was positive for both ALV-J and MDV, and 3 samples were positive for both REV and MDV. The oligonucleotide microarray, an easy-to-use, high-specificity, high-sensitivity and extendable assay, presents a potent technique for rapid differential diagnosis of avian oncogenic viruses and the detection of multiple avian oncogenic viral infections under field conditions.

  4. An allele-specific PCR system for rapid detection and discrimination of the CYP2C19∗4A, ∗4B, and ∗17 alleles: implications for clopidogrel response testing.

    PubMed

    Scott, Stuart A; Tan, Qian; Baber, Usman; Yang, Yao; Martis, Suparna; Bander, Jeffrey; Kornreich, Ruth; Hulot, Jean-Sébastien; Desnick, Robert J

    2013-11-01

    CYP2C19 is involved in the metabolism of clinically relevant drugs, including the antiplatelet prodrug clopidogrel, which has prompted interest in clinical CYP2C19 genotyping. The CYP2C19∗4B allele is defined by both gain-of-function [c.-806C>T (∗17)] and loss-of-function [c.1A>G (∗4)] variants on the same haplotype; however, current genotyping and sequencing assays are unable to determine the phase of these variants. Thus, the aim of this study was to develop an assay that could rapidly detect and discriminate the related ∗4A, ∗4B, and ∗17 alleles. An allele-specific PCR assay, composed of four unique primer mixes that specifically interrogate the defining ∗17 and ∗4 variants, was developed by using samples (n = 20) with known genotypes, including the ∗4A, ∗4B, and/or ∗17 alleles. The assay was validated by testing 135 blinded samples, and the results were correlated with CYP2C19 genotyping and allele-specific cloning/sequencing. Importantly, among the six ∗4 carriers in the validation cohort, after allele-specific PCR testing both samples with a ∗1/∗4 genotype were reclassified to ∗1/∗4A, all three samples with a ∗4/∗17 genotype were reclassified to ∗1/∗4B, and a sample with a ∗4/∗17/∗17 genotype was reclassified to ∗4B/∗17. In conclusion, this rapid and robust allele-specific PCR assay can refine CYP2C19 genotyping and metabolizer phenotype classification by determining the phase of the defining ∗17 and ∗4 variants, which may have utility when testing CYP2C19 for clopidogrel response.

  5. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

    PubMed Central

    D'Agata, Roberta; Palladino, Pasquale

    2017-01-01

    Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays. PMID:28144559

  6. Hydrolysis of microporous polyamide-6 membranes as substrate for in situ synthesis of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tang, Jianxin; He, Nongyue; Nie, Libo; Xiao, Pengfeng; Chen, Hong

    2004-02-01

    This article provides a novel method of preparing substrate for in situ synthesis of oligonucleotide by hydrolyzing microporous polyamide-6 membranes in a 0.01 mol/l/NaOH/(H 2O-CH 3OH) mixture medium with refluxing about 36 h. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) demonstrated the emergence of amines (NH 2) on the surface. Optimum hydrolyzing conditions were determined through the ultra-violet (UV) spectra. A pH value of 12 and a hydrolysis time of 36 h are the preferred conditions for the modification. The treated membrane can be applied to in situ synthesis of oligonucleotide and, for example, the oligonucleotide probes of 5 '-AAC CAC CAA ACA CAC-3 ' were successfully synthesized on the hydrolyzed membrane. The single step coupling efficiency determined by ultraviolet (UV) spectra is above 98%.

  7. Minimizing DNA microarrays to a single molecule per spot: using zero-mode waveguide technology to obtain kinetic data for a large number of short oligonucleotide hybridization reactions

    NASA Astrophysics Data System (ADS)

    Sobek, Jens; Rehrauer, Hubert; Kuhn, Gerrit; Schlapbach, Ralph

    2016-03-01

    We have shown recently that the hybridization of short oligonucleotides can be studied in a zero-mode waveguide nanostructure (ZMW) chip using a modified DNA sequencer.[1] Here we present an extension of this method enabling the parallel measurement of kinetic constants of a large number of hybridization reactions on a single chip. This can be achieved by immobilization of a mixture of oligonucleotides, which leads to a statistical and random distribution of single molecules in the 150'000 ZMWs of a SMRT™ cell. This setup is comparable to a classical microarray with ZMWs in place of spots but unknown allocation of probes. The probe surface density is reduced by a factor of ~1010 allowing the study of hybridization in the absence of interactions with neighboring probes. Hybridization with a dye labelled oligonucleotide results in trains of fluorescence pulses from which interpulse durations (IPDs) and pulse widths (PWs) can be extracted. Since the identity of a probe in a ZMW is unknown, the immobilized oligonucleotide is sequenced in a subsequent step. After mapping the fluorescence traces to the sequence, the association and dissociation rate constant for each oligonucleotide can be calculated. By selecting suitable probes, the method can be used to determine rate constants of hybridization for a large number of mismatch oligonucleotides in a single measurement and at single-molecule level.

  8. Complex DNA nanostructures from oligonucleotide ensembles.

    PubMed

    Mathur, Divita; Henderson, Eric R

    2013-04-19

    The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, the DNA origami technique suffers from some limitations. Foremost among these is the limited number of useful single-stranded scaffolds of biological origin. This report describes a new approach to creating large DNA nanostructures exclusively from synthetic oligonucleotides. The essence of this approach is to replace the single-stranded scaffold in DNA origami with a library of oligonucleotides termed "scaples" (scaffold staples). Scaples eliminate the need for scaffolds of biological origin and create new opportunities for producing larger and more diverse DNA nanostructures as well as simultaneous assembly of distinct structures in a "single-pot" reaction.

  9. Antisense oligonucleotides as therapeutics for malignant diseases.

    PubMed

    Ho, P T; Parkinson, D R

    1997-04-01

    The continued progress in our understanding of the biology of neoplasia and in the identification, cloning, and sequencing of genes critical to tumor cell function permits the exploitation of this information to develop specific agents that may directly modulate the function of these genes or their protein products. Antisense oligonucleotides are being investigated as a potential therapeutic modality that takes direct advantage of molecular sequencing. The antisense approach uses short oligonucleotides designed to hybridize to a target mRNA transcript through Watson-Crick base pairing. The formation of this oligonucleotide: RNA heteroduplex results in mRNA inactivation and consequent inhibition of synthesis of the protein product. A fundamental attraction of the antisense approach is that this method potentially may be applied to any gene product, in theory, for the treatment of malignant and non-malignant diseases. However, this simple and attractive model has proven to be much more complex in practice. A number of important challenges in the preclinical development of antisense oligonucleotides have been identified, including stability, sequence length, cellular uptake, target sequence selection, appropriate negative controls, oligonucleotide: protein interactions, and cost of manufacture. Although the biological activity of an oligonucleotide against its molecular target is theoretically sequence-dependent, the animal pharmacokinetics and toxicology of phosphorothioate analogues directed against vastly disparate gene products appear relatively non-sequence-specific. In oncology, a number of clinical trials have been initiated with antisense oligonucleotides directed against molecular targets including: p53; bcl-2; raf kinase; protein kinase C-alpha; c-myb. The experience gained from these early clinical trials will be applicable to the next generation of antisense agents in development. These may include molecules with novel backbones or other structural

  10. Multipathogen oligonucleotide microarray for environmental and biodefense applications.

    PubMed

    Sergeev, Nikolay; Distler, Margaret; Courtney, Shannon; Al-Khaldi, Sufian F; Volokhov, Dmitriy; Chizhikov, Vladimir; Rasooly, Avraham

    2004-11-01

    Food-borne pathogens are a major health problem. The large and diverse number of microbial pathogens and their virulence factors has fueled interest in technologies capable of detecting multiple pathogens and multiple virulence factors simultaneously. Some of these pathogens and their toxins have potential use as bioweapons. DNA microarray technology allows the simultaneous analysis of thousands of sequences of DNA in a relatively short time, making it appropriate for biodefense and for public health uses. This paper describes methods for using DNA microarrays to detect and analyze microbial pathogens. The FDA-1 microarray was developed for the simultaneous detection of several food-borne pathogens and their virulence factors including Listeria spp., Campylobacter spp., Staphylococcus aureus enterotoxin genes and Clostridium perfringens toxin genes. Three elements were incorporated to increase confidence in the microarray detection system: redundancy of genes, redundancy of oligonucleotide probes (oligoprobes) for a specific gene, and quality control oligoprobes to monitor array spotting and target DNA hybridization. These elements enhance the reliability of detection and reduce the chance of erroneous results due to the genetic variability of microbes or technical problems with the microarray. The results presented demonstrate the potential of oligonucleotide microarrays for detection of environmental and biodefense relevant microbial pathogens.

  11. Portable system for microbial sample preparation and oligonucleotide microarray analysis.

    SciTech Connect

    Bavykin, S. G.; Akowski, J. P.; Zakhariev, V. M.; Barsky, V. E.; Mirzabekov, A. D.; Perov, A. N.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2001-02-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.

  12. Allele-specific conventional reverse-transcription polymerase chain reaction as a screening assay for discriminating influenza a H1N1 (H275Y) oseltamivir-resistant and wild-type viruses.

    PubMed

    Ngai, Karry L K; Lam, Wai-Yip; Lee, Nelson; Leung, Ting Fan; Hui, David S C; Chan, Paul K S

    2010-08-01

    In early 2008, a sudden increase in oseltamivir (Tamiflu)-resistant influenza A H1N1 viruses was reported from several European countries. This resistant virus has spread globally and accounted for more than 95% of H1N1 viruses isolated in the following influenza season. A continuous close monitoring on the prevalence of this resistant virus is necessary to rationalize the choice of antiviral agents. The resistance of this novel strain to oseltamivir is conferred by an amino acid substitution from histidine to tyrosine at position 275 (H275Y) of the neuraminidase protein. This study developed and evaluated allele-specific conventional reverse-transcription polymerase chain reaction (cRT-PCR) assays to provide a simple, rapid, and low-cost option for discriminating oseltamivir-resistant influenza A H1N1 (H275Y) mutant from wild-type viruses. The evaluation was based on 90 nasopharyngeal aspirate specimens collected before, during the initial phase and at the peak of emergence of resistance. Thirty-six (40%) of these specimens were H275Y mutant, whereas the other 54 (60%) were wild-type viruses as confirmed by sequencing of the neuraminidase gene. When applied directly on the 90 nasopharyngeal aspirate specimens, the allele-specific cRT-PCR assays achieved an unequivocal discrimination for 82 (91%) specimens. Further improvement in performance is expected when applied to cell culture isolates with a higher viral titer. These allele-specific cRT-PCR assays can be a simple, low-cost option for large-scale screening of influenza isolates.

  13. An oligonucleotide hybridization approach to DNA sequencing.

    PubMed

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  14. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  15. Rapid large-scale oligonucleotide selection for microarrays.

    PubMed

    Rahmann, Sven

    2002-01-01

    We present the first algorithm that selects oligonucleotide probes (e.g. 25-mers) for microarray experiments on a large scale. For example, oligos for human genes can be found within 50 hours. This becomes possible by using the longest common substring as a specificity measure for candidate oligos. We present an algorithm based on a suffix array with additional information that is efficient both in terms of memory usage and running time to rank all candidate oligos according to their specificity. We also introduce the concept of master sequences to describe the sequences from which oligos are to be selected. Constraints such as oligo length, melting temperature, and self-complementarity are incorporated in the master sequence at a preprocessing stage and thus kept separate from the main selection problem. As a result, custom oligos can now be designed for any sequenced genome, just as the technology for on-site chip synthesis is becoming increasingly mature.

  16. Rapid and specific detection of Lassa virus by reverse transcription-PCR coupled with oligonucleotide array hybridization.

    PubMed

    Olschläger, Stephan; Günther, Stephan

    2012-07-01

    To facilitate sequence-specific detection of DNA amplified in a diagnostic reverse transcription (RT)-PCR for Lassa virus, we developed an array featuring 47 oligonucleotide probes for post-PCR hybridization of the amplicons. The array procedure may be performed with low-tech equipment and does not take longer than agarose gel detection.

  17. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  18. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.

  19. Detection of Ligand-Induced Conformational Changes in Oligonucleotides by Second-Harmonic Generation at a Supported Lipid Bilayer Interface.

    PubMed

    Butko, Margaret T; Moree, Ben; Mortensen, Richard B; Salafsky, Joshua

    2016-11-01

    There is a high demand for characterizing oligonucleotide structural changes associated with binding interactions as well as identifying novel binders that modulate their structure and function. In this study, second-harmonic generation (SHG) was used to study RNA and DNA oligonucleotide conformational changes associated with ligand binding. For this purpose, we developed an avidin-based biotin capture surface based on a supported lipid bilayer membrane. The technique was applied to two well-characterized aptamers, both of which undergo conformational changes upon binding either a protein or a small molecule ligand. In both cases, SHG was able to resolve conformational changes in these oligonucleotides sensitively and specifically, in solution and in real time, using nanogram amounts of material. In addition, we developed a competition assay for the oligonucleotides between the specific ligands and known, nonspecific binders, and we demonstrated that intercalators and minor groove binders affect the conformation of the DNA and RNA oligonucleotides in different ways upon binding and subsequently block specific ligand binding in all cases. Our work demonstrates the broad potential of SHG for studying oligonucleotides and their conformational changes upon interaction with ligands. As SHG offers a powerful, high-throughput screening approach, our results here also open an important new avenue for identifying novel chemical probes or sequence-targeted drugs that disrupt or modulate DNA or RNA structure and function.

  20. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Mirzabekov, A. D.; Stahl, D. A.

    2001-01-01

    The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes simultaneously. For this study, a hierarchical set of 30 oligonucleotide probes targeting the 16S ribosomal RNA of these bacilli at multiple levels of specificity (approximate taxonomic ranks of domain, kingdom, order, genus and species) was designed and immobilized in a high-density matrix of gel pads on a glass slide. Reproducible melting curves for probes with different levels of specificity were obtained using an optimized salt concentration. Clear discrimination between perfect match (PM) and mismatch (MM) duplexes was achieved. By normalizing the signals to an internal standard (a universal probe), a more than twofold discrimination (> 2.4x) was achieved between PM and 1-MM duplexes at the dissociation temperature at which 50% of the probe-target duplexes remained intact. This provided excellent differentiation among representatives of different Bacillus species, both individually and in mixtures of two or three. The overall pattern of hybridization derived from this hierarchical probe set also provided a clear 'chip fingerprint' for each of these closely related Bacillus species.

  1. Detection of genetically modified canola using multiplex PCR coupled with oligonucleotide microarray hybridization.

    PubMed

    Schmidt, Anna-Mary; Sahota, Robert; Pope, Derek S; Lawrence, Tracy S; Belton, Mark P; Rott, Michael E

    2008-08-27

    A rapid method was developed for concurrent screening of transgenic elements in GM canola. This method utilizes a single multiplex PCR coupled with an oligonucleotide DNA array capable of simultaneously detecting the 12 approved GM canola lines in Canada. The assay includes construct-specific elements for identification of approved lines, common elements (e.g., CaMV 35S promoter, Agrobacterium tumefaciens nos terminator, or nptII gene) for screening of approved or unapproved lines, a canola-specific endogenous gene, and endogenous genes from heterologous crops to serve as additional controls. Oligonucleotide probes were validated individually for functionality and specificity by amplification of specific transgene sequences from appropriate GM canola lines corresponding to each probe sequence, and hybridization of amplicons to the array. Each target sequence hybridized to its corresponding oligonucleotide probe and no significant cross-hybridization was observed. The limit of detection was examined for the GM lines GT73, T45, and MS8/RF3, and was determined to be 0.1%, 0.1%, and 0.5%, respectively, well within the European food and feed labeling threshold level of 0.9% for approved GM product. Practically, the method was demonstrated to be effective for the detection of GM canola in several types of animal feed, as well as in commercial canola meal.

  2. Development, Characterization and Experimental Validation of a Cultivated Sunflower (Helianthus annuus L.) Gene Expression Oligonucleotide Microarray

    PubMed Central

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  3. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    PubMed

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  4. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.

    PubMed

    Prickett, Adam R; Barkas, Nikolaos; McCole, Ruth B; Hughes, Siobhan; Amante, Samuele M; Schulz, Reiner; Oakey, Rebecca J

    2013-10-01

    DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.

  5. Oligonucleotide recombination in gram negative bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any a...

  6. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  7. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example.

  8. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  9. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-09-29

    The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  10. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    1998-01-01

    The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.

  11. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-07-21

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  12. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-02-24

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  13. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum.

  14. Antisense oligonucleotides in therapy for neurodegenerative disorders.

    PubMed

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2015-06-29

    Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.

  15. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  16. The prebiotic synthesis of deoxythymidine oligonucleotides

    NASA Technical Reports Server (NTRS)

    Stephen-Sherwood, E.; Odom, D. G.; Oro, J.

    1974-01-01

    Deoxythymidine 5 prime-triphosphate in the presence of deoxythymidine 5 prime-phosphate, cyanamide and 4-amino-5-imidazole carboxamide polymerizes under drying conditions at moderate temperatures (60 to 90 C) to yield oligonucleotides of up to four units in length. Enzymatic analysis indicated that the majority of these oligomers contained natural 3 prime-5 prime phosphodiester bonds. This reaction offers a possible method for the formation of deoxyoligonucleotides under primitive earth conditions.

  17. In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication

    PubMed Central

    Phillips, Margaret F.; Lockett, Matthew R.; Rodesch, Matthew J.; Shortreed, Michael R.; Cerrina, Franco; Smith, Lloyd M.

    2008-01-01

    Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired. PMID:18084027

  18. A Solution to the Common Problem of the Synthesis and Applications of Hexachlorofluorescein Labeled Oligonucleotides

    PubMed Central

    Chuvilin, Andrey N.; Smirnov, Igor P.; Mosina, Alena G.; Varizhuk, Anna M.; Pozmogova, Galina E.

    2016-01-01

    A common problem of the preparation of hexachlorofluorescein labeled oligonucleotides is the transformation of the fluorophore to an arylacridine derivative under standard ammonolysis conditions. We show here that the arylacridine byproduct with distinct optical characteristics cannot be efficiently separated from the major product by HPLC or electrophoretic methods, which hampers precise physicochemical experiments with the labeled oligonucleotides. Studies of the transformation mechanism allowed us to select optimal conditions for avoiding the side reaction. The novel method for the post-synthetic deblocking of hexachlorofluorescein-labeled oligodeoxyribonucleotides described in this paper prevents the formation of the arylacridine derivative, enhances the yield of target oligomers, and allows them to be proper real-time PCR probes. PMID:27861573

  19. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    PubMed Central

    Verdugo, Ricardo A; Medrano, Juan F

    2006-01-01

    Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis): Affymetrix430 2.0 (75.6%), ABI Genome Survey (81.24%), Agilent (79.33%), Codelink (78.09%), Sentrix (90.47%); and four array-ready oligosets: Sigma (47.95%), Operon v.3 (69.89%), Operon v.4 (84.03%), and MEEBO (84.03%). The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here reveals that the

  20. Allele-specific disparity in breast cancer

    PubMed Central

    2011-01-01

    Background In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus). We report the overall difference in disparity in high-grade tumours compared to low-grade tumours (p-value < 0.001) and significant associations between disparity in multiple single loci and clinical parameters. The most significantly associated network functions within the genes represented in the loci of disparity were identified, including lipid metabolism, small-molecule biochemistry, and nervous system development and function. No evidence for over-representation of directional disparity in a list of stem cell genes was obtained, however genes appeared to be more often altered by deletion than by amplification. Conclusions Our data suggest that directional loss and amplification exist in breast cancer. These are highly associated with grade, which may indicate that they are enforced with increasing number of cell divisions. Whether there is selective pressure for some loci to be preferentially amplified or deleted remains to be confirmed. PMID:22188678

  1. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    PubMed

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  2. Template-Directed Ligation of Peptides to Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  3. Detection of SPO11-oligonucleotide complexes from mouse testes.

    PubMed

    Pan, Jing; Keeney, Scott

    2009-01-01

    The SPO11 protein generates programmed DNA double-strand breaks (DSBs) that initiate meiotic recombination. Endonucleolytic cleavage 3' to the DSB sites releases SPO11 from DNA, leaving SPO11 covalently associated with an oligonucleotide. This chapter describes detection of the release product, SPO11-oligonucleotide complexes, from mouse testis lysates. The method for determining the size of SPO11-associated oligonucleotides is also provided.

  4. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  5. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces.

    PubMed

    Halliwell, C M; Cass, A E

    2001-06-01

    The modification of glass surfaces with (3-mercaptopropyl)trimethoxysilane and the application of this to DNA chip technology are described. A range of factors influencing the silanization method, and hence the number of surface-bound, chemically active thiol groups, were investigated using a design of experiment approach based on analysis of variance. The number of thiol groups introduced on glass substrates were measured directly using a specific radiolabel, [14C]cysteamine hydrochloride. For liquid-phase silanization, the number of surface-bound thiol groups was found to be dependent on both postsilanization thermal curing and silanization time and relatively independent of silane concentration, reaction temperature, and sample pretreatment. Depending on the conditions used in liquid-phase silanization, (1.3-9.0) x 10(12) thiol groups/cm2 on the glass samples were bound. The reliability and repeatability of liquid- and vacuum-phase silanization were also investigated. Eighteen-base oligonucleotide probes were covalently attached to the modified surfaces via a 3'-amino modification on the DNA and subsequent reaction with the cross-linking reagent N-(gamma-maleimidobutyryloxy) succinimide ester (GMBS). The resulting probe levels were determined and found to be stoichiometric with that of the introduced thiol groups. These results demonstrate that silanization of glass surfaces under specific conditions, prior to probe attachment, is of great importance in the development of DNA chips that use the simple concept of the covalent attachment of presynthesized oligonucleotides to silicon oxide surfaces.

  6. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ.

    PubMed

    Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats

    2015-12-15

    In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ.

  7. An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization.

    PubMed

    Cai, W W; Reneker, J; Chow, C W; Vaishnav, M; Bradley, A

    1998-12-15

    Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an "overgo" computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes.

  8. Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase.

    PubMed

    Boltz, Valerie F; Ambrose, Zandrea; Kearney, Mary F; Shao, Wei; Kewalramani, Vineet N; Maldarelli, Frank; Mellors, John W; Coffin, John M

    2012-12-01

    It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.

  9. Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency.

    PubMed

    Stoermer, Rebecca L; Keating, Christine D

    2006-10-11

    When fluorescently tagged oligonucleotides are located near metal surfaces, their emission intensity is impacted by both electromagnetic effects (i.e., quenching and/or enhancement of emission) and the structure of the nucleic acids (e.g., random coil, hairpin, or duplex). We present experiments exploring the effect of label position and secondary structure in oligonucleotide probes as a function of hybridization buffer, which impacts the percentage of double-stranded probes on the surface after exposure to complementary DNA. Nanowires containing identifiable patterns of Au and Ag segments were used as the metal substrates in this work, which enabled us to directly compare different dye positions in a single multiplexed experiment and differences in emission for probes attached to the two metals. The observed metal-dye separation dependence for unstructured surface-bound oligonucleotides is highly sensitive to hybridization efficiency, due to substantial changes in DNA extension from the surface upon hybridization. In contrast, fluorophore labeled oligonucleotides designed to form hairpin secondary structures analogous to solution-phase molecular beacon probes are relatively insensitive to hybridization efficiency, since the folded form is quenched and therefore does not appreciably impact the observed distance-dependence of the response. Differences in fluorescence patterning on Au and Ag were noted as a function of not only chromophore identity but also metal-dye separation. For example, emission intensity for TAMRA-labeled oligonucleotides changed from brighter on Ag for 24-base probes to brighter on Au for 48-base probes. We also observed fluorescence enhancement at the ends of nanowires and at surface defects where heightened electromagnetic fields affect the fluorescence.

  10. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers

    PubMed Central

    Jolly, Pawan; Estrela, Pedro

    2016-01-01

    There are an increasing number of applications that have been developed for oligonucleotide-based biosensing systems in genetics and biomedicine. Oligonucleotide-based biosensors are those where the probe to capture the analyte is a strand of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or a synthetic analogue of naturally occurring nucleic acids. This review will shed light on various types of nucleic acids such as DNA and RNA (particularly microRNAs), their role and their application in biosensing. It will also cover DNA/RNA aptamers, which can be used as bioreceptors for a wide range of targets such as proteins, small molecules, bacteria and even cells. It will also highlight how the invention of synthetic oligonucleotides such as peptide nucleic acid (PNA) or locked nucleic acid (LNA) has pushed the limits of molecular biology and biosensor development to new perspectives. These technologies are very promising albeit still in need of development in order to bridge the gap between the laboratory-based status and the reality of biomedical applications. PMID:27365033

  11. Application of oligonucleotide microarrays for bacterial source tracking of environmental Enterococcus sp. isolates.

    PubMed

    Indest, Karl J; Betts, Kelley; Furey, John S

    2005-04-01

    In an effort towards adapting new and defensible methods for assessing and managing the risk posed by microbial pollution, we evaluated the utility of oligonucleotide microarrays for bacterial source tracking (BST) of environmental Enterococcus sp. isolates derived from various host sources. Current bacterial source tracking approaches rely on various phenotypic and genotypic methods to identify sources of bacterial contamination resulting from point or non-point pollution. For this study Enterococcus sp. isolates originating from deer, bovine, gull, and human sources were examined using microarrays. Isolates were subjected to Box PCR amplification and the resulting amplification products labeled with Cy5. Fluorescent-labeled templates were hybridized to in-house constructed nonamer oligonucleotide microarrays consisting of 198 probes. Microarray hybridization profiles were obtained using the ArrayPro image analysis software. Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were compared for their ability to visually cluster microarray hybridization profiles based on the environmental source from which the Enterococcus sp. isolates originated. The PCA was visually superior at separating origin-specific clusters, even for as few as 3 factors. A Soft Independent Modeling (SIM) classification confirmed the PCA, resulting in zero misclassifications using 5 factors for each class. The implication of these results for the application of random oligonucleotide microarrays for BST is that, given the reproducibility issues, factor-based variable selection such as in PCA and SIM greatly outperforms dendrogram-based similarity measures such as in HCA and K-Nearest Neighbor KNN.

  12. Application of Oligonucleotide Microarrays for Bacterial Source Tracking of Environmental Enterococcus sp. Isolates

    PubMed Central

    Indest, Karl J.; Betts, Kelley; Furey, John S.

    2005-01-01

    In an effort towards adapting new and defensible methods for assessing and managing the risk posed by microbial pollution, we evaluated the utility of oligonucleotide microarrays for bacterial source tracking (BST) of environmental Enterococcus sp. isolates derived from various host sources. Current bacterial source tracking approaches rely on various phenotypic and genotypic methods to identify sources of bacterial contamination resulting from point or non-point pollution. For this study Enterococcus sp. isolates originating from deer, bovine, gull, and human sources were examined using microarrays. Isolates were subjected to Box PCR amplification and the resulting amplification products labeled with Cy5. Fluorescent-labeled templates were hybridized to in-house constructed nonamer oligonucleotide microarrays consisting of 198 probes. Microarray hybridization profiles were obtained using the ArrayPro image analysis software. Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were compared for their ability to visually cluster microarray hybridization profiles based on the environmental source from which the Enterococcus sp. isolates originated. The PCA was visually superior at separating origin-specific clusters, even for as few as 3 factors. A Soft Independent Modeling (SIM) classification confirmed the PCA, resulting in zero misclassifications using 5 factors for each class. The implication of these results for the application of random oligonucleotide microarrays for BST is that, given the reproducibility issues, factor-based variable selection such as in PCA and SIM greatly outperforms dendrogram-based similarity measures such as in HCA and K-Nearest Neighbor KNN. PMID:16705816

  13. Image-based detection of oligonucleotides--a low cost alternative to spectrophotometric or fluorometric methods.

    PubMed

    Ahirwar, Rajesh; Tanwar, Swati; Parween, Shahila; Kumar, Ashok; Nahar, Pradip

    2014-05-07

    Herein, we report a sensitive and low cost image-based (photocolorimetric) method for the detection of oligonucleotides on an activated polypropylene microtest plate (APPμTP). The assay was developed on the APPμTP by covalently immobilising 20-mer amino-modified oligonucleotides. Biotin-tagged complementary target sequences were then hybridised with the immobilised oligonucleotides. Colour was developed by streptavidin-HRP conjugate and the image of the coloured assay solution was taken by a desktop scanner and analysed using colour saturation. The developed method was analysed for its detection limit, accuracy, sensitivity and interference. The linearity range was found to be 1.7-170 ng mL(-1) while the lower limit of detection and limit of quantification were 1.7 and 5.6 ng mL(-1) respectively. The method showed comparable sensitivity to fluorometric methods, and was found to be correlated to fluorescence (R(2) = 0.8081, p-value < 0.0001) and absorbance (R(2) = 0.9394, p-value < 0.0001)-based quantification. It discriminates mismatched base sequences from perfectly matched sequences efficiently. Validation of the method was carried out by detecting por A DNA of Neisseria meningitidis in bacterial meningitis samples. The por A-specific probe having a 6-carbon spacer at its 5'-NH2 terminus was immobilised covalently to the APPμTP and hybridised with different samples of biotinylated single-stranded por A DNA.

  14. Attomolar Zika virus oligonucleotide detection based on loop-mediated isothermal amplification and AC susceptometry.

    PubMed

    Tian, Bo; Qiu, Zhen; Ma, Jing; Zardán Gómez de la Torre, Teresa; Johansson, Christer; Svedlindh, Peter; Strömberg, Mattias

    2016-12-15

    Because of the serological cross-reactivity among the flaviviruses, molecular detection methods, such as reverse-transcription polymerase chain reaction (RT-PCR), play an important role in the recent Zika outbreak. However, due to the limited sensitivity, the detection window of RT-PCR for Zika viremia is only about one week after symptom onset. By combining loop-mediated isothermal amplification (LAMP) and AC susceptometry, we demonstrate a rapid and homogeneous detection system for the Zika virus oligonucleotide. Streptavidin-magnetic nanoparticles (streptavidin-MNPs) are premixed with LAMP reagents including the analyte and biotinylated primers, and their hydrodynamic volumes are dramatically increased after a successful LAMP reaction. Analyzed by a portable AC susceptometer, the changes of the hydrodynamic volume are probed as Brownian relaxation frequency shifts, which can be used to quantify the Zika virus oligonucleotide. The proposed detection system can recognize 1 aM synthetic Zika virus oligonucleotide in 20% serum with a total assay time of 27min, which can hopefully widen the detection window for Zika viremia and is therefore promising in worldwide Zika fever control.

  15. Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific absolute 5-methylcytosine quantitation.

    PubMed

    Masser, Dustin R; Stanford, David R; Hadad, Niran; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Richardson, Arlan; Freeman, Willard M

    2016-06-01

    Epigenetic regulation through DNA methylation (5mC) plays an important role in development, aging, and a variety of diseases. Genome-wide studies of base- and strand-specific 5mC are limited by the extensive sequencing required. Targeting bisulfite sequencing to specific genomic regions through sequence capture with complimentary oligonucleotide probes retains the advantages of bisulfite sequencing while focusing sequencing reads on regions of interest, enables analysis of more samples by decreasing the amount of sequence required per sample, and provides base- and strand-specific absolute quantitation of CG and non-CG methylation levels. As an example, an oligonucleotide capture set to interrogate 5mC levels in all rat RefSeq gene promoter regions (18,814) and CG islands, shores, and shelves (18,411) was generated. Validation using whole-genome methylation standards and biological samples demonstrates enrichment of the targeted regions and accurate base-specific quantitation of CG and non-CG methylation for both forward and reverse genomic strands. A total of 170 Mb of the rat genome is covered including 6.6 million CGs and over 67 million non-CG sites, while reducing the amount of sequencing required by ~85 % as compared to existing whole-genome sequencing methods. This oligonucleotide capture targeting approach and quantitative validation workflow can also be applied to any genome of interest.

  16. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  17. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  18. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    El Fantroussi, Said; Urakawa, Hidetoshi; Bernhard, Anne E.; Kelly, John J.; Noble, Peter A.; Smidt, H.; Yershov, G. M.; Stahl, David A.

    2003-01-01

    Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.e., melting profile) for each probe-target duplex provided information on hybridization specificity, which is essential for confirming adequate discrimination between target and nontarget sequences.

  19. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels.

    PubMed

    Huang, Aihua; Qiu, Zhigang; Jin, Min; Shen, Zhiqiang; Chen, Zhaoli; Wang, Xinwei; Li, Jun-Wen

    2014-08-18

    Bacterial pathogens are mostly responsible for food-borne diseases, and there is still substantial room for improvement in the effective detection of these organisms. In the present study, we explored a new method to detect target pathogens easily and rapidly with high sensitivity and specificity. This method uses an oligonucleotide microarray combined with quantum dots as fluorescent labels. Oligonucleotide probes targeting the 16SrRNA gene were synthesized to create an oligonucleotide microarray. The PCR products labeled with biotin were subsequently hybridized using an oligonucleotide microarray. Following incubation with CdSe/ZnS quantum dots coated with streptavidin, fluorescent signals were detected with a PerkinElmer Gx Microarray Scanner. The results clearly showed specific hybridization profiles corresponding to the bacterial species assessed. Two hundred and sixteen strains of food-borne bacterial pathogens, including standard strains and isolated strains from food samples, were used to test the specificity, stability, and sensitivity of the microarray system. We found that the oligonucleotide microarray combined with quantum dots used as fluorescent labels can successfully discriminate the bacterial organisms at the genera or species level, with high specificity and stability as well as a sensitivity of 10 colony forming units (CFU)/mL of pure culture. We further tested 105 mock-contaminated food samples and achieved consistent results as those obtained from traditional biochemical methods. Together, these results indicate that the quantum dot-based oligonucleotide microarray has the potential to be a powerful tool in the detection and identification of pathogenic bacteria in foods.

  20. Disulfide-linked oligonucleotide phosphorothioates - Novel analogues of nucleic acids

    NASA Technical Reports Server (NTRS)

    Wu, Taifeng; Orgel, Leslie E.

    1991-01-01

    The synthesis of phosphorothioate analogs of oligonucleotides by the oxidation of deoxyadenosine 3',5'-bisphosphorothioate (3) was attempted. Cyclization of 3 is much more efficient than oligomerization under all the conditions investigated. However, a preformed oligonucleotide carrying a 5'-terminal phosphorotioate group undergoes efficient chain-extension when oxidized in the presence of 3.

  1. Oligonucleotide therapies for disorders of the nervous system.

    PubMed

    Khorkova, Olga; Wahlestedt, Claes

    2017-03-01

    Oligonucleotide therapies are currently experiencing a resurgence driven by advances in backbone chemistry and discoveries of novel therapeutic pathways that can be uniquely and efficiently modulated by the oligonucleotide drugs. A quarter of a century has passed since oligonucleotides were first applied in living mammalian brain to modulate gene expression. Despite challenges in delivery to the brain, multiple oligonucleotide-based compounds are now being developed for treatment of human brain disorders by direct delivery inside the blood brain barrier (BBB). Notably, the first new central nervous system (CNS)-targeted oligonucleotide-based drug (nusinersen/Spinraza) was approved by US Food and Drug Administration (FDA) in late 2016 and several other compounds are in advanced clinical trials. Human testing of brain-targeted oligonucleotides has highlighted unusual pharmacokinetic and pharmacodynamic properties of these compounds, including complex active uptake mechanisms, low systemic exposure, extremely long half-lives, accumulation and gradual release from subcellular depots. Further work on oligonucleotide uptake, development of formulations for delivery across the BBB and relevant disease biology studies are required for further optimization of the oligonucleotide drug development process for brain applications.

  2. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  3. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  4. The spherulites™: a promising carrier for oligonucleotide delivery

    PubMed Central

    Mignet, Nathalie; Brun, Armelle; Degert, Corinne; Delord, Brigitte; Roux, Didier; Hélène, Claude; Laversanne, René; François, Jean-Christophe

    2000-01-01

    Concentric multilamellar microvesicles, named spherulites™, were evaluated as an oligonucleotide carrier. Up to 80% oligonucleotide was encapsulated in these vesicles. The study was carried out on two different spherulite™ formulations. The spherulite™ size and stability characteristics are presented. Delivery of encapsulated oligonucleotide was performed on a rat hepatocarcinoma and on a lymphoblastoid T cell line, both expressing the luciferase gene. We showed that spherulites™ were able to transfect both adherent and suspension cell lines and deliver the oligonucleotide to the nucleus. Moreover, 48–62% luciferase inhibition was obtained in the rat hepatocarcinoma cell line when the antisense oligonucleotide targeted to the luciferase coding region was encapsulated at 500 nM concentration in spherulites™ of different compositions. PMID:10931929

  5. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  6. How is it that microsatellites and random oligonucleotides uncover DNA fingerprint patterns?

    PubMed

    Kashi, Y; Nave, A; Darvasi, A; Gruenbaum, Y; Soller, M; Beckmann, J S

    1994-09-01

    Minisatellites, microsatellites, and short random oligonucleotides all uncover highly polymorphic DNA fingerprint patterns in Southern analysis of genomic DNA that has been digested with a restriction enzyme having a 4-bp specificity. The polymorphic nature of the fragments is attributed to tandem repeat number variation of embedded minisatellite sequences. This explains why DNA fingerprint fragments are uncovered by minisatellite probes, but does not explain how it is that they are also uncovered by microsatellite and random oligonucleotide probes. To clarify this phenomenon, we sequenced a large bovine genomic BamHI restriction fragment hybridizing to the Jeffreys 33.6 minisatellite probe and consisting of small and large Sau3A-resistant subfragments. The large Sau3A subfragment was found to have a complex architecture, consisting of two different minisatellites, flanked and separated by stretches of unique DNA. The three unique sequences were characterized by sequence simplicity, that is, a higher than chance occurrence of tandem or dispersed repetition of simple sequence motifs. This complex repetitive structure explains the absence of Sau3A restriction sites in the large Sau3A subfragment, yet provides this subfragment with the ability to hybridize to a variety of probe sequences. It is proposed that a large class of interspersed tracts sharing this complex yet simplified sequence structure is found in the genome. Each such tract would have a broad ability to hybridize to a variety of probes, yet would exhibit a dearth of restriction sites. For each restriction enzyme having 4-bp specificity, a subclass of such tracts, completely lacking the corresponding restriction sites, will be present. On digestion with the given restriction enzyme, each such tract would form a large fragment.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Conjugation of fluorescent proteins with DNA oligonucleotides.

    PubMed

    Lapiene, Vidmantas; Kukolka, Florian; Kiko, Kathrin; Arndt, Andreas; Niemeyer, Christof M

    2010-05-19

    This work describes the synthesis of covalent ssDNA conjugates of six fluorescent proteins, ECFP, EGFP, E(2)GFP, mDsRed, Dronpa, and mCherry, which were cloned with an accessible C-terminal cystein residue to enable site-selective coupling using a heterobispecific cross-linker. The resulting conjugates revealed similar fluorescence emission intensity to the unconjugated proteins, and the functionality of the tethered oligonucleotide was proven by specific Watson-Crick base pairing to cDNA-modified gold nanoparticles. Fluorescence spectroscopy analysis indicated that the fluorescence of the FP is quenched by the gold particle, and the extent of quenching varied with the intrinsic spectroscopic properties of FP as well as with the configuration of surface attachment. Since this study demonstrates that biological fluorophores can be selectively incorporated into and optically coupled with nanoparticle-based devices, applications in DNA-based nanofabrication can be foreseen.

  8. Abiotic formation of oligonucleotides on basalt surfaces

    NASA Astrophysics Data System (ADS)

    Otroshchenko, V. A.; Vasilyeva, N. V.; Kopilov, A. M.

    1985-06-01

    The complication and further evolution of abiotic syntheses products occurred under environmental influences at the prebiological stage. From this point of view, the influence of some types of irradiation on the organic molecules adsorbed on the surfaces of volcanic rocks, appeared to be of great importance. In this connection, the effect of gamma rays on the AMP molecules adsorbed on mineral surfaces such as cinders and ashes has been studied. It has been shown that they can polymerize with the formation of oligonucleotides. The treatment of oligomers obtained by venom phosphodiesterase has shown that a polymeric product has mainly 3' 5' and 2' 5' bonds between nucleotides. The results obtained have been discussed from the evolutionary aspect.

  9. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  10. High frequency of SLC22A12 variants causing renal hypouricemia 1 in the Czech and Slovak Roma population; simple and rapid detection method by allele-specific polymerase chain reaction.

    PubMed

    Gabrikova, Dana; Bernasovska, Jarmila; Sokolova, Jitka; Stiburkova, Blanka

    2015-10-01

    Renal hypouricemia is a rare heterogeneous inherited disorder characterized by impaired tubular uric acid transport with severe complications, such as acute kidney injury. Type 1 and 2 are caused by loss-of-function mutations in the SLC22A12 and SLC2A9 gene, respectively. A cohort of 881 randomly chosen ethnic Roma from two regions in Eastern Slovakia and two regions in the Czech Republic participated. Genomic DNA was isolated from buccal swabs and/or from blood samples. The c.1245_1253del and c.1400C>T genotypes were determined using polymerase chain reaction with allele-specific primers in a multiplex arrangement and/or direct sequencing of exon 7 and 9. Allele frequencies and genotypes were tested for Hardy-Weinberg equilibrium using the Chi-square test. 25 subjects were heterozygous and three were homozygous for the c.1245_1253del, while 92 subjects were heterozygous and two were homozygous for the c.1400C>T. Moreover, two participants were compound heterozygotes. Frequencies of the c.1245_1253del and c.1400C>T variants were 1.87 and 5.56 %, respectively. Our finding confirms an uneven geographical and ethnic distribution of SLC22A12 mutant variants. We found that the c.1245_1253del and c.1400C>T variants were present in the Czech and Slovak Roma population at unexpectedly high frequencies. Renal hypouricemia should be kept in mind during differential diagnostic on Roma patients with low serum uric acid concentrations.

  11. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction

    PubMed Central

    Xu, Lian; Hunter, Zachary R.; Yang, Guang; Zhou, Yangsheng; Cao, Yang; Liu, Xia; Morra, Enrica; Trojani, Alessandra; Greco, Antonino; Arcaini, Luca; Varettoni, Maria; Brown, Jennifer R.; Tai, Yu-Tzu; Anderson, Kenneth C.; Munshi, Nikhil C.; Patterson, Christopher J.; Manning, Robert J.; Tripsas, Christina K.; Lindeman, Neal I.

    2013-01-01

    By whole-genome and/or Sanger sequencing, we recently identified a somatic mutation (MYD88 L265P) that stimulates nuclear factor κB activity and is present in >90% of Waldenström macroglobulinemia (WM) patients. MYD88 L265P was absent in 90% of immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS) patients. We therefore developed conventional and real-time allele-specific polymerase chain reaction (AS-PCR) assays for more sensitive detection and quantification of MYD88 L265P. Using either assay, MYD88 L265P was detected in 97 of 104 (93%) WM and 13 of 24 (54%) IgM MGUS patients and was either absent or rarely expressed in samples from splenic marginal zone lymphoma (2/20; 10%), CLL (1/26; 4%), multiple myeloma (including IgM cases, 0/14), and immunoglobulin G MGUS (0/9) patients as well as healthy donors (0/40; P < 1.5 × 10−5 for WM vs other cohorts). Real-time AS-PCR identified IgM MGUS patients progressing to WM and showed a high rate of concordance between MYD88 L265P ΔCT and BM disease involvement (r = 0.89, P = .008) in WM patients undergoing treatment. These studies identify MYD88 L265P as a widely present mutation in WM and IgM MGUS patients using highly sensitive and specific AS-PCR assays with potential use in diagnostic discrimination and/or response assessment. The finding of this mutation in many IgM MGUS patients suggests that MYD88 L265P may be an early oncogenic event in WM pathogenesis. PMID:23321251

  12. H19-DMR allele-specific methylation analysis reveals epigenetic heterogeneity of CTCF binding site 6 but not of site 5 in head-and-neck carcinomas: a pilot case-control analysis.

    PubMed

    De Castro Valente Esteves, Leda Isabel; De Karla Cervigne, Nilva; Do Carmo Javaroni, Afonso; Magrin, José; Kowalski, Luiz Paulo; Rainho, Cláudia Aparecida; Rogatto, Silvia Regina

    2006-02-01

    Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylation-sensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.

  13. Direct oligonucleotide-photosensitizer conjugates for photochemical delivery of antisense oligonucleotides.

    PubMed

    Yuan, Ahu; Laing, Brian; Hu, Yiqiao; Ming, Xin

    2015-04-18

    Activation of photosensitizers in endosomes enables release of therapeutic macromolecules into the cytosol of the target cells for pharmacological actions. In this study, we demonstrate that direct conjugation of photosensitizers to oligonucleotides (ONs) allows spatial and temporal co-localization of the two modalities in the target cells, and thus leads to superior functional delivery of ONs. Further, light-activated delivery of an anticancer ON caused cancer cell killing via modulation of an oncogene and photodynamic therapy.

  14. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    PubMed

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

  15. The effect of overhanging nucleotides on fluorescence properties of hybridising oligonucleotides labelled with Alexa-488 and FAM fluorophores.

    PubMed

    Noble, J E; Wang, L; Cole, K D; Gaigalas, A K

    2005-03-01

    In order to rationally select and design probes for real-time PCR, we have determined the influence of the overhang region of the complementary strand on the resulting fluorescence from a hybridising probe. A series of target oligonucleotides, each with a unique 3' overhang (4 bases), was hybridised to either 5' fluorescein (FAM)- or Alexa-488-labelled probes, and the changes in fluorescence properties were monitored. We found that the number of guanine bases in the overhang region of the target oligonucleotides was proportional to the amount of fluorescence quenching observed for both the FAM and Alexa-488 dyes. FAM appeared to be more sensitive to guanine-induced quenching with three and four guanine bases resulting in greater than a twofold decrease in the quantum yield of the fluorophore compared to the no-overhang target. In addition, we found that adenine bases caused fluorescence quenching of the Alexa-488-labelled probe, whereas the FAM-labelled probe appeared insensitive. The quenching data, generated with the steady-state fluorescence measurements, displayed a linear correlation with that obtained using a fluorescent thermal cycler, suggesting the applicability to real-time PCR measurements. Anisotropy data from the series of duplexes correlated with the fluorescence quantum yield, suggesting that quenching was accompanied by increased dye mobility.

  16. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  17. Electrochemical Detection of a Dengue-related Oligonucleotide Sequence Using Ferrocenium as a Hybridization Indicator

    PubMed Central

    Ribeiro Teles, Fernando Rodrigues; França dos Prazeres, Duarte Miguel; de Lima-Filho, José Luiz

    2007-01-01

    A simple method for electrochemical detection of a synthetic 20-bp oligonucleotide sequence related with dengue virus genome was developed. A complimentary DNA probe sequence was electrostatically immobilized onto a glassy carbon electrode modified with chitosan. Electrochemical detection of hybridization between probe and target was performed by cyclic voltammetry, using ferrocene (Fc+) as a hybridization label. After hybridization, the peak current response of Fc+ oxidation increased around 26%. A higher voltammetric decay rate constant (kd) and a lower half-life period (t1/2) for the interaction of Fc+ with dsDNA compared to those with ssDNA quantitatively characterize the different strengths of interaction with both types of DNA. By combining the simplicity of DNA immobilization onto a chitosan film and suitable voltammetric detection of hybridization concomitant with ferrocene attachment, a good discrimination between ssDNA and dsDNA was obtained.

  18. Method for the preparation of size marker for synthetic oligonucleotides

    SciTech Connect

    Jing, G.Z.; Liu, A.; Leung, W.C.

    1986-01-01

    Terminal deoxynucleotidyltransferase was used for the addition of (..cap alpha..-/sup 32/P)dCTP to the 3'-OH termini of oligo(dT)/sub 12-18/. A collection of oligonucleotides with chain lengths ranging continuously from 13-mer to over 100-mer was generated. The reaction mixture was then mixed with oligo(dT)/sub 12-18/ labeled with (..gamma..-/sup 32/P)ATP by T/sub 4/ polynucleotide kinase. A sequence ladder with the bottom base as 12-mer was then formed. These oligonucleotides served as size marker for the purification and identification of oligonucleotides on polyacrylamide gel.

  19. Retro-1 Analogues Differentially Affect Oligonucleotide Delivery and Toxin Trafficking.

    PubMed

    Yang, Bing; Ming, Xin; Abdelkafi, Hajer; Pons, Valerie; Michau, Aurelien; Gillet, Daniel; Cintrat, Jean-Christophe; Barbier, Julien; Juliano, Rudy

    2016-11-21

    Retro-1 is a small molecule that displays two important biological activities: First, it blocks the actions of certain toxins by altering their intracellular trafficking. Second, it enhances the activity of oligonucleotides by releasing them from entrapment in endosomes. This raises the question of whether the two actions involve the same cellular target. Herein we report the effects of several Retro-1 analogues on both toxins and oligonucleotides. We found analogues that affect toxins but not oligonucleotides and vice-versa, while Retro-1 is the only compound that affects both. This indicates that the molecular target(s) involved in the two processes are distinct.

  20. Therapeutic oligonucleotides and delivery technologies: Research topics in Japan.

    PubMed

    Murakami, Masahiro

    2016-01-01

    Oligonucleotides have been gaining considerable attention as promising and effective candidate therapeutics against various diseases. This special issue is aimed at providing a better understanding of the recent progress in the development of oligonucleotide-based therapeutics to encourage further research and innovation in this field to achieve these advancements. Several Japanese scientists have been invited to contribute to this issue by describing their recent findings, overviews, insights, or commentaries on rational designing of therapeutic oligonucleotide molecules and their novel delivery technologies, especially nanocarrier systems.

  1. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; El Fantroussi, Said; Smidt, Hauke; Smoot, James C.; Tribou, Erik H.; Kelly, John J.; Noble, Peter A.; Stahl, David A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.

  2. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  3. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand

    PubMed Central

    2013-01-01

    Background Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. Methods This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. Results The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Conclusions Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such

  4. Polyphosphorylation and non-enzymatic template-directed ligation of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Oligonucleotide 5'-polyphosphates are formed under potentially prebiotic conditions from oligonucleotide 5'-phosphates and sodium trimetaphosphate. Oligonucleotides activated as polyphosphates undergo template-directed ligation. We believe that these reactions could have produced longer oligonucleotide products from shorter substrates under prebiotic conditions.

  5. Sequence-dependent theory of oligonucleotide hybridization kinetics

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-05-07

    A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions.

  6. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  7. Tritium labeling of antisense oligonucleotides by exchange with tritiated water.

    PubMed Central

    Graham, M J; Freier, S M; Crooke, R M; Ecker, D J; Maslova, R N; Lesnik, E A

    1993-01-01

    We describe a simple, efficient, procedure for labeling oligonucleotides to high specific activity (< 1 x 10(8) cpm/mumol) by hydrogen exchange with tritiated water at the C8 positions of purines in the presence of beta-mercaptoethanol, an effective radical scavenger. Approximately 90% of the starting material is recovered as intact, labeled oligonucleotide. The radiolabeled compounds are stable in biological systems; greater than 90% of the specific activity is retained after 72 hr incubation at 37 degrees C in serum-containing media. Data obtained from in vitro cellular uptake experiments using oligonucleotides labeled by this method are similar to those obtained using 35S or 14C-labeled compounds. Because this protocol is solely dependent upon the existence of purine residues, it should be useful for radiolabeling modified as well as unmodified phosphodiester oligonucleotides. Images PMID:8367289

  8. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  9. Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots.

    PubMed

    Weichelt, Richard; Leubner, Susanne; Henning-Knechtel, Anja; Mertig, Michael; Gaponik, Nikolai; Schmidt, Thorsten-Lars; Eychmüller, Alexander

    2016-09-01

    Currently, DNA nanotechnology offers the most programmable, scalable, and accurate route for the self-assembly of matter with nanometer precision into 1, 2, or 3D structures. One example is DNA origami that is well suited to serve as a molecularly defined "breadboard", and thus, to organize various nanomaterials such as nanoparticles into hybrid systems. Since the controlled assembly of quantum dots (QDs) is of high interest in the field of photonics and other optoelectronic applications, a more detailed view on the functionalization of QDs with oligonucleotides shall be achieved. In this work, four different methods are presented to characterize the functionalization of thiol-capped cadmium telluride QDs with oligonucleotides and for the precise quantification of the number of oligonucleotides bound to the QD surface. This study enables applications requiring the self-assembly of semiconductor-oligonucleotide hybrid materials and proves the conjugation success in a simple and straightforward manner.

  10. Oligonucleotides complementary to the Oxytricha nova telomerase RNA delineate the template domain and uncover a novel mode of primer utilization.

    PubMed Central

    Melek, M; Davis, B T; Shippen, D E

    1994-01-01

    The telomerase reverse transcriptase uses an essential RNA subunit as a template to direct telomeric DNA synthesis. The 190-nucleotide Oxytricha nova telomerase RNA was identified by using an oligonucleotide probe complementary to the predicted CCCCAAAA template. This RNA displays extensive sequence similarity to the Euplotes crassus telomerase RNA and carries the same 5' CAAAACCCCAAAACC 3' telomeric domain. Antisense oligonucleotides were used to map the boundaries of the functional template and to investigate the mechanism of primer recognition and elongation. On the basis of their ability to inhibit or to prime telomerase, oligonucleotides were classified into three categories. Category 1 oligonucleotides, which extended 5' of residue 42 in the RNA, abolished elongation of (T4G4)3 and (G4T4)3 primers in vitro. In contrast, oligonucleotides terminating between residues 42 and 50 (categories 2 and 3), served as efficient telomerase primers. We conclude that the O. nova template comprises residues 42 to 50 in the 190-nucleotide RNA, a different set of nucleotides than are used by the E. crassus enzyme. Category 2 primer reactions amassed short products, and their abundance could be decreased by altering the 5' sequence of the primer, consistent with the two-primer-binding-site model for telomerase. Category 3 primers generated a bimodal distribution of short and long products, each having a unique elongation profile. The long-product profile is inconsistent with sequence-specific primer alignment. Rather, each primer was extended by the same register of TTTTGGGG repeats, suggesting shuttling to a default position within the template. The parallels between telomerase and RNA polymerase elongation mechanisms are discussed. Images PMID:7969123

  11. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.

  12. Antisense oligonucleotide therapeutics for human leukemia.

    PubMed

    Gewirtz, A M

    1998-01-01

    The development of reliable gene disruption strategies, and their application in living cells, has proven to be an extraordinary important advance for cell and molecular biologists. Using the various available approaches, the specific functions of any given gene may now be investigated directly in the relevant cell type. Application of similar experimental tools in a clinical setting might prove to be equally valuable and could well form the basis of a monumental advance in the practice of clinical medicine. This seems particularly true at the present time because much progress has been made in understanding the molecular pathogenesis of many diseases, including cancer. For these reasons a tremendous amount of interest has been generated in the use of oligodeoxynucleotides to modify gene expression. However, in spite of some notable successes which are detailed in this review, oligonucleotides have generated controversy in regard to their mechanism of action, reliability, and ultimate therapeutic utility. Nevertheless, the potential power of the "antisense" approach remains undisputed, and its ultimate therapeutic utility is far reaching. Accordingly, the problems associated with the use of these compounds are clearly worth solving. It remains the hope of many laboratories that the day will soon come when these techniques will make an important contribution to the management of chronic myelogenous leukemia and other neoplastic disorders.

  13. Antisense oligonucleotide therapeutics for human leukemia.

    PubMed

    Gewirtz, A M

    1997-01-01

    The development of reliable gene disruption strategies, and their application in living cells, has proven to be an extraordinarily important advance for cell and molecular biologists. Using the various available approaches, the specific functions of any given gene may now be investigated directly in the relevant cell type. Application of similar experimental tools in a clinical setting might prove to be equally valuable and could well form the basis of a monumental advance in the practice of clinical medicine. This seems particularly true at the present time since much progress has been made in understanding the molecular pathogenesis of many diseases, including cancer. For these reasons a tremendous amount of interest has been generated in the use of oligodeoxynucleotides to modify gene expression. However, in spite of some notable successes which are detailed in this review, oligonucleotides have generated controversy in regards to their mechanism of action, reliability, and ultimate therapeutic utility. Nevertheless, the potential power of the "antisense" approach remains undisputed, and its ultimate therapeutic utility is far reaching. Accordingly, the problems associated with the use of these compounds are clearly worth solving. It remains the hope of many laboratories that the day will soon come when these techniques will make an important contribution to the management of CML and other neoplastic disorders.

  14. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

  15. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.

  16. Syntheses of oligonucleotide derivatives with P(V) porphyrin and their properties.

    PubMed

    Shimidzu, T; Segawa, H; Kitamura, M; Nimura, A

    1992-01-01

    Two types of oligonucleotide derivatives which are substituted by P(V) porphyrin at the phosphorus atom of an internucleotidic linkage and at the 5'-terminal internucleotidic linkage via a spacer were synthesized (Fig. 1), and hybridization capabilities of them with complementary oligonucleotides were evaluated. A novel method for a sensing of oligonucleotide by the fluorescence quenching via photo-induced electron transfer between the P(V) porphyrin labeled oligonucleotide and pyrene-labeled one on the oligonucleotide template is reported.

  17. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  18. Advanced Molecular Probes for Sequence-Specific DNA Recognition

    NASA Astrophysics Data System (ADS)

    Bertucci, Alessandro; Manicardi, Alex; Corradini, Roberto

    DNA detection can be achieved using the Watson-Crick base pairing with oligonucleotides or oligonucleotide analogs, followed by generation of a physical or chemical signal coupled with a transducer device. The nature of the probe is an essential feature which determines the performances of the sensing device. Many synthetic processes are presently available for "molecular engineering" of DNA probes, enabling label-free and PCR-free detection to be performed. Furthermore, many DNA analogs with improved performances are available and are under development; locked nucleic acids (LNA), peptide nucleic acids (PNA) and their analogs, morpholino oligonucleotides (MO) and other modified probes have shown improved properties of affinity and selectivity in target recognition compared to those of simple DNA probes. The performances of these probes in sensing devices, and the requirements for detection of unamplified DNA will be discussed in this chapter. Chemistry and architectures for conjugation of probes to reporter units, surfaces and nanostructures will also be discussed. Examples of probes used in ultrasensitive detection of unamplified DNA are listed.

  19. A new general model for predicting melting thermodynamics of complementary and mismatched B-form duplexes containing locked nucleic acids: application to probe design for digital PCR detection of somatic mutations.

    PubMed

    Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles

    2015-02-17

    quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.

  20. Nanogels for Oligonucleotide Delivery to the Brain

    PubMed Central

    Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V.

    2009-01-01

    Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the blood–brain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine (“nanogel”). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain. PMID:14733583

  1. Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities

    PubMed Central

    2009-01-01

    Background In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species) have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. Results We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. Conclusion For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were

  2. Selection and application of strand displacement probes for a fumonisin B1 aptamer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a toxin produced by Fusarium moniliforme, mainly on contaminated maize and maize products. In this study a solid surface chain displacement strategy was used to isolate oligonucleotide displacement probes for a FB1 aptamer. The probes were used as the basis for the development ...

  3. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  4. Detection of adenosine 5'-triphosphate by fluorescence variation of oligonucleotide-templated silver nanoclusters.

    PubMed

    Lee, Jennifer Daneen; Cang, Jinshun; Chen, Ying-Chieh; Chen, Wei-Yu; Ou, Chung-Mao; Chang, Huan-Tsung

    2014-08-15

    Oligonucleotide-templated Ag nanoclusters (DNA-Ag NCs) prepared from AgNO3 using an oligonucleotide (5'-TAACCCCTAACCCCT-3') as a template and NaBH4 as a reducing agent have been used for sensing of adenosine 5'-triphosphate (ATP). The fluorescence intensity and emission wavelength of DNA-Ag NCs are dependent on the pH value and ATP concentration. At pH 3.0 and 11.0, ATP shows greater effects on fluorescence of the DNA-Ag NCs. Upon increasing ATP concentration from 10 to 50μM, their emission wavelength at pH 3.0 shifts from 525 to 585nm. At pH 11.0, their fluorescence intensity (510nm) increases upon increasing ATP concentration. The circular dichroism (CD), electrospray ionization-mass spectrometry (ESI-MS), absorption, and fluorescence results indicate that ATP and pH affect the interactions between DNAs and Ag atoms, resulting in changes in their fluorescence. The DNA-Ag NCs allow detection of ATP over a concentration range of 0.1-10μM, with a limit of detection 33nM. Practicality of the DNA-Ag NCs probe has been validated with the determination of ATP concentrations in the lysate of MDA-MB-231 breast carcinoma cells.

  5. Predicting oligonucleotide-directed mutagenesis failures in protein engineering

    PubMed Central

    Wassman, Christopher D.; Tam, Phillip Y.; Lathrop, Richard H.; Weiss, Gregory A.

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed ‘cross-hybridization’, as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries. PMID:15585664

  6. Target mRNA inhibition by oligonucleotide drugs in man

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2012-01-01

    Oligonucleotide delivery in vivo is commonly seen as the principal hurdle to the successful development of oligonucleotide drugs. In an analysis of 26 oligonucleotide drugs recently evaluated in late-stage clinical trials we found that to date at least half have demonstrated suppression of the target mRNA and/or protein levels in the relevant cell types in man, including those present in liver, muscle, bone marrow, lung, blood and solid tumors. Overall, this strongly implies that the drugs are being delivered to the appropriate disease tissues. Strikingly we also found that the majority of the drug targets of the oligonucleotides lie outside of the drugable genome and represent new mechanisms of action not previously investigated in a clinical setting. Despite the high risk of failure of novel mechanisms of action in the clinic, a subset of the targets has been validated by the drugs. While not wishing to downplay the technical challenges of oligonucleotide delivery in vivo, here we demonstrate that target selection and validation are of equal importance for the success of this field. PMID:22989709

  7. Safety of antisense oligonucleotide and siRNA-based therapeutics.

    PubMed

    Chi, Xuan; Gatti, Philip; Papoian, Thomas

    2017-01-31

    Oligonucleotide-based therapy is an active area of drug development designed to treat a variety of gene-specific diseases. Two of the more promising platforms are the antisense oligonucleotides (ASOs) and short interfering RNAs (siRNAs), both of which are often directed against similar targets. In light of recent reports on clinical trials of severe thrombocytopenia with two different ASO drugs and increased peripheral neuropathy with an siRNA drug, we compared and contrasted the specific safety characteristics of these two classes of oligonucleotide therapeutic. The objectives were to assess factors that could contribute to the specific toxicities observed with these two classes of promising drugs, and get a better understanding of the potential mechanism(s) responsible for these rare, but serious, adverse events.

  8. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  9. Fast large scale oligonucleotide selection using the longest common factor approach.

    PubMed

    Rahmann, Sven

    2003-07-01

    We present a fast method that selects oligonucleotide probes (such as DNA 25-mers) for microarray experiments on a truly large scale. For example, reliable oligos for human genes can be found within four days, a speedup of one to two orders of magnitude compared to previous approaches. This speed is attained by using the longest common substring as a specificity measure for candidate oligos. We present a space- and time-efficient algorithm, based on a suffix array with additional information, to compute matching statistics (lengths of longest matches) between all candidate oligos and all remaining sequences. With the matching statistics available, we show how to incorporate constraints such as oligo length, melting temperature, and self-complementarity into the selection process at a postprocessing stage. As a result, we can now design custom oligos for any sequenced genome, just as the technology for on-site chip synthesis is becoming increasingly mature.

  10. Automated synthesis of new ferrocenyl-modified oligonucleotides: study of their properties in solution

    PubMed Central

    Navarro, Aude-Emmanuelle; Spinelli, Nicolas; Moustrou, Corinne; Chaix, Carole; Mandrand, Bernard; Brisset, Hugues

    2004-01-01

    We have developed new ferrocenyl-modified oligonucleotide (ODN) probes for electrochemical DNA sensors. A monofunctional ferrocene containing phosphoramidite group has been prepared, and a new bisfunctional ferrocene containing phosphoramidite and dimethoxytrityl (DMT) groups has been developed. These ferrocenyl-phosphoramidites have been directly employed in an automated solid-phase DNA synthesizer using phosphoramidite chemistry. The advantages of this method are that it allows a non-specialist in nucleotide chemistry to access labeled ODNs and that it has demonstrated good results. ODNs modified at the 3′ and/or 5′ extremities have been prepared, with the incorporation of the ferrocenyl group into the chain. The 5′ position appears to be more important due to its particular behavior. The thermal stability and electrochemical properties of these new ODN ferrocenes were analyzed before and after hybridization with different ODNs. The feasibility of using these new ferrocenyl-labeled ODNs in DNA sensors has been demonstrated. PMID:15466597

  11. [The second generation universal oligonucleotide microarray for subtyping of influenza virus A].

    PubMed

    Kostina, E V; Riabinin, V A; Maksakova, G A; Siniakov, A N

    2012-01-01

    The microchip for influenza A subtyping was developed, functioning on a principle "one spot--one subtype". Each spot contains the set of oligonucleotide probes, specific for a particular subtype of hemagglutinin, neuraminidase or matrix gene. Reliability of the proposed chip version is the same as for earlier created in our group full-size microchip for separate hemagglutinin and neuraminidase subtyping. To visualize the image, analyzed DNA can be labeled by either fluorescent dye or biotin with the further fixation in system streptavidin-gold nanoparticles and image development by silver precipitation. In the second case common version of scanner can be used for the image analysis, that essentially simplifies procedure of influenza A subtyping.

  12. Versatile functionalization of nanoelectrodes by oligonucleotides via pyrrole electrochemistry.

    PubMed

    Descamps, Emeline; Nguyen, Khoa; Bouchain-Gautier, Christelle; Filoramo, Arianna; Goux-Capes, Laurence; Goffman, Marcello; Bourgoin, Jean-Philippe; Mailley, Pascal; Livache, Thierry

    2010-11-15

    Surface modification at the nanometer scale is a challenge for the future of molecular electronics. In particular, the precise anchoring and electrical addressing of biological scaffolds such as complex DNA nanonetworks is of importance for generating bio-directed assemblies of nano-objects for nanocircuit purposes. Herein, we consider the individual modification of nanoelectrodes with different oligonucleotide sequences by an electrochemically driven co-polymerization process of pyrrole and modified oligonucleotide sequences bearing pyrrole monomers. We demonstrate that this one-step technique presents the advantages of simplicity, localization of surface modification, mechanical, biological and chemical stability of the coatings, and high lateral resolution.

  13. Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray

    PubMed Central

    Lodes, Michael J.; Suciu, Dominic; Wilmoth, Jodi L.; Ross, Marty; Munro, Sandra; Dix, Kim; Bernards, Karen; Stöver, Axel G.; Quintana, Miguel; Iihoshi, Naomi; Lyon, Wanda J.; Danley, David L.; McShea, Andrew

    2007-01-01

    Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format. PMID:17895966

  14. Development of a short oligonucleotide microarray for the detection and identification of multiple potyviruses.

    PubMed

    Wei, Ting; Pearson, Michael N; Blohm, Dietmar; Nölte, Manfred; Armstrong, Karen

    2009-12-01

    The genus Potyvirus is the largest and one of the most economically important virus genera infecting plants. However, current diagnostic techniques are limited in their ability to identify multiple potyvirus infections. An assay that can identify multiple potyviruses simultaneously, with good specificity and sensitivity, is therefore highly desirable. To determine the feasibility of simultaneous detection of multiple potyviruses a 25-mer oligonucleotide microarray was developed targeting four distinct potyviruses: Dasheen mosaic virus (DsMV), Leek yellow stripe virus (LYSV), Potato virus Y (PVY) and Zucchini yellow mosaic virus (ZYMV). A total of 85 probes including 33 perfect-match and 52 mismatch probes were designed from conserved and variable sequence regions of the nuclear inclusion b (NIb) gene, RNA-dependent RNA polymerase (RdRp) gene, coat protein (CP) gene and the 3' untranslated region (UTR), representing the four targeted potyviruses at both species and strain levels. Each probe was synthesized with spacers of either 6 or 12 poly-cytosine or poly-thymine at the 5' terminus. The array showed high specificity when tested with nineteen different geographically diverse potyvirus isolates of the four target species, four distinct but closely related potyviruses, and four healthy plant species. The approaches and protocols developed in this study form a useful basis for developing other potyviruses arrays and the results also provide useful insights into generic issues for the development of arrays for detecting other pathogens.

  15. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  16. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  17. Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; Noble, Peter A.; El Fantroussi, Said; Kelly, John J.; Stahl, David A.

    2002-01-01

    The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the T(d) and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the T(d) and signal intensity, and it decreased the variability of the signal. Although T(d)s of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower T(d)s than those with mismatches in the first or second position. The trained NNs predicted the T(d) with high accuracies (R(2) = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R(2) = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in T(d)s, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5' terminus plays a greater role in determining the T(d) and signal intensity of duplexes than the type of mismatch.

  18. Oligonucleotide labelling using a fluorogenic "click" reaction with a hemicarboxonium salt.

    PubMed

    Maether, Marie-Pierre; Lapin, Kristie; Muntean, Andreea; Payrastre, Corinne; Escudier, Jean-Marc

    2013-10-17

    Two fluorescent streptocyanine labelled oligonucleotides have been synthesized by a simple "click" reaction between a non-fluorescent hemicarboxonium salt and aminoalkyl functionalized thymidines within the oligonucleotide and their spectrophotometric properties have been studied.

  19. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    SciTech Connect

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    Desulfovibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chromium. In addition, a Desulfovibrio sp. has been shown to utilize uranium as the sole electron acceptor. D. vulgaris is a d-Proteobacterium with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of D. vulgaris have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45 C to 50 C, washing at 37 C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes. The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (70-fold) were annotated as a carboxynorspermidine decarboxylase and a 2C-methyl-D-erythritol-2

  20. Validation of the Swine Protein-Annotated Oligonucleotide Microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specificity and utility of the Swine Protein-Annotated Oligonucleotide Microarray, or Pigoligoarray (www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed i...

  1. Gene expression profiling in peanut using oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have a moderately significant number of ESTs been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate l...

  2. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  3. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  4. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    PubMed Central

    Belov, Sergey S; Tarasenko, Yulia V; Silnikov, Vladimir N

    2014-01-01

    Summary An efficient solid-phase-supported peptide synthesis (SPPS) of morpholinoglycine oligonucleotide (MorGly) mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits. PMID:24991266

  5. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

    PubMed Central

    Timofeev, E; Kochetkova, S V; Mirzabekov, A D; Florentiev, V L

    1996-01-01

    Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well. PMID:8774893

  6. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.

    PubMed

    Lim, M C G; Zhong, Z W

    2009-10-01

    This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

  7. Ratiometric detection of oligonucleotide stoichiometry on multifunctional gold nanoparticles by whispering gallery mode biosensing.

    PubMed

    Wu, F C; Wu, Y; Niu, Z; Vollmer, F

    2015-05-07

    A label-free method is developed to ratiometrically determine the stoichiometry of oligonucleotides attached to the surface of gold nanoparticle (GNP) by whispering gallery mode biosensing. Utilizing this scheme, it is furthermore shown that the stoichiometric ratio of GNP attached oligonucleotide species can be controlled by varying the concentration ratio of thiolated oligonucleotides that are used to modify the GNP.

  8. Synthesis and anti-HIV activity of thiocholesteryl-coupled phosphodiester antisense oligonucleotides incorporated into immunoliposomes.

    PubMed

    Zelphati, O; Wagner, E; Leserman, L

    1994-09-01

    Encapsulation of oligonucleotides in antibody-targeted liposomes (immunoliposomes) which bind to target cells permits intracellular delivery of the oligonucleotides. This approach circumvents problems of extracellular degradation by nucleases and poor membrane permeability which free phosphodiester oligonucleotides are subject to, but leaves unresolved the inefficiency of encapsulation of oligonucleotides in liposomes. We have coupled oligonucleotides to cholesterol via a reversible disulfide bond. This modification of oligonucleotides improved their association with immunoliposomes by a factor of about 10 in comparison to unmodified oligonucleotides. The presence of cholesteryl-modified oligonucleotides incorporated in the bilayer of liposomes did not interfere with the coupling of the targeting protein to the liposome surface. Free or cholesterol coupled oligonucleotides associated with liposomes and directed against the tat gene of HIV-1 were tested for inhibition of HIV-1 proliferation in acutely infected cells. We demonstrate that the cholesteryl-modified as well as unmodified oligonucleotides acquire the target specificity of the antibody on the liposome. Their antiviral activity when delivered into cells is sequence-specific. The activity of these modified or unmodified oligonucleotides to inhibit the replication of HIV was the same on an equimolar basis (EC50 around 0.1 microM). Cholesterol coupled oligonucleotides thus offer increased liposome association without loss of antiviral activity.

  9. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications.

    PubMed

    Spinelli, Nicolas; Defrancq, Eric; Morvan, François

    2013-06-07

    Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.

  10. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same

    DOEpatents

    Chee, Mark; Gingeras, Thomas R.; Fodor, Stephen P. A.; Hubble, Earl A.; Morris, MacDonald S.

    1999-01-19

    The invention provides an array of oligonucleotide probes immobilized on a solid support for analysis of a target sequence from a human immunodeficiency virus. The array comprises at least four sets of oligonucleotide probes 9 to 21 nucleotides in length. A first probe set has a probe corresponding to each nucleotide in a reference sequence from a human immunodeficiency virus. A probe is related to its corresponding nucleotide by being exactly complementary to a subsequence of the reference sequence that includes the corresponding nucleotide. Thus, each probe has a position, designated an interrogation position, that is occupied by a complementary nucleotide to the corresponding nucleotide. The three additional probe sets each have a corresponding probe for each probe in the first probe set. Thus, for each nucleotide in the reference sequence, there are four corresponding probes, one from each of the probe sets. The three corresponding probes in the three additional probe sets are identical to the corresponding probe from the first probe or a subsequence thereof that includes the interrogation position, except that the interrogation position is occupied by a different nucleotide in each of the four corresponding probes.

  11. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  12. Bulged Invader probes: activated duplexes for mixed-sequence dsDNA recognition with improved thermodynamic and kinetic profiles.

    PubMed

    Guenther, Dale C; Karmakar, Saswata; Hrdlicka, Patrick J

    2015-10-18

    Double-stranded oligonucleotides with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides are energetically activated for recognition of mixed-sequence double-stranded DNA. Incorporation of nonyl (C9) bulges at specific positions of these probes, results in more highly affine (>5-fold), faster (>4-fold) and more persistent dsDNA recognition relative to conventional Invader probes.

  13. Development of an oligonucleotide-based DNA microarray for transcriptional analysis of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) genes.

    PubMed

    Yang, Dan-Hui; Barari, Mehrnoosh; Arif, Basil M; Krell, Peter J

    2007-08-01

    A modified oligonucleotide-based two-channel DNA microarray was developed for characterization of temporal expression profiles of select Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) ORFs including its 7 unique ORFs. The microarray chip contained oligonucleotide probes for 23 CfMNPV ORFs and their complements as well as five host genes. Total RNA was isolated at different times post infection from Cf203 insect cells infected with CfMNPV. The cDNA was synthesized, fluorescent labelled with Cy3, and co-hybridized to the microarray chips along with Cy5-labelled viral genomic DNA, which served as equimolar reference standards for each probe. Transcription of the 7 CfMNPV unique ORFs was detected using DNA microarray analysis and their temporal expression profiles suggest that they are functional genes. The expression levels of three host genes varied throughout virus infection and therefore were unsuitable for normalization between microarrays. The DNA microarray results were compared to quantitative RT-PCR (qRT-PCR). Transcription of the non-coding (antisense) strands of some of the CfMNPV select genes including the polyhedrin gene, was also detected by array analysis and confirmed by qRT-PCR. The polyhedrin antisense transcript, based on long-range RT-PCR analysis, appeared to be a read-through product of an adjacent ORF in the same orientation as the antisense transcript.

  14. Fluorescence energy transfer as a probe for nucleic acid structures and sequences.

    PubMed Central

    Mergny, J L; Boutorine, A S; Garestier, T; Belloc, F; Rougée, M; Bulychev, N V; Koshkin, A A; Bourson, J; Lebedev, A V; Valeur, B

    1994-01-01

    The primary or secondary structure of single-stranded nucleic acids has been investigated with fluorescent oligonucleotides, i.e., oligonucleotides covalently linked to a fluorescent dye. Five different chromophores were used: 2-methoxy-6-chloro-9-amino-acridine, coumarin 500, fluorescein, rhodamine and ethidium. The chemical synthesis of derivatized oligonucleotides is described. Hybridization of two fluorescent oligonucleotides to adjacent nucleic acid sequences led to fluorescence excitation energy transfer between the donor and the acceptor dyes. This phenomenon was used to probe primary and secondary structures of DNA fragments and the orientation of oligodeoxynucleotides synthesized with the alpha-anomers of nucleoside units. Fluorescence energy transfer can be used to reveal the formation of hairpin structures and the translocation of genes between two chromosomes. PMID:8152922

  15. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.

    PubMed

    Froehlich, Thomas; Geulen, Oliver

    2008-01-01

    Real-time polymerase chain reaction (PCR) has become a standard tool in both quantitative gene expression and genetic variation analysis. Data collection is performed throughout the PCR process, thus combining amplification and detection into a single step. This can be achieved by combining a variety of different fluorescent chemistries that correlate the concentration of an amplified PCR product to changes in fluorescence intensity. Hybridization probe pairs and single-labeled probes are sequence-specific, dye-labeled oligonucleotides, used in real-time PCR approaches, in particular for genotyping of single nucleotide polymorphisms (SNPs). In that case, a detector probe is designed to cover the polymorphism. Allelic variants are identified and differentiated via post-PCR melting curve analysis. A single melting curve can distinguish different T (m)s, and differently labeled probes may be used, theoretically allowing multiplexed genotyping of several SNPs.

  16. Direct Detection of 16S rRNA in Soil Extracts by Using Oligonucleotide Microarrays

    PubMed Central

    Small, Jack; Call, Douglas R.; Brockman, Fred J.; Straub, Timothy M.; Chandler, Darrell P.

    2001-01-01

    We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 μg of total RNA, representing approximately 7.5 × 106 Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR. PMID:11571176

  17. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    PubMed

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  18. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  19. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles.

    PubMed

    Li, Fang; Cui, Hua

    2013-01-15

    In the work, a label-free electrochemiluminescence (ECL) aptasensor for the sensitive and selective detection of thrombin was constructed based on target-induced direct ECL signal change by virtue of a novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles (luminol-AuNPs). It is the first label-free ECL biosensor based on luminol and its analogs functionalized AuNPs. Streptavidin AuNPs coated with biotinylated DNA capture probe 1 (AuNPs-probe 1) were firstly assembled onto an gold electrode through 1,3-propanedithiol. Then luminol-AuNPs co-loaded with thiolated DNA capture probe 2 and thiolated thrombin binding aptamer (TBA) (luminol-AuNPs-probe 2/TBA) were assembled onto AuNPs-probe 1 modified electrode through the hybridization between capture probes 1 and 2. The luminol-AuNPs-probe 2/TBA acted as both molecule recognition probe and sensing interface. An Au/AuNPs/ds-DNA/luminol-AuNPs/TBA multilayer architecture was obtained. In the presence of target thrombin, TBA on the luminol-AuNPs could capture the thrombin onto the electrode surface, which produced a barrier for electro-transfer and influenced the electro-oxidation reaction of luminol, leading to a decrease in ECL intensity. The change of ECL intensity indirectly reflected the concentration of thrombin. Thus, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range of 0.005-50nM with a detection limit of 1.7pM. This work reveals that luminol-AuNPs are ideal platform for label-free ECL bioassays.

  20. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays.

    PubMed

    Wang, Lih-Chiann; Pan, Chu-Hsiang; Severinghaus, Lucia Liu; Liu, Lu-Yuan; Chen, Chi-Tsong; Pu, Chang-En; Huang, Dean; Lir, Jihn-Tsair; Chin, Shih-Chien; Cheng, Ming-Chu; Lee, Shu-Hwae; Wang, Ching-Ho

    2008-03-18

    Newcastle disease (ND) and avian influenza (AI) are two of the most important zoonotic viral diseases of birds throughout the world. These two viruses often have a great impact upon the poultry industry. Both viruses are associated with transmission from wild to domestic birds, and often display similar signs that need to be differentiated. A rapid surveillance among wild and domestic birds is important for early disease detection and intervention, and is the basis for what measures should be taken. The surveillance, thus, should be able to differentiate the diseases and provide a detailed analysis of the virus strains. Here, we described a fast, simultaneous and inexpensive approach to the detection of Newcastle disease virus (NDV) and avian influenza virus (AIV) using oligonucleotide microarrays. The NDV pathotypes and the AIV haemagglutinin subtypes H5 and H7 were determined at the same time. Different probes on a microarray targeting the same gene were implemented in order to encompass the diversified virus strains or provide multiple confirmations of the genotype. This ensures good sensitivity and specificity among divergent viruses. Twenty-four virus isolates and twenty-four various combinations of the viruses were tested in this study. All viruses were successfully detected and typed. The hybridization results on microarrays were clearly identified with the naked eyes, with no further imaging equipment needed. The results demonstrate that the detection and typing of multiple viruses can be performed simultaneously and easily using oligonucleotide microarrays. The proposed method may provide potential for rapid surveillance and differential diagnosis of these two important zoonoses in both wild and domestic birds.

  1. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    PubMed

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  2. Oligonucleotide Microarray for the Study of Functional Gene Diversity in the Nitrogen Cycle in the Environment

    PubMed Central

    Taroncher-Oldenburg, Gaspar; Griner, Erin M.; Francis, Chris A.; Ward, Bess B.

    2003-01-01

    The analysis of functional diversity and its dynamics in the environment is essential for understanding the microbial ecology and biogeochemistry of aquatic systems. Here we describe the development and optimization of a DNA microarray method for the detection and quantification of functional genes in the environment and report on their preliminary application to the study of the denitrification gene nirS in the Choptank River-Chesapeake Bay system. Intergenic and intragenic resolution constraints were determined by an oligonucleotide (70-mer) microarray approach. Complete signal separation was achieved when comparing unrelated genes within the nitrogen cycle (amoA, nifH, nirK, and nirS) and detecting different variants of the same gene, nirK, corresponding to organisms with two different physiological modes, ammonia oxidizers and denitrifying halobenzoate degraders. The limits of intragenic resolution were investigated with a microarray containing 64 nirS sequences comprising 14 cultured organisms and 50 clones obtained from the Choptank River in Maryland. The nirS oligonucleotides covered a range of sequence identities from approximately 40 to 100%. The threshold values for specificity were determined to be 87% sequence identity and a target-to-probe perfect match-to-mismatch binding free-energy ratio of 0.56. The lower detection limit was 10 pg of DNA (equivalent to approximately 107 copies) per target per microarray. Hybridization patterns on the microarray differed between sediment samples from two stations in the Choptank River, implying important differences in the composition of the denitirifer community along an environmental gradient of salinity, inorganic nitrogen, and dissolved organic carbon. This work establishes a useful set of design constraints (independent of the target gene) for the implementation of functional gene microarrays for environmental applications. PMID:12571043

  3. Inhibition of HTLV-III by exogenous oligonucleotides

    SciTech Connect

    Goodchild, J.; Zamecnik, P.C.

    1989-02-21

    A method is described of detecting the presence of HTLV-III virus in a sample by demonstrating inhibition of replication of the virus in cells which are normally killed by the HTLV-III virus after the cells have been (a) combined with the sample and an oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication and capable of hybridizing with at least the highly conserved region, the highly conserved region of the HTLV-III genome being a nucleotide sequence present in the genomes of HTLV-III isolates and the oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication being complementary to a region of the HTLV-III genome.

  4. Detection of high-resolution Raman spectra in short oligonucleotides

    NASA Astrophysics Data System (ADS)

    Bairamov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Lahderanta, E.; Lipsanen, H.; Bairamov, B. Kh.

    2014-06-01

    High-resolution spectra of single-chain short oligonucleotides d(20G, 20T), where d is a deoxyribonucleoside, G is guanine, and T is thymine, have been obtained by the highly sensitive nonresonant Raman scattering method of biomacromolecules. In addition to their own multifunctional significance, short oligonucleotides attract interest as ideal model objects for revealing poorly studied peculiarities of tertiary and quaternary structures of DNA. The detection of narrow spectral lines has allowed determining the characteristic time scale and makes it possible to study the dynamics of fast relaxation processes of vibrational motions of atoms in biomacromolecules. It has been found that the FWHM of the narrowest 1355.4 cm-1 spectral line attributed to the vibrations of the dT methyl group is 14.6 cm-1. The corresponding lifetime is 0.38 ps.

  5. Induction of Radiosensitization by Antisense Oligonucleotide Gene Therapy

    DTIC Science & Technology

    2002-07-01

    Miraglia L and Strobl JS: Sensitization of breast cancer cells to ionizing radiation by protein kinase C inhibition. Proc. of the 9 0 ,h American Assoc...sensitizes human tumor cells to ionizing radiation . Radiat Res 129:345-350. O’Brian C, Vogel VG, Singletary SE and Ward NE (1989) Elevated protein...Antisense Oligonucleotides, Ionizing Radiation , Breast Cancer, Abbreviations: IR, ionizing radiation ; PKC, protein kinase C; MCF-7, Michigan Cancer

  6. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  7. The Design of Oligonucleotides Which Attack Specific Gene Targets

    DTIC Science & Technology

    1989-12-08

    identify by block number) FIELD GROUP SUB-GROUP ’" DNA Recognition; 06 03 Triplet helix formation, <r: " 19 ABSTRACT (Continue on reverse if necessary and...Such local triplet bonding schemes give rise to H bonding between the triplex forming oligonucleotide and the purine of the underlying Watson Crick ...identify by block number) During the first year of Navy support, we have refined our understanding of triple helix formation and in the process, have

  8. Oligonucleotide Frequencies of Barcoding Loci Can Discriminate Species across Kingdoms

    PubMed Central

    Shukla, Virendra; Tuli, Rakesh

    2010-01-01

    Background DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species. Methodology and Principal Findings A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR. Conclusions/Significance Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies. PMID:20808837

  9. Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

    PubMed

    Linshiz, Gregory; Yehezkel, Tuval Ben; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2008-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.

  10. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  11. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  12. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    NASA Astrophysics Data System (ADS)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  13. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems.

    PubMed

    Varizhuk, Anna M; Kaluzhny, Dmitry N; Novikov, Roman A; Chizhov, Alexandr O; Smirnov, Igor P; Chuvilin, Andrey N; Tatarinova, Olga N; Fisunov, Gleb Y; Pozmogova, Galina E; Florentiev, Vladimir L

    2013-06-21

    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.

  14. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    NASA Astrophysics Data System (ADS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  15. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    NASA Astrophysics Data System (ADS)

    Rull, Jordi; Nonglaton, Guillaume; Costa, Guillaume; Fontelaye, Caroline; Marchi-Delapierre, Caroline; Ménage, Stéphane; Marchand, Gilles

    2015-11-01

    The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO2) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric contrast optical technique, atomic force microscopy, multiple internal reflection infrared spectroscopy and X-ray photoelectron spectroscopy. The shelf life of the 3,4-epoxybutyltrimethoxysilane coating layer has also been studied. Finally, two different strategies of NH2-oligonucleotide grafting on EBTMOS coating layer have been compared, i.e. reductive amination and nucleophilic substitution, SN2. This EBTMOS based coating layer can be used for a wide range of applications

  16. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.

    PubMed

    Carpini, Guido; Lucarelli, Fausto; Marrazza, Giovanna; Mascini, Marco

    2004-09-15

    An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.

  17. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  18. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  19. Development of the Large-Scale Oligonucleotide Chip for the Diagnosis of Plant Viruses and its Practical Use

    PubMed Central

    Nam, Moon; Kim, Jeong-Seon; Lim, Seungmo; Park, Chung Youl; Kim, Jeong-Gyu; Choi, Hong-Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon

    2014-01-01

    A large-scale oligonucleotide (LSON) chip was developed for the detection of the plant viruses with known genetic information. The LSON chip contains two sets of 3,978 probes for 538 species of targets including plant viruses, satellite RNAs and viroids. A hundred forty thousand probes, consisting of isolate-, species- and genus-specific probes respectively, are designed from 20,000 of independent nucleotide sequence of plant viruses. Based on the economic importance, the amount of genome information, and the number of strains and/or isolates, one to fifty-one probes for each target virus are selected and spotted on the chip. The standard and field samples for the analysis of the LSON chip have been prepared and tested by RT-PCR. The probe’s specific and/or nonspecific reaction patterns by LSON chip allow us to diagnose the unidentified viruses. Thus, the LSON chip in this study could be highly useful for the detection of unexpected plant viruses, the monitoring of emerging viruses and the fluctuation of the population of major viruses in each plant. PMID:25288985

  20. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  1. Oligonucleotide fingerprinting using simple repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes.

    PubMed

    Epplen, J T; Ammer, H; Epplen, C; Kammerbauer, C; Mitreiter, R; Roewer, L; Schwaiger, W; Steimle, V; Zischler, H; Albert, E

    1991-01-01

    A panel of simple repetitive oligonucleotide probes has been designed and tested for multilocus DNA fingerprinting in some 200 fungal, plant and animal species as well as man. To date at least one of the probes has been found to be informative in each species. The human genome, however, has been the major target of many fingerprinting studies. Using the probe (CAC)5 or (GTG)5, individualization of all humans is possible except for monozygotic twins. Paternity analyses are now performed on a routine basis by the use of multilocus fingerprints, including also cases of deficiency, i.e. where one of the parents is not available for analysis. In forensic science stain analysis is feasible in all tissue remains containing nucleated cells. Depending on the degree of DNA degradation a variety of oligonucleotides are informative, and they have been proven useful in actual case work. Advantages in comparison to other methods including enzymatic DNA amplification techniques (PCR) are evident. Fingerprint patterns of tumors may be changed due to the gain or loss of chromosomes and/or intrachromosomal deletion and amplification events. Locus-specific probes were isolated from the human (CAC)5/(GTG)5 fingerprint with a varying degree of informativeness (monomorphic versus truly hypervariable markers). The feasibility of three different approaches for the isolation of hypervariable mono-locus probes was evaluated. Finally, one particular mixed simple (gt)n(ga)m repeat locus in the second intron of the HLA-DRB genes has been scrutinized to allow comparison of the extent of exon-encoded (protein-) polymorphisms versus intronic hypervariability of simple repeats: adjacent to a single gene sequence (e.g. HLA-DRB1*0401) many different length alleles were found. Group-specific structures of basic repeats were identified within the evolutionarily related DRB alleles. As a further application it is suggested here that due to the ubiquitous interspersion of their targets, short probes for

  2. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    PubMed

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.

  3. Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics.

    PubMed

    Menzi, Mirjam; Lightfoot, Helen L; Hall, Jonathan

    2015-01-01

    Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine-oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.

  4. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  5. Nanoparticle-bridge assay for amplification-free electrical detection of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Teimouri, Manouchehr

    The aim of this research is to investigate a highly sensitive, fast, inexpensive, and field-applicable amplification-free nanoparticle-based oligonucleotide detection method which does not rely on any enzymatic or signal amplification process. In this approach, target oligonucleotide strands are detected through the formation of nanoparticle satellites which make an electrical path between two electrodes. This method enables an extremely sensitive oligonucleotide detection because even a few oligonucleotide strands can form a single nanoparticle satellite which can solely generates an electrical output signal. Results showed that this oligonucleotide detection method can detect oligonucleotide single strands at concentrations as low as 50 femtomolar without any amplification process. This detection method can be implemented in many fields such as biodefense, food safety, clinical research, and forensics.

  6. Time-Resolved Sequence Analysis on High Density Fiberoptic DNA Probe

    SciTech Connect

    Walt, D. R.; Lee, K-H

    2002-11-19

    A universal array format has been developed in which all possible n-mers of a particular oligonucleotide sequence can be represented. The ability to determine the sequence of the probes at every position in the array should enable unbiased gene expression as well as arrays for de novo sequencing.

  7. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode.

    PubMed

    Jenkins, Daniel M; Chami, Bilal; Kreuzer, Matthias; Presting, Gernot; Alvarez, Anne M; Liaw, Bor Yann

    2006-04-01

    Mixed monolayers of electroactive hybridization probes on gold surfaces of a disposable electrode were investigated as a technology for simple, sensitive, selective, and rapid gene identification. Hybridization to the ferrocene-labeled hairpin probes reproducibly diminished cyclic redox currents, presumably due to a displacement of the label from the electrode. Observed peak current densities were roughly 1000x greater than those observed in previous studies, such that results could easily be interpreted without the use of algorithms to correct for background polarization currents. Probes were sensitive to hybridization with a number of oligonucleotide sequences with varying homology, but target oligonucleotides could be distinguished from competing nontarget sequences based on unique "melting" profiles from the probe. Detection limits were demonstrated down to nearly 100 fM, which may be low enough to identify certain genetic conditions or infections without amplification. This technology has rich potential for use in field devices for gene identification as well as in gene microarrays.

  8. Synthesis and characterization of a material derived from 4-mercaptobenzoic acid: A novel platform for oligonucleotide immobilization.

    PubMed

    Alves, Rafael da Fonseca; da Silva, Amanda Gonçalves; Ferreira, Lucas Franco; Franco, Diego Leoni

    2017-04-01

    This paper reports the electrochemical modification of pencil carbon graphite electrodes with a polymeric material derived from 4-mercaptobenzoic acid. Acidic solutions (pH 0 and 5.02) yielded an insulating polymeric film with anionic permselective properties. Scanning Electron Microscopy (SEM) analysis showed a complete coverage of the carbon graphite electrodes with a laminar-like polymeric structure. Different characterization studies indicate that the carboxyl group remained unchanged since the absorbance peak and oxidation potential did not change with the increase in pH at the pKa accounting for the carboxyl/carboxylate redox transition. The functionalized matrix was activated using carbodiimide, succinimide and an amine-modified oligonucleotide. The immobilization and hybridization processes were successfully verified using the redox electroactive indicator methylene blue, where better electrochemical signals were obtained when compared with the traditional self-assembled monolayer system. The selectivity of the system was verified using a noncomplementary target where no significant difference in electric current was observed when compared to the system containing only the probe. The method showed a good linear correlation coefficient (r(2)=0.9915), low limit of detection (1.17nmolL(-1)), and an acceptable precision (RSD=2.75%). The proposed method is suitable for further studies using different sequences of oligonucleotides.

  9. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers.

    PubMed

    Kaura, Mamta; Kumar, Pawan; Hrdlicka, Patrick J

    2014-07-03

    Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.

  10. New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves.

    PubMed

    Lietard, Jory; Meyer, Albert; Vasseur, Jean-Jacques; Morvan, François

    2008-01-04

    The synthesis of cyclic, branched, and bicyclic oligonucleotides was performed by copper-catalyzed azide-alkyne cycloaddition assisted by microwaves in solution and on solid support. For that purpose, new phosphoramidite building blocks and new solid supports were designed to introduce alkyne and bromo functions into the same oligonucleotide by solid-phase synthesis on a DNA synthesizer. The bromine atom was then substituted by sodium azide to yield azide oligonucleotides. Cyclizations were found to be more efficient in solution than on solid support. This method allowed the efficient preparation of cyclic (6- to 20-mers), branched (with one or two dangling sequences), and bicyclic (2 x 10-mers) oligonucleotides.

  11. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  12. Diels-Alder cycloadditions in water for the straightforward preparation of peptide–oligonucleotide conjugates

    PubMed Central

    Marchán, Vicente; Ortega, Samuel; Pulido, Daniel; Pedroso, Enrique; Grandas, Anna

    2006-01-01

    The Diels-Alder reaction between diene-modified oligonucleotides and maleimide-derivatized peptides afforded peptide–oligonucleotide conjugates with high purity and yield. Synthesis of the reagents was easily accomplished by on-column derivatization of the corresponding peptides and oligonucleotides. The cycloaddition reaction was carried out in mild conditions, in aqueous solution at 37°C. The speed of the reaction was found to vary depending on the size of the reagents, but it can be completed in 8–10 h by reacting the diene-oligonucleotide with a small excess of maleimide-peptide. PMID:16478710

  13. In vivo site-directed mutagenesis using oligonucleotides.

    PubMed

    Storici, F; Lewis, L K; Resnick, M A

    2001-08-01

    Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.

  14. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools.

    PubMed

    Liang, Yi; Gong, Ji-Lai; Huang, Yong; Zheng, Yue; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2007-04-30

    A novel, highly selective DNA hybridization assay has been developed based on surface-enhanced Raman scattering (SERS) for DNA sequences related to HIV. This strategy employs the Ag/SiO(2) core-shell nanoparticle-based Raman tags and the amino group modified silica-coated magnetic nanoparticles as immobilization matrix and separation tool. The hybridization reaction was performed between Raman tags functionalized with 3'-amino-labeled oligonucleotides as detection probes and the amino group modified silica-coated magnetic nanoparticles functionalized with 5'-amino-labeled oligonucleotides as capture probes. The Raman spectra of Raman tags can be used to monitor the presence of target oligonucleotides. The utilization of silica-coated magnetic nanoparticles not only avoided time-consuming washing, but also amplified the signal of hybridization assay. Additionally, the results of control experiments show that no or very low signal would be obtained if the hybridization assay is conducted in the presence of DNA sequences other than complementary oligonucleotides related to HIV gene such as non-complementary oligonucleotides, four bases mismatch oligonucleotides, two bases mismatch oligonucleotides and even single base mismatch oligonucleotides. It was demonstrated that the method developed in this work has high selectivity and sensitivity for DNA detection related to HIV gene.

  15. NanoCluster Beacon - A New Molecular Probe for Homogeneous Detection of Nucleic Acid Targets

    DTIC Science & Technology

    2011-02-01

    requires only a single preparation step (i.e. nanocluster formation on NC probes), but because there is no need to remove excess silver ions or...Oligonucleotide-templated nanoclusters consisting of a few atoms of silver (DNA/Ag NCs) have been made into a new molecular probe that “lights up...upon target DNA binding, termed a NanoCluster Beacon (NCB). We discovered that interactions between silver nanoclusters and a proximal, guanine- rich

  16. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  17. Inhibition Of Molecular And Biological Processes Using Modified Oligonucleotides

    DOEpatents

    Kozyavkin, Sergei A.; Malykh, Andrei G.; Polouchine, Nikolai N.; Slesarev, Alexei I.

    2003-04-15

    A method of inhibiting at least one molecular process in a sample, comprising administering to the sample an oligonucleotide or polynucleotide containing at least one monomeric unit having formula (I): wherein A is an organic moiety, n is at least 1, and each X is independently selected from the group consisting of --NRCOCONu, --NHCOCR.sub.2 CR.sub.2 CONu, --NHCOCR.dbd.CRCONu, and --NHCOSSCONu, wherein each R independently represents H or a substituted or unsubstituted alkyl group, and Nu represents a nucleophile, or a salt of the compound.

  18. Oligonucleotide primers for PCR amplification of coelomate introns.

    PubMed

    Jarman, Simon N; Ward, Robert D; Elliott, Nicholas G

    2002-09-01

    Abstract Seven novel oligonucleotide primer pairs for polymerase chain reaction amplification of introns from nuclear genes in coelomates were designed and tested. Each pair bound to adjacent exons that are separated by a single intron in most coelomate species. The primer sets amplified introns in species as widely separated by the course of evolution as oysters (Mollusca: Protostoma) and salmon (Chordata: Deuterostoma). Each primer set was tested on a further 6 coelomate species and found to amplify introns in most cases. These primer sets may therefore be useful tools for developing nuclear DNA markers in diverse coelomate species for studies of population genetics, phylogenetics, or genome mapping.

  19. Oligonucleotide microarray for subtyping of influenza A viruses

    NASA Astrophysics Data System (ADS)

    Klotchenko, S. A.; Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Chervyakova, O. V.; Smirnova, E. A.; Kushnareva, E. V.; Strochkov, V. M.; Taylakova, E. T.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Sansyzbay, A. R.

    2012-02-01

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  20. Array-based electrical detection of DNA with nanoparticle probes.

    PubMed

    Park, So-Jung; Taton, T Andrew; Mirkin, Chad A

    2002-02-22

    A DNA array detection method is reported in which the binding of oligonucleotides functionalized with gold nanoparticles leads to conductivity changes associated with target-probe binding events. The binding events localize gold nanoparticles in an electrode gap; silver deposition facilitated by these nanoparticles bridges the gap and leads to readily measurable conductivity changes. An unusual salt concentration-dependent hybridization behavior associated with these nanoparticle probes was exploited to achieve selectivity without a thermal-stringency wash. Using this method, we have detected target DNA at concentrations as low as 500 femtomolar with a point mutation selectivity factor of approximately 100,000:1.

  1. Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end.

    PubMed Central

    Wang, L H; Duesberg, P; Beemon, K; Vogt, P K

    1975-01-01

    The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses... Images PMID:170411

  2. Toward an on-chip multiplexed nucleic acid hybridization assay using immobilized quantum dot-oligonucleotide conjugates and fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Tavares, Anthony J.; Noor, M. Omair; Algar, W. Russ; Vannoy, Charles H.; Chen, Lu; Krull, Ulrich J.

    2011-03-01

    Semiconductor quantum dots (QD) are a class of NP with photophysical properties that are ideally suited for optical multiplexing and use as donors in fluorescence resonance energy transfer (FRET). A new strategy is presented for the development of multiplexed DNA hybridization assays using immobilized QDs in a microfluidic system. Green- or red-emitting QDs were immobilized via self-assembly with a multidentate-thiol-derivatized glass slide, and subsequently conjugated with amine-terminated probe oligonucleotides using carbodiimide activation. Immobilized QD-probe conjugates were then passivated with adsorbed non-complementary oligonucleotides to achieve selectivity in microfluidic assays. Target nucleic acid sequences hybridized with QD-probe conjugates and were labeled with Cy3 or Alexa Fluor 647 as acceptor dyes for the QD donors, where FRET-sensitized dye emission provided a signal for the detection of picomolar quantities of target. The simultaneous immobilization of green- and red-emitting QDs at different ratios within a microfluidic channel was demonstrated as a step toward multiplexed assays.

  3. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-04-20

    Methods have been developed for the simultaneous and selective detection of three target nucleic acid sequences based on mixed films of immobilized quantum dots (QDs) and oligonucleotide probes. CdSe/ZnS QDs were immobilized on optical fibers and conjugated with mixtures of different probe oligonucleotides. Hybridization events were detected using a combination of fluorescence from direct excitation and fluorescence sensitized by resonance energy transfer (FRET). A sandwich assay format was used to associate dye labeled reporter oligonucleotides with probe-target hybrids formed at the surface of the optical fiber. One detection channel utilized direct excitation of Pacific Blue and the two other detection channels were based on FRET. In one strategy, green emitting QDs were used as donors with Cy3 and Rhodamine Red-X acceptors. In a second strategy, green and red emitting QDs were coimmobilized and used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Selective three-plex detection was demonstrated with both strategies. Several key design criteria that were explored to optimize the relative signal magnitude between channels included: the ratio of probe associated with direct excitation versus probes associated with FRET; the relative amounts of each FRET probe and corresponding spectral overlap; and the photoluminescence ratio between immobilized green and red emitting QDs (where applicable). Careful selection of probe sequences and lengths were important for the discrimination of single nucleotide polymorphisms in one channel without suppressing binding of target in the other two channels. This work provides a basis for the development of multiplexed biosensors that are ensemble compatible and do not require discrete sensor elements, spatial registration, sorting technology, or single molecule spectroscopy.

  4. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  5. [Identification of genetically modified vegetable sources in food and feed using hydrogel oligonucleotide microchip].

    PubMed

    Griadunov, D A; Getman, I A; Chizhova, S I; Mikhaĭlovich, V M; Zasedatelev, A S; Romanov, G A

    2011-01-01

    A method of multiplex polymerase chain reaction (PCR) followed by the hybridization on a hydrogel oligonucleotide biochip was developed for simultaneous identification of ten different transgenic elements of plant DNA in feed and food products. The biochip contained 22 immobilized probes intended for (i) detection of plant DNA; (ii) plant species determination (soybean, maize, potato, rice); (iii) identification of transgenic elements, including 35S CaMV, 35S FMV, rice actine gene promoters, nos, 35S CaMV, ocs, pea rbcS1 gene terminators, and bar, gus, nptII marker genes. The limit of detection was 0.5% of genetically modified (GM) soybean and maize in analyzed samples. Identification of transgenic DNA in food and feed products using either the developed approach or real-time PCR led to virtually identical results. The assay can be used for selection of GM samples by screening food and feed products for subsequent quantitative determination of the GM component based on the identified transgene.

  6. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    PubMed

    Guo, Jun-Chao; Li, Jian; Yang, Ying-Chi; Zhou, Li; Zhang, Tai-Ping; Zhao, Yu-Pei

    2013-01-01

    The extremely dismal prognosis of pancreatic cancer (PC) is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA)-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes) were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  7. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    PubMed

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  8. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine

    NASA Astrophysics Data System (ADS)

    Boussif, Otmane; Lezoualc'h, Frank; Zanta, Maria Antonietta; Djavaheri Mergny, Mojgan; Scherman, Daniel; Demeneix, Barbara; Behr, Jean-Paul

    1995-08-01

    Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se-i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its genedelivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

  9. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    SciTech Connect

    Proudnikov, D.; Kirillov, E.; Chumakov, K.; Donion, J.; Rezapkin, G.; Mirzabekov, A.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Center for Biologics Evaluation and Research

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements. Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.

  10. Inference of subgenomic origin of BACs in an interspecific hybrid sugarcane cultivar by overlapping oligonucleotide hybridizations.

    PubMed

    Kim, Changsoo; Robertson, Jon S; Paterson, Andrew H

    2011-09-01

    Sugarcane (Saccharum spp.) breeders in the early 20th century made remarkable progress in increasing yield and disease resistance by crossing Saccharum spontaneum L., a wild relative, to Saccharum officinarum L., a traditional cultivar. Modern sugarcane cultivars have approximately 71%-83% of their chromosomes originating from S. officinarum, approximately 10%-21% from S. spontaneum, and approximately 2%-13% recombinant or translocated chromosomes. In the present work, C(0)t-based cloning and sequencing (CBCS) was implemented to further explore highly repetitive DNA and to seek species-specific repeated DNA in both S. officinarum and S. spontaneum. For putatively species-specific sequences, overlappping oligonucleotide probes (overgos) were designed and hybridized to BAC filters from the interspecific hybrid sugarcane cultivar 'R570' to try to deduce parental origins of BAC clones. We inferred that 12 967 BACs putatively originated from S. officinarum and 5117 BACs from S. spontaneum. Another 1103 BACs were hybridized by both species-specific overgos, too many to account for by conventional recombination, thus suggesting ectopic recombination and (or) translocation of DNA elements. Constructing a low C(0)t library is useful to collect highly repeated DNA sequences and to search for potentially species-specific molecular markers, especially among recently diverged species. Even in the absence of repeat families that are species-specific in their entirety, the identification of localized variations within consensus sequences, coupled with the site specificity of short synthetic overgos, permits researchers to monitor species-specific or species-enriched variants.

  11. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides

    PubMed Central

    Kolganova, N. A.; Shchyolkina, A. K.; Chudinov, A. V.; Zasedatelev, A. S.; Florentiev, V. L.; Timofeev, E. N.

    2012-01-01

    Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine. PMID:22641847

  12. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  13. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification.

    PubMed

    Bu, Nan-Nan; Gao, Ai; He, Xi-Wen; Yin, Xue-Bo

    2013-05-15

    Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work, tetrahedron-structured DNA (ts-DNA) and a functionalized oligonucleotide (FO) were used to develop an electrochemiluminescence (ECL) aptasensor with adenosine triphosphate (ATP) as a model target. The ts-DNA was formed with three thiolated oligonucleotides and one oligonucleotide containing anti-ATP aptamer. The FO contained a complementary strand to the anti-ATP aptamer and an intermolecular duplex for Ru(phen)3(2+) intercalation. After the ts-DNA was immobilized on the electrode surface through gold-thiol interactions, hybridization between the anti-ATP aptamer and its complementary strand introduced the intercalated Ru(phen)3(2+) to the electrode. ECL emission from Ru(phen)3(2+) was observed with tripropylamine as a co-reactant. Once ATP reacted with its aptamer, the aptamer-complimentary strand duplex dissociated and the intermolecular duplex containing Ru(phen)3(2+) was released. The difference in emission before and after reaction with ATP was used to quantify ATP with a detection limit of 0.2nM. The ts-DNA increased the sensitivity compared to conventional methods, and the intercalation strategy avoided a complex chemical labeling procedure.

  14. Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice.

    PubMed

    Takai, Shinji; Yoshino, Masafumi; Takao, Kazumasa; Yoshikawa, Kazunori; Jin, Denan

    2017-02-09

    To study the role of periostin in adhesion formation, the effect of periostin antisense oligonucleotide (PAO) on adhesion formation was evaluated in mice. Under anesthesia, the serous membrane of the cecum was abraded, and the adhesion score and mRNA levels of periostin and its related factors were determined after surgery. Saline, 40 mg/kg of negative sense oligonucleotide (NSO), or 40 mg/kg of PAO were injected into the abdomen after surgery, and the adhesion score and mRNA levels were evaluated 14 days later. Filmy adhesion formation was observed 1 day after surgery, and the adhesion score increased gradually to 14 days. The mRNA levels of periostin, transforming growth factor (TGF)-β, and collagen I increased gradually from 3 days to 14 days. The adhesion score of PAO was significantly lower than of saline or NSO 14 days after surgery. The mRNA levels of periostin, TGF-β, and collagen I were also significantly attenuated by treatment with PAO compared with saline or NSO. Thus, these results demonstrated that the periostin mRNA level increased in the abraded cecum, and PAO prevented adhesion formation along with attenuation of the periostin mRNA level.

  15. Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons.

    PubMed Central

    Rocha, E P; Viari, A; Danchin, A

    1998-01-01

    We present a general analysis of oligonucleotide usage in the complete genome of Bacillus subtilis . Several datasets were built in order to assign various biological contexts to the biased use of words and to reveal local asymmetries in word usage that may be coupled with replication, the control of gene expression and the restriction/modification system. This analysis was complemented by cross-comparisons with the complete genomes of Escherichia coli , Haemophilus influenzae and Methanococcus jannaschii . We have observed a large number of biased oligonucleotides for words of size up to 8, throughout the datasets and species, indicating that such long strict words play an important role as biological signals. We speculate that some of them are involved in interactions with DNA and/or RNA polymerases. An extensive analysis of palindrome abundances and distributions provides the surprising result that prophage-like elements embedded in the genome exhibit a smaller avoidance of restriction sites. This may reinforce a recently proposed hypothesis of a selfish gene phenomena in the transfer of restriction/modification systems in bacteria. PMID:9611243

  16. DOTAP/UDCA vesicles: novel approach in oligonucleotide delivery.

    PubMed

    Ruozi, Barbara; Battini, Renata; Montanari, Monica; Mucci, Adele; Tosi, Giovanni; Forni, Flavio; Vandelli, Maria Angela

    2007-03-01

    The relatively hydrophilic bile acid, ursodeoxycholic acid (UDCA), was used as an additive to DOTAP cationic liposomes to evaluate the effect on the cellular uptake of an oligonucleotide. Nuclear magnetic resonance studies were applied to estimate the relative amount of incorporated UDCA into the lipidic bilayers. DOTAP or DOTAP-UDCA vesicles (MixVes; DOTAP/UDCA molar ratios 1:0.25, 1:0.5, 1:1, and 1:2) formed complexes with 5'-fluorescein conjugated 29-mer phosphorothioate oligonucleotides (PS-ODNs) and studied using gel electrophoresis. In addition, the complexes were tested after transfection to assess the cellular uptake and the localization of the oligo in a HaCaT cell line by the use of cytofluorimetric and confocal microscopic analysis. DOTAP lipid formulated in the presence of a defined amount of UDCA forms more stable, flexible, and active MixVes. In particular, the MixVes at 1:0.25 and 1:0.5 molar ratios increase and modify the cellular uptake of PS-ODNs if compared with DOTAP liposomes 3 hours after the transfection studies. Moreover, the in vitro data suggest that these new formulations are not toxic.

  17. Gas-phase Dissociation of homo-DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Stucki, Silvan R.; Désiron, Camille; Nyakas, Adrien; Marti, Simon; Leumann, Christian J.; Schürch, Stefan

    2013-12-01

    Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS3 of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.