Science.gov

Sample records for allelic exchange mutagenesis

  1. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.

    PubMed Central

    Balasubramanian, V; Pavelka, M S; Bardarov, S S; Martin, J; Weisbrod, T R; McAdam, R A; Bloom, B R; Jacobs, W R

    1996-01-01

    Genetic studies of Mycobacterium tuberculosis have been greatly hampered by the inability to introduce specific chromosomal mutations. Whereas the ability to perform allelic exchanges has provided a useful method of gene disruption in other organisms, in the clinically important species of mycobacteria, such as M. tuberculosis and Mycobacterium bovis, similar approaches have thus far been unsuccessful. In this communication, we report the development of a shuttle mutagenesis strategy that involves the use of long linear recombination substrates to reproducibly obtain recombinants by allelic exchange in M. tuberculosis. Long linear recombination substrates, approximately 40 to 50 kb in length, were generated by constructing libraries in the excisable cosmid vector pYUB328. The cosmid vector could be readily excised from the recombinant cosmids by digestion with PacI, a restriction endonuclease for which there exist few, if any, sites in mycobacterial genomes. A cosmid containing the mycobacterial leuD gene was isolated, and a selectable marker conferring resistance to kanamycin was inserted into the leuD gene in the recombinant cosmid by interplasmid recombination in Escherichia coli. A long linear recombination substrate containing the insertionally mutated leuD gene was generated by PacI digestion. Electroporation of this recombination substrate containing the insertionally mutated leuD allele resulted in the generation of leucine auxotrophic mutants by homologous recombination in 6% of the kanamycin-resistant transformants for both the Erdman and H37Rv strains of M. tuberculosis. The ability to perform allelic exchanges provides an important approach for investigating the biology of this pathogen as well as developing new live-cell M. tuberculosis-based vaccines. PMID:8550428

  2. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate mutagenesis of two G. hirsutum breeding lines, TAM 94L...

  3. Do Heliconius butterfly species exchange mimicry alleles?

    PubMed

    Smith, Joel; Kronforst, Marcus R

    2013-08-23

    Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes.

  4. Genetic Exchange of Fimbrial Alleles Exemplifies the Adaptive Virulence Strategy of Porphyromonas gingivalis

    PubMed Central

    Kerr, Jennifer E.; Abramian, Jared R.; Dao, Doan-Hieu V.; Rigney, Todd W.; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D.

    2014-01-01

    Porphyromonas gingivalis is a gram–negative anaerobic bacterium, a member of the human oral microbiome, and a proposed “keystone” pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions. PMID:24626479

  5. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis

    PubMed Central

    Nebenzahl-Guimaraes, Hanna; Jacobson, Karen R.; Farhat, Maha R.; Murray, Megan B.

    2014-01-01

    Background Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype. Methods We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. Results We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. Conclusions This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance. PMID:24055765

  6. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange

    PubMed Central

    Hmelo, Laura R.; Borlee, Bradley R.; Almblad, Henrik; Love, Michelle E.; Randall, Trevor E.; Tseng, Boo Shan; Lin, Chuyang; Irie, Yasuhiko; Storek, Kelly M.; Yang, Jaeun Jane; Siehnel, Richard J.; Howell, P. Lynne; Singh, Pradeep K.; Tolker-Nielsen, Tim; Parsek, Matthew R.; Schweizer, Herbert P.; Harrison, Joe J.

    2016-01-01

    Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knockins, as well as single nucleotide insertions, deletions and substitutions in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selection are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ~2 weeks. PMID:26492139

  7. An rpsL-based allelic exchange vector for Staphylococcus aureus.

    PubMed

    Chen, John; Ram, Geeta; Yoong, Pauline; Penadés, José R; Shopsin, Bo; Novick, Richard P

    2015-05-01

    Staphylococcus aureus is one of the most successful bacterial pathogens, harboring a vast repertoire of virulence factors in its arsenal. As such, the genetic manipulation of S. aureus chromosomal DNA is an important tool for the study of genes involved in virulence and survival in the host. Previously reported allelic exchange vectors for S. aureus are shuttle vectors that can be propagated in Escherichia coli, so that standard genetic manipulations can be carried out. Most of the vectors currently in use carry the temperature-sensitive replicon (pE194ts) that was originally developed for use in Bacillus subtilis. Here we show that in S. aureus, the thermosensitivity of a pE194ts vector is incomplete at standard non-permissive temperatures (42 °C), and replication of the plasmid is impaired but not abolished. We report rpsL-based counterselection vectors, with an improved temperature-sensitive replicon (pT181 repC3) that is completely blocked for replication in S. aureus at non-permissive and standard growth temperature (37 °C). We also describe a set of temperature-sensitive vectors that can be cured at standard growth temperature. These vectors provide highly effective tools for rapidly generating allelic replacement mutations and curing expression plasmids, and expand the genetic tool set available for the study of S. aureus.

  8. Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi.

    PubMed Central

    Roeder, D L; Collmer, A

    1985-01-01

    The phytopathogenic enterobacterium Erwinia chrysanthemi contains pel genes encoding several different isozymes of the plant-tissue-disintegrating enzyme pectate lyase (PL). The pelC gene, encoding an isozyme with an approximate isoelectric point of 8.0, was mutagenized by a three-step procedure involving (i) insertional inactivation of the cloned gene by ligation of a kan-containing BamHI fragment from pUC4K with a partial Sau3A digest of E. chrysanthemi pelC DNA in pBR322; (ii) mobilization of the pBR322 derivative from Escherichia coli to E. chrysanthemi by the helper plasmids R64drd11 and pLVC9; and (iii) exchange recombination of the pelC::kan mutation into the E. chrysanthemi chromosome by selection for kanamycin resistance in transconjugants cultured in phosphate-limited medium (which renders pBR322 unstable). The resulting E. chrysanthemi mutant was Kanr Amps, lacked pBR322 sequences, and was deficient in only one of the four major PL isozymes, PLc, as determined by activity-stained isoelectric-focusing polyacrylamide gels. The rates of PL induction and cell growth in a medium containing polygalacturonic acid as the sole carbon source were not significantly reduced in the mutant. No difference was detected in the ability of the mutant to macerate potato tuber tissue. The evidence suggests that this isozyme is not necessary for soft-rot pathogenesis. Images PMID:2995324

  9. Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation.

    PubMed

    Binet, Rachel; Maurelli, Anthony T

    2009-01-01

    To facilitate genetic investigations in the obligate intracellular pathogens Chlamydia, the ability to construct variants by homologous recombination was investigated in C. psittaci 6BC. The single rRNA operon was targeted with a synthetic 16S rRNA allele, harboring three nucleotide substitutions over 398 bp, which imparts resistance to kasugamycin (Ksm) and spectinomycin (Spc) and causes loss of one HpaI restriction site. A fourth, silent mutation was introduced 654 bp downstream in the beginning of the 23S rRNA gene. C. psittaci 6BC infectious particles were electroporated with various concentrations of circular or linearized plasmids containing different lengths of the rRNA region homologous to the chromosomal copy except for the four nucleotide substitutions. Ksm and Spc were added 18 h after inoculation onto confluent cell monolayers in the plaque assay. Resistant plaques were picked and expanded with selection 10 days later before collecting DNA for analysis by PCR, restriction mapping, sequencing, or Southern. Spontaneous resistance to Ksm and Spc was never observed in mock electroporated bacteria (frequency <6.2 x 10(-9)). Conversely, double resistance and replacement of the 16S rRNA gene were observed when C. psittaci was electroporated with the recombination substrates. Highest efficiency was obtained with 10 microg of circular vector prepared in a DNA methylase-deficient Escherichia coli (1.9 +/- 1.1 x 10(-6), n = 7). Coinheritance of the silent 23S rRNA mutation was seen in 46 of 67 recombinants analyzed, illustrating DNA exchange of up to 1,052 bp in length. These findings provide the first step toward genetic manipulation of Chlamydia.

  10. Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker.

    PubMed Central

    Russell, C B; Dahlquist, F W

    1989-01-01

    Transfer of an allele from a donor DNA to a recipient DNA molecule was selected by the loss of a dominant conditional lethal mutation previously incorporated ito the gene of interest in the recipient DNA. Both the Escherichia coli chromosome and plasmids carrying E. coli genes were used successfully as donor molecules. Recipient molecules for these exchanges were constructed in vitro by using the rpsL gene, which confers sensitivity to streptomycin, to replace segments of specific E. coli genes located either on multicopy plasmids or in the E. coli chromosome. Plasmids carrying such replacements were capable of acquiring chromosomal alleles of the gene(s) of interest, and strains carrying rpsL replacements in the chromosome were capable of acquiring plasmid-encoded alleles at the sight of the rpsL replacement. In both situations, these allele transfers resulted in loss of the rpsL gene from the recipient DNA molecule. The desired transfer events constituted a large percentage of these events, which gave rise to viable colonies when appropriate donor-recipient pairs were subjected to streptomycin selection. Thus, this is a useful approach for transferring alleles of interest from plasmids to the E. coli chromosome and vice versa. PMID:2651409

  11. Second-Site Mutagenesis of a Hypomorphic argonaute1 Allele Identifies SUPERKILLER3 as an Endogenous Suppressor of Transgene Posttranscriptional Gene Silencing.

    PubMed

    Yu, Agnès; Saudemont, Baptiste; Bouteiller, Nathalie; Elvira-Matelot, Emilie; Lepère, Gersende; Parent, Jean-Sébastien; Morel, Jean-Benoit; Cao, Jun; Elmayan, Taline; Vaucheret, Hervé

    2015-10-01

    Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations. PMID:26286717

  12. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology

    PubMed Central

    Fazli, Mustafa; Harrison, Joe J.; Gambino, Michela; Givskov, Michael

    2015-01-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. PMID:25795676

  13. Mutagenesis in the switch IV of the helical domain of the human Gsalpha reduces its GDP/GTP exchange rate.

    PubMed

    Echeverría, V; Hinrichs, M V; Torrejón, M; Ropero, S; Martinez, J; Toro, M J; Olate, J

    2000-01-01

    The Galpha subunits of heterotrimeric G proteins are constituted by a conserved GTPase "Ras-like" domain (RasD) and by a unique alpha-helical domain (HD). Upon GTP binding, four regions, called switch I, II, III, and IV, have been identified as undergoing structural changes. Switch I, II, and III are located in RasD and switch IV in HD. All Galpha known functions, such as GTPase activity and receptor, effector, and Gbetagamma interaction sites have been found to be localized in RasD, but little is known about the role of HD and its switch IV region. Through the construction of chimeras between human and Xenopus Gsalpha we have previously identified a HD region, encompassing helices alphaA, alphaB, and alphaC, that was responsible for the observed functional differences in their capacity to activate adenylyl cyclase (Antonelli et al. [1994]: FEBS Lett 340:249-254). Since switch IV is located within this region and contains most of the nonconservative amino acid differences between both Gsalpha proteins, in the present work we constructed two human Gsalpha mutant proteins in which we have changed four and five switch IV residues for the ones present in the Xenopus protein. Mutants M15 (hGsalphaalphaS133N, M135P, P138K, P143S) and M17 (hGsalphaalphaS133N, M135P, V137Y, P138K, P143S) were expressed in Escherichia coli, purified, and characterized by their ability to bind GTPgammaS, dissociate GDP, hydrolyze GTP, and activate adenylyl cyclase. A decreased rate of GDP release, GTPgammaS binding, and GTP hydrolysis was observed for both mutants, M17 having considerably slower kinetics than M15 for all functions tested. Reconstituted adenylyl cyclase activity with both mutants showed normal activation in the presence of AlF(4)(-), but a decreased activation with GTPgammaS, which is consistent with the lower GDP dissociating rate they displayed. These data provide new evidence on the role that HD is playing in modulating the GDP/GTP exchange of the Gsalpha subunit. PMID

  14. Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b

    PubMed Central

    Farhan Ul Haque, Muhammad; Gu, Wenyu; DiSpirito, Alan A.

    2015-01-01

    Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed. PMID:26712545

  15. The GL service: Web service to exchange GL string encoded HLA & KIR genotypes with complete and accurate allele and genotype ambiguity.

    PubMed

    Milius, Robert P; Heuer, Michael; George, Mike; Pollack, Jane; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin

    2016-03-01

    Genotype list (GL) Strings use a set of hierarchical character delimiters to represent allele and genotype ambiguity in HLA and KIR genotypes in a complete and accurate fashion. A RESTful web service called genotype list service was created to allow users to register a GL string and receive a unique identifier for that string in the form of a URI. By exchanging URIs and dereferencing them through the GL service, users can easily transmit HLA genotypes in a variety of useful formats. The GL service was developed to be secure, scalable, and persistent. An instance of the GL service is configured with a nomenclature and can be run in strict or non-strict modes. Strict mode requires alleles used in the GL string to be present in the allele database using the fully qualified nomenclature. Non-strict mode allows any GL string to be registered as long as it is syntactically correct. The GL service source code is free and open source software, distributed under the GNU Lesser General Public License (LGPL) version 3 or later.

  16. The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guérin.

    PubMed Central

    Reyrat, J M; Berthet, F X; Gicquel, B

    1995-01-01

    The ureABC genes of Mycobacterium tuberculosis were cloned. By using a set of degenerate primers corresponding to a conserved region of the urease enzyme (EC 3.5.1.5), a fragment of the expected size was amplified by PCR and was used to screen a M. tuberculosis cosmid library. Three open reading frames with extensive similarity to the urease genes from other organisms were found. The locus was mapped on the chromosome, using an ordered M. tuberculosis cosmid library. A suicide vector containing a ureC gene disrupted by a kanamycin marker (aph) was used to construct a urease-negative Mycobacterium bovis bacillus Calmette-Guérin mutant by allelic exchange involving replacement of the ureC gene with the aph::ureC construct. To our knowledge, allelic exchange has not been reported previously in the slow-growing mycobacteria. Homologous recombination will be an invaluable genetic tool for deciphering the mechanisms of tuberculosis pathogenesis, a disease that causes 3 x 10(6) deaths a year worldwide. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:7568014

  17. Lower frequency of sister chromatid exchanges and altered frequency of HLA B-region alleles among individuals with sporadic dysplastic nevi.

    PubMed

    Illeni, M T; Rovini, D; Di Lernia, M; Cascinelli, N; Ghidoni, A

    1997-01-01

    Sister chromatid exchanges (SCE) were analyzed in peripheral blood lymphocytes of 24 individuals, following diagnosis, and prior to surgical removal, of a sporadic dysplastic nevus (DN). Lower SCE values and variability were found in 23 sporadic DN individuals compared with controls (2.52 +/- 0.12 and 3.76 +/- 0.22 SCE/cell, respectively). These DN individuals, contrarily to healthy controls and some types of tumor patients whose cells are hypersensitive to mutagenic agents, did not show increased SCE rates as a consequence of cigarette smoking, alcohol consumption and diagnostic radiation treatments. These observations are in contrast with clinical evidence that similar lesions are both markers or risk and precursors of malignancy in individuals with multiple nevi, affected by the dysplastic nevus syndrome (DNS) or belonging to FMM (familial malignant melanoma) families. Three HLA class I alleles out of 72 tested were found more frequently in sporadic DN individuals compared with controls: B37 (p < 0.05), B52 (p < 0.01) and B70 (p < 0.01). Whether the greater chromosomal stability (as shown by the SCE analysis), and/or the altered frequency of some HLA alleles could influence the chance of developing cutaneous malignancy in DN individuals is yet to be evaluated.

  18. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    NASA Astrophysics Data System (ADS)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  19. Deletion and Allelic Exchange of the Aspergillus fumigatus veA Locus via a Novel Recyclable Marker Module

    PubMed Central

    Krappmann, Sven; Bayram, Özgür; Braus, Gerhard H.

    2005-01-01

    Detailed evaluation of gene functions in an asexual fungus requires advanced methods of molecular biology. For the generation of targeted gene deletions in the opportunistic pathogen Aspergillus fumigatus we designed a novel blaster module allowing dominant selection of transformants due to resistance to phleomycin as well as dominant (counter)selection of a Cre recombinase-mediated marker excision event. For validation purposes we have deleted the A. fumigatus pabaA gene in a wild-type isolate by making use of this cassette. The resulting pabaA::loxP strain served as the recipient for subsequent targeting of the velvet locus. Homologous reconstitution of the deleted gene was performed by an allele whose expression is driven in a nitrogen source-dependent manner, as validated by Northern analyses. Overexpression of the veA locus in A. fumigatus does not result in any obvious phenotype, whereas the sporulation capacities of the veA null mutant are reduced on nitrate-containing medium, a phenotype that is completely restored in the reconstituted strain. PMID:16002655

  20. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    PubMed

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo.

  1. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  2. Computer Simulation of Mutagenesis.

    ERIC Educational Resources Information Center

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  3. The Mutagenesis Assistant Program.

    PubMed

    Verma, Rajni; Wong, Tuck Seng; Schwaneberg, Ulrich; Roccatano, Danilo

    2014-01-01

    Mutagenesis Assistant Program (MAP) is a web-based statistical tool to develop directed evolution strategies by investigating the consequences at the amino acid level of the mutational biases of random mutagenesis methods on any given gene. The latest development of the program, the MAP(2.0)3D server, correlates the generated amino acid substitution patterns of a specific random mutagenesis method to the sequence and structural information of the target protein. The combined information can be used to select an experimental strategy that improves the chances of obtaining functionally efficient and/or stable enzyme variants. Hence, the MAP(2.0)3D server facilitates the "in silico" prescreening of the target gene by predicting the amino acid diversity generated in a random mutagenesis library. Here, we describe the features of MAP(2.0)3D server by analyzing, as an example, the cytochrome P450BM3 monooxygenase (CYP102A1). The MAP(2.0)3D server is available publicly at http://map.jacobs-university.de/map3d.html.

  4. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  5. Site-directed mutagenesis.

    PubMed

    Bachman, Julia

    2013-01-01

    Site-directed mutagenesis is a PCR-based method to mutate specified nucleotides of a sequence within a plasmid vector. This technique allows one to study the relative importance of a particular amino acid for protein structure and function. Typical mutations are designed to disrupt or map protein-protein interactions, mimic or block posttranslational modifications, or to silence enzymatic activity. Alternatively, noncoding changes are often used to generate rescue constructs that are resistant to knockdown via RNAi.

  6. Optimization of Combinatorial Mutagenesis

    NASA Astrophysics Data System (ADS)

    Parker, Andrew S.; Griswold, Karl E.; Bailey-Kellogg, Chris

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (stability, activity, immunogenicity, etc.). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries - a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  7. Optimization of combinatorial mutagenesis.

    PubMed

    Parker, Andrew S; Griswold, Karl E; Bailey-Kellogg, Chris

    2011-11-01

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries--a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 10⁷ variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  8. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  9. Coupled mutagenesis screens and genetic mapping in zebrafish.

    PubMed Central

    Rawls, John F; Frieda, Matthew R; McAdow, Anthony R; Gross, Jason P; Clayton, Chad M; Heyen, Candy K; Johnson, Stephen L

    2003-01-01

    Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping. PMID:12663538

  10. Systematic Mutagenesis of the Escherichia coli Genome†

    PubMed Central

    Kang, Yisheng; Durfee, Tim; Glasner, Jeremy D.; Qiu, Yu; Frisch, David; Winterberg, Kelly M.; Blattner, Frederick R.

    2004-01-01

    A high-throughput method has been developed for the systematic mutagenesis of the Escherichia coli genome. The system is based on in vitro transposition of a modified Tn5 element, the Sce-poson, into linear fragments of each open reading frame. The transposon introduces both positive (kanamycin resistance) and negative (I-SceI recognition site) selectable markers for isolation of mutants and subsequent allele replacement, respectively. Reaction products are then introduced into the genome by homologous recombination via the λRed proteins. The method has yielded insertion alleles for 1976 genes during a first pass through the genome including, unexpectedly, a number of known and putative essential genes. Sce-poson insertions can be easily replaced by markerless mutations by using the I-SceI homing endonuclease to select against retention of the transposon as demonstrated by the substitution of amber and/or in-frame deletions in six different genes. This allows a Sce-poson-containing gene to be specifically targeted for either designed or random modifications, as well as permitting the stepwise engineering of strains with multiple mutations. The promiscuous nature of Tn5 transposition also enables a targeted gene to be dissected by using randomly inserted Sce-posons as shown by a lacZ allelic series. Finally, assessment of the insertion sites by an iterative weighted matrix algorithm reveals that these hyperactive Tn5 complexes generally recognize a highly degenerate asymmetric motif on one end of the target site helping to explain the randomness of Tn5 transposition. PMID:15262929

  11. DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli.

    PubMed

    Galhardo, Rodrigo S; Do, Robert; Yamada, Masami; Friedberg, Errol C; Hastings, P J; Nohmi, Takehiko; Rosenberg, Susan M

    2009-05-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(o(c)) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(o(c)) alleles fully suppress the phenotype of constitutively SOS-"off" lexA(Ind(-)) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(o(c)) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  12. Optogenetic mutagenesis in Caenorhabditis elegans

    PubMed Central

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  13. CRISPR-Cas9 enables conditional mutagenesis of challenging loci.

    PubMed

    Schick, Joel A; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  14. CRISPR-Cas9 enables conditional mutagenesis of challenging loci

    PubMed Central

    Schick, Joel A.; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C.; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  15. The effect of adaptive mutagenesis on genetic variation at a linked, neutral locus

    SciTech Connect

    Colby, C.; Williams, S.M.

    1995-07-01

    Based on recent studies in single-celled organisms, it has been argued that a fitness benefit associated with a mutation will increase the probability of that mutation occurring. This increase is independent of mutation rates at other loci and is called adaptive mutagenesis. We modeled the effect of adaptive mutagenesis on populations of haploid organisms with adaptive mutation rates ranging from 0 to 1 x 10{sup -5}. Allele frequencies at the selected locus and a neutral linked locus were tracked. We also observed the amount of linkage disequilibrium during the selective sweep and the final heterozygosity after the sweep. The presence of adaptive mutagenesis increases the number of genetic backgrounds carrying the new fitter allele, making the outcomes more representative of the population before the selection. Therefore, more neutral genetic variation is preserved in simulations with adaptive mutagenesis than in those without it due to hitchhiking. Since adaptive mutagensis is time-dependent, it can generate mutants when other mechanisms of mutation cannot. In addition, adaptive mutagenesis has the potential to confound both phylogeny construction and the detection of natural selection from patterns of nucleotide variation. 27 refs., 4 figs.

  16. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    PubMed

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  17. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange.

    PubMed Central

    Suerbaum, S; Josenhans, C; Labigne, A

    1993-01-01

    Helicobacter pylori is one of the most common human pathogens. It causes chronic gastritis and is involved in the pathogenesis of gastroduodenal ulcer disease and possibly gastric carcinoma. Helicobacter mustelae is a bacterium closely related to H. pylori that causes gastritis and ulcer disease in ferrets and is therefore considered an important animal model of gastric Helicobacter infections. Motility, even in a viscous environment, is conferred to the bacteria by several sheathed flagella and is regarded as one of their principal virulence factors. The flagellar filament of H. pylori consists of two different flagellin species expressed in different amounts. The gene (flaA) encoding the major flagellin has recently been cloned and sequenced. Here we report the cloning and sequencing of two highly homologous new flagellin genes from H. pylori 85P and H. mustelae NCTC 12032. The nucleotide sequence of the H. pylori gene proved that it encoded the second flagellin molecule found in H. pylori flagellar filaments. The genes were named flaB. The H. mustelae and H. pylori flaB genes both coded for proteins with 514 amino acids and molecular masses of 54.0 and 53.9 kDa, respectively. The proteins shared 81.7% identical amino acids. The degree of conservation between H. pylori FlaB and the H. pylori FlaA major flagellin was much lower (58%). Both flaB genes were preceded by sigma 54-like promoter sequences. Mapping of the transcription start site for the H. pylori flaB gene by a primer extension experiment confirmed the functional activity of the sigma 54 promoter. To evaluate the importance of both genes for motility, flaA- and flaB-disrupted mutants of H. pylori N6 were constructed by electroporation-mediated allelic exchange and characterized by Western blot (immunoblot) analysis and motility testing. Both mutations selectively abolished the expression of the targeted gene without affecting the synthesis of the other flagellin molecule. Whereas flaA mutants were

  18. Lethal mutagenesis and evolutionary epidemiology.

    PubMed

    Martin, Guillaume; Gandon, Sylvain

    2010-06-27

    The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy.

  19. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    PubMed

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. PMID:27307293

  20. Theory of lethal mutagenesis for viruses.

    PubMed

    Bull, J J; Sanjuán, R; Wilke, C O

    2007-03-01

    Mutation is the basis of adaptation. Yet, most mutations are detrimental, and elevating mutation rates will impair a population's fitness in the short term. The latter realization has led to the concept of lethal mutagenesis for curing viral infections, and work with drugs such as ribavirin has supported this perspective. As yet, there is no formal theory of lethal mutagenesis, although reference is commonly made to Eigen's error catastrophe theory. Here, we propose a theory of lethal mutagenesis. With an obvious parallel to the epidemiological threshold for eradication of a disease, a sufficient condition for lethal mutagenesis is that each viral genotype produces, on average, less than one progeny virus that goes on to infect a new cell. The extinction threshold involves an evolutionary component based on the mutation rate, but it also includes an ecological component, so the threshold cannot be calculated from the mutation rate alone. The genetic evolution of a large population undergoing mutagenesis is independent of whether the population is declining or stable, so there is no runaway accumulation of mutations or genetic signature for lethal mutagenesis that distinguishes it from a level of mutagenesis under which the population is maintained. To detect lethal mutagenesis, accurate measurements of the genome-wide mutation rate and the number of progeny per infected cell that go on to infect new cells are needed. We discuss three methods for estimating the former. Estimating the latter is more challenging, but broad limits to this estimate may be feasible.

  1. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    PubMed

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes. PMID:24873830

  2. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    PubMed

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  3. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes.

    PubMed

    Elso, Colleen M; Chu, Edward P F; Alsayb, May A; Mackin, Leanne; Ivory, Sean T; Ashton, Michelle P; Bröer, Stefan; Silveira, Pablo A; Brodnicki, Thomas C

    2015-10-04

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis.

  4. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes

    PubMed Central

    Elso, Colleen M.; Chu, Edward P. F.; Alsayb, May A.; Mackin, Leanne; Ivory, Sean T.; Ashton, Michelle P.; Bröer, Stefan; Silveira, Pablo A.; Brodnicki, Thomas C.

    2015-01-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying “natural” alleles in the human population is to engineer “artificial” alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  5. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes.

    PubMed

    Elso, Colleen M; Chu, Edward P F; Alsayb, May A; Mackin, Leanne; Ivory, Sean T; Ashton, Michelle P; Bröer, Stefan; Silveira, Pablo A; Brodnicki, Thomas C

    2015-12-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  6. Arenavirus extinction through lethal mutagenesis.

    PubMed

    de la Torre, Juan Carlos

    2005-02-01

    Viral hemorrhagic fevers represent serious human public health problems causing devastating and often lethal disease. Several hemorrhagic fevers are caused by arenaviruses including Lassa fever virus (LFV) and the South American viral hemorrhagic fevers (SAHF). In recent years, increased air travel between Africa and other areas has led to the importation of LFV into the US, Europe, Japan, and Canada. This has raised awareness about arenaviruses as potential emerging viruses. Moreover, because of its severe morbidity and high mortality, and transmissibility from human to human, weaponized forms of LFV poses a real threat as agent of bioterrorism. No licensed vaccine is available in the US, and currently there is not efficacious therapy to treat these infections. Therefore, the importance of developing novel effective antiviral drugs to combat HF arenaviruses, for which the prototypic Arenavirus lymphocytic choriomeningitis virus (LCMV) provides us with an excellent model system. Recent findings have shown that LCMV multiplication both in cultured cells and in vivo is highly susceptible to the mutagenic agent 5-fluorouracil (FU). FU-mediated extinction of LCMV was associated with only modest increases in virus mutation frequencies, but did not significantly affect virus replication and transcription, or virus particle formation. These findings indicate that, as with other riboviruses, lethal mutagenesis is effective also against LCMV raising the possibility of using this novel antiviral strategy to combat pathogenic arenaviruses. PMID:15649566

  7. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  8. Spontaneous mutagenesis: experimental, genetic and other factors.

    PubMed

    Smith, K C

    1992-08-01

    Spontaneous mutations are "the net result of all that can go wrong with DNA during the life cycle of an organism" (Glickman et al., 1986). Thus, the types and amounts of spontaneous mutations produced are the resultant of all the cellular processes that are mutagenic and those that are antimutagenic. It is not widely appreciated that the types and frequencies of spontaneous mutations change markedly with subtle changes in experimental conditions. All types of mutations are produced spontaneously, i.e., base substitutions, frameshifts, insertions and deletions. However, very few papers have appeared that are devoted exclusively to the study of the mechanisms of spontaneous mutagenesis, and of the subtle experimental factors that affect the types and frequencies of spontaneous mutations. This is unfortunate because spontaneous mutagenesis appears to play a major role in evolution, aging, and carcinogenesis. This review emphasizes subtle experimental variables that markedly affect the results of a spontaneous mutation experiment. A thorough understanding of these variables eliminates the need for a theory of "directed" mutagenesis. The intrinsic instability of DNA, and the types of normal metabolic lesions that are produced in DNA that lead to mutations via errors made in replication, repair, and recombination are reviewed, as is the genetic control of spontaneous mutagenesis. As with spontaneous mutagenesis, spontaneous carcinogenesis can also be considered to be the net result of all that can go wrong with DNA during the life of an organism. PMID:1378531

  9. Allelic loss in colorectal carcinoma

    SciTech Connect

    Kern, S.E.; Fearon, E.R.; Tersmette, K.W.F.; Enterline, J.P.; Vogelstein, B.; Hamilton, S.R. ); Leppert, M.; Nakamura, Yusuke; White, R. )

    1989-06-02

    Clinical and pathological associations with molecular genetic alterations were studied in colorectal carcinomas from 83 patients. Fractional allelic loss, a measure of allelic deletions throughout the genome, and allelic deletions of specific chromosomal arms (the short arm of 17 and long arm of 18) each provided independent prognostic information by multivariate analysis when considered individually with Dukes' classification. Distant metastasis was significantly associated with high fractional allelic loss and with deletions of 17p and 18q. Mutations of ras proto-oncogenes and deletions of 5q had no prognostic importance. Statistically significant associations were also found between allelic losses and a family history of cancer, left-sided tumor location, and absence of extracellular tumor mucin. Allelic deletion analysis thus identified subsets of colorectal carcinoma with increased predilection for distant metastasis and cancer-related death. Further studies may define a subset of genetic alterations that can be used clinically to help assess prognosis.

  10. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.

    PubMed

    Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.

  11. Construction of mutant alleles in Saccharomyces cerevisiae without cloning: overview and the delitto perfetto method.

    PubMed

    Moqtaderi, Zarmik; Geisberg, Joseph V

    2013-01-01

    Traditionally, methods for introducing specific new mutations at target loci in the yeast genome have involved the preparation of disruption or gene-replacement cassettes via multiple cloning steps. Sequences used for targeting these cassettes or integrating vectors are typically several hundred base pairs long. A variety of newer methods rely on the design of custom PCR oligonucleotides containing shorter sequence tails (∼50 nt) for targeting the locus of interest. These techniques obviate the need for cloning steps and allow construction of mutagenesis cassettes by PCR amplification. Such cassettes may be used for gene deletion, epitope tagging, or site-specific mutagenesis. The strategies differ in several ways, most notably with respect to whether they allow reuse of the selection marker and whether extra sequences are left behind near the target locus. This unit presents a summary of methods for targeted mutagenesis of Saccharomyces cerevisiae loci without cloning, including PCR-based allele replacement, delitto perfetto, and MIRAGE. Next, a protocol is provided for the delitto perfetto PCR- and oligonucleotide-based mutagenesis method, which offers particular advantages for generating several different mutant alleles of the same gene. PMID:24510296

  12. Economical analysis of saturation mutagenesis experiments.

    PubMed

    Acevedo-Rocha, Carlos G; Reetz, Manfred T; Nov, Yuval

    2015-01-01

    Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced. PMID:26190439

  13. Economical analysis of saturation mutagenesis experiments

    PubMed Central

    Acevedo-Rocha, Carlos G.; Reetz, Manfred T.; Nov, Yuval

    2015-01-01

    Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced. PMID:26190439

  14. Characterization of an unstable allele of the Arabidopsis HY4 locus.

    PubMed Central

    Bruggemann, E P; Doan, B; Handwerger, K; Storz, G

    1998-01-01

    The Arabidopsis HY4 gene encodes the nonessential blue light photoreceptor CRY1. Loss-of-function hy4 mutants have an elongated hypocotyl phenotype after germination under blue light. We previously analyzed 20 independent hy4 alleles produced by fast neutron mutagenesis. These alleles were grouped into two classes based on their genetic behavior and corresponding deletion size: (1) null hy4 alleles that were semidominant over wild type and contained small or moderate-sized deletions at HY4 and (2) null hy4 alleles that were recessive lethal and contained large HY4 deletions. Here we describe one additional fast neutron hy4 mutant, B144, that did not fall into either of these two classes. Mutant B144 was isolated as a heterozygote with an intermediate hy4 phenotype. One allele from this mutant, hy4-B144(Delta), contains a large deletion at HY4 and is recessive lethal. The other allele from this mutant, HY4-B144*, appears to be intact and functional but is unstable and spontaneously converts to a nonfunctional hy4 allele. In addition, HY4-B144* is lethal in homozygotes and suppresses local recombination. We discuss genetic and epigenetic mechanisms that may account for the unusual behavior of the HY4-B144* allele. PMID:9649544

  15. Therapeutically targeting RNA viruses via lethal mutagenesis.

    PubMed

    Graci, Jason D; Cameron, Craig E

    2008-11-01

    RNA viruses exhibit increased mutation frequencies relative to other organisms. Recent work has attempted to exploit this unique feature by increasing the viral mutation frequency beyond an extinction threshold, an antiviral strategy known as lethal mutagenesis. A number of novel nucleoside analogs have been designed around this premise. Herein, we review the quasispecies nature of RNA viruses and survey the antiviral, biological and biochemical characteristics of mutagenic nucleoside analogs, including clinically-used ribavirin. Biological implications of modulating viral replication fidelity are discussed in the context of translating lethal mutagenesis into a clinically-useful antiviral strategy.

  16. CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS

    EPA Science Inventory

    CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS
    Michael D. Waters
    US Environmental Protection Agency, MD-51A, Research Triangle Park, NC 27711 USA

    Our rapidly growing understanding of the structure of the human genome is forming the basis for numerous new...

  17. Faux Mutagenesis: Teaching Troubleshooting through Controlled Failure

    ERIC Educational Resources Information Center

    Hartberg, Yasha

    2006-01-01

    By shifting pedagogical goals from obtaining successful mutations to teaching students critical troubleshooting skills, it has been possible to introduce site-directed mutagenesis into an undergraduate teaching laboratory. Described in this study is an inexpensive laboratory exercise in which students follow a slightly modified version of…

  18. Allele Mining Strategies: Principles and Utilisation for Blast Resistance Genes in Rice (Oryza sativa L.).

    PubMed

    Ashkani, Sadegh; Yusop, Mohd Rafii; Shabanimofrad, Mahmoodreza; Azady, Amin; Ghasemzadeh, Ali; Azizi, Parisa; Latif, Mohammad Abdul

    2015-01-01

    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.

  19. Saturating mutagenesis of an essential gene: a majority of the Neisseria gonorrhoeae major outer membrane porin (PorB) is mutable.

    PubMed

    Chen, Adrienne; Seifert, H Steven

    2014-02-01

    The major outer membrane porin (PorB) of Neisseria gonorrhoeae is an essential protein that mediates ion exchange between the organism and its environment and also plays multiple roles in human host pathogenesis. To facilitate structure-function studies of porin's multiple roles, we performed saturating mutagenesis at the porB locus and used deep sequencing to identify essential versus mutable residues. Random mutations in porB were generated in a plasmid vector, and mutant gene pools were transformed into N. gonorrhoeae to select for alleles that maintained bacterial viability. Deep sequencing of the input plasmid pools and the output N. gonorrhoeae genomic DNA pools identified mutations present in each, and the mutations in both pools were compared to determine which changes could be tolerated by the organism. We examined the mutability of 328 amino acids in the mature PorB protein and found that 308 of them were likely to be mutable and that 20 amino acids were likely to be nonmutable. A subset of these predictions was validated experimentally. This approach to identifying essential amino acids in a protein of interest introduces an additional application for next-generation sequencing technology and provides a template for future studies of both porin and other essential bacterial genes.

  20. REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering.

    PubMed

    Trehan, Ashutosh; Kiełbus, Michał; Czapinski, Jakub; Stepulak, Andrzej; Huhtaniemi, Ilpo; Rivero-Müller, Adolfo

    2016-01-01

    Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamless assembly systems using purified enzymes for multiple-fragment cloning as well as mutagenesis is gaining ground. Although these in vitro isothermal reactions are useful when cloning multiple fragments, for site-directed mutagenesis it is unnecessary. Moreover, the use of purified enzymes in vitro is not only expensive but also more inaccurate than the high-fidelity recombination inside bacteria. Here we present a single-step method, named REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for creating mutations (deletions, substitutions and additions) in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves transformation of PCR products in bacteria expressing Red/ET recombineering proteins. Modifications in a variety of plasmids up to bacterial artificial chromosomes (BACs; 144 kb deletion) have been achieved by this method. The presented method is more robust, involves fewer steps and is cost-efficient. PMID:26750263

  1. Pseudorabies virus glycoprotein C attachment-proficient revertants isolated through a simple, targeted mutagenesis scheme.

    PubMed

    Rue, Cary A; Ryan, Patrick

    2008-07-01

    Pseudorabies virus (PRV) glycoprotein C (gC) initiates virus attachment to cells by binding to heparan sulfate (HS) proteoglycans. The gC:HS interaction is not essential since gC null mutants still infect; however, they are more easily removed from cells during the initial stages of infection. The expendability of gC has facilitated a genetic mapping of the HS-binding domain, which is composed of three independent heparin-binding domains (HBDs) of six to eight amino acids each. Previous results suggested that at least one of the HBDs (HBD 1) functioned in a context-dependent manner. To define the context better, a reversion analysis was performed in which a defective gC containing a nonfunctional but intact HBD 1 regained HS-binding ability. To increase the reversion frequency, an efficient method for targeted, yet random mutagenesis of the gC gene was developed. The method involves random mutagenesis of a plasmid-borne copy of gC, and highly efficient recombination of the plasmid-borne genes into the virus genome at the site of a double-strand break in the viral gC locus. Revertants were recovered readily, and their gC alleles suggested that HS-binding could be restored by several different amino acid substitutions. This approach should be applicable to targeted mutagenesis of other herpesvirus genes.

  2. Allelic association between marker loci.

    PubMed

    Lonjou, C; Collins, A; Morton, N E

    1999-02-16

    Allelic association has proven useful to refine the location of major genes prior to positional cloning, but it is of uncertain value for genome scans in complex inheritance. We have extended kinship theory to give information content for linkage and allelic association. Application to pairs of closely linked markers as a surrogate for marker x oligogene pairs indicates that association is largely determined by regional founders, with little effect of subsequent demography. Sub-Saharan Africa has the least allelic association, consistent with settlement of other regions by small numbers of founders. Recent speculation about substantial advantages of isolates over large populations, of constant size over expansion, and of F1 hybrids over incrosses is not supported by theory or data. On the contrary, fewer affected cases, less opportunity for replication, and more stochastic variation tend to make isolates less informative for allelic association, as they are for linkage.

  3. What Is a Recessive Allele?

    ERIC Educational Resources Information Center

    American Biology Teacher, 1991

    1991-01-01

    Presents four misconceptions students have concerning the concepts of recessive and dominant alleles. Discusses the spectrum of dominant-recessive relationships, different levels of analysis between phenotype and genotype, possible causes of dominance, and an example involving wrinkled peas. (MDH)

  4. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster

    PubMed Central

    Yi, Hankuil; Richards, Eric J

    2008-01-01

    Background Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. Results We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 × bal F1 hybrids, cpr1 × snc1 F1 hybrids and bal × snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal × snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 × snc1 F1 hybrids, as well as from cpr1 × bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 × snc1 crosses was destabilized during the late F1 generation to early F2 generation. Conclusion With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or

  5. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  6. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  7. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, Frank A.

    1982-01-01

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  8. Fluorometric method of quantitative cell mutagenesis

    SciTech Connect

    Dolbeare, F.A.

    1982-08-17

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  9. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, F.A.

    1980-12-12

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  10. The Parasol Protocol for computational mutagenesis.

    PubMed

    Aronica, P G A; Verma, C; Popovic, B; Leatherbarrow, R J; Gould, I R

    2016-07-01

    To aid in the discovery and development of peptides and proteins as therapeutic agents, a virtual screen can be used to predict trends and direct workflow. We have developed the Parasol Protocol, a dynamic method implemented using the AMBER MD package, for computational site-directed mutagenesis. This tool can mutate between any pair of amino acids in a computationally expedient, automated manner. To demonstrate the potential of this methodology, we have employed the protocol to investigate a test case involving stapled peptides, and have demonstrated good agreement with experiment. PMID:27255759

  11. Cancer gene discovery: exploiting insertional mutagenesis

    PubMed Central

    Ranzani, Marco; Annunziato, Stefano; Adams, David J.; Montini, Eugenio

    2013-01-01

    Insertional mutagenesis has been utilized as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses (RVs) are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. RVs have been employed for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using RV-based approaches. Most recently, lentiviral vectors (LVs) have appeared on the scene for use in cancer gene screens. LVs are replication defective integrating vectors that have the advantage of being able to infect non-dividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future. PMID:23928056

  12. Transplacental teratogenesis and mutagenesis in mouse fetuses treated with cyclophosphamide.

    PubMed

    Porter, A J; Singh, S M

    1988-01-01

    We studied transplacental fetotoxicity, teratogenicity, and mutagenicity in Swiss Webster mice following different doses of cyclophosphamide (CP; 0, 5, 10, 15, or 20 mg/kg), a well-known mutagen/teratogen, on day 12 of gestation. The fetal survival and weight on day 18 of gestation decreased significantly with increasing CP dose (P less than 0.01). The CP-treated fetuses were also dysmorphic (e.g., shortened limbs, digital defects, cleft palate, open eyes, and hydrocephaly) and the percentage of dysmorphology increased with increasing CP doses (P less than 0.01). To evaluate mutagenesis, a separate group of females received 5-bromodeoxyuridine tablet (50-mg) implants on day 12 of gestation and a CP treatment 8 h later. Fetal liver cells were harvested 24 h post-BrdU implant to analyze sister chromatid exchange (SCE) frequency and micronuclei. CP caused a significant increase in the SCEs per fetal liver cell from 3.4 +/- 0.02 (control) to 90.0 +/- 0.04 (20 mg/kg CP) (P less than 0.01). The increasing CP dose was also related to an increase in micronuclei. The data suggest that CP is transplacentally toxic, teratogenic, and mutagenic. Further analyses of the data suggest that the mutagenic effects of CP may in fact contribute indirectly to the CP-related teratogenic effects. Such conclusions are based on path analysis with directional causations associated with SCEs per cell and the dysmorphic features studied.

  13. Construction of an opal suppressor by oligonucleotide-directed mutagenesis of a Saccharomyces cerevisiae tRNA(Trp) gene.

    PubMed Central

    Atkin, A L; Roy, K L; Bell, J B

    1990-01-01

    In vitro mutagenesis was used to create putative opal suppressor alleles of a tRNA(Trp) gene of Saccharomyces cerevisiae. The construct with the requisite anticodon change did not result in an active suppressor, whereas when a second change was introduced into the portion of the gene encoding the intron, an active and specific opal suppressor was produced. We propose that the secondary structure of transcripts from the first mutant may prevent efficient pre-tRNA processing, whereas normal processing occurs with the double mutant. Images PMID:2370870

  14. [Identification of a novel HLA allele, HLA-DRB1*03:80, by sequencing-based typing].

    PubMed

    Nie, Xiang-Min; Zhang, Yi; Zhuang, Yun-Long; Song, Yong-Hong; Qiao, Wen-Ben; Liu, Yan; Zhu, Chuan-Fu

    2014-04-01

    This study was aimed to identify a novel HLA-DRB1 allele from a Chinese potential hemopoietic stem cell donor of Northeast China. A rare HLA-DRB1 allele was initially detected by Luminex PCR-SSO typing, then the sample was sequenced by sequence-based typing (SBT) and the alignments of sample's alleles was identified by single allele-specific sequencing strategy. The results revealed the existence of a new allele which differs from the closest matching allele DRB1*03:06 by a single nucleotide substitution at position 239, where C→G in exon 2, resulting in an amino acid exchange from Thr to Arg at codon 51. It is concluded that a novel allele has been confirmed and its name DRB1*03:80 is officially assigned by the WHO Nomenclature Committee in February 2012.

  15. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    PubMed

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  16. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.

    PubMed

    Sugano, Shigeo S; Shirakawa, Makoto; Takagi, Junpei; Matsuda, Yoriko; Shimada, Tomoo; Hara-Nishimura, Ikuko; Kohchi, Takayuki

    2014-03-01

    Targeted genome modification technologies are key tools for functional genomics. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 system (CRISPR/Cas9) is an emerging technology for targeted genome modification. The CRISPR/Cas9 system consists of a short guide RNA (gRNA), which specifies the target genome sequence, and the Cas9 protein, which has endonuclease activity. The CRISPR/Cas9 system has been applied to model animals and flowering plants, including rice, sorghum, wheat, tobacco and Arabidopsis. Here, we report the application of CRISPR/Cas9 to targeted mutagenesis in the liverwort Marchantia polymorpha L., which has emerged as a model species for studying land plant evolution. The U6 promoter of M. polymorpha was identified and cloned to express the gRNA. The target sequence of the gRNA was designed to disrupt the gene encoding auxin response factor 1 (ARF1) in M. polymorpha. Using Agrobacterium-mediated transformation, we isolated stable mutants in the gametophyte generation of M. polymorpha. CRISPR/Cas9-based site-directed mutagenesis in vivo was achieved using either the Cauliflower mosaic virus 35S or M. polymorpha EF1α promoter to express Cas9. Isolated mutant individuals showing an auxin-resistant phenotype were not chimeric. Moreover, stable mutants were produced by asexual reproduction of T1 plants. Multiple arf1 alleles were easily established using CRIPSR/Cas9-based targeted mutagenesis. Our results provide a rapid and simple approach for molecular genetics in M. polymorpha, and raise the possibility that CRISPR/Cas9 may be applied to a wide variety of plant species.

  17. A conditional transposon-based insertional mutagenesis screen for hepatocellular carcinoma-associated genes in mice

    PubMed Central

    Keng, Vincent W.; Villanueva, Augusto; Chiang, Derek Y.; Dupuy, Adam J.; Ryan, Barbara J.; Matise, Ilze; Silverstein, Kevin A.T.; Sarver, Aaron; Starr, Timothy K.; Akagi, Keiko; Tessarollo, Lino; Collier, Lara S.; Powers, Scott; Lowe, Scott W.; Jenkins, Nancy A.; Copeland, Neal G.; Llovet, Josep M.; Largaespada, David A.

    2009-01-01

    Here we describe a Sleeping Beauty (SB) transposition system that utilizes a conditional SB transposase allele, which can be activated by Cre recombinase to drive the transposition of a mutagenic transposon in virtually any tissue and control the type of cancer produced. To demonstrate the potential of this system for modeling cancer in mice, we used it to screen for hepatocellular carcinoma (HCC) associated genes in mice by specifically limiting SB transposition to the liver. Among 8,060 non-redundant insertions subsequently cloned from 68 tumor nodules we identified 19 highly significant candidate disease loci, which encode genes like EGFR and MET that are known HCC genes and others like UBE2H that are not strongly implicated in HCC but represent potential new therapeutic targets for treating this neoplasm. With these improvements, transposon-based insertional mutagenesis now offers great potential for better understanding the cancer genome and for identifying new targets for therapeutic development. PMID:19234449

  18. Stress-induced mutagenesis and complex adaptation

    PubMed Central

    Ram, Yoav; Hadany, Lilach

    2014-01-01

    Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability—the ability to adapt—and adaptedness—the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)—the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies. PMID:25143032

  19. Mutagenesis assays of human amniotic fluid

    SciTech Connect

    Everson, R.B.; Milne, K.L.; Warbuton, D.; McClamrock, H.D.; Buchanan, P.D.

    1985-01-01

    Extracts of amniocentesis samples from 144 women were tested for the presence of mutagenic substances using tester strain TA1538 in the Ames Salmonella/mammalian-microsome mutagenicity test. Because the volume of amniotic fluid in these samples was limited (generally less than 10 ml), the authors investigated modifications of this mutagenesis assay that could increase its ability to detect effects from small quantities of test material. Using mutagenicity in samples of urine from smokers as a model, it appeared that improved ability to detect small amounts of mutagen could be obtained by reducing volumes of media and reagents while keeping the amount of test sample constant. Tests of amniotic fluid extracts by this modified procedure showed small increases in revertants, about 50% above dimethylsulfoxide solvent control values. The increases suggest the presence of small amounts of mutagenic material in many of the amniotic fluid samples. At the doses employed, mutagenic activity in these samples was not associated with maternal smoking.

  20. Codon compression algorithms for saturation mutagenesis.

    PubMed

    Pines, Gur; Pines, Assaf; Garst, Andrew D; Zeitoun, Ramsey I; Lynch, Sean A; Gill, Ryan T

    2015-05-15

    Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency.

  1. Mutagenesis as a Genetic Research Strategy

    PubMed Central

    Falk, Raphael

    2010-01-01

    Morgan's three students (Muller, Sturtevant, and Bridges) introduced reductionist empirical methods to the study of the chromosomal theory of heredity. Herman J. Muller concentrated on mutations, namely changes in the heterocatalytic properties of genes, without losing their autocatalytic (self-replication) properties. Experimental induction of mutations allowed quantitative analyses of genes' parameters, but hopes to deduce their chemicophysical character were never fulfilled. Once the model for DNA structure was proposed, the reductionist notions of mutation analysis were successfully applied to the molecular genes. However, it was soon realized that the concept of the particulate gene was inadequate. The more the molecular analysis of the genome advanced, the clearer it became that the entities of heredity must be conceived within systems' perspectives, for which special tools for handling large number of variables were developed. Analytic mutagenesis, however, continues to be a major strategy for the study of the cellular and chromosomal mechanisms that control mutation inductions. PMID:20713742

  2. Scoring function to predict solubility mutagenesis

    PubMed Central

    2010-01-01

    Background Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT) protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP) methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM) and the Lasso. Using statistics for leave-one-out (LOO), 10-fold, and 3-fold cross validations (CV) for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. Availability Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html. PMID:20929563

  3. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia

    PubMed Central

    Dang, Jinjun; Wei, Lei; de Ridder, Jeroen; Su, Xiaoping; Rust, Alistair G.; Roberts, Kathryn G.; Payne-Turner, Debbie; Cheng, Jinjun; Ma, Jing; Qu, Chunxu; Wu, Gang; Song, Guangchun; Huether, Robert G.; Schulman, Brenda; Janke, Laura; Zhang, Jinghui; Downing, James R.; van der Weyden, Louise; Adams, David J.

    2015-01-01

    Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL. PMID:25855603

  4. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery

    PubMed Central

    Moriarity, Branden S; Largaespada, David A

    2016-01-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS. PMID:26051241

  5. Mutagenesis by Cytostatic Alkylating Agents in Yeast Strains of Differing Repair Capacities

    PubMed Central

    Ruhland, Axel; Brendel, Martin

    1979-01-01

    Reversion of two nuclear ochre nonsense alleles and cell inactivation induced by mono-, bi-, and tri-functional alkylating agents and by UV has been investigated in stationary-phase haploid cells of yeast strains with differing capacities for DNA repair. The ability to survive alkylation damage is correlated with UV repair capacity, a UV-resistant and UV-mutable strain (RAD REV) being least and a UV-sensitive and UV-nonmutable strain (rad1 rev3) most sensitive. Mutagenicity of alkylating agents is highest in the former and is abolished in the latter strain. Deficiency in excision repair (rad1 rad2) or in the RAD18 function does not lead to enhanced mutability. Mutagenesis by the various agents is characterized by a common pattern of induction of locus-specific revertants and suppressor mutants. Induction kinetics are mostly linear, but UV-induced reversion in the RAD REV strain follows higher-than-linear (probably "quadratic") kinetics. The alkylating agent cyclophosphamide, usually considered inactive without metabolic conversion, reduces colony-forming ability and induces revertants in a manner similar but not identical to the other chemicals tested. These findings are taken to support the concept of mutagenesis by misrepair after alkylation, which albeit sharing common features with the mechanism of UV-induced reversion, can be distinguished therefrom. PMID:387518

  6. Invasive Allele Spread under Preemptive Competition

    NASA Astrophysics Data System (ADS)

    Yasi, J. A.; Korniss, G.; Caraco, T.

    We study a discrete spatial model for invasive allele spread in which two alleles compete preemptively, initially only the "residents" (weaker competitors) being present. We find that the spread of the advantageous mutation is well described by homogeneous nucleation; in particular, in large systems the time-dependent global density of the resident allele is well approximated by Avrami's law.

  7. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J. I.; Wondji, Charles S.

    2015-01-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  8. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    PubMed

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  9. Clostridium difficile Genome Editing Using pyrE Alleles.

    PubMed

    Ehsaan, Muhammad; Kuehne, Sarah A; Minton, Nigel P

    2016-01-01

    Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. PMID:27507332

  10. Stabilization of a prokaryotic LAT transporter by random mutagenesis.

    PubMed

    Rodríguez-Banqueri, Arturo; Errasti-Murugarren, Ekaitz; Bartoccioni, Paola; Kowalczyk, Lukasz; Perálvarez-Marín, Alex; Palacín, Manuel; Vázquez-Ibar, José Luis

    2016-04-01

    The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest. PMID:26976827

  11. History of attempts to quantify environmental mutagenesis

    SciTech Connect

    Hollaender, A.

    1981-01-01

    It became obvious in the early 1960's that the ready recognition of mutations produced by chemicals could have a profound influence on the refinement of methods to detect environmental mutagens. The experience derived over the previous 30 years in characterizing the effects of ionizing and ultraviolet radiation on the genetic mechanism came to serve us in good stead. Although the effects of chemicals are considerably more complicated and often require the analysis of individual substances, nonetheless, the area has developed rapidly in recent decades. The establishment and historical background of the International Association of Environmental Mutagen Societies (IAEMS) will be discussed. An attempt at the quantitation of chemical effects has been developed in comparison with radiation mutagenesis. As a first step, a definition of the Mutagen Burden or unavoidable exposure to chemicals will be discussed. A mathematical approach (Haynes/Eckhardt) will be considered and finally an outline for the comprehensive investigation of detailed interscience study will be made of less than six chemicals.

  12. Codon compression algorithms for saturation mutagenesis.

    PubMed

    Pines, Gur; Pines, Assaf; Garst, Andrew D; Zeitoun, Ramsey I; Lynch, Sean A; Gill, Ryan T

    2015-05-15

    Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency. PMID:25303315

  13. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER).

  14. Targeted mutagenesis tools for modelling psychiatric disorders.

    PubMed

    Deussing, Jan M

    2013-10-01

    In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.

  15. RHD allele distribution in Africans of Mali

    PubMed Central

    Wagner, Franz F; Moulds, Joann M; Tounkara, Anatole; Kouriba, Bourema; Flegel, Willy A

    2003-01-01

    Background Aberrant and non-functional RHD alleles are much more frequent in Africans than in Europeans. The DAU cluster of RHD alleles exemplifies that the alleles frequent in Africans have evaded recognition until recently. A comprehensive survey of RHD alleles in any African population was lacking. Results We surveyed the molecular structure and frequency of RHD alleles in Mali (West Africa) by evaluating 116 haplotypes. Only 69% could be attributed to standard RHD (55%) or the RHD deletion (14%). The aberrant RHD allele DAU-0 was predicted for 19%, RHDΨ for 7% and Ccdes for 4% of all haplotypes. DAU-3 and the new RHD allele RHD(L207F), dubbed DMA, were found in one haplotype each. A PCR-RFLP for the detection of the hybrid Rhesus box diagnostic for the RHD deletion in Europeans was false positive in 9 individuals, including all carriers of RHDΨ . Including two silent mutations and the RHD deletion, a total of 9 alleles could be differentiated. Conclusion Besides standard RHD and the RHD deletion, DAU-0, RHDΨ and Ccdes are major alleles in Mali. Our survey proved that the most frequent alleles of West Africans have been recognized allowing to devise reliable genotyping and phenotyping strategies. PMID:14505497

  16. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  17. Protein engineering: single or multiple site-directed mutagenesis.

    PubMed

    Hsieh, Pei-Chung; Vaisvila, Romualdas

    2013-01-01

    Site-directed mutagenesis techniques are invaluable tools in molecular biology to study the structural and functional properties of a protein. To expedite the time required and simplify methods for mutagenesis, we recommend two protocols in this chapter. The first method for single site-directed mutagenesis, which includes point mutations, insertions, or deletions, can be achieved by an inverse PCR strategy with mutagenic primers and the high-fidelity Phusion(®) DNA Polymerase to introduce a site-directed mutation with exceptional efficiency. The second method is for engineering multiple mutations into a gene of interest. This can be completed in one step by PCR with mutagenic primers and by assembling all mutagenized PCR products using the Gibson Assembly™ Master Mix. This method allows multiple nucleotides to be changed simultaneously, which not only saves time but also reagents compared to traditional methods of mutagenesis. PMID:23423897

  18. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  19. Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype.

    PubMed Central

    Francesconi, S; Park, H; Wang, T S

    1993-01-01

    DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences. Images PMID:8367300

  20. Conditionals by inversion provide a universal method for the generation of conditional alleles

    PubMed Central

    Economides, Aris N.; Frendewey, David; Yang, Peter; Dominguez, Melissa G.; Dore, Anthony T.; Lobov, Ivan B.; Persaud, Trikaldarshi; Rojas, Jose; McClain, Joyce; Lengyel, Peter; Droguett, Gustavo; Chernomorsky, Rostislav; Stevens, Sean; Auerbach, Wojtek; DeChiara, Thomas M.; Pouyemirou, William; Cruz, Joseph M.; Feeley, Kieran; Mellis, Ian A.; Yasenchack, Jason; Hatsell, Sarah J.; Xie, LiQin; Latres, Esther; Huang, Lily; Zhang, Yuhong; Pefanis, Evangelos; Skokos, Dimitris; Deckelbaum, Ron A.; Croll, Susan D.; Davis, Samuel; Valenzuela, David M.; Gale, Nicholas W.; Murphy, Andrew J.; Yancopoulos, George D.

    2013-01-01

    Conditional mutagenesis is becoming a method of choice for studying gene function, but constructing conditional alleles is often laborious, limited by target gene structure, and at times, prone to incomplete conditional ablation. To address these issues, we developed a technology termed conditionals by inversion (COIN). Before activation, COINs contain an inverted module (COIN module) that lies inertly within the antisense strand of a resident gene. When inverted into the sense strand by a site-specific recombinase, the COIN module causes termination of the target gene’s transcription and simultaneously provides a reporter for tracking this event. COIN modules can be inserted into natural introns (intronic COINs) or directly into coding exons as part of an artificial intron (exonic COINs), greatly simplifying allele design and increasing flexibility over previous conditional KO approaches. Detailed analysis of over 20 COIN alleles establishes the reliability of the method and its broad applicability to any gene, regardless of exon–intron structure. Our extensive testing provides rules that help ensure success of this approach and also explains why other currently available conditional approaches often fail to function optimally. Finally, the ability to split exons using the COIN’s artificial intron opens up engineering modalities for the generation of multifunctional alleles. PMID:23918385

  1. Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov13 mice.

    PubMed Central

    Barker, D D; Wu, H; Hartung, S; Breindl, M; Jaenisch, R

    1991-01-01

    The Mov13 mouse strain carries a mutation in the alpha 1(I) procollagen gene which is due to the insertion of a Moloney murine leukemia provirus into the first intron. This insertion results in the de novo methylation of the provirus and flanking DNA, the alteration of chromatin structure, and the transcriptional inactivity of the collagen promoter. To address the mechanism of mutagenesis, we reintroduced a cloned and therefore demethylated version of the Mov13 mutant allele into mouse fibroblasts. The transfected gene was not transcribed, indicating that the transcriptional defect was not due to the hypermethylation. Rather, this result strongly suggests that the mutation is due to the displacement or disruption of cis-acting regulatory DNA sequences within the first intron. We also constructed a Mov13 variant allele containing a single long terminal repeat instead of the whole provirus. This construct also failed to express mRNA, indicating that the Mov13 mutation does not revert by provirus excision as has been observed for other retrovirus-induced mutations. Images PMID:1922037

  2. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster

    PubMed Central

    Lee, Han B; Sebo, Zachary L; Peng, Ying; Guo, Yi

    2015-01-01

    Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly. PMID:26196022

  3. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  4. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae.

    PubMed

    Brandão, Luis N; Ferguson, Rebecca; Santoro, Irma; Jinks-Robertson, Sue; Sclafani, Robert A

    2014-08-01

    The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32. PMID:24875188

  5. Empirical complexities in the genetic foundations of lethal mutagenesis.

    PubMed

    Bull, James J; Joyce, Paul; Gladstone, Eric; Molineux, Ian J

    2013-10-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.

  6. Segment-specific mutagenesis: extensive mutagenesis of a lac promoter/operator element.

    PubMed

    Weiher, H; Schaller, H

    1982-03-01

    A method for highly efficient segment-specific mutagenesis is described. The method uses as target for sodium bisulfite mutagenesis the DNA single strands of a DNA restriction fragment that had been separated by cloning into base-complementary regions of a pair of phage fd vectors. After repair synthesis in vitro, the mutagenized DNA fragment is recovered by cloning into a nonmutated plasmid vector and analyzed for sequence and by functional tests. By using this method, the nucleotide sequence of a 109-base pair restriction fragment containing the lac promoter/operator from Escherichia coli was extensively modified. More than 90% of the 235 isolates obtained showed a change in phenotype; all of 22 analyzed for their nucleotide sequence were found to carry multiple C leads to T point mutations in up to 60% of the possible target positions. Nevertheless, few isolates showed major changes in promoter activity relative to the nonmutated promoter element, which indicates a high degree of flexibility in the promoter sequence. PMID:7041119

  7. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    PubMed

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  8. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  9. A computer simulation study of VNTR population genetics: Constrained recombination rules out the infinite alleles model

    SciTech Connect

    Harding, R.M.; Martinson, J.J.; Flint, J.; Clegg, J.B.; Boyce, A.J. )

    1993-11-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. The authors show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. The authors use sampling theory to confirm the intrinsically poor fit to the infinite model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. 25 refs., 20 figs., 4 tabs.

  10. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  11. Efficient genotype elimination via adaptive allele consolidation.

    PubMed

    De Francesco, Nicoletta; Lettieri, Giuseppe; Martini, Luca

    2012-01-01

    We propose the technique of Adaptive Allele Consolidation, that greatly improves the performance of the Lange-Goradia algorithm for genotype elimination in pedigrees, while still producing equivalent output. Genotype elimination consists in removing from a pedigree those genotypes that are impossible according to the Mendelian law of inheritance. This is used to find errors in genetic data and is useful as a preprocessing step in other analyses (such as linkage analysis or haplotype imputation). The problem of genotype elimination is intrinsically combinatorial, and Allele Consolidation is an existing technique where several alleles are replaced by a single “lumped” allele in order to reduce the number of combinations of genotypes that have to be considered, possibly at the expense of precision. In existing Allele Consolidation techniques, alleles are lumped once and for all before performing genotype elimination. The idea of Adaptive Allele Consolidation is to dynamically change the set of alleles that are lumped together during the execution of the Lange-Goradia algorithm, so that both high performance and precision are achieved. We have implemented the technique in a tool called Celer and evaluated it on a large set of scenarios, with good results.

  12. 2012 MUTAGENESIS GORDON RESEARCH CONFERENCE, AUGUST 19-23, 2012

    SciTech Connect

    Demple, Bruce

    2012-08-23

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  13. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation).

    PubMed

    Maisnier-Patin, Sophie; Roth, John R

    2015-07-01

    Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.

  14. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    PubMed

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-11-01

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. PMID:25193494

  15. Random tag insertions by Transposon Integration mediated Mutagenesis (TIM).

    PubMed

    Hoeller, Brigitte M; Reiter, Birgit; Abad, Sandra; Graze, Ina; Glieder, Anton

    2008-10-01

    Transposon Integration mediated Mutagenesis (TIM) is a broadly applicable tool for protein engineering. This method combines random integration of modified bacteriophage Mu transposons with their subsequent defined excision employing type IIS restriction endonuclease AarI. TIM enables deletion or insertion of an arbitrary number of bases at random positions, insertion of functional sequence tags at random positions, replacing randomly selected triplets by a specific codon (e.g. scanning) and site-saturation mutagenesis. As a proof of concept a transposon named GeneOpenerAarIKan was designed and employed to introduce 6xHis tags randomly into the esterase EstC from Burkholderia gladioli. A TIM library was screened with colony based assays for clones with an integrated 6xHis tag and for clones exhibiting esterase activity. The employed strategy enables the isolation of randomly tagged active enzymes in single mutagenesis experiments.

  16. An algorithm for protein engineering: simulations of recursive ensemble mutagenesis.

    PubMed Central

    Arkin, A P; Youvan, D C

    1992-01-01

    An algorithm for protein engineering, termed recursive ensemble mutagenesis, has been developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. Starting from partially randomized "wild-type" DNA sequences, a highly parallel search of sequence space for peptides fitting an experimenter's criteria is performed. Each iteration uses information gained from the previous rounds to search the space more efficiently. Simulations of the technique indicate that, under a variety of conditions, the algorithm can rapidly produce a diverse population of proteins fitting specific criteria. In the experimental analog, genetic selection or screening applied during recursive ensemble mutagenesis should force the evolution of an ensemble of mutants to a targeted cluster of related phenotypes. Images PMID:1502200

  17. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    PubMed

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  18. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  19. Mutagenesis protocols in Saccharomyces cerevisiae by in vivo overlap extension.

    PubMed

    Alcalde, Miguel

    2010-01-01

    A high recombination frequency and its ease of manipulation has made Saccharomyces cerevisiae a unique model eukaryotic organism to study homologous recombination. Indeed, the well-developed recombination machinery in S. cerevisiae facilitates the construction of mutant libraries for directed evolution experiments. In this context, in vivo overlap extension (IVOE) is a particularly attractive protocol that takes advantage of the eukaryotic apparatus to carry out combinatorial saturation mutagenesis, site-directed recombination or site-directed mutagenesis, avoiding ligation steps and additional PCR reactions that are common to standard in vitro protocols. PMID:20676972

  20. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    NASA Astrophysics Data System (ADS)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  1. Characterization of the treefrog null allele, 1991

    SciTech Connect

    Guttman, S.I.

    1992-04-01

    Spring peeper (Hyla crucifer) tadpoles collected from the waste storage area during the Biological and Ecological Site Characterization of the Feed Materials Production Center (FEMP) in 1986 and 1987 appeared to be unique. A null (inactive) allele was found at the glucose phosphate isomerase enzyme locus in significant frequencies (approximately 20%) each year; this allele did not appear to occur in the offsite sample collected approximately 15km from the FEMP. Null alleles at this locus have not been reported in other amphibian populations; when they have been found in other organisms they have invariably been lethal in the homozygous condition.

  2. Characterization of the treefrog null allele

    SciTech Connect

    Guttman, S.I. . Dept. of Zoology)

    1990-12-01

    As part of the authors intensive year-long baseline ecological study, they characterized the degree of genetic polymorphism and heterozygosity in selected Feed Materials Production Center (FMPC) populations using electrophoretic techniques. These data are being used as an indicator of stress by comparing populations on and off the FMPC site. The current study was initiated to determine whether this GPI null allele is lethal, when homozygous, in spring peepers. Also, a sampling protocol was implemented to determine whether a linear effect occurs relative to the frequency of the null allele offsite and to determine the origination site of the null allele. 18 refs., 2 figs., 4 tabs.

  3. International Cell Exchange: 1992.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1992-01-01

    1. This is a review of 1992 typing of 40 cells for Class I antigens and 18 cultured cell lines for Class II antigens through the International Cell Exchange. Serological typings were compared with DNA typing reports for Class II specificities. Presently, 290 laboratories participate in the monthly Class I exchange. Class II results were received monthly from 166 serology laboratories and from 36 DNA laboratories. 2. In 1992, 11 of the 16 A-locus antigens attained 95% or greater average detection. Nine of the 27 B-locus antigens showed 95% or better mean agreement levels. Antigens such as B46 and B70 continued to show improvement in detection in a 5-year period. 3. We compared discrepancy rates of 7 A-locus and 8 B-locus antigens typed 3 times or more. The rates for the B-locus specificities, especially for percentages of false negatives (ie, how often the antigen assignment was missed), continued to be greater than those for the A-locus antigens. Nevertheless, the discrepancy rates of B35 and B70 decreased dramatically during the last 5 years. 4. We showed the number of laboratories with the total of false negatives and false positives. Nine laboratories achieved perfect records (0 false negatives and false positives) for all analyzed antigens in 1992. 5. Results of retyping of 3 donors over several years were shown to indicate improved antigen detection. 6. Recently recognized HLA-specificities, such as A2403 and B5102, were shown as cell variants studied in previous cell exchanges. Variants of B15, B16, and B40 families were presented, as well as several new A-locus antigens. 7. The low and high rates, in addition to the average detection levels, were indicated for a total of 27 (18 DR and 9 DQ) Class II specificities by serology and by DNA typings. Eight of the 15 DR/DRB1 specificities attained 90% or better average agreement by both serology and DNA. Three of the 9 DQ antigens achieved 90% or better average detection by both methods. 8. Confirmation by DNA

  4. Nucleotide variation and identification of novel blast resistance alleles of Pib by allele mining strategy.

    PubMed

    Ramkumar, G; Madhav, M S; Devi, S J S Rama; Prasad, M S; Babu, V Ravindra

    2015-04-01

    Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

  5. Testing Hardy-Weinberg equilibrium on allelic data from VNTR loci

    SciTech Connect

    Geisser, S. ); Johnson, W. )

    1992-11-01

    Several methods for testing independence of pairs of alleles in a population that are obtained from a VNTR locus are presented. The authors assume an exchangeable quasi-continuous distribution of the fragment lengths used to measure the allelic pairs. Bivariate-estimated quantiles computed from the quantiles of the entire data set are then utilized for testing independence. These methods have the advantage of being minimally susceptible to the criticism of (a) the inability of a technology to measure to a few small-sized or rather large-sized fragments and (b) inadequate estimation of the homozygotic proportion. 6 refs., 3 tabs.

  6. Methods for targetted mutagenesis in gram-positive bacteria

    SciTech Connect

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  7. Implementing large-scale ENU mutagenesis screens in North America

    PubMed Central

    Clark, Amander T.; Goldowitz, Daniel; Takahashi, Joseph S.; Vitaterna, Martha Hotz; Siepka, Sandra M.; Peters, Luanne L.; Frankel, Wayne N.; Carlson, George A.; Rossant, Janet; Nadeau, Joseph H.; Justice, Monica J.

    2013-01-01

    A step towards annotating the mouse genome is to use forward genetics in phenotype-driven screens to saturate the genome with mutations. The purpose of this article is to highlight the new projects in North America that are focused on isolating mouse mutations after ENU mutagenesis and phenotype screening. PMID:15619961

  8. Favipiravir elicits antiviral mutagenesis during virus replication in vivo

    PubMed Central

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI: http://dx.doi.org/10.7554/eLife.03679.001 PMID:25333492

  9. Insertional mutagenesis using Tnt1 retrotransposon in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...

  10. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  11. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  12. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA

    SciTech Connect

    Royle, N.J.; Armour, J.A.L.; Crosier, M.; Jeffreys, A.J. )

    1993-01-01

    Somatic events that result in the reduction to hemior homozygosity at all loci affected by the event have been identified in lymphoblastoid DNA from mothers of two CEPH families. Using suitably informative probes, the allele deficiencies were detected by the abnormal transmission of alleles from grandparents to grandchildren, with the apparent absence of the alleles from the parent. Undetected somatic deficiencies in family DNAs could result in misscoring of recombination events and consequently introduce errors into linkage analysis. 15 refs., 2 figs.

  13. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  14. Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping.

    PubMed

    Vogt, M A; Chourbaji, S; Brandwein, C; Dormann, C; Sprengel, R; Gass, P

    2008-05-01

    Tamoxifen-induced mutagenesis via the so-called CreER(T2) fusion enzyme is a key technology for the inducible gene knockout in the adult murine brain. However, it requires a subchronic transient treatment with high doses of the non-selective estrogen receptor antagonist tamoxifen. It has been shown earlier that acute tamoxifen treatment causes behavioral alterations, while the long-term behavioral effects of tamoxifen in mice are so far unknown. Therefore C57BL/6 male mice, a common strain used for targeted mutagenesis and behavioral analyses, were subjected to a tamoxifen treatment protocol as used for inducible mutagenesis in vivo, and analyzed for effects on general behavior (locomotion, exploration), emotional behavior (anxiety, depression) and on learning and memory after a drug-free interval period of 4 weeks. The results demonstrate that a test for depression-like behavior, i.e. the Forced Swim Test, is affected even more than 4 weeks after tamoxifen treatment. In contrast, in all other tests, tamoxifen treated mice showed unaltered behaviors, indicating that the currently established 5-day protocol of tamoxifen treatment (40 mg/kg bid) for inducible mutagenesis has no or little effects on the behavior of C57BL/6 male mice after a latency period of 4 weeks. These results are important for all studies using tamoxifen-induced mutagenesis since this protocol obviously does not evoke alterations in general behaviors such as locomotion, exploration or anxiety-like behaviors, which might confound more complex behavioral analyses, nor does it affect standard tests for learning and memory, such as Morris Water Maze, contextual and cued Fear Conditioning and T-Maze learning.

  15. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  16. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  17. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture.

    PubMed

    Steuernagel, Burkhard; Periyannan, Sambasivam K; Hernández-Pinzón, Inmaculada; Witek, Kamil; Rouse, Matthew N; Yu, Guotai; Hatta, Asyraf; Ayliffe, Mick; Bariana, Harbans; Jones, Jonathan D G; Lagudah, Evans S; Wulff, Brande B H

    2016-06-01

    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize. PMID:27111722

  18. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

    PubMed Central

    Mann, Karen M.; Ward, Jerrold M.; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W.; Black, Michael A.; Brett, Benjamin T.; Sheetz, Todd E.; Dupuy, Adam J.; Chang, David K.; Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Grimmond, Sean M.; Rust, Alistair G.; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.

    2012-01-01

    Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. PMID:22421440

  19. Distribution of Activator (Ac) Throughout the Maize Genome for Use in Regional Mutagenesis

    PubMed Central

    Kolkman, Judith M.; Conrad, Liza J.; Farmer, Phyllis R.; Hardeman, Kristine; Ahern, Kevin R.; Lewis, Paul E.; Sawers, Ruairidh J. H.; Lebejko, Sara; Chomet, Paul; Brutnell, Thomas P.

    2005-01-01

    A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs. PMID:15520264

  20. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma.

    PubMed

    Mann, Karen M; Ward, Jerrold M; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W; Black, Michael A; Brett, Benjamin T; Sheetz, Todd E; Dupuy, Adam J; Chang, David K; Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Grimmond, Sean M; Rust, Alistair G; Adams, David J; Jenkins, Nancy A; Copeland, Neal G

    2012-04-17

    Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. PMID:22421440

  1. Molecular lesions associated with alleles of decapentaplegic identify residues necessary for TGF/{beta}/BMP cell signaling in Drosophila melanogaster

    SciTech Connect

    Wharton, K.; Ray, R.P.; Gelbart, W.M.

    1996-02-01

    We have identified the molecular lesions associated with six point mutations in the Drosophila TGF-{beta} homologue decapentaplegic (dpp). The sites of these mutations define residues within both the pro and ligand regions that are essential for dpp function in vivo. While all of these mutations affect residues that are highly conserved among TGF-{beta} superfamily members, the phenotypic consequences of the different alleles are quite distinct. Through an analysis of these mutant phenotypes, both in cuticle preparations and with molecular probes, we have assessed the functional significance of specific residues that are conserved among the different members of the superfamily. In addition, we have tested for conditional genetic interactions between the different alleles. We show that two of the alleles are temperature sensitive for the embryonic functions of dpp, such that these alleles are not only embryonic viable as homozygotes but also partially complement other dpp hypomorphs at low temperatures. Our results are discussed with regard to in vitro mutagenesis data on other TGF-{beta}-like molecules, as well as with regard to the regulation of dpp cell signaling in Drosophila. 57 refs., 4 figs., 3 tabs.

  2. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes

    PubMed Central

    Boitet, Evan R.; Turner, Ashley N.; Johnson, Larry W.; Kennedy, Daniel; Downs, Ethan R.; Hymel, Katherine M.; Gross, Alecia K.; Kesterson, Robert A.

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  3. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    PubMed

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  4. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    PubMed

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  5. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species.

    PubMed

    Jin, Ji-Qiang; Yao, Ming-Zhe; Ma, Chun-Lei; Ma, Jian-Qiang; Chen, Liang

    2016-03-01

    Tea caffeine synthase 1 (TCS1) is an enzyme that catalyzes the methylation of N-3 and N-1 and considered to be the most critical enzyme in the caffeine biosynthetic pathway of tea plant. This study shows that TCS1 has six types of allelic variations, namely, TCS1a, TCS1b, TCS1c, TCS1d, TCS1e, and TCS1f, with a 252 bp insertion/deletion mutation in the 5'-untranslated region. Among tea plant and its related species, TCS1a is the predominant allele, and TCS1b-f are the rare alleles that mainly appear in few wild germplasms. The full-length cDNA sequences of three new alleles, namely, TCS1d, TCS1e, and TCS1f, were isolated from specific germplasms, and all of recombinant proteins have higher caffeine synthase (CS, EC 2.1.1.160) activity than theobromine synthase (TS, EC 2.1.1.159). Amino acid residue 269 is responsible for the difference in TCS activity and substrate recognition, which was demonstrated by using site-directed mutagenesis experiments. Furthermore, natural variations in TCS1 change the transcription levels. There are two molecular mechanisms controlling the caffeine biosynthesis in low-caffeine-accumulating tea germplasms, i.e., TCS1 allele with low transcription level or its encoded protein with only TS activity. Allelic variations of TCS1 play a crucial role in caffeine biosynthesis. Taken together, our work provides valuable foundation for a comprehensive understanding of the mechanism of caffeine biosynthesis in section Thea plants and useful guidance for effective breeding.

  6. Forensic Loci Allele Database (FLAD): Automatically generated, permanent identifiers for sequenced forensic alleles.

    PubMed

    Van Neste, Christophe; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported. We present the Forensic Loci Allele Database (FLAD) service, made freely available on http://forensic.ugent.be/FLAD/. It offers permanent identifiers for sequenced forensic alleles (STR or SNP) and their microvariants for use in forensic allele nomenclature. Analogous to Genbank, its aim is to provide permanent identifiers for forensically relevant allele sequences. Researchers that are developing forensic sequencing kits or are performing population studies, can register on http://forensic.ugent.be/FLAD/ and add loci and allele sequences with a short and simple application interface (API).

  7. Three allele combinations associated with Multiple Sclerosis

    PubMed Central

    Favorova, Olga O; Favorov, Alexander V; Boiko, Alexey N; Andreewski, Timofey V; Sudomoina, Marina A; Alekseenkov, Alexey D; Kulakova, Olga G; Gusev, Eugenyi I; Parmigiani, Giovanni; Ochs, Michael F

    2006-01-01

    Background Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. Methods 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. Results We identified two previously unknown MS-associated tri-allelic combinations: -509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated. Conclusion These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles. PMID:16872485

  8. Insertional mutagenesis by transposable elements in the mammalian genome.

    PubMed

    Amariglio, N; Rechavi, G

    1993-01-01

    Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability. PMID:8385004

  9. Natural mutagenesis of human genomes by endogenous retrotransposons

    PubMed Central

    Iskow, Rebecca C.; McCabe, Michael T.; Mills, Ryan E.; Torene, Spencer; Pittard, W. Stephen; Neuwald, Andrew F.; Van Meir, Erwin G.; Vertino, Paula M.; Devine, Scott E.

    2010-01-01

    SUMMARY Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe new technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes, and is likely to have a major impact on human biology and diseases. PMID:20603005

  10. Nonrandom mutagenesis. Progress report, March 1, 1981-February 28, 1982

    SciTech Connect

    Goldsby, R.A.

    1981-01-01

    The ultimate goal is the development of tools, approaches and systems which will increase our ability to detect and control mutagenesis. We have continued to develop hybrid cell lines suited to the investigation of the expression and mutagenesis of human cell surface markers. The development and characterization of the monoclonal antibody probes to identify and characterize variation in selected human cell surface antigens has continued. Human X mouse T lymphoma hybrids have proven valuable in obtaining clonal populations expressing cell surface determinants characteristic of particular differentiated cell types. We have constructed a set of human lymphocyte X mouse T lymphoma hybrids which have proven useful for the mapping of cell surface determinants to particular chromosomes.

  11. Efficient site-directed saturation mutagenesis using degenerate oligonucleotides.

    PubMed

    Steffens, David L; Williams, John G K

    2007-07-01

    We describe a reliable protocol for constructing single-site saturation mutagenesis libraries consisting of all 20 naturally occurring amino acids at a specific site within a protein. Such libraries are useful for structure-function studies and directed evolution. This protocol extends the utility of Stratagene's QuikChange Site-Directed Mutagenesis Kit, which is primarily recommended for single amino acid substitutions. Two complementary primers are synthesized, containing a degenerate mixture of the four bases at the three positions of the selected codon. These primers are added to starting plasmid template and thermal cycled to produce mutant DNA molecules, which are subsequently transformed into competent bacteria. The protocol does not require purification of mutagenic oligonucleotides or PCR products. This reduces both the cost and turnaround time in high-throughput directed evolution applications. We have utilized this protocol to generate over 200 site-saturation libraries in a DNA polymerase, with a success rate of greater than 95%. PMID:17595310

  12. Insertional mutagenesis by transposable elements in the mammalian genome.

    PubMed

    Amariglio, N; Rechavi, G

    1993-01-01

    Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability.

  13. Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology.

    PubMed

    Zhu, Quansheng; Casey, Joseph R

    2007-04-01

    Integral membrane proteins of the plasma membrane span from the inside to the outside of the cell. The primary structural element of integral membrane proteins is their topology: the pattern in which the protein traverses the membrane. A full description of topology, defining which parts of the protein face outside versus inside, goes a long way toward understanding the folding of these proteins. Many approaches have been established to define membrane protein topology. Here, we present the technique of scanning cysteine accessibility mutagenesis (SCAM). This approach uses the unique chemical reactivity of the cysteine sulfhydryl to probe membrane protein structure. Individual cysteine residues are introduced into the target protein by mutagenesis. The ability to chemically react these residues using sulfhydryl-directed reagents (either membrane permeant or impermeant) defines each site as either extracellular or intracellular, thus establishing topology of a location. This analysis performed on many sites in the protein will define the protein's topology. PMID:17367716

  14. Specific mutagenesis of a chlorophyll-binding protein. Progress report.

    SciTech Connect

    Eaton-Rye, Dr., Julian; Shen, Gaozhong

    1990-01-01

    During the first phase of the project regarding specific mutagenesis of the chlorophyll-binding protein CP47 in photosystem II (PS II) most of the time has been devoted to (1) establishment of an optimal procedure for the reintroduction of psbB (the gene encoding CP47) carrying a site-directed mutation into the experimental organism, the cyanobacterium Synechocystis sp. PCC 6803, (2) preparations for site-directed mutagenesis, and (3) creation and analysis of chimaeric spinach/cyanobacterial CP47 mutants of Synechocystis. In the coming year, psbB constructs with site-directed mutations in potential chlorophyll-binding regions of CP47 will be introduced into the Synechocystis genome, and site-directed mutants will be characterized according to procedures described in the original project description. In addition, analysis of chimaeric CP47 mutants will be continued.

  15. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  16. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis

    SciTech Connect

    Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.

    2012-05-10

    Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.

  17. Functional Analysis by Site-Directed Mutagenesis of the NAD+-Reducing Hydrogenase from Ralstonia eutropha

    PubMed Central

    Burgdorf, Tanja; De Lacey, Antonio L.; Friedrich, Bärbel

    2002-01-01

    The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD+ under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H2-oxidizing activity. In one of these isolates (HoxH I64A), H2 binding was impaired. Class II mutants revealed a high D2/H+ exchange rate relative to a low H2-oxidizing activity. A representative (HoxH H16L) displayed D2/H+ exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O2-sensitive growth on hydrogen due to an O2-sensitive SH protein. PMID:12399498

  18. Transcriptional mutagenesis: causes and involvement in tumor development

    PubMed Central

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  19. Nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans (chlorophyceae)

    SciTech Connect

    Toby, A.L.; Kemp, C.L.

    1980-06-01

    Reversion of an acetate requiring strain and the induction of sectored colonies are used to establish optimal conditions for nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans Ehrenberg. Nitrosoguanidine is more effective in causing reversion of the acetate requiring strain and inducing auxotrophs. Morphogenetic mutants are more readily induced by ultraviolet light. The effectiveness of ultraviolet light as a mutagen is cell cycle dependent whereas the mutagenic action of nitrosoguanidine is not.

  20. Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue▿

    PubMed Central

    Graci, Jason D.; Harki, Daniel A.; Korneeva, Victoria S.; Edathil, Jocelyn P.; Too, Kathleen; Franco, David; Smidansky, Eric D.; Paul, Aniko V.; Peterson, Blake R.; Brown, Daniel M.; Loakes, David; Cameron, Craig E.

    2007-01-01

    Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses. PMID:17686844

  1. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    PubMed

    Shapter, Frances M; Cross, Michael; Ablett, Gary; Malory, Sylvia; Chivers, Ian H; King, Graham J; Henry, Robert J

    2013-01-01

    Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇) of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops. PMID:24367532

  2. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    PubMed

    Shapter, Frances M; Cross, Michael; Ablett, Gary; Malory, Sylvia; Chivers, Ian H; King, Graham J; Henry, Robert J

    2013-01-01

    Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇) of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  3. Mutagenesis by the autoxidation of iron with isolated DNA

    SciTech Connect

    Loeb, L.A.; James, E.A.; Waltersdorph, A.M.; Klebanoff, S.J. )

    1988-06-01

    Oxygen free radicals are highly reactive species generated by many cellular oxidation-reduction processes. These radicals damage cellular constituents and have been casually implicated in the pathogenesis of many human diseases. The authors report here that oxygen free radicals generated by Fe{sup 2+} in aqueous solution are mutagenic. Aerobic incubation of {phi}X174 am3 (amber 3 mutation) DNA with Fe{sup 2+} results in decreased phage survival when the treated DNA is transfected into Escherichia coli spheroplasts. Transfection of the treated DNA into SOS-induced spheroplasts results in an increase in mutagenesis as great as 50-fold. Both killing and mutagenesis can be prevented by binding of Fe{sup 2+} with deferoxamine or by the addition of catalase or mannitol. These results suggest that DNA damage and mutagenesis brought about by Fe{sup 2+} are likely to occur by a Fenton-type mechanism. DNA sequence analysis of the Fe{sup 2+}-induced mutants indicates that reversion of the phage phenotype to wild type occurs largely by a transversion type of mutation involving substitution of deoxyadenosine for thymidine opposite a template deoxyadenosine. These findings raise the possibility that free iron localized in cellular DNA may cause mutations by the generation of oxygen free radicals.

  4. Highly Efficient Targeted Mutagenesis in Mice Using TALENs

    PubMed Central

    Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms. PMID:23979585

  5. Highly efficient targeted mutagenesis in mice using TALENs.

    PubMed

    Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf

    2013-11-01

    Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms.

  6. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles.

    PubMed

    Brunner, Susanne; Hurni, Severine; Streckeisen, Philipp; Mayr, Gabriele; Albrecht, Mario; Yahiaoui, Nabila; Keller, Beat

    2010-11-01

    Some plant resistance genes occur as allelic series, with each member conferring specific resistance against a subset of pathogen races. In wheat, there are 17 alleles of the Pm3 gene. They encode nucleotide-binding (NB-ARC) and leucine-rich-repeat (LRR) domain proteins, which mediate resistance to distinct race spectra of powdery mildew. It is not known if specificities from different alleles can be combined to create resistance genes with broader specificity. Here, we used an approach based on avirulence analysis of pathogen populations to characterize the molecular basis of Pm3 recognition spectra. A large survey of mildew races for avirulence on the Pm3 alleles revealed that Pm3a has a resistance spectrum that completely contains that of Pm3f, but also extends towards additional races. The same is true for the Pm3b and Pm3c gene pair. The molecular analysis of these allelic pairs revealed a role of the NB-ARC protein domain in the efficiency of effector-dependent resistance. Analysis of the wild-type and chimeric Pm3 alleles identified single residues in the C-terminal LRR motifs as the main determinant of allele specificity. Variable residues of the N-terminal LRRs are necessary, but not sufficient, to confer resistance specificity. Based on these data, we constructed a chimeric Pm3 gene by intragenic allele pyramiding of Pm3d and Pm3e that showed the combined resistance specificity and, thus, a broader recognition spectrum compared with the parental alleles. Our findings support a model of stepwise evolution of Pm3 recognition specificities.

  7. Enhancing allele-specific PCR for specifically detecting short deletion and insertion DNA mutations.

    PubMed

    Wang, Yiran; Rollin, Joseph A; Zhang, Y-H Percival

    2010-02-01

    Allele-specific PCR (AS-PCR) has been widely used for the detection of single nucleotide polymorphism. But there are some challenges in using AS-PCR for specifically detecting DNA variations with short deletions or insertions. The challenges are associated with designing selective allele-specific primers as well as the specificity of AS-PCR in distinguishing some types of single base-pair mismatches. In order to address such problems and enhance the applicability of AS-PCR, a general primer design method was developed to create a multiple base-pair mismatch between the primer 3'-terminus and the template DNA. This approach can destabilize the primer-template complex more efficiently than does a single base-pair mismatch, and can dramatically increase the specificity of AS-PCR. As a proof-of-principle demonstration, the method of primer design was applied in colony PCR for identifying plasmid DNA deletion or insertion mutants after site-directed mutagenesis. As anticipated, multiple base-pair mismatches achieved much more specific PCR amplification than single base-pair mismatches. Therefore, with the proposed primer design method, the detection of short nucleotide deletion and insertion mutations becomes simple, accurate and more reliable.

  8. Initial invasion of gametophytic self-incompatibility alleles in the absence of tight linkage between pollen and pistil S alleles.

    PubMed

    Sakai, Satoki; Wakoh, Haluka

    2014-08-01

    In homomorphic self-incompatibility (SI) systems of plants, the loci controlling the pollen and pistil types are tightly linked, and this prevents the generation of compatible combinations of alleles expressing pollen and pistil types, which would result in self-fertilization. We modeled the initial invasion of the first pollen and pistil alleles in gametophytic SI to determine whether these alleles can stably coexist in a population without tight linkage. We assume pollen and pistil loci each carry an incompatibility allele S and an allele without an incompatibility function N. We assume that pollen with an S allele are incompatible with pistils carrying S alleles, whereas other crosses are compatible. Ovules in pistils carrying an S allele suffer viability costs because recognition consumes resources. We found that the cost of carrying a pistil S allele allows pollen and pistil S alleles to coexist in a stable equilibrium if linkage is partial. This occurs because parents that carry pistil S alleles but are homozygous for pollen N alleles cannot avoid self-fertilization; however, they suffer viability costs. Hence, pollen N alleles are selected again. When pollen and pistil S alleles can coexist in a polymorphic equilibrium, selection will favor tighter linkage.

  9. Structure and transforming function of transduced mutant alleles of the chicken c-myc gene.

    PubMed Central

    Patschinsky, T; Jansen, H W; Blöcker, H; Frank, R; Bister, K

    1986-01-01

    A small retroviral vector carrying an oncogenic myc allele was isolated as a spontaneous variant (MH2E21) of avian oncovirus MH2. The MH2E21 genome, measuring only 2.3 kilobases, can be replicated like larger retroviral genomes and hence contains all cis-acting sequence elements essential for encapsidation and reverse transcription of retroviral RNA or for integration and transcription of proviral DNA. The MH2E21 genome contains 5' and 3' noncoding retroviral vector elements and a coding region comprising the first six codons of the viral gag gene and 417 v-myc codons. The gag-myc junction corresponds precisely to the presumed splice junction on subgenomic MH2 v-myc mRNA, the possible origin of MH2E21. Among the v-myc codons, the first 5 are derived from the noncoding 5' terminus of the second c-myc exon, and 412 codons correspond to the c-myc coding region. The predicted sequence of the MH2E21 protein product differs from that of the chicken c-myc protein by 11 additional amino-terminal residues and by 25 amino acid substitutions and a deletion of 4 residues within the shared domains. To investigate the functional significance of these structural changes, the MH2E21 genome was modified in vitro. The gag translational initiation codon was inactivated by oligonucleotide-directed mutagenesis. Furthermore, all but two of the missense mutations were reverted, and the deleted sequences were restored by replacing most of the MH2E21 v-myc allele by the corresponding segment of the CMII v-myc allele which is isogenic to c-myc in that region. The remaining two mutations have not been found in the v-myc alleles of avian oncoviruses MC29, CMII, and OK10. Like MH2 and MH2E21, modified MH2E21 (MH2E21m1c1) transforms avian embryo cells. Like c-myc, it encodes a 416-amino-acid protein initiated at the myc translational initiation codon. We conclude that neither major structural changes, such as in-frame fusion with virion genes or internal deletions, nor specific, if any

  10. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  11. Pollen tetrads in the detection of environmental mutagenesis

    SciTech Connect

    Mulcahy, D.L.

    1981-01-01

    Although pollen is a very sensitive indicator of environmental mutagenesis, it is also sensitive to nonmutagenic environmental stress. By analyzing pollen tetrads, rather than individual pollen grains, it is possible to distinguish between mutagenic and nonmutagenic influences. Another advantage of using pollen tetrads in mutagenicity studies is that it is possible to discriminate between pre- and post-pachytene mutations. This eliminates the mutant sector problem of a single mutational event giving rise to a large number of mutant cells. Methods of analyzing pollen tetrads are described.

  12. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts. PMID:26443218

  13. Chemical mutagenesis: an emerging issue for public health.

    PubMed Central

    Claxton, L D; Barry, P Z

    1977-01-01

    Chemical mutagens are recognized as prevalent in the environment and a potential threat to the health of future generations. This paper presents an overview of chemical mutagenesis as an issue for public health. Several problems in the determination of risk to human populations are discussed, including difficulties of extrapolating scientific data to humans, the latency period between exposure and recognizable genetic damage, and the large number of chemicals which must be tested. Test systems are described. Possibilities of control through federal regulation are discussed. PMID:911015

  14. Mutagenesis of the borage Delta(6) fatty acid desaturase.

    PubMed

    Sayanova, O; Beaudoin, F; Libisch, B; Shewry, P; Napier, J

    2000-12-01

    The consensus sequence of the third histidine box of a range of Delta(5), Delta(6), Delta(8) and sphingolipid desaturases differs from that of the membrane-bound non-fusion Delta(12) and Delta(15) desaturases in the presence of glutamine instead of histidine. We have used site-directed mutagenesis to determine the importance of glutamine and other residues of the third histidine box and created a chimaeric enzyme to determine the ability of the Cyt b(5) fusion domain from the plant sphingolipid desaturase to substitute for the endogenous domain of the Delta(6) desaturase. PMID:11171152

  15. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts.

  16. Targeted mutagenesis by homologous recombination in D. melanogaster

    PubMed Central

    Rong, Yikang S.; Titen, Simon W.; Xie, Heng B.; Golic, Mary M.; Bastiani, Michael; Bandyopadhyay, Pradip; Olivera, Baldomero M.; Brodsky, Michael; Rubin, Gerald M.; Golic, Kent G.

    2002-01-01

    We used a recently developed method to produce mutant alleles of five endogenous Drosophila genes, including the homolog of the p53 tumor suppressor. Transgenic expression of the FLP site-specific recombinase and the I-SceI endonuclease generates extrachromosomal linear DNA molecules in vivo. These molecules undergo homologous recombination with the corresponding chromosomal locus to generate targeted alterations of the host genome. The results address several questions about the general utility of this technique. We show that genes not near telomeres can be efficiently targeted; that no knowledge of the mutant phenotype is needed for targeting; and that insertional mutations and allelic substitutions can be easily produced. PMID:12080094

  17. [Influence of diethyl sulfate (DES) mutagenesis on growth properties and pigment secondary metabolites of Phellinus igniarius].

    PubMed

    Wang, Jing; Wu, Xin-yuan; Ma, Wei; Chen, Jing; Liu, Cheng; Wu, Xiu-li

    2015-06-01

    The diethyl sulfate (DES) mutagenesis was chosen for the mutagenic treatment to Phellinus igniarius, and the relationship of mutagenesis time and death rate was investigated with 0.5% DES. The differences of mycelial growth speed, liquid fermentation mycelia biomass, morphology and pigment classes of secondary metabolites production speed and antioxidant activities of metabolite products were discussed. The study displayed that DES mutagenesis could change mycelial morphology without obvious effect on mycelium growth, and the DES mutagenesis improved antioxidant activities of the active ingredients of P. igniarius and had more antioxidant activity of hypoxia/sugar PC12 nerve cells than that of P. igniarius. PMID:26591512

  18. Allelic variation contributes to bacterial host specificity.

    PubMed

    Yue, Min; Han, Xiangan; De Masi, Leon; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S; Fraser, George P; Zhao, Shaohua; McDermott, Patrick F; Weill, François-Xavier; Mainil, Jacques G; Arze, Cesar; Fricke, W Florian; Edwards, Robert A; Brisson, Dustin; Zhang, Nancy R; Rankin, Shelley C; Schifferli, Dieter M

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  19. Allelic variation contributes to bacterial host specificity

    SciTech Connect

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

  20. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; et al

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  1. Allelic variation contributes to bacterial host specificity

    PubMed Central

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  2. Saturation Mutagenesis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Smith, Maria W.; Meskauskas, Arturas; Wang, Pinger; Sergiev, Petr V.; Dinman, Jonathan D.

    2001-01-01

    rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome. PMID:11713264

  3. Mismatch Repair Modulation of MutY Activity Drives Bacillus subtilis Stationary-Phase Mutagenesis

    PubMed Central

    Debora, Bernardo N.; Vidales, Luz E.; Ramírez, Rosario; Ramírez, Mariana; Robleto, Eduardo A.; Yasbin, Ronald E.; Pedraza-Reyes, Mario

    2011-01-01

    Stress-promoted mutations that occur in nondividing cells (adaptive mutations) have been implicated strongly in causing genetic variability as well as in species survival and evolutionary processes. Oxidative stress-induced DNA damage has been associated with generation of adaptive His+ and Met+ but not Leu+ revertants in strain Bacillus subtilis YB955 (hisC952 metB5 leuC427). Here we report that an interplay between MutY and MutSL (mismatch repair system [MMR]) plays a pivotal role in the production of adaptive Leu+ revertants. Essentially, the genetic disruption of MutY dramatically reduced the reversion frequency to the leu allele in this model system. Moreover, the increased rate of adaptive Leu+ revertants produced by a MutSL knockout strain was significantly diminished following mutY disruption. Interestingly, although the expression of mutY took place during growth and stationary phase and was not under the control of RecA, PerR, or σB, a null mutation in the mutSL operon increased the expression of mutY several times. Thus, in starved cells, saturation of the MMR system may induce the expression of mutY, disturbing the balance between MutY and MMR proteins and aiding in the production of types of mutations detected by reversion to leucine prototrophy. In conclusion, our results support the idea that MMR regulation of the mutagenic/antimutagenic properties of MutY promotes stationary-phase mutagenesis in B. subtilis cells. PMID:20971907

  4. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family.

    PubMed

    Salazar-Vidal, M Nancy; Acosta-Segovia, Edith; Sánchez-León, Nidia; Ahern, Kevin R; Brutnell, Thomas P; Sawers, Ruairidh J H

    2016-01-01

    Phosphorus is an essential nutrient for all plants, but also one of the least mobile, and consequently least available, in the soil. Plants have evolved a series of molecular, metabolic and developmental adaptations to increase the acquisition of phosphorus and to maximize the efficiency of use within the plant. In Arabidopsis (Arabidopsis thaliana), the AtPHO1 protein regulates and facilitates the distribution of phosphorus. To investigate the role of PHO1 proteins in maize (Zea mays), the B73 reference genome was searched for homologous sequences, and four genes identified that were designated ZmPho1;1, ZmPho1;2a, ZmPho1;2b and ZmPho1;3. ZmPho1;2a and ZmPho1;2b are the most similar to AtPHO1, and represent candidate co-orthologs that we hypothesize to have been retained following whole genome duplication. Evidence was obtained for the production of natural anti-sense transcripts associated with both ZmPho1;2a and ZmPho1;2b, suggesting the possibility of regulatory crosstalk between paralogs. To characterize functional divergence between ZmPho1;2a and ZmPho1;2b, a program of transposon mutagenesis was initiated using the Ac/Ds system, and, here, we report the generation of novel alleles of ZmPho1;2a and ZmPho1;2b. PMID:27648940

  5. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family

    PubMed Central

    Salazar-Vidal, M. Nancy; Acosta-Segovia, Edith; Sánchez-León, Nidia; Ahern, Kevin R.; Brutnell, Thomas P.; Sawers, Ruairidh J. H.

    2016-01-01

    Phosphorus is an essential nutrient for all plants, but also one of the least mobile, and consequently least available, in the soil. Plants have evolved a series of molecular, metabolic and developmental adaptations to increase the acquisition of phosphorus and to maximize the efficiency of use within the plant. In Arabidopsis (Arabidopsis thaliana), the AtPHO1 protein regulates and facilitates the distribution of phosphorus. To investigate the role of PHO1 proteins in maize (Zea mays), the B73 reference genome was searched for homologous sequences, and four genes identified that were designated ZmPho1;1, ZmPho1;2a, ZmPho1;2b and ZmPho1;3. ZmPho1;2a and ZmPho1;2b are the most similar to AtPHO1, and represent candidate co-orthologs that we hypothesize to have been retained following whole genome duplication. Evidence was obtained for the production of natural anti-sense transcripts associated with both ZmPho1;2a and ZmPho1;2b, suggesting the possibility of regulatory crosstalk between paralogs. To characterize functional divergence between ZmPho1;2a and ZmPho1;2b, a program of transposon mutagenesis was initiated using the Ac/Ds system, and, here, we report the generation of novel alleles of ZmPho1;2a and ZmPho1;2b. PMID:27648940

  6. Spontaneous recurrent mutations and a complex rearrangement in the MECP2 gene in the light of current models of mutagenesis.

    PubMed

    Todorov, Tihomir; Todorova, Albena; Motoescu, Cristina; Dimova, Petia; Iancu, Daniela; Craiu, Dana; Stoian, Daniela; Barbarii, Ligia; Bojinova, Veneta; Mitev, Vanyo

    2012-06-01

    Mutations in the methyl-CpG-binding protein 2 (MECP2) gene are associated with Rett syndrome (RTT). The MECP2 gene has some unique characteristics: (1) it is mainly affected by de novo mutations, due to recurrent independent mutational events in a defined "hot spot" regions or positions; (2) complex mutational events along a single allele are frequently found in this gene; (3) most mutations arise on paternal X chromosome. The recurrent point mutations involve mainly CpG dinucleotides, where C>T transitions are explained by methylation-mediated deamination. The complex mutational events might be explained by the genomic architecture of the region involving the MECP2 gene. The finding that most spontaneous mutations arise on paternal X-chromosome supports the higher contribution of replication-mediated mechanism of mutagenesis. We present 9 types of mutations in the MECP2 gene, detected in a group of 22 Bulgarian and 6 Romanian classical RTT patients. Thirteen patients were clarified on molecular level (46.4%). The point mutations in our sample account for 61.5%. One intraexonic deletion was detected in the present study (7.7%). One novel insertion c.321_322insGAAG, p.(Lys107_Leu108insGluAlafs2*) was found (7.7%). Large deletions and complex mutations account for 23%. A novel complex mutational event c.[584_624del41insTT; 638delTinsCA] was detected in a Romanian patient. We discuss different types of the MECP2 mutations detected in our sample in the light of the possible mechanisms of mutagenesis. Complex gene rearrangements involving a combination of deletions and insertions have always been most difficult to detect, to specify precisely and hence to explain in terms of their underlying mutational mechanisms.

  7. Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia

    PubMed Central

    Tang, Jian Zhong; Carmichael, Catherine L.; Shi, Wei; Metcalf, Donald; Ng, Ashley P.; Hyland, Craig D.; Jenkins, Nancy A.; Copeland, Neal G.; Howell, Viive M.; Zhao, Zhizhuang Joe; Smyth, Gordon K.; Kile, Benjamin T.; Alexander, Warren S.

    2013-01-01

    To define genetic lesions driving leukemia, we targeted cre-dependent Sleeping Beauty (SB) transposon mutagenesis to the blood-forming system using a hematopoietic-selective vav 1 oncogene (vav1) promoter. Leukemias of diverse lineages ensued, most commonly lymphoid leukemia and erythroleukemia. The inclusion of a transgenic allele of Janus kinase 2 (JAK2)V617F resulted in acceleration of transposon-driven disease and strong selection for erythroleukemic pathology with transformation of bipotential erythro-megakaryocytic cells. The genes encoding the E-twenty-six (ETS) transcription factors Ets related gene (Erg) and Ets1 were the most common sites for transposon insertion in SB-induced JAK2V617F-positive erythroleukemias, present in 87.5% and 65%, respectively, of independent leukemias examined. The role of activated Erg was validated by reproducing erythroleukemic pathology in mice transplanted with fetal liver cells expressing translocated in liposarcoma (TLS)-ERG, an activated form of ERG found in human leukemia. Via application of SB mutagenesis to TLS-ERG–induced erythroid transformation, we identified multiple loci as likely collaborators with activation of Erg. Jak2 was identified as a common transposon insertion site in TLS-ERG–induced disease, strongly validating the cooperation between JAK2V617F and transposon insertion at the Erg locus in the JAK2V617F-positive leukemias. Moreover, loci expressing other regulators of signal transduction pathways were conspicuous among the common transposon insertion sites in TLS-ERG–driven leukemia, suggesting that a key mechanism in erythroleukemia may be the collaboration of lesions disturbing erythroid maturation, most notably in genes of the ETS family, with mutations that reduce dependence on exogenous signals. PMID:23533276

  8. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, Oliver E.; Pan, David

    1994-01-01

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

  9. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, O.E.; Pan, D.

    1994-07-19

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

  10. Increasing long term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  11. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir

    PubMed Central

    de Ávila, Ana I.; Gallego, Isabel; Soria, Maria Eugenia; Gregori, Josep; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Domingo, Esteban; Perales, Celia

    2016-01-01

    Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens. PMID:27755573

  12. A mariner transposon vector adapted for mutagenesis in oral streptococci

    PubMed Central

    Nilsson, Martin; Christiansen, Natalia; Høiby, Niels; Twetman, Svante; Givskov, Michael; Tolker-Nielsen, Tim

    2014-01-01

    This article describes the construction and characterization of a mariner-based transposon vector designed for use in oral streptococci, but with a potential use in other Gram-positive bacteria. The new transposon vector, termed pMN100, contains the temperature-sensitive origin of replication repATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-inducible promoter, and an erythromycin resistance gene flanked by himar inverted repeats. The pMN100 plasmid was transformed into Streptococcus mutans UA159 and transposon mutagenesis was performed via a protocol established to perform high numbers of separate transpositions despite a low frequency of transposition. The distribution of transposon inserts in 30 randomly picked mutants suggested that mariner transposon mutagenesis is unbiased in S. mutans. A generated transposon mutant library containing 5000 mutants was used in a screen to identify genes involved in the production of sucrose-dependent extracellular matrix components. Mutants with transposon inserts in genes encoding glycosyltransferases and the competence-related secretory locus were predominantly found in this screen. PMID:24753509

  13. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    PubMed Central

    Bacolla, Albino; Cooper, David N.; Vasquez, Karen M.

    2014-01-01

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules. PMID:24705290

  14. TALEN mediated somatic mutagenesis in murine models of cancer

    PubMed Central

    Zhang, Shuyuan; Li, Lin; Kendrick, Sara L.; Gerard, Robert D.; Zhu, Hao

    2014-01-01

    Cancer genome sequencing has identified numerous somatic mutations whose biological relevance is uncertain. In this study, we used genome-editing tools to create and analyze targeted somatic mutations in murine models of liver cancer. TALEN were designed against β-catenin (Ctnnb1) and Apc, two commonly mutated genes in hepatocellular carcinoma (HCC), to generate isogenic HCC cell lines. Both mutant cell lines exhibited evidence of Wnt pathway dysregulation. We asked if these TALENs could create targeted somatic mutations after hydrodynamic transfection (HDT) into mouse liver. TALENs targeting β-catenin promoted endogenous HCC carrying the intended gain-of-function mutations. However, TALENs targeting Apc were not as efficient in inducing in vivo homozygous loss-of-function mutations. We hypothesized that hepatocyte polyploidy might be protective against TALEN-induced loss of heterozygosity (LOH), and indeed Apc gene editing was less efficient in tetraploid than in diploid hepatocytes. To increase efficiency, we administered adenoviral Apc TALENs and found that we could achieve a higher mutagenesis rate in vivo. Our results demonstrate that genome-editing tools can enable the in vivo study of cancer genes and faithfully recapitulate the mosaic nature of mutagenesis in mouse cancer models. PMID:25070752

  15. Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.

    PubMed

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; da Motta, Carlos Henrique Ares Silveira; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio

    2015-05-01

    Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications.

  16. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  17. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    PubMed

    El-Nashar, Y I; Asrar, A A

    2016-01-01

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance. PMID:27173326

  18. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    PubMed

    El-Nashar, Y I; Asrar, A A

    2016-01-01

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.

  19. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    PubMed

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  20. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  1. Borrowed alleles and convergence in serpentine adaptation.

    PubMed

    Arnold, Brian J; Lahner, Brett; DaCosta, Jeffrey M; Weisman, Caroline M; Hollister, Jesse D; Salt, David E; Bomblies, Kirsten; Yant, Levi

    2016-07-19

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment. PMID:27357660

  2. Borrowed alleles and convergence in serpentine adaptation

    PubMed Central

    Arnold, Brian J.; Lahner, Brett; DaCosta, Jeffrey M.; Weisman, Caroline M.; Hollister, Jesse D.; Salt, David E.; Bomblies, Kirsten; Yant, Levi

    2016-01-01

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata. In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata. This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment. PMID:27357660

  3. Borrowed alleles and convergence in serpentine adaptation.

    PubMed

    Arnold, Brian J; Lahner, Brett; DaCosta, Jeffrey M; Weisman, Caroline M; Hollister, Jesse D; Salt, David E; Bomblies, Kirsten; Yant, Levi

    2016-07-19

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment.

  4. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1).

    PubMed

    Kaintz, Cornelia; Mayer, Rupert L; Jirsa, Franz; Halbwirth, Heidi; Rompel, Annette

    2015-03-24

    Aurone synthase from Coreopsis grandiflora (cgAUS1), catalyzing conversion of butein to sulfuretin in a type-3 copper center, is a rare example of a polyphenol oxidase involved in anabolism. Site-directed mutagenesis around the CuA site of AUS1 was performed, and recombinant enzymes were analyzed by mass spectrometry. Replacement of the coordinating CuA histidines with alanine resulted in the presence of a single copper and loss of diphenolase activity. The thioether bridge-building cysteine and a phenylalanine over the CuA site, exchanged to alanine, have no influence on copper content but appear to play an important role in substrate binding.

  5. Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles.

    PubMed

    Lachance, Joseph; Tishkoff, Sarah A

    2014-10-01

    Gene conversion results in the nonreciprocal transfer of genetic information between two recombining sequences, and there is evidence that this process is biased toward G and C alleles. However, the strength of GC-biased gene conversion (gBGC) in human populations and its effects on hereditary disease have yet to be assessed on a genomic scale. Using high-coverage whole-genome sequences of African hunter-gatherers, agricultural populations, and primate outgroups, we quantified the effects of GC-biased gene conversion on population genomic data sets. We find that genetic distances (FST and population branch statistics) are modified by gBGC. In addition, the site frequency spectrum is left-shifted when ancestral alleles are favored by gBGC and right-shifted when derived alleles are favored by gBGC. Allele frequency shifts due to gBGC mimic the effects of natural selection. As expected, these effects are strongest in high-recombination regions of the human genome. By comparing the relative rates of fixation of unbiased and biased sites, the strength of gene conversion was estimated to be on the order of Nb ≈ 0.05 to 0.09. We also find that derived alleles favored by gBGC are much more likely to be homozygous than derived alleles at unbiased SNPs (+42.2% to 62.8%). This results in a curse of the converted, whereby gBGC causes substantial increases in hereditary disease risks. Taken together, our findings reveal that GC-biased gene conversion has important population genetic and public health implications.

  6. Characterizing allelic association in the genome era

    PubMed Central

    WEIR, B. S.; LAURIE, C. C.

    2015-01-01

    Summary Whole genome data are allowing the estimation of population genetic parameters with an accuracy not imagined 50 years ago. Variation in these parameters along the genome is being found empirically where once only approximate theoretical values were available. Along with increased information, however, has come the issue of multiple testing and the realization that high values of the coefficients of variation of quantities such as relatedness measures may make it difficult to draw inferences. This review concentrates on measures of allelic association within and between individuals and within and between populations. PMID:21429275

  7. Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica.

    PubMed

    Zhou, Peng; Li, Xiaoli; Qi, Fengxia

    2015-05-01

    Using an alternative sigma factor ecf3 as target, we successfully established the first markerless mutagenesis system in the Veillonella genus. This system will be a valuable tool for mutagenesis of multiple genes for gene function analysis as well as for gene regulation studies in Veillonella. PMID:25771833

  8. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  9. Manitoba Exchange.

    ERIC Educational Resources Information Center

    Coss, Maurice

    Planning ideas and follow-up activities are described for a reciprocal exchange program between groups of 5th and 6th grade students in Manitoba who are "twinned" with another school in the province. Emphasis is on providing learning experiences which help students become familiar with the economic activity in the area, with the local government…

  10. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  11. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  12. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

    PubMed Central

    Salzberg, A.; Prokopenko, S. N.; He, Y.; Tsai, P.; Pal, M.; Maroy, P.; Glover, D. M.; Deak, P.; Bellen, H. J.

    1997-01-01

    To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens. PMID:9409832

  13. Identification of a novel DRB1 allele through intergenic recombination between HLA-DRB1 and HLA-DRB3∗02 in a Chinese family.

    PubMed

    Huang, Weijin; Liu, Xiangjun; Li, Erwei; Zhao, Chenyan; Liu, Qiang; Liang, Zhenglun; Wang, Youchun; Lu, Fengmin

    2013-12-01

    In this study, a novel DRB1 allele was revealed by routine HLA-SBT typing noted for its extensive mismatches to any known DRB1 alleles within the exon 2. Sequences containing the exons 2, 3 of HLA-DRB1, their surrounding introns, and the full-length cDNA of DRB1 were analyzed to determine a possible recombination event. Interestingly, the sequences of entire exon 2 were characterized as DRB3(∗)02:02:01:01/02; while exon 3 were characterized as DRB1(∗)14 like alleles. Further analysis of the sequences using Simplot software suggested that an intergenic recombinant event (i.e. exchange of sequence between non-allelic genes) may have occurred between DRB3(∗)02 allele and DRB1(∗)14 like allele, and the recombination sites are located at intron 1 and the boundary of exon 2 and intron 2 of DRB1. There are 5 CGGGG sequences flanking each side of exon 2 could serve as potential recombination site. Moreover, the full-length cDNA of the novel allele has been identified. The exon 1 and exon 3 to exon 6 share the same sequence as DRB1(∗)14 like alleles. At the mRNA level, the new allele has no significant difference when compared with the other DRB1 allele. This novel recombinant allele is also found to be paternally inherited. In conclusion, this is the first report of a DRB1 and DRB3 intergenic recombination event involving whole exon 2, which generate a new DRB1(∗)14:141.

  14. Mutant fatty acid desaturase and methods for directed mutagenesis

    DOEpatents

    Shanklin, John; Whittle, Edward J.

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  15. Environmental mutagenesis during the end-Permian ecological crisis

    PubMed Central

    Visscher, Henk; Looy, Cindy V.; Collinson, Margaret E.; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H. A.; Kürschner, Wolfram M.; Sephton, Mark A.

    2004-01-01

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  16. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  17. Error-prone rolling circle amplification greatly simplifies random mutagenesis.

    PubMed

    Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi

    2014-01-01

    We describe a simple and easy protocol to introduce random mutations into plasmid DNA: error-prone rolling circle amplification. A template plasmid is amplified via rolling circle amplification with decreased fidelity in the presence of MnCl2 and is used to transform a host strain resulting in a mutant library with several random point mutations per kilobase through the entire plasmid. The primary advantage of this method is its simplicity. This protocol does not require the design of specific primers or thermal cycling. The reaction mixture can be used for direct transformation of a host strain. This method allows rapid preparation of randomly mutated plasmid libraries, enabling wider application of random mutagenesis.

  18. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism.

  19. Double-strand break-induced targeted mutagenesis in plants.

    PubMed

    Lyznik, L Alexander; Djukanovic, Vesna; Yang, Meizhu; Jones, Spencer

    2012-01-01

    Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities. Such breaks are mainly repaired by error-prone nonhomologous recombination pathways in somatic cells, thus frequently producing mutations at the preselected chromosomal sites. Although the art and science of reengineering protein properties have been advancing quickly, an empirical validation of new endonucleases in a particular experimental environment is essential for successful targeted mutagenesis experiments. This chapter presents methods that were developed for a comprehensive evaluation of the DNA-binding and DNA-cutting activities of homing endonucleases in maize cells; however, they can be adopted for similar evaluation studies of other endonucleases and other plant species that are amenable for Agrobacterium-mediated transformation. PMID:22351025

  20. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  1. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  2. Deleterious alleles in the human genome are on average younger than neutral alleles of the same frequency.

    PubMed

    Kiezun, Adam; Pulit, Sara L; Francioli, Laurent C; van Dijk, Freerk; Swertz, Morris; Boomsma, Dorret I; van Duijn, Cornelia M; Slagboom, P Eline; van Ommen, G J B; Wijmenga, Cisca; de Bakker, Paul I W; Sunyaev, Shamil R

    2013-01-01

    Large-scale population sequencing studies provide a complete picture of human genetic variation within the studied populations. A key challenge is to identify, among the myriad alleles, those variants that have an effect on molecular function, phenotypes, and reproductive fitness. Most non-neutral variation consists of deleterious alleles segregating at low population frequency due to incessant mutation. To date, studies characterizing selection against deleterious alleles have been based on allele frequency (testing for a relative excess of rare alleles) or ratio of polymorphism to divergence (testing for a relative increase in the number of polymorphic alleles). Here, starting from Maruyama's theoretical prediction (Maruyama T (1974), Am J Hum Genet USA 6:669-673) that a (slightly) deleterious allele is, on average, younger than a neutral allele segregating at the same frequency, we devised an approach to characterize selection based on allelic age. Unlike existing methods, it compares sets of neutral and deleterious sequence variants at the same allele frequency. When applied to human sequence data from the Genome of the Netherlands Project, our approach distinguishes low-frequency coding non-synonymous variants from synonymous and non-coding variants at the same allele frequency and discriminates between sets of variants independently predicted to be benign or damaging for protein structure and function. The results confirm the abundance of slightly deleterious coding variation in humans.

  3. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.

    PubMed

    Gao, Junping; Wang, Genhong; Ma, Sanyuan; Xie, Xiaodong; Wu, Xiangwei; Zhang, Xingtan; Wu, Yuqian; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Genome editing is one of the most powerful tools for revealing gene function and improving crop plants. Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been used as a powerful and efficient tool for genome editing in various organisms. Here, we report genome editing in tobacco (Nicotiana tabacum) mediated by the CRISPR/Cas9 system. Two genes, NtPDS and NtPDR6, were used for targeted mutagenesis. First, we examined the transient genome editing activity of this system in tobacco protoplasts, insertion and deletion (indel) mutations were observed with frequencies of 16.2-20.3% after transfecting guide RNA (gRNA) and the nuclease Cas9 in tobacco protoplasts. The two genes were also mutated using multiplexing gRNA at a time. Additionally, targeted deletions and inversions of a 1.8-kb fragment between two target sites in the NtPDS locus were demonstrated, while indel mutations were also detected at both the sites. Second, we obtained transgenic tobacco plants with NtPDS and NtPDR6 mutations induced by Cas9/gRNA. The mutation percentage was 81.8% for NtPDS gRNA4 and 87.5% for NtPDR6 gRNA2. Obvious phenotypes were observed, etiolated leaves for the psd mutant and more branches for the pdr6 mutant, indicating that highly efficient biallelic mutations occurred in both transgenic lines. No significant off-target mutations were obtained. Our results show that the CRISPR/Cas9 system is a useful tool for targeted mutagenesis of the tobacco genome.

  4. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria

    PubMed Central

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  5. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  6. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  7. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  8. Allelic disequilibrium and allele frequency distribution as a function of social and demographic history.

    PubMed Central

    Thompson, E A; Neel, J V

    1997-01-01

    Allelic disequilibrium between closely linked genes is a common observation in human populations and often gives rise to speculation concerning the role of selective forces. In a previous treatment, we have developed a population model of the expected distribution of rare variants (including private polymorphisms) in Amerindians and have argued that, because of the great expansion of Amerindian numbers with the advent of agriculture, most of these rare variants are of relatively recent origin. Many other populations have similar histories of striking recent expansions. In this treatment, we demonstrate that, in consequence of this fact, a high degree of linkage disequilibrium between two nonhomologous alleles <0.5 cM apart is the "normal" expectation, even in the absence of selection. This expectation is enhanced by the previous subdivision of human populations into relatively isolated tribes characterized by a high level of endogamy and inbreeding. We also demonstrate that the alleles associated with a recessive disease phenotype are expected to exist in a population in very variable frequencies: there is no need to postulate positive selection with respect to the more common disease-associated alleles for such entities as phenylketonuria or cystic fibrosis. PMID:8981963

  9. DQB1*06:02 allele specific expression varies by allelic dosage, not narcolepsy status

    PubMed Central

    lachmi, Karin Weiner; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single allele HLA associations. In this study, we explored genome wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and found the largest differences between the groups to be in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65 fold) and protein (1.59 fold) could be demonstrated independent of the disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes. PMID:22326585

  10. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status.

    PubMed

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-04-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65-fold) and protein (1.59-fold) could be demonstrated independent of disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes.

  11. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians.

    PubMed Central

    Tai, H. L.; Krynetski, E. Y.; Yates, C. R.; Loennechen, T.; Fessing, M. Y.; Krynetskaia, N. F.; Evans, W. E.

    1996-01-01

    The autosomal recessive trait of thiopurine S-methytransferase (TPMT) deficiency is associated with severe hematopoietic toxicity when patients are treated with standard doses of mercaptopurine, azathioprine, or thioguanine. To define the molecular mechanism of this genetic polymorphism, we cloned and characterized the cDNA of a TPMT-deficient patient, which revealed a novel mutant allele (TPMT*3) containing two nucleotide transitions (G460-->A and A719-->G) producing amino acid changes at codons 154 (Ala-->Thr) and 240 (Tyr--> Cys), differing from the rare mutant TPMT allele we previously identified (i.e., TPMT*2 with only G238-->C). Site-directed mutagenesis and heterologous expression established that either TPMT*3 mutation alone leads to a reduction in catalytic activity (G460-->A, ninefold reduction; A719-->G, 1.4-fold reduction), while the presence of both mutations leads to complete loss of activity. Using mutation specific PCR-RFLP analysis, the TPMT*3 allele was detected in genomic DNA from approximately 75 percent of unrelated white subjects with heterozygous phenotypes, indicating that TPMT*3 is the most prevalent mutant allele associated with TPMT-deficiency in Caucasians. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8644731

  12. Retroviral expression of the hepatitis B virus x gene promotes liver cell susceptibility to carcinogen-induced site specific mutagenesis.

    PubMed

    Sohn, S; Jaitovitch-Groisman, I; Benlimame, N; Galipeau, J; Batist, G; Alaoui-Jamali, M A

    2000-06-30

    Mutational inactivation of the tumor suppressor gene p53 is common in hepatocellular carcinomas (HCC). AGG to AGT transversion in codon 249 of exon 7 of the p53 gene occurs in over 50% of HCC from endemic regions, where both chronic infection with the hepatitis B virus (HBV) and exposure to carcinogens such as aflatoxin B1 (AFB1) prevail. In this study, we report the effect of the HBV x protein (HBx) on carcinogen-induced cytotoxicity and AGG to AGT mutation in codon 249 of the p53 gene in the human liver cell line CCL13. Expression of HBx, as revealed by its transactivation function, results in enhanced cell susceptibility to cytotoxicity induced by the AFB1 active metabolite, AFB1-8,9-epoxide, and benzo(a)pyrene diol-epoxide. Under similar conditions, expression of HBx promotes apoptosis in a subset of cell population. Exposure to AFB1-8, 9-epoxide alone induces a low frequency of AGG to AGT mutation in codon 249 of the p53 gene, as determined by an allele-specific polymerase chain reaction (AS-PCR) assay. However, expression of HBx enhances the frequency of AFB1-epoxide-induced AGG to AGT mutation compared to control cells. In summary, this study demonstrates that expression of HBx enhances liver cell susceptibility to carcinogen-induced mutagenesis, possibly through alteration of the balance between DNA repair and apoptosis, two cellular defense mechanisms against genotoxic stress. PMID:10856831

  13. Alleles A and B of non-structural protein 1 of avian influenza A viruses differentially inhibit beta interferon production in human and mink lung cells.

    PubMed

    Munir, Muhammad; Zohari, Siamak; Metreveli, Giorgi; Baule, Claudia; Belák, Sándor; Berg, Mikael

    2011-09-01

    Non-structural protein 1 (NS1) counteracts the production of host type I interferons (IFN-α/β) for the efficient replication and pathogenicity of influenza A viruses. Here, we reveal another dimension of the NS1 protein of avian influenza A viruses in suppressing IFN-β production in cultured cell lines. We found that allele A NS1 proteins of H6N8 and H4N6 have a strong capacity to inhibit the activation of IFN-β production, compared with allele B from corresponding subtypes, as measured by IFN stimulatory response element (ISRE) promoter activation, IFN-β mRNA transcription and IFN-β protein expression. Furthermore, the ability to suppress IFN-β promoter activation was mapped to the C-terminal effector domain (ED), while the RNA-binding domain (RBD) alone was unable to suppress IFN-β promoter activation. Chimeric studies indicated that when the RBD of allele A was fused to the ED of allele B, it was a strong inhibitor of IFN-β promoter activity. This shows that well-matched ED and RBD are crucial for the function of the NS1 protein and that the RBD could be one possible cause for this differential IFN-β inhibition. Notably, mutagenesis studies indicated that the F103Y and Y103F substitutions in alleles A and B, respectively, do not influence the ISRE promoter activation. Apart from dsRNA signalling, differences were observed in the expression pattern of NS1 in transfected human and mink lung cells. This study therefore expands the versatile nature of the NS1 protein in inhibiting IFN responses at multiple levels, by demonstrating for the first time that it occurs in a manner dependent on allele type.

  14. Four novel PEPD alleles causing prolidase deficiency

    SciTech Connect

    Ledoux, P.; Scriver, C.; Hechtman, P. )

    1994-06-01

    Mutations at the PEPD locus cause prolidase (an enzyme specific for proline- and hydroxyproline-terminated dipeptides) deficiency (McKusick 170100), a rare autosomal recessive disorder characterized by iminodipeptiduria, skin ulcers, mental retardation, and recurrent infections. Four PEPD mutations from five severely affected individuals were characterized by analysis of reverse-transcribed, PCR-amplified (RT-PCR) cDNA. The authors used SSCP analysis on four overlapping cDNA fragments covering the entire coding region of the PEPD gene and detected abnormal SSCP bands for the fragments spanning all or part of exons 13-15 in three of the probands. Direct sequencing of the mutant cDNAs showed a G[yields]A, 1342 substitution (G448R) in two patients and a 3-bp deletion ([Delta]E452 or [Delta]E453) in another. In the other two probands the amplified products were of reduced size. Direct sequencing of these mutant cDNAs revealed a deletion of exon 5 in one patient and of exon 7 in the other. Intronic sequences flanking exons 5 and 7 were identified using inverse PCR followed by direct sequencing. Conventional PCR and direct sequencing then established the intron-exon borders of the mutant genomic DNA revealing two splice acceptor mutations: a G[yields]C substitution at position -1 of intron 4 and an A[yields]G substitution at position -2 of intron 6. The results indicate that the severe form of prolidase deficiency is caused by multiple PEPD alleles. In this report the authors attempt to begin the process of describing these alleles and cataloging their phenotype expression. 31 refs., 8 figs., 2 tabs.

  15. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    PubMed

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  16. A novel HLA-A allele: A*0257.

    PubMed

    García-Ortiz, J E; Cox, S T; Sandoval-Ramirez, L; Little, A M; Marsh, S G E; Madrigal, J A; Argüello, J R

    2004-01-01

    A novel human leucocyte antigen-A*02 (HLA-A*02) allele was detected by reference strand-mediated conformation analysis (RSCA) of a DNA sample from a Tarahumara individual. Direct sequencing of HLA-A locus polymerase chain reaction products identified a mutation in one of the alleles. Cloning and sequencing confirmed the presence of a new allele, A*0257 which differed from A*0206 by two nucleotides at positions 355 and 362, inducing changes in residues 95 and 97, respectively, within the peptide-binding site. Those changes suggest that allele A*0257 may have resulted from an intralocus recombination event.

  17. Mutated tumor alleles are expressed according to their DNA frequency.

    PubMed

    Castle, John C; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-04-22

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency.

  18. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  19. A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae.

    PubMed

    Kim, Hyun Seok; Huh, Juyoung; Riles, Linda; Reyes, Alejandro; Fay, Justin C

    2012-07-01

    Both linkage and linkage disequilibrium mapping provide well-defined approaches to mapping quantitative trait alleles. However, alleles of small effect are particularly difficult to refine to individual genes and causative mutations. Quantitative noncomplementation provides a means of directly testing individual genes for quantitative trait alleles in a fixed genetic background. Here, we implement a genome-wide noncomplementation screen for quantitative trait alleles that affect colony color or size by using the yeast deletion collection. As proof of principle, we find a previously known allele of CYS4 that affects colony color and a novel allele of CTT1 that affects resistance to hydrogen peroxide. To screen nearly 4700 genes in nine diverse yeast strains, we developed a high-throughput robotic plating assay to quantify colony color and size. Although we found hundreds of candidate alleles, reciprocal hemizygosity analysis of a select subset revealed that many of the candidates were false positives, in part the result of background-dependent haploinsufficiency or second-site mutations within the yeast deletion collection. Our results highlight the difficulty of identifying small-effect alleles but support the use of noncomplementation as a rapid means of identifying quantitative trait alleles of large effect. PMID:22870398

  20. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele

    PubMed Central

    Faruque, Omar M.; Miwa, Hiroki; Yasuda, Michiko; Fujii, Yoshiharu; Kaneko, Takakazu; Sato, Shusei

    2015-01-01

    Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity. PMID:26187957

  1. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele.

    PubMed

    Faruque, Omar M; Miwa, Hiroki; Yasuda, Michiko; Fujii, Yoshiharu; Kaneko, Takakazu; Sato, Shusei; Okazaki, Shin

    2015-10-01

    Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity. PMID:26187957

  2. Detection of new HLA-DPB1 alleles generated by interallelic gene conversion using PCR amplification of DPB1 second exon sequences from sperm

    SciTech Connect

    Erlich, H.; Zangenberg, G.; Bugawan, T.

    1994-09-01

    The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified from pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.

  3. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis.

    PubMed

    Idnurm, Alexander; Reedy, Jennifer L; Nussbaum, Jesse C; Heitman, Joseph

    2004-04-01

    Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degrees C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degrees C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to

  4. Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis

    NASA Astrophysics Data System (ADS)

    Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

    2004-12-01

    Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We

  5. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores.

    PubMed

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  6. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  7. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    SciTech Connect

    Michaud III, Edward J; Culiat, Cymbeline T; Klebig, Mitch; Barker, Gene; Cain, K T; Carpenter, Debra J S; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn Wallace; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert Edward; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background: Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results: We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions: The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations.

  8. Astrobiological Aspects of the Mutagenesis of Cosmic Radiation on Bacterial Spores

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L.; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, γ rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/μm. Spore survival and the rate of the induced mutations to rifampicin resistance (RifR) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to RifR compared to low-energy charged particles and X-rays. Twenty-one RifR mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the RifR mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of RifR mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  9. Site-directed mutagenesis of the substrate-binding cleft of human estrogen sulfotransferase.

    PubMed

    Hempel, N; Barnett, A C; Bolton-Grob, R M; Liyou, N E; McManus, M E

    2000-09-16

    The sulfonation of estrogens by human estrogen sulfotransferase (humSULT1E1) plays a vital role in controlling the active levels of these hormones in the body. To understand more fully the structural and functional characteristics of humSULT1E1, we have carried out site-directed mutagenesis of critical amino acids found in the substrate-binding cleft. Three single amino acid mutations of humSULT1E1 (V145E, H107A, and K85A) were created in this study. Kinetic studies were used to provide information about the importance of these residues in substrate specificity and catalysis, using a variety of substrates. Lysine at position 85 has been proposed to be within hydrogen bonding distance to the 3alpha-phenol group of beta-estradiol, thereby stabilising the substrate in the active site. However, substitution to a neutral alanine at this position improved substrate specificity of humSULT1E1 for beta-estradiol, estrone, and dehydroepiandrosterone (DHEA). The exchange of valine 145 for negatively charged glutamic acid markedly improved the ability of humSULT1E1 to sulfonate dopamine, but caused a reduction in specificity constants toward steroids tested, in particular DHEA. The presence of a histidine residue at position 107 was shown to be essential for the production of a functional protein, as substitution of this amino acid to alanine resulted in complete loss of activity of humSULT1E1 towards all substrates tested. PMID:11006110

  10. Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila.

    PubMed Central

    Barghouthi, S; Payne, S M; Arceneaux, J E; Byers, B R

    1991-01-01

    Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete nucleotide sequence of amoA was determined. A putative iron-regulatory sequence resembling the Fur repressor protein-binding site overlapped a possible promoter region. A translational reading frame, beginning with valine and encoding 396 amino acids, was open for 1,188 bp. The C-terminal portion of the deduced amino acid sequence showed 58% identity and 79% similarity with the E. coli EntC protein (isochorismate synthetase), the first enzyme in the E. coli 2,3-DHB biosynthetic pathway, suggesting that amoA probably encodes a step in 2,3-DHB biosynthesis and is the A. hydrophila equivalent of the E. coli entC gene. An isogenic amonabactin-negative mutant, A. hydrophila SB22, was isolated after marker exchange mutagenesis with Tn5-inactivated amoA (amoA::Tn5). The mutant excreted neither 2,3-DHB nor amonabactin, was more sensitive than the wild-type to growth inhibition by iron restriction, and used amonabactin to overcome iron starvation. Images PMID:1830579

  11. Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.

    PubMed

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; da Motta, Carlos Henrique Ares Silveira; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio

    2015-05-01

    Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications. PMID:25549886

  12. Comparative in vivo expression of beta(+)-thalassemia alleles.

    PubMed

    Marwan, M M; Scerri, C A; Zarroag, S O; Cao, A; Kyrri, A; Kalogirou, E; Kleanthous, M; Ioannou, P; Angastiniotis, M; Felice, A E

    1999-08-01

    Double heterozygotes who inherit one abnormal though stable beta-globin variant in association with a molecularly identified beta(+)-thalassaemia allele provide unique opportunities to quantify the in vivo expression of particular beta(+)-thalassemia alleles. The globin products of the two alleles can be separated, quantified and the output of the beta(+)-thalassaemia allele expressed as the MCH-beta(A) in pg beta(A)-globin/beta(+)-thalassemia allele/RBC = 0.5 MCH x Hb A%. In this communication we provide new quantitative data on the expression of five mutations as follows: the beta(+)-87 (C-->G) = 3.8 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-1 (G-->A) = 0.2 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-6 (T-->C) = 2.9 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 7); the beta(+) IVS-I-110 (G-->A) = 1.1 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 13), and the beta(+) IVS-II-745 (C-->G) = 1.74 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 2). The values obtained are compared with those of other beta(+)-thalassemia alleles from the literature. It can be seen that the MCH-beta(A) value may be a correct index of thalassemia severity useful for the correlation of genotype with phenotype, and for understanding the effects of mutations in beta-globin genes on pathophysiologically meaningful beta-globin gene expression. PMID:10490134

  13. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    PubMed Central

    Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  14. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  15. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  16. Genetic variability and distribution of mating type alleles in field populations of Leptosphaeria maculans from France.

    PubMed

    Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène

    2006-01-01

    Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041

  17. Mutational and functional analysis of dominant SPT2 (SIN1) suppressor alleles in Saccharomyces cerevisiae.

    PubMed Central

    Lefebvre, L; Smith, M

    1993-01-01

    The Saccharomyces cerevisiae SPT2 gene was identified by genetic screens for mutations which are suppressors of Ty and delta insertional mutations at the HIS4 locus. The ability of spt2 mutations to suppress the transcriptional interference caused by the delta promoter insertion his-4-912 delta correlates with an increase in wild-type HIS4 mRNA levels. The SPT2 gene is identical to SIN1, which codes for a factor genetically defined as a negative regulator of HO transcription. Mutations in SPT2/SIN1 suppress the effects of trans-acting mutations in SWI genes and of partial deletions in the C-terminal domain of the largest subunit of RNA polymerase II. Nuclear localization and protein sequence similarities suggested that the SPT2/SIN1 protein may be related to the nonhistone chromosomal protein HMG1. To assess the significance of this structural similarity and identify domains of SPT2 functionally important in the regulation of his4-912 delta, we have studied recessive and dominant spt2 mutations created by in vitro mutagenesis. We show here that several alleles carrying C-terminal deletions as well as point mutations in the C-terminal domain of the SPT2 protein exhibit a dominant suppressor phenotype. C-terminal basic residues necessary for wild-type SPT2 protein function which are absent from HMG1 have been identified. The competence of these mutant SPT2 proteins to interfere with the maintenance of the His- (Spt+) phenotype of a his4-912 delta SPT2+ strain is lost by deletion of internal HMG1-like sequences and is sensitive to the wild-type SPT2+ gene dosage. Using cross-reacting antipeptide polyclonal antibodies, we demonstrate that the intracellular level of the wild-type SPT2 protein is not affected in presence of dominant mutations and furthermore that the reversion of the dominance by internal deletion of HMG1-like sequences is not mediated by altered production or stability of the mutant polypeptides. Our results suggest that the products of dominant alleles

  18. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    PubMed Central

    Rawson, Jonathan M.O.; Mansky, Louis M.

    2014-01-01

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved. PMID:25254386

  19. Retroviral vectors for analysis of viral mutagenesis and recombination.

    PubMed

    Rawson, Jonathan M O; Mansky, Louis M

    2014-09-24

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  20. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna.

    PubMed

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-01-01

    The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs) is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.

  1. Analysis of HIV-2 Vpx by modeling and insertional mutagenesis

    SciTech Connect

    Mahnke, Lisa A. . E-mail: lmahnke@im.wustl.edu; Belshan, Michael; Ratner, Lee . E-mail: lratner@im.wustl.edu

    2006-04-25

    Vpx facilitates HIV-2 nuclear localization by a poorly understood mechanism. We have compared Vpx to an NMR structure HIV-1 Vpr in a central helical domain and probed regions of Vpx by insertional mutagenesis. A predicted loop between helices two and three appears to be unique, overlapping with a known novel nuclear localization signal. Overall, Vpx was found to be surprisingly flexible, tolerating a series of large insertions. We found that insertion within the polyproline-containing C-terminus destabilizes nuclear localization, whereas mutating a second helix in the central domain disrupts viral packaging. Other insertional mutants in the predicted loop and in a linker region between the central domain and the C-terminus may be useful as sites of intramolecular tags as they could be packaged adequately and retained preintegration complex associated integration activity in a serum starvation assay. An unexpected result was found within a previously defined nuclear localization motif near aa 71. This mutant retained robust nuclear localization in a GFP fusion assay and was competent for preintegration complex associated nuclear import. In summary, we have modeled helical content in Vpx and assessed potential sites of intramolecular tags which may prove useful for protein-protein interactions studies.

  2. Genome-wide transposon mutagenesis in pathogenic Leptospira species.

    PubMed

    Murray, Gerald L; Morel, Viviane; Cerqueira, Gustavo M; Croda, Julio; Srikram, Amporn; Henry, Rebekah; Ko, Albert I; Dellagostin, Odir A; Bulach, Dieter M; Sermswan, Rasana W; Adler, Ben; Picardeau, Mathieu

    2009-02-01

    Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans. PMID:19047402

  3. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    SciTech Connect

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  4. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  5. Overproduction of Clavulanic Acid by UV Mutagenesis of Streptomyces clavuligerus

    PubMed Central

    Korbekandi, Hassan; Darkhal, Parisa; Hojati, Zohreh; Abedi, Daryoush; Hamedi, Javad; Pourhosein, Meraj

    2010-01-01

    Clavulanic acid is produced industrially by fermentation of Streptomyces clavuligerus and researches have increased its production by strain improvement, recombinant DNA technology, and media composition and growth condition optimization. The main objective of this study was to increase the level of clavulanic acid production from Streptomyces clavuligerus (DSM 738), using UV irradiation. After incubation, the spores and aerial mycelia were scraped off the agar plate by a sterile loop. After passing through a cotton wool, the serially diluted spore suspension was spread on GYM- agar containing caffeine. The plates were irradiated with UV light, wrapped in aluminum foil and incubated. The colonies were sub-cultured again to express the mutations. An aliquot of the spore suspension prepared from the resulted culture was poured in GYM agar plates and incubated. The plates were overlaid with nutrient-agar containing penicillin G and Klebsiela pneumoniae, and incubated. The inhibition zone diameter was measured and compared with the wild type colony. Repeating this procedure, the overproducer mutants were selected. Concentration of clavulanic acid was determined by HPLC analysis. It was concluded that secondary metabolites, mainly antibiotics containing clavulanic acid, were produced about 6–7 days after the growth, and concentration of clavulanic acid was increased up to two-folds after UV mutagenesis. PMID:24363725

  6. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    PubMed

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. PMID:27443918

  7. Trans allele methylation and paramutation-like effects in mice

    PubMed Central

    Herman, Herry; Lu, Michael; Anggraini, Melly; Sikora, Aimee; Chang, Yanjie; Yoon, Bong June; Soloway, Paul D

    2009-01-01

    In mammals, imprinted genes have parent-of-origin–specific patterns of DNA methylation that cause allele-specific expression. At Rasgrf1 (encoding RAS protein-specific guanine nucleotide-releasing factor 1), a repeated DNA element is needed to establish methylation and expression of the active paternal allele1. At Igf2r (encoding insulin-like growth factor 2 receptor), a sequence called region 2 is needed for methylation of the active maternal allele2,3. Here we show that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation and expression of the paternal copy of Rasgrf1, indicating that sequences that control methylation can function ectopically. Paternal transmission of the mutated allele also induced methylation and expression in trans of the normally unmethylated and silent wild-type maternal allele. Once activated, the wild-type maternal Rasgrf1 allele maintained its activated state in the next generation independently of the paternal allele. These results recapitulate in mice several features in common with paramutation described in plants4. PMID:12740578

  8. Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal Xpd Alleles

    PubMed Central

    Andressoo, Jaan-Olle; Jans, Judith; de Wit, Jan; Coin, Frederic; Hoogstraten, Deborah; van de Ven, Marieke; Toussaint, Wendy; Huijmans, Jan; Thio, H. Bing; van Leeuwen, Wibeke J; de Boer, Jan; Egly, Jean-Marc; Hoeijmakers, Jan H. J; van der Horst, Gijsbertus T. J; Mitchell, James R

    2006-01-01

    Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i) the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii) differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii) interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of “null” alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals. PMID:17020410

  9. Biased Allelic Expression in Human Primary Fibroblast Single Cells

    PubMed Central

    Borel, Christelle; Ferreira, Pedro G.; Santoni, Federico; Delaneau, Olivier; Fort, Alexandre; Popadin, Konstantin Y.; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Guipponi, Michel; Padioleau, Ismael; Carninci, Piero; Dermitzakis, Emmanouil T.; Antonarakis, Stylianos E.

    2015-01-01

    The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. PMID:25557783

  10. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  11. Statistical Studies on Protein Polymorphism in Natural Populations. III. Distribution of Allele Frequencies and the Number of Alleles per Locus

    PubMed Central

    Chakraborty, Ranajit; Fuerst, Paul A.; Nei, Masatoshi

    1980-01-01

    With the aim of understanding the mechanism of maintenance of protein polymorphism, we have studied the properties of allele frequency distribution and the number of alleles per locus, using gene-frequency data from a wide range of organisms (mammals, birds, reptiles, amphibians, Drosophila and non-Drosophila invertebrates) in which 20 or more loci with at least 100 genes were sampled. The observed distribution of allele frequencies was U-shaped in all of the 138 populations (mostly species or subspecies) examined and generally agreed with the theoretical distribution expected under the mutation-drift hypothesis, though there was a significant excess of rare alleles (gene frequency, 0 ∼ 0.05) in about a quarter of the populations. The agreement between the mutation-drift theory and observed data was quite satisfactory for the numbers of polymorphic (gene frequency, 0.05 ∼ 0.95) and monomorphic (0.95 ∼ 1.0) alleles.—The observed pattern of allele-frequency distribution was incompatible with the prediction from the overdominance hypothesis. The observed correlations of the numbers of rare alleles, polymorphic alleles and monomorphic alleles with heterozygosity were of the order of magnitude that was expected under the mutation-drift hypothesis. Our results did not support the view that intracistronic recombination is an important source of genetic variation. The total number of alleles per locus was positively correlated with molecular weight in most of the species examined, and the magnitude of the correlation was consistent with the theoretical prediction from mutation-drift hypothesis. The correlation between molecular weight and the number of alleles was generally higher than the correlation between molecular weight and heterozygosity, as expected. PMID:17249018

  12. Application of XeCl308 nm excimer laser radiation to mutagenesis of industrial microorganisms

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Lorusso, A.; Nassisi, V.; Talà, A.; Tredici, S. M.

    (UV) lamps are widely used in mutagenesis-selection protocols. Nevertheless, since the eighties, due to the development of excimer lasers, new frontiers in the study of UV applications have been opened. It has been established that the presence of an intact SOS response system is required for the mutagenic effect of UV254 nm. The exposure to UV254 nm radiation is not mutagenic for Escherichia coli mutants lacking the RecA protein, the regulator of the SOS response. We have recently demonstrated that at variance with the UV254 nm mutagenesis, the UV308 nm mutagenesis by XeCl308 nm excimer laser is RecA-independent. This suggests that the UV308 nm might be mutagenic also in microorganisms naturally lacking the SOS response. In this study, we have developed an innovative mutagenesis protocol based on a homemade XeCl308 nm excimer laser and have demonstrated its efficiency on mutagenesis of Nonomuraea American type culture collection 39727, an industrial strain producing an antibiotic, which is relatively refractory to UV254 nm radiation-induced mutagenesis.

  13. ALFRED: an allele frequency resource for research and teaching

    PubMed Central

    Rajeevan, Haseena; Soundararajan, Usha; Kidd, Judith R.; Pakstis, Andrew J.; Kidd, Kenneth K.

    2012-01-01

    ALFRED (http://alfred.med.yale.edu) is a free, web accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. Currently, ALFRED has allele frequency tables on over 663 400 polymorphic sites; 170 of them have frequency tables for more than 100 different population samples. In ALFRED, a population may have multiple samples with each ‘sample’ consisting of many individuals on which an allele frequency is based. There are 3566 population samples from 710 different populations with allele frequency tables on at least one polymorphism. Fifty of those population samples have allele frequency data for over 650 000 polymorphisms. Records also have active links to relevant resources (dbSNP, PharmGKB, OMIM, Ethnologue, etc.). The flexible search options and data display and download capabilities available through the web interface allow easy access to the large quantity of high-quality data in ALFRED. PMID:22039151

  14. A gene feature enumeration approach for describing HLA allele polymorphism.

    PubMed

    Mack, Steven J

    2015-12-01

    HLA genotyping via next generation sequencing (NGS) poses challenges for the use of HLA allele names to analyze and discuss sequence polymorphism. NGS will identify many new synonymous and non-coding HLA sequence variants. Allele names identify the types of nucleotide polymorphism that define an allele (non-synonymous, synonymous and non-coding changes), but do not describe how polymorphism is distributed among the individual features (the flanking untranslated regions, exons and introns) of a gene. Further, HLA alleles cannot be named in the absence of antigen-recognition domain (ARD) encoding exons. Here, a system for describing HLA polymorphism in terms of HLA gene features (GFs) is proposed. This system enumerates the unique nucleotide sequences for each GF in an HLA gene, and records these in a GF enumeration notation that allows both more granular dissection of allele-level HLA polymorphism and the discussion and analysis of GFs in the absence of ARD-encoding exon sequences.

  15. The frequency of HLA alleles in the Romanian population.

    PubMed

    Constantinescu, Ileana; Boșcaiu, Voicu; Cianga, Petru; Dinu, Andrei-Antoniu; Gai, Elena; Melinte, Mihaela; Moise, Ana

    2016-03-01

    Knowledge of human leukocyte antigen (HLA) allele frequencies is essential for bone marrow and kidney donor searches. The Romanian Caucasian population is heterogeneous and information on HLA polymorphism has not been well studied. We characterized the HLA genetic profile and allele frequencies of regional populations in Romania. HLA-A, B and DRB1 alleles were examined in 8252 individuals, belonging to the four main regions of Romania. The most common alleles found in the Romanian population are the following: HLA-A*01, A*02, A*03, A*11, A*24; HLA-B*18, B*35, B*44, B*51 and HLA-DRB1*01, DRB1*03, DRB1*07, DRB1*11, DRB1*13, DRB1*15, DRB1*16. More than half of the alleles are non-homogeneously spread in Romania. These results provide a starting point for future analyses of genetic heterogeneity in Romania.

  16. The frequency of HLA alleles in the Romanian population.

    PubMed

    Constantinescu, Ileana; Boșcaiu, Voicu; Cianga, Petru; Dinu, Andrei-Antoniu; Gai, Elena; Melinte, Mihaela; Moise, Ana

    2016-03-01

    Knowledge of human leukocyte antigen (HLA) allele frequencies is essential for bone marrow and kidney donor searches. The Romanian Caucasian population is heterogeneous and information on HLA polymorphism has not been well studied. We characterized the HLA genetic profile and allele frequencies of regional populations in Romania. HLA-A, B and DRB1 alleles were examined in 8252 individuals, belonging to the four main regions of Romania. The most common alleles found in the Romanian population are the following: HLA-A*01, A*02, A*03, A*11, A*24; HLA-B*18, B*35, B*44, B*51 and HLA-DRB1*01, DRB1*03, DRB1*07, DRB1*11, DRB1*13, DRB1*15, DRB1*16. More than half of the alleles are non-homogeneously spread in Romania. These results provide a starting point for future analyses of genetic heterogeneity in Romania. PMID:26711124

  17. Estimating Relatedness in the Presence of Null Alleles.

    PubMed

    Huang, Kang; Ritland, Kermit; Dunn, Derek W; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2016-01-01

    Studies of genetics and ecology often require estimates of relatedness coefficients based on genetic marker data. However, with the presence of null alleles, an observed genotype can represent one of several possible true genotypes. This results in biased estimates of relatedness. As the numbers of marker loci are often limited, loci with null alleles cannot be abandoned without substantial loss of statistical power. Here, we show how loci with null alleles can be incorporated into six estimators of relatedness (two novel). We evaluate the performance of various estimators before and after correction for null alleles. If the frequency of a null allele is <0.1, some estimators can be used directly without adjustment; if it is >0.5, the potency of estimation is too low and such a locus should be excluded. We make available a software package entitled PolyRelatedness v1.6, which enables researchers to optimize these estimators to best fit a particular data set.

  18. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  19. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  20. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  1. A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence

    PubMed Central

    Grucza, Richard A; Wang, Jen C.; Stitzel, Jerry A.; Hinrichs, Anthony L.; Saccone, Scott F.; Saccone, Nancy L.; Bucholz, Kathleen K.; Cloninger, C. Robert; Neuman, Rosalind J.; Budde, John P.; Fox, Louis; Bertelsen, Sarah; Kramer, John; Hesselbrock, Victor; Tischfield, Jay; Nurnberger, John. I.; Almasy, Laura; Porjesz, Bernice; Kuperman, Samuel; Schuckit, Marc A.; Edenberg, Howard J.; Rice, John P.; Goate, Alison M.; Bierut, Laura J.

    2008-01-01

    Background A non-synonymous coding polymorphism, rs16969968, of the CHRNA5 gene which encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence (20). The goal of the present study is to examine the association of this variant with cocaine dependence. Methods Genetic association analysis in two, independent samples of unrelated cases and controls; 1.) 504 European-American participating in the Family Study on Cocaine Dependence (FSCD); 2.) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholsim (COGA). Results In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (OR = 0.67 per allele, p = 0.0045, assuming an additive genetic model), but in the reverse direction compared to that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. Conclusion The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways. PMID:18519132

  2. Ethical guideposts for allelic variation databases.

    PubMed

    Knoppers, B M; Laberge, C M

    2000-01-01

    Basically, a mutation database (MDB) is a repository where allelic variations are described and assigned within a specific gene locus. The purposes of an MDB may vary greatly and have different content and structure. The curator of an electronic and computer-based MDB will provide expert feedback (clinical and research). This requires ethical guideposts. Going to direct on-line public access for the content of an MDB or to interactive communication also raises other considerations. Currently, HUGO's MDI (Mutation Database Initiative) is the only integrated effort supporting and guiding the coordinated deployment of MDBs devoted to genetic diversity. Thus, HUGO's ethical "Statements" are applicable. Among the ethical principles, the obligation of preserving the confidentiality of information transferred by a collaborator to the curator is particularly important. Thus, anonymization of such data prior to transmission is essential. The 1997 Universal Declaration on the Human Genome and Human Rights of UNESCO addresses the participation of vulnerable persons. Researchers in charge of MDBs should ensure that information received on the testing of children or incompetent adults is subject to ethical review and approval in the country of origin. Caution should be taken against the involuntary consequences of public disclosure of results without complete explanation. Clear and enforceable regulations must be developed to protect the public against misuse of genetic databanks. Interaction with a databank could be seen as creating a "virtual" physician-patient relationship. However, interactive public MDBs should not give medical advice. We have identified new social ethical principles to govern different levels of complexity of genetic information. They are: reciprocity, mutuality, solidarity, and universality. Finally, precaution and prudence at this early stage of the MDI may not only avoid ethically inextricable conundrums but also provide for the respect for the rights

  3. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data

    PubMed Central

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C.; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J.; Aghera, Nilesh; Varadarajan, Raghavan

    2016-01-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo. This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. PMID:27563054

  4. Generation of Enterobacter sp. YSU Auxotrophs Using Transposon Mutagenesis

    PubMed Central

    Caguiat, Jonathan James

    2014-01-01

    Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host’s genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a

  5. Radiation mutagenesis from molecular and genetic points of view

    SciTech Connect

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  6. Radiation mutagenesis from molecular and genetic points of view

    SciTech Connect

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  7. Germinal cell mutagenesis in specially designed maize genotypes.

    PubMed Central

    Plewa, M J; Wagner, E D

    1981-01-01

    We have used three inbreds of Zea mays in our in situ and laboratory studies in environmental mutagenesis. Inbred W22 plants homozygous for wx-C were used in a study to detect the possible mutagenic properties of 32 pesticides or combination of pesticides under modern agricultural conditions. The large numbers of pollen grains analyzed and the ease in detecting mutant pollen grains enabled us to treat the experimental plants with field recommended rates of pesticides. In a current study we are evaluating the possible mutagenicity of Chicago municipal sewage sludge. We are measuring the frequency of mutant pollen grains in inbred M14 at both the wx-C and wx-90 heteroalleles. These plants were exposed to various concentrations of municipal sewage sludge under field conditions. We have inbred Early-Early Synthetic for five generations and tested this inbred with known mutagens. Early-Early Synthetic is a rapidly maturing inbred growing from kernel to anthesis in approximately 4 weeks and attaining a height of approximately 50 cm. Plants of this inbred have been chronically treated with ethylmethanesulfonate (EMS) or maleic hydrazide (MH) under laboratory conditions and forward mutation at the wx locus was measured in the pollen grains. EMS and MH were mutagenic at concentrations of 1 microM and 10 nM, respectively. The concentrations of EMS and MH were calibrated in Early-Early Synthetic to a linear increase in the frequency of forward mutant pollen grains. The construction of a maize monitor for environmental mutagens is currently in progress. This assay will measure forward or reverse mutation at the wx locus in pollen grains, point mutation in somatic cells and will incorporate a cytogenetic endpoint in root-tip cells. Images FIGURE 2. FIGURE 3. FIGURE 5. PMID:6780335

  8. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis.

    PubMed

    Mahfoudhi, Emna; Talhaoui, Ibtissam; Cabagnols, Xenia; Della Valle, Véronique; Secardin, Lise; Rameau, Philippe; Bernard, Olivier A; Ishchenko, Alexander A; Abbes, Salem; Vainchenker, William; Saparbaev, Murat; Plo, Isabelle

    2016-07-01

    The family of Ten-Eleven Translocation (TET) proteins is implicated in the process of active DNA demethylation and thus in epigenetic regulation. TET 1, 2 and 3 proteins are oxygenases that can hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). The base excision repair (BER) pathway removes the resulting 5-fC and 5-caC bases paired with a guanine and replaces them with regular cytosine. The question arises whether active modification of 5-mC residues and their subsequent elimination could affect the genomic DNA stability. Here, we generated two inducible cell lines (Ba/F3-EPOR, and UT7) overexpressing wild-type or catalytically inactive human TET2 proteins. Wild-type TET2 induction resulted in an increased level of 5-hmC and a cell cycle defect in S phase associated with higher level of phosphorylated P53, chromosomal and centrosomal abnormalities. Furthermore, in a thymine-DNA glycosylase (Tdg) deficient context, the TET2-mediated increase of 5-hmC induces mutagenesis characterized by GC>AT transitions in CpG context suggesting a mutagenic potential of 5-hmC metabolites. Altogether, these data suggest that TET2 activity and the levels of 5-hmC and its derivatives should be tightly controlled to avoid genetic and chromosomal instabilities. Moreover, TET2-mediated active demethylation might be a very dangerous process if used to entirely demethylate the genome and might rather be used only at specific loci. PMID:27289557

  9. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  10. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis

    PubMed Central

    Cairns, John

    2002-01-01

    There is now strong experimental evidence that epithelial stem cells arrange their sister chromatids at mitosis such that the same template DNA strands stay together through successive divisions; DNA labeled with tritiated thymidine in infancy is still present in the stem cells of adult mice even though these cells are incorporating (and later losing) bromodeoxyuridine [Potten, C. S., Owen, G., Booth, D. & Booth, C. (2002) J. Cell Sci.115, 2381–2388]. But a cell that preserves “immortal strands” will avoid the accumulation of replication errors only if it inhibits those pathways for DNA repair that involve potentially error-prone resynthesis of damaged strands, and this appears to be a property of intestinal stem cells because they are extremely sensitive to the lethal effects of agents that damage DNA. It seems that the combination, in the stem cell, of immortal strands and the choice of death rather than error-prone repair makes epithelial stem cell systems resistant to short exposures to DNA-damaging agents, because the stem cell accumulates few if any errors, and any errors made by the daughters are destined to be discarded. This paper discusses these issues and shows that they lead to a model that explains the strange kinetics of mutagenesis and carcinogenesis in adult mammalian tissues. Coincidentally, the model also can explain why cancers arise even though the spontaneous mutation rate of differentiated mammalian cells is not high enough to generate the multiple mutations needed to form a cancer and why loss of nucleotide-excision repair does not significantly increase the frequency of the common internal cancers. PMID:12149477

  11. Synthetic approach to stop-codon scanning mutagenesis.

    PubMed

    Nie, Lihua; Lavinder, Jason J; Sarkar, Mohosin; Stephany, Kimberly; Magliery, Thomas J

    2011-04-27

    A general combinatorial mutagenesis strategy using common dimethoxytrityl-protected mononucleotide phosphoramidites and a single orthogonally protected trinucleotide phosphoramidite (Fmoc-TAG; Fmoc = 9-fluorenylmethoxycarbonyl) was developed to scan a gene with the TAG amber stop codon with complete synthetic control. In combination with stop-codon suppressors that insert natural (e.g., alanine) or unnatural (e.g., p-benzoylphenylalanine, Bpa) amino acids, a single DNA library can be used to incorporate different amino acids for diverse purposes. Here, we scanned TAG codons through part of the gene for a model four-helix bundle protein, Rop, which regulates the copy number of ColE1 plasmids. Alanine was incorporated into Rop for mapping its binding site using an in vivo activity screen, and subtle but important differences from in vitro gel-shift studies of Rop function are evident. As a test, Bpa was incorporated using a Phe14 amber mutant isolated from the scanning library. Surprisingly, Phe14Bpa-Rop is weakly active, despite the critical role of Phe14 in Rop activity. Bpa is a photoaffinity label unnatural amino acid that can form covalent bonds with adjacent molecules upon UV irradiation. Irradiation of Phe14Bpa-Rop, which is a dimer in solution like wild-type Rop, results in covalent dimers, trimers, and tetramers. This suggests that Phe14Bpa-Rop weakly associates as a tetramer in solution and highlights the use of Bpa cross-linking as a means of trapping weak and transient interactions. PMID:21452871

  12. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  13. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  14. Catalytic efficiency of expressed aromatase following site-directed mutagenesis.

    PubMed

    Kadohama, N; Zhou, D; Chen, S; Osawa, Y

    1993-05-13

    Mutant aromatase cytochrome P-450s, expressed in CHO cells after transfection with cDNAs, have been characterized in terms of their catalytic efficiencies. After solubilization from microsomes, specific aromatase P-450 content of wild-type and mutants Pro308Phe, Asp309Asn, Asp309Ala and Phe406Arg was quantitated by a sandwich enzyme-linked immunosorbent assay (ELISA). Microsomal aromatase activity was determined by the 3H-water method using [1 beta-3H]androstenedione as substrate. Estimations of the actual turnover rate (catalytic efficiency) were derived from the combined data. The P-450 content in the mutants varied but was always less than that in the wild type. Hence, the decreases in the Vmax observed in the mutant enzymes did not correlate completely with reductions in catalytic effectiveness. In recent studies on the structure-function relationship of aromatase cytochrome P-450, the observed reduction of enzyme activity in terms of Vmax following site-directed mutagenesis led to the assumption that there was a corresponding loss of catalytic effectiveness. The present study reveals that a lower P-450 content can contribute significantly to decreasing catalytic activity in the mutants. In fact, in mutant Phe406Arg which exhibited virtually no catalytically active aromatase, the specific P-450 content was below the detectable level. Because of its location, the result of this latter mutation could be a major structural perturbation of the heme-binding property. Thus, interpretation of losses and reductions in aromatase activity resulting from single amino-acid replacement should take into account changes in the specific content of aromatase cytochrome P-450.

  15. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  16. Allelic interactions at the nivea locus of Antirrhinum.

    PubMed Central

    Bollmann, J; Carpenter, R; Coen, E S

    1991-01-01

    Most null alleles at the nivea (niv) locus are recessive to Niv+ and, when homozygous, give white flowers rather than the red of the wild type. In contrast, the niv-571 allele is semidominant; although it gives white flowers when homozygous, very pale flowers result when this allele is heterozygous with NIV+. We showed that in heterozygotes, niv-571 acts in trans to inhibit expression of its Niv+ homology 25-fold to 50-fold. The inhibition is reversible after meiosis and partially reversible somatically. The niv-571 allele carries a transposable element Tam3 insertion and three truncated copies of the niv gene, one copy being in inverse orientation. Analysis of two further niv alleles, niv-572 and niv-527, showed that excision of Tam3 from niv-571 does not affect the ability of the allele to repress Niv+ and that one truncated niv copy alone is insufficient to confer semidominance. The detailed structures of various semidominant niv alleles suggest that their effects in trans are not readily explained by production of antisense RNA but are more easily reconciled with a direct recognition/interaction between homologous genes, reminiscent of cosuppression and transvection phenomena described in other systems. PMID:1840900

  17. Allele frequencies at microsatellite loci: The stepwise mutation model revisited

    SciTech Connect

    Valdes, A.M.; Slatkin, M. ); Freimer, N.B. )

    1993-03-01

    The authors summarize available data on the frequencies of alleles at microsatellite loci in human populations and compare observed distributions of allele frequencies to those generated by a simulation of the stepwise mutation model. They show that observed frequency distributions at 108 loci are consistent with the results of the model under the assumption that mutations cause an increase or decrease in repeat number by one and under the condition that the product Nu, where N is the effective population size and u is the mutation rate, is larger than one. It is also shown that the variance of the distribution of allele sizes is a useful estimator of Nu and performs much better than previously suggested estimators for the stepwise mutation model. In the data, there is no correlation between the mean and variance in allele size at a locus or between the number of alleles and mean allele size, which suggests that the mutation rate at these loci is independent of allele size. 39 refs., 6 figs., 4 tabs.

  18. Common alleles contribute to schizophrenia in CNV carriers

    PubMed Central

    Tansey, K E; Rees, E; Linden, D E; Ripke, S; Chambert, K D; Moran, J L; McCarroll, S A; Holmans, P; Kirov, G; Walters, J; Owen, M J; O'Donovan, M C

    2016-01-01

    The genetic architecture of schizophrenia is complex, involving risk alleles ranging from common alleles of weak effect to rare alleles of large effect, the best exemplar of the latter being large copy number variants (CNVs). It is currently unknown whether pathophysiology in those with defined rare mutations overlaps with that in other individuals with the disorder who do not share the same rare mutation. Under an extreme heterogeneity model, carriers of specific high-penetrance mutations form distinct subgroups. In contrast, under a polygenic threshold model, high-penetrance rare allele carriers possess many risk factors, of which the rare allele is the only one, albeit an important, factor. Under the latter model, cases with rare mutations can be expected to share some common risk alleles, and therefore pathophysiological mechanisms, with cases without the same mutation. Here we show that, compared with controls, individuals with schizophrenia who have known pathogenic CNVs carry an excess burden of common risk alleles (P=2.25 × 10−17) defined from a genome-wide association study largely based on individuals without known CNVs. Our finding is not consistent with an extreme heterogeneity model for CNV carriers, but does offer support for the polygenic threshold model of schizophrenia. That this is so provides support for the notion that studies aiming to model the effects of rare variation may uncover pathophysiological mechanisms of relevance to those with the disorder more widely. PMID:26390827

  19. Allelic Diversity and Its Implications for the Rate of Adaptation

    PubMed Central

    Caballero, Armando; García-Dorado, Aurora

    2013-01-01

    Genetic variation is usually estimated empirically from statistics based on population gene frequencies, but alternative statistics based on allelic diversity (number of allelic types) can provide complementary information. There is a lack of knowledge, however, on the evolutionary implications attached to allelic-diversity measures, particularly in structured populations. In this article we simulated multiple scenarios of single and structured populations in which a quantitative trait subject to stabilizing selection is adapted to different fitness optima. By forcing a global change in the optima we evaluated which diversity variables are more strongly correlated with both short- and long-term adaptation to the new optima. We found that quantitative genetic variance components for the trait and gene-frequency-diversity measures are generally more strongly correlated with short-term response to selection, whereas allelic-diversity measures are more correlated with long-term and total response to selection. Thus, allelic-diversity variables are better predictors of long-term adaptation than gene-frequency variables. This observation is also extended to unlinked neutral markers as a result of the information they convey on the demographic population history. Diffusion approximations for the allelic-diversity measures in a finite island model under the infinite-allele neutral mutation model are also provided. PMID:24121776

  20. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  1. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing.

    PubMed

    Zhang, Rui; Li, Xin; Ramaswami, Gokul; Smith, Kevin S; Turecki, Gustavo; Montgomery, Stephen B; Li, Jin Billy

    2014-01-01

    We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels and to accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq for studying allelic variations in the transcriptome.

  2. Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904.

    PubMed

    Cheng, Y R; Huang, J; Qiang, H; Lin, W L; Demain, A L

    2001-11-01

    Rapamycin (RPM) is produced by Streptomyces hygroscopicus FC904 isolated from soil in Fuzhou, China. It is a triene macrolide antibiotic with potential application as an immunosuppressant and drug for human gene therapy. In an attempt to improve rapamycin production, mutation and screening of the parent culture have been carried out. Thousands of survivors were obtained after mutagenesis by NTG (3 mg/ml) and UV (30 W, 15 cm, 30 seconds) of spore suspensions. None showed improved production of RPM. We determined the susceptibility to antibiotics of S. hygroscopicus FC904 by two fold dilutions of antibiotics in oatmeal agar plates. It was found that the strain was resistant to penicillin, erythromycin, RPM, tetracycline and chloramphenicol, but susceptible to mitomycin C (MIC, 10 microg/ml) and aminoglycosides such as gentamicin (MIC, 0.1 microg/ml), kanamycin (MIC, 0.1 microg/ml) and streptomycin (MIC, 0.3 microg/ml). Protoplasts of strain FC904 were prepared after finding the best conditions for their formation. They were treated with gentamicin, erythromycin, mitomycin C and NTG. Surprisingly, gentamicin was especially effective for obtaining higher RPM-producing mutants. Mutant C14 was selected by exposing the protoplasts of the parent strain FC904 to 1 microg/ml of gentamicin at 28 degrees C for 2 hours. A higher RPM-producing mutant (C14-1) was obtained from the protoplasts of mutant C14 treated with gentamicin, and its titer was 60% higher than that of the parent strain FC904 by HPLC analysis. Another improved mutant (C14-2) was obtained from the spores of mutant C 14 treated with 1 microg/ml of gentamicin plus 2 mg/ml of NTG at 28 degrees C for 2 hours. Mutant C14-2 had a titer 124% higher than FC904. The possible mechanism for the effect of gentamicin by using protoplasts or spore suspensions will be discussed, i.e. the possibility of gentamicin being a mutagen or a selective agent. PMID:11827040

  3. Allelic exclusion of immunoglobulin genes: models and mechanisms.

    PubMed

    Vettermann, Christian; Schlissel, Mark S

    2010-09-01

    The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.

  4. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  5. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  6. Identification of incompatibility alleles in the tetraploid species sour cherry.

    PubMed

    Tobutt, K R; Bosković, R; Cerović, R; Sonneveld, T; Ruzić, D

    2004-03-01

    The incompatibility genetics of sour cherry ( Prunus cerasus), an allotetraploid species thought to be derived from sweet cherry (diploid) and ground cherry (tetraploid), were investigated by test crossing and by analysis of stylar ribonucleases which are known to be the products of incompatibility alleles in sweet cherry. Stylar extracts of 36 accessions of sour cherry were separated electrophoretically and stained for ribonuclease activity. The zymograms of most accessions showed three bands, some two or four. Of the ten bands seen, six co-migrated with bands that in sweet cherry are attributed to the incompatibility alleles S(1), S(3), S(4), S(6, ) S(9) and S(13). 'Cacanski Rubin', 'Erdi Botermo B', 'Koros' and 'Ujfehertoi Furtos', which showed bands apparently corresponding to S(1) and S(4), were test pollinated with the sweet cherry 'Merton Late' ( S(1) S(4)). Monitoring pollen tube growth, and, in one case, fruit set, showed that these crosses were incompatible and that the four sour cherries indeed have the alleles S(1) and S(4). Likewise, test pollination of 'Marasca Piemonte', 'Marasca Savena' and 'Morello, Dutch' with 'Noble' ( S(6) S(13)) showed that these three sour cherries have the alleles S(6) and S(13). S(13) was very frequent in sour cherry cultivars, but is rare in sweet cherry cultivars, whereas with S(3) the situation is reversed. It was suggested that the other four bands are derived from ground cherry and one of these, provisionally attributed to S(B), occurred frequently in a small set of ground cherry accessions surveyed. Analysing some progenies from sour by sweet crosses by S allele-specific PCR and monitoring the success of some sweet by sour crosses were informative. They indicated mostly disomic inheritance, with sweet cherry S alleles belonging to one locus and, presumably, the ground cherry alleles to the other, and helped clarify the genomic arrangement of the alleles and the interactions in heteroallelic pollen. PMID:14689184

  7. Robust identification of local adaptation from allele frequencies.

    PubMed

    Günther, Torsten; Coop, Graham

    2013-09-01

    Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of "standardized allele frequencies" that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools-a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org. PMID:23821598

  8. Robust Identification of Local Adaptation from Allele Frequencies

    PubMed Central

    Günther, Torsten; Coop, Graham

    2013-01-01

    Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of “standardized allele frequencies” that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools—a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org. PMID:23821598

  9. Use of in Vitro Mutagenesis to Analyze the Molecular Basis of the Difference in Adh Expression Associated with the Allozyme Polymorphism in Drosophila Melanogaster

    PubMed Central

    Choudhary, M.; Laurie, C. C.

    1991-01-01

    In natural populations of Drosophila melanogaster, the alcohol dehydrogenase (Adh) locus is polymorphic for two allozymes, designated Slow and Fast. Fast homozygotes generally have a two- to threefold higher ADH activity level than Slow homozygotes for two reasons: they have a higher concentration of ADH protein and the Fast protein has a higher catalytic efficiency. DNA sequencing studies have shown that the two allozymes generally differ by only a single amino acid at residue 192, which must therefore be the cause of the catalytic efficiency difference. A previous P element-transformation experiment mapped the difference in ADH protein level to a 2.3-kb HpaI/ClaI restriction fragment, which contains all of the Adh coding sequences but excludes all of the 5' flanking region of the distal transcriptional unit. Here we report the results of a site-directed in vitro mutagenesis experiment designed to investigate the effects of the amino acid replacement. This replacement has the expected effect on catalytic efficiency, but there is no detectable effect on the concentration of ADH protein estimated immunologically. This result shows that the average difference in ADH protein level between the allozymic classes is due to linkage disequilibrium between the amino acid replacement and one or more other polymorphisms within the HpaI/ClaI fragment. Sequence analysis of several Fast and Slow alleles suggested that the other polymorphism might be a silent substitution at nucleotide 1443, but another in vitro mutagenesis experiment reported here shows that this is not the case. Therefore, the molecular basis of the difference in ADH protein concentration between the allozymic classes remains an open question. PMID:1743488

  10. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  11. SSR allelic variation in almond (Prunus dulcis Mill.).

    PubMed

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  12. Quantitative mutagenesis and mutagen screening with Chinese hamster ovary cells

    SciTech Connect

    Hsie, A.W.; San Sebastian, J.R.; Tan, E.L.

    1980-01-01

    A summary is presented on the development of a specific gene mutation assay, the Chinese hamster ovary cells/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system, and the utilization of this system to study structure-activity relationship affecting cytotoxicity and gene mutation by various carcinogens. Then, preliminary development and validation of a Multiplex CHO System for the simultaneous determination of chromosome aberration, sister chromatid exchange in addition to cytotoxicity and gene mutation is presented. The potential use of a CHO/human cell hybrid system for measuring chromosomal deletion and loss is discussed.

  13. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    PubMed

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations. PMID:27557690

  14. Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice.

    PubMed

    Vitaterna, Martha Hotz; Pinto, Lawrence H; Takahashi, Joseph S

    2006-04-01

    Significant developments have occurred in our understanding of the mammalian genome thanks to informatics, expression profiling and sequencing of the human and rodent genomes. However, although these facets of genomic analysis are being addressed, analysis of in vivo gene function remains a formidable task. Evaluation of the phenotype of mutants provides powerful access to gene function, and this approach is particularly relevant to the nervous system and behavior. Here, we discuss the complementary mouse genetic approaches of gene-driven, targeted mutagenesis and phenotype-driven, chemical mutagenesis. We highlight an NIH-supported large-scale effort to use phenotype-driven mutagenesis screens to identify mouse mutants with neural and behavioral alterations. Such single-gene mutations can then be used for gene identification using positional candidate gene-cloning methods.

  15. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  16. Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles.

    PubMed

    Sena, L; Schneider, M P C; Brenig, B; Honeycutt, R L; Womack, J E; Skow, L C

    2003-02-01

    Seventy-five individuals of Bubalus bubalis belonging to four different breeds, three of river buffalo and one of swamp buffalo, were studied for polymorphism in MHC DRB (Bubu-DRB) and DRA (Bubu-DRA) loci. Eight alleles of Bubu-DRB were found, and all alleles in the swamp type were shared with the three river breeds. All alleles sampled from the breed of European origin (Mediterranean) were present in breeds sampled in Brazil, thus variability of this locus may have been preserved to a great extent in the more recently founded Brazilian population. Bubu-DRB alleles contained higher proportions of synonymous vs. non-synonymous substitutions in the non-peptide-binding sites (PBS) region, in contrast to the pattern of variation found in BoLA-DRB3, the orthologous locus in cattle. This indicated that either the first domain exon (exon 2) of Bubu-DRB has not undergone as much recombination and/or gene conversion as in cattle alleles, or Bubu-DRB may be more ancient than BoLA-DRB3 alleles. Phylogenetic analysis of DRB alleles from Bubalus, Syncerus c. caffer, the Cape buffalo, and domestic cattle demonstrated transspecies polymorphism. Water buffalo contained two alleles of DRA that differed from each other in two amino acid positions, including one in the PBS (alpha22) that was also shared with Anoa depressicornis, the anoa. Discovery of variation in DRA was surprising as the first domain of DRA is a highly conserved polypeptide in mammals in general and especially in ruminants, where no other substitution in PBS was seen.

  17. Site-directed mutagenesis enabled preparation of a functional fluorescent analog of profilin: biochemical characterization and localization in living cells.

    PubMed

    Tarachandani, A; Wang, Y L

    1996-01-01

    The preparation of fluorescent profilin analogs for binding and spectroscopic studies, in vitro and in vivo, has been hampered by the poor chemical reactivity of this protein in its native form. We have addressed this problem by labeling a mutant, chemically reactive form of profilin. Site-directed mutagenesis was first used to replace a serine residue in a non-essential domain with a reactive cysteine residue. The mutant protein was expressed in Escherichia coli and reacted with tetramethylrhodamine iodoacetamide. In vitro assays indicated that the fluorescent profilin maintained its ability to bind actin, polyproline, and PIP2, to inhibit actin polymerization, and to stimulate actin nucleotide exchange. Fluorescence spectroscopy showed that neither the excitation nor the emission of the analog was sensitive to the interaction with actin or polyproline. However, binding of PIP2 caused a 75% quenching of the fluorescent signal, suggesting a dramatic change in the immediate environment of the probe. When the fluorescent profilin was microinjected into living NRK cells, it became localized at cell-cell junctions and discrete sites near the anterior end, where it colocalized with aggregates of unpolymerized actin. Different engineered forms of profilin with fluorophores located at defined sites should greatly facilitate the study of its interactions with various ligands and cellular structures.

  18. Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance.

    PubMed Central

    Ashman, C R; Davidson, R L

    1981-01-01

    The relationship between bromodeoxyuridine (BrdUrd) mutagenesis in mammalian cells and the effects of BrdUrd on deoxyribonucleoside triphosphate pools was analyzed. It was found that the exposure of Syrian hamster melanoma cells to mutagenic concentrations of BrdUrd resulted in the formation of a large bromodeoxyuridine triphosphate (BrdUTP) pool, which remained at a high level for several days. In contrast, the size of the deoxycytidine triphosphate (dCTP) pool dropped rapidly after the addition of BrdUrd, reached a minimum at about 6 h, and then expanded gradually to nearly its original level over the next 3 days. The addition of lower concentrations of BrdUrd, which had less of a mutagenic effect, resulted in the formation of a smaller BrdUTP pool and a slightly smaller drop in the dCTP pool. When a high concentration of deoxycytidine was added at the same time as a normally mutagenic concentration of BrdUrd, the drop in the dCTP pool was prevented, as was BrdUrd mutagenesis. In all of these experiments, mutagenesis was related to the ratio of BrdUTP to dCTP in the cells. In addition, it was shown that mutagenesis occurred primarily during the first 24 h of BrdUrd exposure, when the BrdUTP/dCTP ratio was at its highest level. It appears that there is a critical ratio of BrdUTP to dCTP that must be attained for high levels of mutagenesis to occur and that the extent of mutagenesis is related to the ratio of the BrdUrd and dCTP pools. PMID:6965099

  19. Impriniting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching

    SciTech Connect

    Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. )

    1993-07-01

    Genomic imprinting and monoallelic gene expression appear to play a role in human genetic disease and tumorigenesis. The human H19 gene, at chromosome 11p15, has previously been shown to be monoallelically expressed. Since CpG methylation has been implicated in imprinting, the authors analyzed methylation of H19 DNA. In fetal and adult organs the transcriptionally silent H19 allele was extensively hypermethylated through the entire gene and its promoter, and, consistent with a functional role for DNA methylation, expression of an H19 promoter-reporter construct was inhibited by in vitro methylation. Gynogenetic ovarian teratomas were found to contain only hypomethylated H19 DNA, suggesting that the expressed H19 allele might be maternal. This was confirmed by analysis of 11p15 polymorphisms in a patient with Wilms tumor. The tumor had lost the maternal 11p15, and H19 expression in the normal kidney was exclusively from this allele. Imprinting of human H19 appears to be susceptible to tissue-specific modulation in somatic development; in one individual, cerebellar cells were found to express only the otherwise silent allele. Implications of these findings for the role of DNA methylation in imprinting and for H19 as a candidate imprinted tumor-suppressor gene are discussed. 57 refs., 7 figs.

  20. A limit to the divergent allele advantage model supported by variable pathogen recognition across HLA-DRB1 allele lineages.

    PubMed

    Lau, Q; Yasukochi, Y; Satta, Y

    2015-11-01

    Genetic diversity in human leukocyte antigen (HLA) molecules is thought to have arisen from the co-evolution between host and pathogen and maintained by balancing selection. Heterozygote advantage is a common proposed scenario for maintaining high levels of diversity in HLA genes, and extending from this, the divergent allele advantage (DAA) model suggests that individuals with more divergent HLA alleles bind and recognize a wider array of antigens. While the DAA model seems biologically suitable for driving HLA diversity, there is likely an upper threshold to the amount of sequence divergence. We used peptide-binding and pathogen-recognition capacity of DRB1 alleles as a model to further explore the DAA model; within the DRB1 locus, we examined binding predictions based on two distinct phylogenetic groups (denoted group A and B) previously identified based on non-peptide-binding region (PBR) nucleotide sequences. Predictions in this study support that group A allele and group B allele lineages have contrasting binding/recognition capacity, with only the latter supporting the DAA model. Furthermore, computer simulations revealed an inconsistency in the DAA model alone with observed extent of polymorphisms, supporting that the DAA model could only work effectively in combination with other mechanisms. Overall, we support that the mechanisms driving HLA diversity are non-exclusive. By investigating the relationships among HLA alleles, and pathogens recognized, we can provide further insights into the mechanisms on how humans have adapted to infectious diseases over time.

  1. Integrating chemical mutagenesis and whole genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia

    PubMed Central

    Kokes, Marcela; Dunn, Joe Dan; Granek, Joshua A.; Nguyen, Bidong D.; Barker, Jeffrey R.; Valdivia, Raphael H.; Bastidas, Robert J.

    2015-01-01

    SUMMARY Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically-induced mutants of the genetically-intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins to modulate F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community. PMID:25920978

  2. DNA Polymerase ζ is essential for hexavalent chromium-induced mutagenesis

    PubMed Central

    O'Brien, Travis J.; Witcher, Preston; Brooks, Bradford; Patierno, Steven R.

    2009-01-01

    Translesion synthesis (TLS) is a unique DNA damage tolerance mechanism involved in the replicative bypass of genetic lesions in favor of uninterrupted DNA replication. TLS is critical for the generation of mutations by many different chemical and physical agents, however, there is no information available regarding the role of TLS in carcinogenic metal-induced mutagenesis. Hexavalent chromium (Cr(VI))-containing compounds are highly complex genotoxins possessing both mutagenic and clastogenic activities. The focus of this work was to determine the impact that TLS has on Cr(VI)-induced mutagenesis in S. cerevisiae. Wild-type yeast and strains deficient in TLS polymerases (i.e. Polζ (rev3), Polη (rad30)) were exposed to Cr(VI) and monitored for cell survival and forward mutagenesis at the CAN1 locus. In general, TLS deficiency had little impact on Cr(VI)-induced clonogenic lethality or cell growth. rad30 yeast exhibited higher levels of basal and induced mutagenesis compared to Wt and rev3 yeast. In contrast, rev3 yeast displayed attenuated Cr(VI)-induced mutagenesis. Moreover, deletion of REV3 in rad30 yeast (rad30 rev3) resulted in a significant decrease in basal and Cr(VI) mutagenesis relative to Wt and rad30 single mutants indicating that mutagenesis primarily depended upon Polζ. Interestingly, rev3 yeast were similar to Wt yeast in susceptibility to Cr(VI)-induced frameshift mutations. Mutational analysis of the CAN1 gene revealed that Cr(VI)-induced base substitution mutations accounted for 83.9% and 100.0% of the total mutations in Wt and rev3 yeast, respectively. Insertions and deletions comprised 16.1% of the total mutations in Cr(VI) treated Wt yeast but were not observed rev3 yeast. This work provides novel information regarding the molecular mechanisms of Cr(VI)-induced mutagenesis and is the first report demonstrating a role for TLS in the fixation of mutations induced by a carcinogenic metal. PMID:19428373

  3. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1)

    PubMed Central

    Kaintz, Cornelia; Mayer, Rupert L.; Jirsa, Franz; Halbwirth, Heidi; Rompel, Annette

    2015-01-01

    Aurone synthase from Coreopsis grandiflora (cgAUS1), catalyzing conversion of butein to sulfuretin in a type-3 copper center, is a rare example of a polyphenol oxidase involved in anabolism. Site-directed mutagenesis around the CuA site of AUS1 was performed, and recombinant enzymes were analyzed by mass spectrometry. Replacement of the coordinating CuA histidines with alanine resulted in the presence of a single copper and loss of diphenolase activity. The thioether bridge-building cysteine and a phenylalanine over the CuA site, exchanged to alanine, have no influence on copper content but appear to play an important role in substrate binding. PMID:25697959

  4. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  5. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  6. How the Number of Alleles Influences Gene Expression

    NASA Astrophysics Data System (ADS)

    Hat, Beata; Paszek, Pawel; Kimmel, Marek; Piechor, Kazimierz; Lipniacki, Tomasz

    2007-07-01

    The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.

  7. Distribution of HLA-B alleles in Mexican Amerindian populations.

    PubMed

    Vargas-Alarcón, Gilberto; Hernández-Pacheco, Guadalupe; Zuñiga, Joaquín; Rodríguez-Pérez, José Manuel; Pérez-Hernández, Nonanzit; Rangel, Carlos; Villarreal-Garza, Cynthia; Martínez-Laso, Jorge; Granados, Julio; Arnaiz-Villena, Antonio

    2003-02-01

    In the present study we analyzed by PCR-SSO technique the HLA-B gene frequencies in 281 healthy individuals from four Mexican Amerindian populations (66 Mayos, 90 Mazatecans, 72 Nahuas and 53 Teenek). The most frequent alleles in all studied populations were HLA-B35, HLA-B39, and HLA-B40; however, some differences were observed between populations. The HLA-B35 allele was the most frequent in three of the four populations studied (Mayos, Nahuas and Teenek), whereas in Mazatecans the most frequent allele was HLA-B39. HLA-B40 presented frequencies higher than 10% in all groups. On the other hand, only Mayos presented an HLA-B51 gene frequency higher than 10%. When comparisons were made, important differences between groups were observed. The Teenek group presented an increased frequency of HLA-B35 when compared to Mazatecans and the HLA-B52 allele was increased in Nahuas and Teenek when compared to Mayos. An increased frequency of HLA-B39 was observed in Mazatecans when compared to Nahuas, Mayos and Teenek. Also, an increased frequency of HLA-B51 was observed in Mayos when compared to Mazatecans and Nahuas. These data corroborate the restricted polymorphism of HLA-B alleles and the high frequency of HLA-B35, HLA-B39 and HLA-B40 alleles in autochthonous American populations. In spite of the restriction in this polymorphism, differences in frequencies of HLA-B alleles could be helpful in distinguishing each of these populations.

  8. Allelic diversity at class II DRB1 and DQB loci of the pig MHC (SLA).

    PubMed

    Kanai, T H; Tanioka, Y; Tanigawa, M; Matsumoto, Y; Ueda, S; Onodera, T; Matsumoto, Y

    1999-12-01

    The loci encoding the beta chain of the pig major histocompatibility complex (MHC) class II antigens, SLA-DR and -DQ, have been known to exhibit a remarkable degree of allelic polymorphism. Here, to understand the generation of SLA class II polymorphism, 25 SLA-DRB1 and 24 SLA-DQB genes including newly identified 12 SLA-DRB1 and 7 SLA-DQB genes obtained from miniature pigs were analyzed based on the nucleotide and deduced amino acid sequences. Most of the allelic diversity was attributed to the variable sequences which encode a beta1 domain consisting of a beta-pleated sheet followed by an a helix. In the beta1 domain coding region, there were four GC-rich sequences, which have been considered to involve the intra-exon sequence exchange also in other gene evolutions. The first and second GC-rich sequences were alpha-like sequences, which have been shown to be a putative recombination signal, and were stably conserved among SLA-DRB1 and DQB genes. These alpha-like sequences identified in SLA-DRB1 and SLA-DQB were found to encode the first turning point of the beta-pleated sheet and the boundary between the beta-pleated sheet and the alpha helix. Analysis of clustered sequence variation also suggested intra-exon gene conversions in which the alpha-like sequences act as putative breakpoints. In addition to point mutations and selection mechanism, intra-exon gene conversions must be an important mechanism in the generation of allelic polymorphism at the SLA-DRB1 and SLA-DQB.

  9. Use of the Photoactic Ability of a Bacterium to Teach the Genetic Principles of Random Mutagenesis & Mutant Screening

    ERIC Educational Resources Information Center

    Din, Neena; Bird, Terry H.; Berleman, James E.

    2007-01-01

    In this article, the authors present a laboratory activity that relies on the use of a very versatile bacterial system to introduce the concept of how mutagenesis can be used for molecular and genetic analysis of living organisms. They have used the techniques of random mutagenesis and selection/screening to obtain strains of the organism "R.…

  10. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol were produced from Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 using UV-C mutagenesis. Random UV-C mutagenesis potentially produces large numbers of mutations broadly and uniformly over the whole genome to genera...

  11. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  12. STR allele sequence variation: Current knowledge and future issues.

    PubMed

    Gettings, Katherine Butler; Aponte, Rachel A; Vallone, Peter M; Butler, John M

    2015-09-01

    This article reviews what is currently known about short tandem repeat (STR) allelic sequence variation in and around the twenty-four loci most commonly used throughout the world to perform forensic DNA investigations. These STR loci include D1S1656, TPOX, D2S441, D2S1338, D3S1358, FGA, CSF1PO, D5S818, SE33, D6S1043, D7S820, D8S1179, D10S1248, TH01, vWA, D12S391, D13S317, Penta E, D16S539, D18S51, D19S433, D21S11, Penta D, and D22S1045. All known reported variant alleles are compiled along with genomic information available from GenBank, dbSNP, and the 1000 Genomes Project. Supplementary files are included which provide annotated reference sequences for each STR locus, characterize genomic variation around the STR repeat region, and compare alleles present in currently available STR kit allelic ladders. Looking to the future, STR allele nomenclature options are discussed as they relate to next generation sequencing efforts underway. PMID:26197946

  13. Rare allelic forms of PRDM9 associated with childhood leukemogenesis.

    PubMed

    Hussin, Julie; Sinnett, Daniel; Casals, Ferran; Idaghdour, Youssef; Bruat, Vanessa; Saillour, Virginie; Healy, Jasmine; Grenier, Jean-Christophe; de Malliard, Thibault; Busche, Stephan; Spinella, Jean-François; Larivière, Mathieu; Gibson, Greg; Andersson, Anna; Holmfeldt, Linda; Ma, Jing; Wei, Lei; Zhang, Jinghui; Andelfinger, Gregor; Downing, James R; Mullighan, Charles G; Awadalla, Philip

    2013-03-01

    One of the most rapidly evolving genes in humans, PRDM9, is a key determinant of the distribution of meiotic recombination events. Mutations in this meiotic-specific gene have previously been associated with male infertility in humans and recent studies suggest that PRDM9 may be involved in pathological genomic rearrangements. In studying genomes from families with children affected by B-cell precursor acute lymphoblastic leukemia (B-ALL), we characterized meiotic recombination patterns within a family with two siblings having hyperdiploid childhood B-ALL and observed unusual localization of maternal recombination events. The mother of the family carries a rare PRDM9 allele, potentially explaining the unusual patterns found. From exomes sequenced in 44 additional parents of children affected with B-ALL, we discovered a substantial and significant excess of rare allelic forms of PRDM9. The rare PRDM9 alleles are transmitted to the affected children in half the cases; nonetheless there remains a significant excess of rare alleles among patients relative to controls. We successfully replicated this latter observation in an independent cohort of 50 children with B-ALL, where we found an excess of rare PRDM9 alleles in aneuploid and infant B-ALL patients. PRDM9 variability in humans is thought to influence genomic instability, and these data support a potential role for PRDM9 variation in risk of acquiring aneuploidies or genomic rearrangements associated with childhood leukemogenesis.

  14. Identification and characterization of variant alleles at CODIS STR loci.

    PubMed

    Allor, Catherine; Einum, David D; Scarpetta, Marco

    2005-09-01

    Short tandem repeat (STR) profiles from 32,671 individuals generated by the ABI Profiler Plus and Cofiler systems were screened for variant alleles not represented within manufacturer-provided allelic ladders. A total of 85 distinct variants were identified at 12 of the 13 CODIS loci, most of which involve a truncated tetranucleotide repeat unit. Twelve novel alleles, identified at D3S1358, FGA, D18S51, D5S818, D7S820 and TPOX, were confirmed by nucleotide sequence analysis and include both insertions and deletions involving the repeat units themselves as well as DNA flanking the repeat regions. Population genetic data were collected for all variants and frequencies range from 0.0003 (many single observations) to 0.0042 (D7S820 '10.3' in North American Hispanics). In total, the variant alleles identified in this study are carried by 1.6% of the estimated 1 million individuals tested annually in the U.S. for the purposes of parentage resolution. A paternity case involving a recombination event of paternal origin is presented and demonstrates how variant alleles can significantly strengthen the genetic evidence in troublesome cases. In such instances, increased costs and turnaround time associated with additional testing may be eliminated.

  15. Assessing allelic dropout and genotype reliability using maximum likelihood.

    PubMed Central

    Miller, Craig R; Joyce, Paul; Waits, Lisette P

    2002-01-01

    A growing number of population genetic studies utilize nuclear DNA microsatellite data from museum specimens and noninvasive sources. Genotyping errors are elevated in these low quantity DNA sources, potentially compromising the power and accuracy of the data. The most conservative method for addressing this problem is effective, but requires extensive replication of individual genotypes. In search of a more efficient method, we developed a maximum-likelihood approach that minimizes errors by estimating genotype reliability and strategically directing replication at loci most likely to harbor errors. The model assumes that false and contaminant alleles can be removed from the dataset and that the allelic dropout rate is even across loci. Simulations demonstrate that the proposed method marks a vast improvement in efficiency while maintaining accuracy. When allelic dropout rates are low (0-30%), the reduction in the number of PCR replicates is typically 40-50%. The model is robust to moderate violations of the even dropout rate assumption. For datasets that contain false and contaminant alleles, a replication strategy is proposed. Our current model addresses only allelic dropout, the most prevalent source of genotyping error. However, the developed likelihood framework can incorporate additional error-generating processes as they become more clearly understood. PMID:11805071

  16. Rare allelic forms of PRDM9 associated with childhood leukemogenesis

    PubMed Central

    Hussin, Julie; Sinnett, Daniel; Casals, Ferran; Idaghdour, Youssef; Bruat, Vanessa; Saillour, Virginie; Healy, Jasmine; Grenier, Jean-Christophe; de Malliard, Thibault; Busche, Stephan; Spinella, Jean-François; Larivière, Mathieu; Gibson, Greg; Andersson, Anna; Holmfeldt, Linda; Ma, Jing; Wei, Lei; Zhang, Jinghui; Andelfinger, Gregor; Downing, James R.; Mullighan, Charles G.; Awadalla, Philip

    2013-01-01

    One of the most rapidly evolving genes in humans, PRDM9, is a key determinant of the distribution of meiotic recombination events. Mutations in this meiotic-specific gene have previously been associated with male infertility in humans and recent studies suggest that PRDM9 may be involved in pathological genomic rearrangements. In studying genomes from families with children affected by B-cell precursor acute lymphoblastic leukemia (B-ALL), we characterized meiotic recombination patterns within a family with two siblings having hyperdiploid childhood B-ALL and observed unusual localization of maternal recombination events. The mother of the family carries a rare PRDM9 allele, potentially explaining the unusual patterns found. From exomes sequenced in 44 additional parents of children affected with B-ALL, we discovered a substantial and significant excess of rare allelic forms of PRDM9. The rare PRDM9 alleles are transmitted to the affected children in half the cases; nonetheless there remains a significant excess of rare alleles among patients relative to controls. We successfully replicated this latter observation in an independent cohort of 50 children with B-ALL, where we found an excess of rare PRDM9 alleles in aneuploid and infant B-ALL patients. PRDM9 variability in humans is thought to influence genomic instability, and these data support a potential role for PRDM9 variation in risk of acquiring aneuploidies or genomic rearrangements associated with childhood leukemogenesis. PMID:23222848

  17. Allele-dependent barley grain beta-amylase activity.

    PubMed

    Erkkilä, M J; Leah, R; Ahokas, H; Cameron-Mills, V

    1998-06-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high beta-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and beta-amy1 gene characterization to demonstrate that the high beta-amylase trait in the backcross line is co-inherited with the beta-amy1 gene from the H. spontaneum parent. We have analyzed the beta-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct beta-amy1 alleles. Two of these beta-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain beta-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated beta-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of beta-amylase activity in barley grain is proposed.

  18. Allele-Dependent Barley Grain β-Amylase Activity1

    PubMed Central

    Erkkilä, Maria J.; Leah, Robert; Ahokas, Hannu; Cameron-Mills, Verena

    1998-01-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high β-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and β-amy1 gene characterization to demonstrate that the high β-amylase trait in the backcross line is co-inherited with the β-amy1 gene from the H. spontaneum parent. We have analyzed the β-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct β-amy1 alleles. Two of these β-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain β-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated β-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of β-amylase activity in barley grain is proposed. PMID:9625721

  19. A Platform for Interrogating Cancer-Associated p53 Alleles

    PubMed Central

    D’Brot, Alejandro; Kurtz, Paula; Regan, Erin; Jakubowski, Brandon; Abrams, John M

    2016-01-01

    p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, ‘humanized’ for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants. PMID:26996664

  20. Allele surfing promotes microbial adaptation from standing variation.

    PubMed

    Gralka, Matti; Stiewe, Fabian; Farrell, Fred; Möbius, Wolfram; Waclaw, Bartlomiej; Hallatschek, Oskar

    2016-08-01

    The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from 'soft' selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges. PMID:27307400

  1. Sequence analysis of two novel HLA-DMA alleles

    SciTech Connect

    Carrington, M.; Harding, A.

    1994-12-31

    Several novel genes have been mapped recently in the HLA class II region between DQ and DP. Two of these genes, DMA and DMB, are predicted to encode a protein which has a structure similar to that of the DR, DQ, and DP molecules. The function of the DM molecule, however, is unlikely to mimic precisely that of the other class II molecules, since they share a low level of similarity and both DMA and DMB have limited polymorphism. Based on sequences from the third exon, four alleles of DMB and two alleles of DMA were previously characterized. Single-strand conformation polymorphism (SSCP) patterns of amplified DMA exon 3 products indicated the existence of two additional DMA alleles, which were subsequently sequenced and are now reported here. 4 refs., 2 figs.

  2. Allele-Specific DNA Methylation Detection by Pyrosequencing®.

    PubMed

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide information on the methylation status of individual alleles of genes. This information may be of importance in many situations. In particular, in cancer both alleles of tumour suppressor genes generally need to be inactivated for a phenotypic effect to be observed. Here, we present a simple and cost-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon. PMID:26103906

  3. Apolipoprotein E alleles in women with severe pre-eclampsia.

    PubMed Central

    Nagy, B; Rigó, J; Fintor, L; Karádi, I; Tóth, T

    1998-01-01

    This study investigated the frequency of apolipoprotein E (apoE) alleles among women with severe pre-eclampsia. The presence of the three most common apoE alleles (epsilon 2, epsilon 3, epsilon 4) was determined by polymerase chain reaction-restriction fragment length polymorphism in three groups of white women: non-pregnant healthy (n = 101), pregnant healthy (n = 52), and pregnant with a diagnosis of severe pre-eclampsia (n = 54). The frequency of apo epsilon 2 was highest among women with severe pre-eclampsia (16.6%) followed by non-pregnant women (12.9%), and those experiencing a healthy pregnancy (10.6%). The higher frequency of the apo epsilon 2 allele detected among women with severe pre-eclampsia suggests that apoE may play a role in the development of pre-eclampsia. PMID:9659248

  4. Construction of "small-intelligent" focused mutagenesis libraries using well-designed combinatorial degenerate primers.

    PubMed

    Tang, Lixia; Gao, Hui; Zhu, Xuechen; Wang, Xiong; Zhou, Ming; Jiang, Rongxiang

    2012-03-01

    Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.

  5. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.

    PubMed

    Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi

    2016-01-01

    The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis. PMID:27572836

  6. Development of potent in vivo mutagenesis plasmids with broad mutational spectra

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2015-01-01

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021

  7. Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society

    EPA Science Inventory

    In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...

  8. Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis

    PubMed Central

    Valetti, Francesca; Gilardi, Gianfranco

    2013-01-01

    Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources. PMID:24970191

  9. CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    EPA Science Inventory

    CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    The current understanding of cancer as a genetic disease, requiring a specific set of genomic alterations for a normal cell to form a metastatic tumor, has provided the oppor...

  10. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways

    PubMed Central

    Gómez-Marroquín, Martha; Martin, Holly A.; Pepper, Amber; Girard, Mary E.; Kidman, Amanda A.; Vallin, Carmen; Yasbin, Ronald E.; Pedraza-Reyes, Mario; Robleto, Eduardo A.

    2016-01-01

    In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome. PMID:27399782

  11. Statistical procedures for the design and analysis of in vitro mutagenesis assays

    SciTech Connect

    Kaldor, J.

    1983-03-01

    In previous statistical treatments of a certain class of mutagenesis assays, stochastic models of mutation and cell growth have not been utilized. In this paper, we review the assumptions under which these models are derived, introduce some further assumptions, and propose ways to estimate and test hypotheses regarding the parameters of the models from assay data. It is shown via simulation and exact calculation that if the models are valid, the proposed statistical procedures provide very accurate Type I error rates for hypothesis tests, and coverage probabilities for confidence intervals. The cases of a linear dose response relationship for mutagenesis, and a comparison of a set of treated cell cultures with a set of control cultures are treated in detail. Approximate power functions for hypothesis tests of interest are then derived, and these are also shown to be satisfactorily close to the true power functions. The approximations are used to develop guidelines for planning aspects of a mutagenesis assay, including the number, spacing and range of dose levels employed. Examples of applications of the procedures are provided, and the paper concludes with a discussion of future statistical work which may be carried out in the area of mutagenesis assays. 38 references, 8 figures, 7 tables.

  12. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  13. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.

    PubMed

    Dmytruk, Kostyantyn V; Voronovsky, Andriy Y; Sibirny, Andriy A

    2006-09-01

    The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata. PMID:16770625

  14. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.

    PubMed

    Dmytruk, Kostyantyn V; Voronovsky, Andriy Y; Sibirny, Andriy A

    2006-09-01

    The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.

  15. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways.

    PubMed

    Gómez-Marroquín, Martha; Martin, Holly A; Pepper, Amber; Girard, Mary E; Kidman, Amanda A; Vallin, Carmen; Yasbin, Ronald E; Pedraza-Reyes, Mario; Robleto, Eduardo A

    2016-01-01

    In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu⁺ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu⁺ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome. PMID:27399782

  16. Workshop on ENU Mutagenesis: Planning for Saturation, July 25-28, 2002

    SciTech Connect

    Nadeau, Joseph H

    2002-07-25

    The goal of the conference is to enhance the development of improved technologies and new approaches to the identification of genes underlying chemically-induced mutant phenotypes. The conference brings together ENU mutagenesis experts from the United States and aborad for a small, intensive workshop to consider these issues.

  17. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  18. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    SciTech Connect

    Tomczak, J.; Grebner, E.E. ); Boogen, C. )

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  19. RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution

    PubMed Central

    Kopsidas, George; Carman, Rachael K; Stutt, Emma L; Raicevic, Anna; Roberts, Anthony S; Siomos, Mary-Anne V; Dobric, Nada; Pontes-Braz, Luisa; Coia, Greg

    2007-01-01

    Background In protein drug development, in vitro molecular optimization or protein maturation can be used to modify protein properties. One basic approach to protein maturation is the introduction of random DNA mutations into the target gene sequence to produce a library of variants that can be screened for the preferred protein properties. Unfortunately, the capability of this approach has been restricted by deficiencies in the methods currently available for random DNA mutagenesis and library generation. Current DNA based methodologies generally suffer from nucleotide substitution bias that preferentially mutate particular base pairs or show significant bias with respect to transitions or transversions. In this report, we describe a novel RNA-based random mutagenesis strategy that utilizes Qβ replicase to manufacture complex mRNA libraries with a mutational spectrum that is close to the ideal. Results We show that Qβ replicase generates all possible base substitutions with an equivalent preference for mutating A/T or G/C bases and with no significant bias for transitions over transversions. To demonstrate the high diversity that can be sampled from a Qβ replicase-generated mRNA library, the approach was used to evolve the binding affinity of a single domain VNAR shark antibody fragment (12Y-2) against malarial apical membrane antigen-1 (AMA-1) via ribosome display. The binding constant (KD) of 12Y-2 was increased by 22-fold following two consecutive but discrete rounds of mutagenesis and selection. The mutagenesis method was also used to alter the substrate specificity of β-lactamase which does not significantly hydrolyse the antibiotic cefotaxime. Two cycles of RNA mutagenesis and selection on increasing concentrations of cefotaxime resulted in mutants with a minimum 10,000-fold increase in resistance, an outcome achieved faster and with fewer overall mutations than in comparable studies using other mutagenesis strategies. Conclusion The RNA based approach

  20. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    PubMed

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to

  1. Versatile Vectors for Efficient Mutagenesis of Bradyrhizobium diazoefficiens and Other Alphaproteobacteria

    PubMed Central

    Ledermann, Raphael; Strebel, Silvan; Kampik, Clara

    2016-01-01

    ABSTRACT Analysis of bacterial gene function commonly relies on gene disruption or replacement followed by phenotypic characterization of the resulting mutant strains. Deletion or replacement of targeted regions is commonly achieved via two homologous recombination (HR) events between the bacterial genome and a nonreplicating plasmid carrying DNA fragments flanking the region to be deleted. The counterselection of clones that have integrated the entire plasmid in their genome via a single HR event is crucial in this procedure. Various genetic tools and well-established protocols are available for this type of mutagenesis in model bacteria; however, these methods are not always efficiently applicable in less established systems. Here we describe the construction and application of versatile plasmid vectors pREDSIX and pTETSIX for marker replacement and markerless mutagenesis, respectively. Apart from an array of restriction sites optimized for cloning of GC-rich DNA fragments, the vector backbone contains a constitutively expressed gene for mCherry, enabling the rapid identification of clones originating from single or double HR events by fluorescence-assisted cell sorting (FACS). In parallel, we constructed a series of plasmids from which gene cassettes providing resistance against gentamicin, kanamycin, hygromycin B, streptomycin and spectinomycin, or tetracycline were excised for use with pREDSIX-based marker replacement mutagenesis. In proof-of-concept mutagenesis experiments, we demonstrated the potential for the use of the developed tools for gene deletion mutagenesis in the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) and three additional members of the alphaproteobacteria. IMPORTANCE Mutation and phenotypic analysis are essential to the study of gene function. Efficient mutagenesis protocols and tools are available for many bacterial species, including various model organisms; however, genetic analysis of

  2. Silencing of genes and alleles by RNAi in Anopheles gambiae.

    PubMed

    Lamacchia, Marina; Clayton, John R; Wang-Sattler, Rui; Steinmetz, Lars M; Levashina, Elena A; Blandin, Stéphanie A

    2013-01-01

    Anopheles gambiae mosquitoes are the major vectors of human malaria parasites. However, mosquitoes are not passive hosts for parasites, actively limiting their development in vivo. Our current understanding of the mosquito antiparasitic response is mostly based on the phenotypic analysis of gene knockdowns obtained by RNA interference (RNAi), through the injection or transfection of long dsRNAs in adult mosquitoes or cultured cells, respectively. Recently, RNAi has been extended to silence specifically one allele of a given gene in a heterozygous context, thus allowing to compare the contribution of different alleles to a phenotype in the same genetic background. PMID:22990777

  3. Data-adaptive algorithms for calling alleles in repeat polymorphisms.

    PubMed

    Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A

    1997-01-01

    Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812

  4. Simultaneous inference of haplotypes and alleles at a causal gene.

    PubMed

    Larribe, Fabrice; Dupont, Mathieu J; Boucher, Gabrielle

    2015-01-01

    We present a methodology which jointly infers haplotypes and the causal alleles at a gene influencing a given trait. Often in human genetic studies, the available data consists of genotypes (series of genetic markers along the chromosomes) and a phenotype. However, for many genetic analyses, one needs haplotypes instead of genotypes. Our methodology is not only able to estimate haplotypes conditionally on the disease status, but is also able to infer the alleles at the unknown disease locus. Some applications of our methodology are in genetic mapping and in genetic counseling.

  5. A common allele on chromosome 9 associated with coronary heartdisease

    SciTech Connect

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  6. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    PubMed

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  7. Reduced Height (Rht) Alleles Affect Wheat Grain Quality

    PubMed Central

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0–450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  8. A Mutant Mouse with a Highly Specific Contextual Fear-Conditioning Deficit Found in an N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Screen

    ERIC Educational Resources Information Center

    Pletcher, Mathew T.; Wiltshire, Tim; Tarantino, Lisa M.; Mayford, Mark; Reijmers, Leon G.; Coats, Jennifer K.

    2006-01-01

    Targeted mutagenesis in mice has shown that genes from a wide variety of gene families are involved in memory formation. The efficient identification of genes involved in learning and memory could be achieved by random mutagenesis combined with high-throughput phenotyping. Here, we provide the first report of a mutagenesis screen that has…

  9. Study of HLA-DQA1 alleles in celiac children.

    PubMed

    Nieto, A; Blanco Quirós, A; Arranz, E; Alonso Franch, M; Garrote, J A; Calvo, C

    1995-01-01

    The familial incidence of celiac disease (CD) confirms its genetic basis, although acquired factors are also involved. Many authors have reported a linkage between celiac disease and HLA antigens, but there are differences which depend on geographical areas, and nowadays the study must be done at the genetic level. Thirty-eight celiac children and 52 normal controls were included in this study. All individuals were chosen from the Castilla and Leon area. We used the reverse ¿dot block¿ technique, using sequence-specific oligonucleotide DNA probes (Cetus, USA) to determine the HLA-DQA1 alleles in DNA samples previously amplified by PCR (polymerase chain reaction). The different frequency of alleles in patients and controls was assessed by 3 statistical tests: chi square (chi(2)), relative risk (RR) and etiologic fraction (EF). A very high frequency of DQA1*0201 (chi(2):p <0.0001) and DQA1*0501 (chi(2): p <0.0001) alleles was observed in patients; all but one (97%) had the DQA1*0501 allele vs. 40% of controls (RR: 37.00; EF: 0.955). The DQA1*0201 allele also had a high prevalence in celiacs (58%)(RR: 1.375: EF:0.438). The DQA1*01 allele was only found in 10.5% of patients compared to 79% of controls (chi(2): p <0.0001) and the DQA1*03 allele was also decreased in celiacs. There was only one celiac girl without the DQA1*0501 allele. She had no other clinical or serological differences, as compared to the other patients. In the study of allele subtypes, among the DQA1*01 allele, 50% of patients were positive for DQA1*101 and the remaining 50% had DQA1*0102, but none of the individuals were positive for DQA1*0103. Among normal controls, 32 individuals (61.5%) expressed the DQA1*0102 subtype, 15 (28.9%) the DQA1*0101 subtype and 5 (9.6%) the DQA1*0103 subtype. All positive cases for DQA1-*05 belong to the DQA1* 0501 subtype, in both celiac and control groups. There were 10 possible combinations of HLA-DQA1 genes, but we found a very unequal distribution in both celiacs

  10. Molecular analysis of HLA-B35 alleles and their relationship to HLA-B15 alleles.

    PubMed

    Cereb, N; Kim, C; Hughes, A L; Yang, S Y

    1997-04-01

    The HLA-B35 serotype is one of the largest allelic groups of HLA class I molecules and includes four isotypes. Of the four, the B35 variant isoform is relatively rare and is the most acidic form. DNA sequencing of the rare isoforms revealed three alleles, B*1522, B*3511, and B*3517. A phylogenetic tree of HLA-B15- and HLA-B35-related alleles for the exon 2 and 3 nucleotide sequences showed that exon 2 of B*1522 clusters with B35 alleles whereas exon 3 clusters with B15 alleles. Branches of the tree suggest that the serodeterminants of B35, B62, B63, and B70 may reside in the alpha 1 domain, encoded by exon 2. The B*1520 and B*1522 genes, which type as B62 and B35, respectively, are hybrid molecules alternatively using exon 2 and exon 3 sequences of B*3501 and B*1501. A comparison of intron 2 sequences for B*3501, B*1501 and B*1522 suggests that the recombination site may have been in the region at the 3' end of intron 2. Despite being flanked by two highly polymorphic exons (exons 2 and 3), intron 2 is relatively well conserved in the B-locus, and it is characterized by seven to eight tandem repeats of the CGGGG pentanucleotide. A high degree of sequence homology and repetitive sequences are essential for a significant frequency of recombination. In this report, we reveal more about the complex evolutionary history of the HLA-B alleles.

  11. Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.

    1993-04-01

    Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.

  12. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  13. Spectroscopic and Mutagenesis Studies of Human PGRMC1

    PubMed Central

    Kaluka, Daniel; Batabyal, Dipanwita; Chiang, Bing-Yu; Poulos, Thomas L.; Yeh, Syun-Ru

    2015-01-01

    Progesterone receptor membrane component 1 (PGRMC1) is a 25 kDa protein with an N-terminal transmembrane domain and a putative C-terminal cytochrome b5 domain. Heme-binding activity of PGRMC1 has been shown in various homologues of PGRMC1. Although the general definition of PGRMC1 is as a progesterone receptor, progesterone-binding activity has not been directly demonstrated in any of the purified PGRMC1 proteins fully loaded with heme. Here, we show that the human homologue of PGRMC1 (hPGRMC1) binds heme in a five-coordinate (5C) high-spin (HS) configuration, with an axial tyrosinate ligand, likely Y95. The negatively charged tyrosinate ligand leads to a relatively low redox potential of approximately −331 mV. The Y95C or Y95F mutation dramatically reduces the ability of the protein to bind heme, supporting the assignment of the axial heme ligand to Y95. On the other hand, the Y95H mutation retains ~90% of the heme-binding activity. The heme in Y95H is also 5CHS, but it has a hydroxide axial ligand, conceivably stabilized by the engineered-in H95 via an H-bond; CO binding to the distal ligand-binding site leads to an exchange of the axial ligand to a histidine, possibly H95. We show that progesterone binds to hPGRMC1 and introduces spectral changes that manifest conformational changes to the heme. Our data offer the first direct evidence supporting progesterone-binding activity of PGRMC1. PMID:25675345

  14. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2010-01-12

    Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac(+) revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac(+) revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis. PMID:20036541

  15. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  16. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations

    PubMed Central

    2014-01-01

    Background TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction. PMID:24475756

  17. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections.

    PubMed

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T G; Hendriks, Wiljan J A J; Cortés, Jesús M; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  18. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  19. Estimating the age of alleles by use of intraallelic variability

    SciTech Connect

    Slatkin, M.; Rannala, B.

    1997-02-01

    A method is presented for estimating the age of an allele by use of its frequency and the extent of variation among different copies. The method uses the joint distribution of the number of copies in a population sample and the coalescence times of the intraallelic gene genealogy conditioned on the number of copies. The linear birth-death process is used to approximate the dynamics of a rare allele in a finite population. A maximum-likelihood estimate of the age of the allele is obtained by Monte Carlo integration over the coalescence times. The method is applied to two alleles at the cystic fibrosis (CFTR) locus, {Delta}F508 and G542X, for which intraallelic variability at three intronic microsatellite loci has been examined. Our results indicate that G542X is somewhat older than {Delta}F508. Although absolute estimates depend on the mutation rates at the microsatellite loci, our results support the hypothesis that {Delta}F508 arose <500 generations ({approx}10,000 years) ago. 32 refs., 4 figs.

  20. Multifragment alleles in DNA fingerprints of the parrot, Amazona ventralis

    USGS Publications Warehouse

    Brock, M.K.; White, B.N.

    1991-01-01

    Human DNA probes that identify variable numbers of tandem repeat loci are being used to generate DNA fingerprints in many animal and plant species. In most species the majority of the sc rable autoradiographic bands of the DNA fingerprint represent alleles from numerous unlinked loci. This study was initiated to use DNA fingerprints to determine the amount of band-sharing among captive Hispaniolan parrots (Amazona ventralis) with known genetic relationships. This would form the data base to examine DNA fingerprints of the closely related and endangered Puerto Rican parrot (A. vittata) and to estimate the degree of inbreeding in the relic population. We found by segregation analysis of the bands scored in the DNA fingerprints of the Hispaniolan parrots that there may be as few as two to five loci identified by the human 33.15 probe. Furthermore, at one locus we identified seven alleles, one of which is represented by as many as 19 cosegregating bands. It is unknown how common multiband alleles might be in natural populations, and their existence will cause problems in the assessment of relatedness by band-sharing analysis. We believe, therefore, that a pedigree analysis should be included in all DNA fingerprinting studies, where possible, in order to estimate the number of loci identified by a minisatellite DNA probe and to examine the nature of their alleles.

  1. Natural allelic variations in highly polyploidy Saccharum complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) as important sugar and biofuel crop are highly polypoid with complex genomes. A large amount of natural phenotypic variation exists in sugarcane germplasm. Understanding its allelic variance has been challenging but is a critical foundation for discovery of the genomic seq...

  2. Efficient nonmeiotic allele introgression in livestock using custom endonucleases

    PubMed Central

    Tan, Wenfang; Carlson, Daniel F.; Lancto, Cheryl A.; Garbe, John R.; Webster, Dennis A.; Hackett, Perry B.; Fahrenkrug, Scott C.

    2013-01-01

    We have expanded the livestock gene editing toolbox to include transcription activator-like (TAL) effector nuclease (TALEN)- and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-stimulated homology-directed repair (HDR) using plasmid, rAAV, and oligonucleotide templates. Toward the genetic dehorning of dairy cattle, we introgressed a bovine POLLED allele into horned bull fibroblasts. Single nucleotide alterations or small indels were introduced into 14 additional genes in pig, goat, and cattle fibroblasts using TALEN mRNA and oligonucleotide transfection with efficiencies of 10–50% in populations. Several of the chosen edits mimic naturally occurring performance-enhancing or disease- resistance alleles, including alteration of single base pairs. Up to 70% of the fibroblast colonies propagated without selection harbored the intended edits, of which more than one-half were homozygous. Edited fibroblasts were used to generate pigs with knockout alleles in the DAZL and APC genes to model infertility and colon cancer. Our methods enable unprecedented meiosis-free intraspecific and interspecific introgression of select alleles in livestock for agricultural and biomedical applications. PMID:24014591

  3. Registration of two allelic erect leaf mutants of sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two allelic sorghum [Sorghum bicolor (L.) Moench] erect leaf (erl) mutants were isolated from an Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) mutant library developed at the Plant Stress and Germplasm Development Unit, at Lubbock, Texas. The two mutants, erl1-1 and erl1-2, were isol...

  4. Extensive allele-specific translational regulation in hybrid mice.

    PubMed

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-08-07

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.

  5. Distribution of forensic marker allelic frequencies in Pernambuco, Northestern Brazil.

    PubMed

    Santos, S M; Souza, C A; Rabelo, K C N; Souza, P R E; Moura, R R; Oliveira, T C; Crovella, S

    2015-04-30

    Pernambuco is one of the 27 federal units of Brazil, ranking seventh in the number of inhabitants. We examined the allele frequencies of 13 short tandem repeat loci (CFS1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, vWA, and TPOX), the minimum recommended by the Federal Bureau of Investigation and commonly used in forensic genetics laboratories in Brazil, in a sample of 609 unrelated individuals from all geographic regions of Pernambuco. The allele frequencies ranged from 5 to 47.2%. No significant differences for any loci analyzed were observed compared with other publications in other various regions of Brazil. Most of the markers observed were in Hardy-Weinberg equilibrium. The occurrence of the allele 47.2 (locus FGA) and alleles 35.1 and 39 (locus D21S11), also described in a single study of the Brazilian population, was observed. The other forensic parameters analyzed (matching probability, power of discrimination, polymorphic information content, paternity exclusion, complement factor I, observed heterozygosity, expected heterozygosity) indicated that the studied markers are very informative for human forensic identification purposes in the Pernambuco population.

  6. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  7. Segregation of male-sterility alleles across a species boundary.

    PubMed

    Weller, S G; Sakai, A K; Culley, T M; Duong, L; Danielson, R E

    2014-02-01

    Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male-sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male-sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male-sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male-sterility allele occurs in the parent species and the hybrid zone. These rare male-sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male-sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.

  8. Testing allele homogeneity: the problem of nested hypotheses

    PubMed Central

    2012-01-01

    Background The evaluation of associations between genotypes and diseases in a case-control framework plays an important role in genetic epidemiology. This paper focuses on the evaluation of the homogeneity of both genotypic and allelic frequencies. The traditional test that is used to check allelic homogeneity is known to be valid only under Hardy-Weinberg equilibrium, a property that may not hold in practice. Results We first describe the flaws of the traditional (chi-squared) tests for both allelic and genotypic homogeneity. Besides the known problem of the allelic procedure, we show that whenever these tests are used, an incoherence may arise: sometimes the genotypic homogeneity hypothesis is not rejected, but the allelic hypothesis is. As we argue, this is logically impossible. Some methods that were recently proposed implicitly rely on the idea that this does not happen. In an attempt to correct this incoherence, we describe an alternative frequentist approach that is appropriate even when Hardy-Weinberg equilibrium does not hold. It is then shown that the problem remains and is intrinsic of frequentist procedures. Finally, we introduce the Full Bayesian Significance Test to test both hypotheses and prove that the incoherence cannot happen with these new tests. To illustrate this, all five tests are applied to real and simulated datasets. Using the celebrated power analysis, we show that the Bayesian method is comparable to the frequentist one and has the advantage of being coherent. Conclusions Contrary to more traditional approaches, the Full Bayesian Significance Test for association studies provides a simple, coherent and powerful tool for detecting associations. PMID:23176636

  9. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA

    PubMed Central

    Wong, Kwong-Kwok; Tsang, Yvonne T. M.; Shen, Jianhe; Cheng, Rita S.; Chang, Yi-Mieng; Man, Tsz-Kwong; Lau, Ching C.

    2004-01-01

    Besides their use in mRNA expression profiling, oligonucleotide microarrays have also been applied to single-nucleotide polymorphism (SNP) and loss of heterozygosity (LOH) or allelic imbalance studies. In this report, we evaluate the reliability of using whole genome amplified DNA for analysis with an oligonucleotide microarray containing 11 560 SNPs to detect allelic imbalance and chromosomal copy number abnormalities. Whole genome SNP analyses were performed with DNA extracted from osteosarcoma tissues and patient-matched blood. SNP calls were then generated by Affymetrix® GeneChip® DNA Analysis Software. In two osteosarcoma cases, using unamplified DNA, we identified 793 and 1070 SNP loci with allelic imbalance, respectively. In a parallel experiment with amplified DNA, 78% and 83% of these SNP loci with allelic imbalance was detected. The average false-positive rate is 13.8%. Furthermore, using the Affymetrix® GeneChip® Chromosome Copy Number Tool to analyze the SNP array data, we were able to detect identical chromosomal regions with gain or loss in both amplified and unamplified DNA at cytoband resolution. PMID:15148342

  10. KIR2DL2/2DL3-E35 alleles are functionally stronger than -Q35 alleles

    NASA Astrophysics Data System (ADS)

    Bari, Rafijul; Thapa, Rajoo; Bao, Ju; Li, Ying; Zheng, Jie; Leung, Wing

    2016-03-01

    KIR2DL2 and KIR2DL3 segregate as alleles of a single locus in the centromeric motif of the killer cell immunoglobulin-like receptor (KIR) gene family. Although KIR2DL2/L3 polymorphism is known to be associated with many human diseases and is an important factor for donor selection in allogeneic hematopoietic stem cell transplantation, the molecular determinant of functional diversity among various alleles is unclear. In this study we found that KIR2DL2/L3 with glutamic acid at position 35 (E35) are functionally stronger than those with glutamine at the same position (Q35). Cytotoxicity assay showed that NK cells from HLA-C1 positive donors with KIR2DL2/L3-E35 could kill more target cells lacking their ligands than NK cells with the weaker -Q35 alleles, indicating better licensing of KIR2DL2/L3+ NK cells with the stronger alleles. Molecular modeling analysis reveals that the glutamic acid, which is negatively charged, interacts with positively charged histidine located at position 55, thereby stabilizing KIR2DL2/L3 dimer and reducing entropy loss when KIR2DL2/3 binds to HLA-C ligand. The results of this study will be important for future studies of KIR2DL2/L3-associated diseases as well as for donor selection in allogeneic stem cell transplantation.

  11. KIR2DL2/2DL3-E35 alleles are functionally stronger than -Q35 alleles

    PubMed Central

    Bari, Rafijul; Thapa, Rajoo; Bao, Ju; Li, Ying; Zheng, Jie; Leung, Wing

    2016-01-01

    KIR2DL2 and KIR2DL3 segregate as alleles of a single locus in the centromeric motif of the killer cell immunoglobulin-like receptor (KIR) gene family. Although KIR2DL2/L3 polymorphism is known to be associated with many human diseases and is an important factor for donor selection in allogeneic hematopoietic stem cell transplantation, the molecular determinant of functional diversity among various alleles is unclear. In this study we found that KIR2DL2/L3 with glutamic acid at position 35 (E35) are functionally stronger than those with glutamine at the same position (Q35). Cytotoxicity assay showed that NK cells from HLA-C1 positive donors with KIR2DL2/L3-E35 could kill more target cells lacking their ligands than NK cells with the weaker -Q35 alleles, indicating better licensing of KIR2DL2/L3+ NK cells with the stronger alleles. Molecular modeling analysis reveals that the glutamic acid, which is negatively charged, interacts with positively charged histidine located at position 55, thereby stabilizing KIR2DL2/L3 dimer and reducing entropy loss when KIR2DL2/3 binds to HLA-C ligand. The results of this study will be important for future studies of KIR2DL2/L3-associated diseases as well as for donor selection in allogeneic stem cell transplantation. PMID:27030405

  12. Alternative 3' splice acceptor sites modulate enzymic activity in derivative alleles of the maize bronze1-mutable 13 allele.

    PubMed Central

    Okagaki, R J; Sullivan, T D; Schiefelbein, J W; Nelson, O E

    1992-01-01

    The defective Suppressor-mutator (dSpm)-induced allele bronze1-mutable 13 (bz1-m13) and many of its derivative alleles are leaky mutants with measurable levels of flavonol O3-glucosyltransferase activity. This activity results from splicing at acceptor site-1, one of two cryptic 3' splice sites within the dSpm insertion in bz1-m13. In this study, splicing in bz1-m13 change-in-state (CS) alleles CS-3 and CS-64 was shown to be altered from bz1-m13; previous work found altered splicing in CS-9. CS-64 is a null allele and lacks the acceptor site-1-spliced transcript because this site is deleted. CS-3 and CS-9 had increased levels of the acceptor site-1 transcript relative to bz1-m13 and increased enzymic activities. A deletion in CS-9 altered splicing by eliminating acceptor site-2. Both acceptor sites were intact in CS-3, but a deletion removed most of a 275-bp GC-rich sequence in dSpm. This suggests that GC-rich sequences affect splicing and is consistent with models postulating a role for AU content in the splicing of plant introns. Splicing does not necessarily occur, however, at the junction of AU-rich intron sequences and GC-rich exon sequences. PMID:1477558

  13. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  14. Nonfrequent but well-documented, rare and very rare HLA alleles observed in the Croatian population.

    PubMed

    Grubic, Z; Burek Kamenaric, M; Maskalan, M; Stingl Jankovic, K; Zunec, R

    2014-12-01

    The aim of the study was to evaluate the presence of nonfrequent, rare and very rare alleles among Croats and to estimate whether they are associated with specific alleles at other human leukocyte antigen (HLA) loci. This retrospective study included the typing results from the last 10 years; total number of individuals included was approximately 45,000. Among 17 alleles so far observed only once in our population, 6 (A*24:41, B*07:02:28, B*35:03:03, B*39:40N, DRB1*13:23 and DRB1*14:111) belong to very rare alleles, 2 (B*44:16 and DRB1*01:31) belong to rare alleles according to the 'Rare Alleles Detector' tool ( www.allelefrequencies.net), while for the B*35:101:01 allele published data exist only in the IMGT/HLA database. The remaining eight HLA alleles observed only once among Croats are considered as frequent according to the 'Rare Alleles Detector'. Those 17 HLA alleles are not declared as common well defined (CWD) alleles in the CWD allele catalogue 2.0.0. Haplotype analysis of nonfrequent alleles detected in our sample supports the idea that different populations, although similar in some aspects regarding HLA allele and haplotype distribution, still have some unique characteristics. This is the case for A*01:02, B*39:10 and DRB1*13:32 which form haplotypes unreported to date among our subjects.

  15. Tri-allelic pattern at the TPOX locus: a familial study.

    PubMed

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; Paskulin, Giorgio Adriano; Alvarez, Luís; Amorim, António; Batista Dos Santos, Sidney Emanuel; Alho, Clarice Sampaio

    2014-02-10

    Alleles at the TPOX STR locus have 6-14 different numbers of a four-nucleotide (AATG) repeat motif arranged in tandem. Although tri-allelic genotypes are generally rare, the TPOX tri-allelic pattern has a higher frequency, varying widely among populations. Despite this, there are few accurate reports to disclose the nature of the TPOX third allele. In this work we present data obtained from 45 individuals belonging to the same pedigree, in which there are cases of tri-allelic TPOX genotypes. The subjects were apparently healthy with a normal biological development. We noticed six tri-allelic cases in this family, and all of them were women. Karyotype analysis showed no occurrence of partial 2p trisomy. All the tri-allelic cases had the genotype 8-10-11, probably due to three copies of the TPOX STR sequence in all cells (Type 2 tri-allelic pattern). Based on previous data we assumed the allele 10 as the TPOX third allele. The pedigree analyses show evidences that the TPOX extra-allele was the allele10, it is placed far from the main TPOX locus, and that there is a potential linkage of the TPOX extra-allele-10 with Xq. This was the first study that included a large pedigree analysis in order to understand the nature TPOX tri-allelic pattern.

  16. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  17. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  18. Maximizing allele detection: Effects of analytical threshold and DNA levels on rates of allele and locus drop-out.

    PubMed

    Rakay, Christine A; Bregu, Joli; Grgicak, Catherine M

    2012-12-01

    Interpretation of DNA evidence depends upon the ability of the analyst to accurately compare the DNA profile obtained from an item of evidence and the DNA profile of a standard. This interpretation becomes progressively more difficult as the number of 'drop-out' and 'drop-in' events increase. Analytical thresholds (AT) are typically selected to ensure the false detection of noise is minimized. However, there exists a tradeoff between the erroneous labeling of noise as alleles and the false non-detection of alleles (i.e. drop-out). In this study, the effect ATs had on both types of error was characterized. Various ATs were tested, where three relied upon the analysis of baseline signals obtained from 31 negative samples. The fourth AT was determined by utilizing the relationship between RFU signal and DNA input. The other ATs were the commonly employed 50, 150 and 200 RFU thresholds. Receiver Operating Characteristic (ROC) plots showed that although high ATs completely negated the false labeling of noise, DNA analyzed with ATs derived using analysis of the baseline signal exhibited the lowest rates of drop-out and the lowest total error rates. In another experiment, the effect small changes in ATs had on drop-out was examined. This study showed that as the AT increased from ∼10 to 60 RFU, the number of heterozygous loci exhibiting the loss of one allele increased. Between ATs of 60 and 150 RFU, the frequency of allelic drop-out remained constant at 0.27 (±0.02) and began to decrease when ATs of 150 RFU or greater were utilized. In contrast, the frequency of heterozygous loci exhibiting the loss of both alleles consistently increased with AT. In summary, for samples amplified with less than 0.5ng of DNA, ATs derived from baseline analysis of negatives were shown to decrease the frequency of drop-out by a factor of 100 without significantly increasing rates of erroneous noise detection.

  19. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    PubMed

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  20. Modification of an HLA-B PCR-SSOP typing system leading to improved allele determination.

    PubMed

    Middleton, D; Williams, F; Cullen, C; Mallon, E

    1995-04-01

    Modifications have been introduced to a previously reported HLA-B PCR-SSOP typing system. This has enabled further definition of alleles, determination of the probe pattern of some alleles not previously examined and identification of patterns of possible new alleles. However there are still some alleles that cannot be differentiated and there are several alleles which when present as a homozygote have the same pattern as in combination with another allele. When the method was applied to the typing of 66 consecutive cadaveric donors there were three donors whose type differed from the serological type.

  1. Signal strains that can detect certain DNA replication and membrane mutants of Escherichia coli: Isolation of a new ssb allele, ssb-3

    SciTech Connect

    Schmellik-Sandage, C.S.; Tessman, E.S. )

    1990-08-01

    Mutations in several dna genes of Escherichia coli, when introduced into a strain with a lac fusion in the SOS gene sulA, resulted in formation of blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal). Unexpectedly, several lines of evidence indicated that the blue colony color was not primarily due to induction of the SOS system but rather was due to a membrane defect, along with the replication defect, making the cell X-Gal extrasensitive (phenotypically Xgx), possibly because of enhanced permeability to X-Gal or leakage of beta-galactosidase. (i) In most cases, beta-galactosidase specific activity increased only two- to threefold. (ii) Mutations conferring tolerance to colicin E1 resulted in blue colony color with no increase in beta-galactosidase specific activity. (iii) Mutations in either the dnaA, dnaB, dnaC, dnaE, dnaG, or ssb gene, when introduced into a strain containing a bioA::lac fusion, produced a blue colony color without an increase in beta-galactosidase synthesis. These lac fusion strains can serve as signal strains to detect dna mutations as well as membrane mutations. By localized mutagenesis of the 92-min region of the chromosome of the sulA::lac signal strain and picking blue colonies, we isolated a novel ssb allele that confers the same extreme UV sensitivity as a delta recA allele, which is a considerably greater sensitivity than that conferred by the two well-studied ssb alleles, ssb-1 and ssb-113. The technique also yielded dnaB mutants; fortuitously, uvrA mutants were also found.

  2. Signal strains that can detect certain DNA replication and membrane mutants of Escherichia coli: isolation of a new ssb allele, ssb-3.

    PubMed Central

    Schmellik-Sandage, C S; Tessman, E S

    1990-01-01

    Mutations in several dna genes of Escherichia coli, when introduced into a strain with a lac fusion in the SOS gene sulA, resulted in formation of blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal). Unexpectedly, several lines of evidence indicated that the blue colony color was not primarily due to induction of the SOS system but rather was due to a membrane defect, along with the replication defect, making the cell X-Gal extrasensitive (phenotypically Xgx), possibly because of enhanced permeability to X-Gal or leakage of beta-galactosidase. (i) In most cases, beta-galactosidase specific activity increased only two- to threefold. (ii) Mutations conferring tolerance to colicin E1 resulted in blue colony color with no increase in beta-galactosidase specific activity. (iii) Mutations in either the dnaA, dnaB, dnaC, dnaE, dnaG, or ssb gene, when introduced into a strain containing a bioA::lac fusion, produced a blue colony color without an increase in beta-galactosidase synthesis. These lac fusion strains can serve as signal strains to detect dna mutations as well as membrane mutations. By localized mutagenesis of the 92-min region of the chromosome of the sulA::lac signal strain and picking blue colonies, we isolated a novel ssb allele that confers the same extreme UV sensitivity as a delta recA allele, which is a considerably greater sensitivity than that conferred by the two well-studied ssb alleles, ssb-1 and ssb-113. The technique also yielded dnaB mutants; fortuitously, uvrA mutants were also found. PMID:2142938

  3. An efficient method for multiple site-directed mutagenesis using type IIs restriction enzymes.

    PubMed

    Zhang, Zhiqiang; Xu, Kun; Xin, Ying; Zhang, Zhiying

    2015-05-01

    Site-directed mutagenesis (SDM) methods are very important in modern molecular biology, biochemistry, and protein engineering. Here, we present a novel SDM method that can be used for multiple mutation generation using type IIs restriction enzymes. This approach is faster and more convenient than the overlap polymerase chain reaction (PCR) method due to its having fewer reaction steps and being cheaper than, but as convenient as, enzymatic assembly. We illustrate the usefulness of our method by introducing three mutations into the bacterial Streptococcus thermophilus Cas9 (bStCas9) gene, converting the humanized S. thermophilus Cas9 (hStCas9) gene into nuclease dead or H847A nickase mutants and generating sunnyTALEN mutagenesis from a wild-type TALEN backbone.

  4. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis.

    PubMed

    Fedashchin, Andrij; Cernota, William H; Gonzalez, Melissa C; Leach, Benjamin I; Kwan, Noelle; Wesley, Roy K; Weber, J Mark

    2015-11-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ~3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  5. Mutagenesis at the ouabain-resistance locus in human diploid fibroblasts.

    PubMed

    Buchwald, M

    1977-09-01

    The variables affecting the frequency of ouabain-resistant mutant clones have been studied in a strain of foetal lung fibroblasts. Optimum mutant recovery was obtained when cells were selected in 10(-6) M ouabain at a cell density of 2 X 10(4) cells/cm 2 (10(6) cell per 100-mm dish). The spontaneous mutation rate was estimated to be 4 X 10(-8) per cell generation. Treatment with the mutagens ethyl methanesulfonate (EMS), N-methyl-N' -nitro-N-nitrosoguanidine, and UV light increased the frequency of mutant colonies by an order of magnitude. The maximum number of mutants after mutagenesis with EMS occurred after two population doublings of growth in non-selective medium prior to selection and depended on the dose of EMS. Ouabain-resistance is a useful marker for studies of quantitative mutagenesis in human cells. PMID:904650

  6. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    PubMed Central

    Beacham, T.A.; Macia, V. Mora; Rooks, P.; White, D.A.; Ali, S.T.

    2015-01-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed. PMID:26753128

  7. Combinatorial mutagenesis to restrict amino acid usage in an enzyme to a reduced set

    PubMed Central

    Akanuma, Satoshi; Kigawa, Takanori; Yokoyama, Shigeyuki

    2002-01-01

    We developed an effective strategy to restrict the amino acid usage in a relatively large protein to a reduced set with conservation of its in vivo function. The 213-residue Escherichia coli orotate phosphoribosyltransferase was subjected to 22 cycles of segment-wise combinatorial mutagenesis followed by 6 cycles of site-directed random mutagenesis, both coupled with a growth-related phenotype selection. The enzyme eventually tolerated 73 amino acid substitutions: In the final variant, 9 amino acid types (A, D, G, L, P, R, T, V, and Y) occupied 188 positions (88%), and none of 7 amino acid types (C, H, I, M, N, Q, and W) appeared. Therefore, the catalytic function associated with a relatively large protein may be achieved with a subset of the 20 amino acid. The converged sequence also implies simpler constituents for proteins in the early stage of evolution. PMID:12361984

  8. Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.

    PubMed

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn

    2015-03-20

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/. PMID:24847672

  9. Inhibition of tobacco-induced mutagenesis by eugenol and plant extracts.

    PubMed

    Sukumaran, K; Kuttan, R

    1995-05-01

    Inhibitory effects of eugenol, a compound present in many spices such as cloves, cardamom etc. and the extracts of Anacyclus pyrethrum and Spilanthes calva which are traditionally used in India during the preparation of chewable tobacco, on tobacco-induced mutagenesis were evaluated using Ames Salmonella/microsome assay. Eugenol significantly inhibited (P < 0.001) tobacco-induced mutagenicity at concentrations of 0.5 and 1 mg/plate. Anacyclus pyrethrum extract (1 mg/plate) produced 74.33% inhibition while the extract of Spilanthes calva at 2 mg/plate inhibited tobacco-induced mutagenesis by 86.4%. Eugenol and the plant extracts also inhibited the nitrosation of methylurea in a dose-dependent manner. PMID:7753104

  10. Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.

    PubMed

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn

    2015-03-20

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/.

  11. [Evaluation of induced mutagenesis in workers engaged into chrysotile asbestos production].

    PubMed

    Zhumabekova, G S; Amanbekova, A U; Ibraeva, L K; Azhimetova, G N

    2014-01-01

    The authors present data of cytogenetic study of workers engaged into chrysotile asbestos industry. Evaluation of chromosomal aberrations in peripheral lymphocytes of workers in main workshops of "Kustanaiskie mineral" JSC revealed reliable increase in chromosomal aberrations level. Structural chromosomal abnormalities in main groups were presented by chromosome and chromatide type aberrations with latter prevelent--that can prove chemical mutagenesis. Chromosome type aberrations were presented by paired fragments and centromere rupture, those of chromatide type--by deletions, single fragments and chromatide ruptures. Higher values of induced mutagenesis were revealed in workers of chrysotile asbestos ore concentration workshop, in workers of ore-preparation workshop, and in individuals with over 25 years of work at chrysotile asbestos production.

  12. Collagen protein abnormalities produced by site-directed mutagenesis of the pro alpha 1(I) gene.

    PubMed

    Bateman, J F; Mascara, T; Cole, W G; Stacey, A; Jaenisch, R

    1989-01-01

    Site-directed mutagenesis of collagen genes offers a powerful new approach for studying structure-function relationships. The construction of engineered mutant collagen genes coding for glycine substitutions and their expression giving rise to the osteogenesis imperfecta type II phenotype in cells and transgenic mice has recently been achieved. This paper further defines the molecular abnormalities of collagen and bone pathology resulting from the expression of the mutant genes.

  13. Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence.

    PubMed Central

    Seifert, H S; Ajioka, R S; Paruchuri, D; Heffron, F; So, M

    1990-01-01

    The method of shuttle mutagenesis has been extended to Neisseria gonorrhoeae. We have constructed a defective mini-Tn3 derivative that encodes chloramphenicol resistance in both N. gonorrhoeae and Escherichia coli and selected for mutations in the chloramphenicol resistance gene that express higher levels of antibiotic resistance in N. gonorrhoeae. Isogenic N. gonorrhoeae strains that differ only in pilin expression were constructed and used to test the effect of pilin null mutations on DNA transformation competence. PMID:2152910

  14. The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.

    PubMed

    Kozmin, Stanislav G; Jinks-Robertson, Sue

    2013-03-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps.

  15. A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria

    PubMed Central

    Monson, Rita; Smith, Debra S.; Matilla, Miguel A.; Roberts, Kevin; Richardson, Elizabeth; Drew, Alison; Williamson, Neil; Ramsay, Josh; Welch, Martin; Salmond, George P. C.

    2015-01-01

    Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii, and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways. PMID:26733980

  16. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics.

    PubMed Central

    Horn, Carsten; Offen, Nils; Nystedt, Sverker; Häcker, Udo; Wimmer, Ernst A

    2003-01-01

    Transposon mutagenesis provides a fundamental tool for functional genomics. Here we present a non-species-specific, combined enhancer detection and binary expression system based on the transposable element piggyBac: For the different components of this insertional mutagenesis system, we used widely applicable transposons and distinguishable broad-range transformation markers, which should enable this system to be operational in nonmodel arthropods. In a pilot screen in Drosophila melanogaster, piggyBac mutator elements on the X chromosome were mobilized in males by a Hermes-based jumpstarter element providing piggyBac transposase activity under control of the alpha1-tubulin promoter. As primary reporters in the piggyBac mutator elements, we employed the heterologous transactivators GAL4delta or tTA. To identify larval and adult enhancer detectors, strains carrying UASp-EYFP or TRE-EYFP as secondary reporter elements were used. Tissue-specific enhancer activities were readily observed in the GAL4delta/UASp-based systems, but only rarely in the tTA/TRE system. Novel autosomal insertions were recovered with an average jumping rate of 80%. Of these novel insertions, 3.8% showed homozygous lethality, which was reversible by piggyBac excision. Insertions were found in both coding and noncoding regions of characterized genes and also in noncharacterized and non-P-targeted CG-number genes. This indicates that piggyBac will greatly facilitate the intended saturation mutagenesis in Drosophila. PMID:12618403

  17. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    PubMed

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. PMID:27061764

  18. Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia.

    PubMed

    Erkeland, Stefan J; Verhaak, Roel G W; Valk, Peter J M; Delwel, Ruud; Löwenberg, Bob; Touw, Ivo P

    2006-01-15

    Retroviral insertion mutagenesis is considered a powerful tool to identify cancer genes in mice, but its significance for human cancer has remained elusive. Moreover, it has recently been debated whether common virus integrations are always a hallmark of tumor cells and contribute to the oncogenic process. Acute myeloid leukemia (AML) is a heterogeneous disease with a variable response to treatment. Recurrent cytogenetic defects and acquired mutations in regulatory genes are associated with AML subtypes and prognosis. Recently, gene expression profiling (GEP) has been applied to further risk stratify AML. Here, we show that mouse leukemia genes identified by retroviral insertion mutagenesis are more frequently differentially expressed in distinct subclasses of adult and pediatric AML than randomly selected genes or genes located more distantly from a virus integration site. The candidate proto-oncogenes showing discriminative expression in primary AML could be placed in regulatory networks mainly involved in signal transduction and transcriptional control. Our data support the validity of retroviral insertion mutagenesis in mice for human disease and indicate that combining these murine screens for potential proto-oncogenes with GEP in human AML may help to identify critical disease genes and novel pathogenetic networks in leukemia.

  19. Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis.

    PubMed

    Rawson, Jonathan M O; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Patterson, Steven E; Mansky, Louis M

    2015-11-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity.

  20. Lack of Mutational Hot Spots during Decitabine-Mediated HIV-1 Mutagenesis

    PubMed Central

    Rawson, Jonathan M. O.; Landman, Sean R.; Reilly, Cavan S.; Bonnac, Laurent; Patterson, Steven E.

    2015-01-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity. PMID:26282416

  1. Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space.

    PubMed

    Perales, Celia; Henry, Michel; Domingo, Esteban; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2011-12-01

    Lethal mutagenesis or virus transition into error catastrophe is an antiviral strategy that aims at extinguishing a virus by increasing the viral mutation rates during replication. The molecular basis of lethal mutagenesis is largely unknown. Previous studies showed that a critical substitution in the foot-and-mouth disease virus (FMDV) polymerase was sufficient to allow the virus to escape extinction through modulation of the transition types induced by the purine nucleoside analogue ribavirin. This substitution was not detected in mutant spectra of FMDV populations that had not replicated in the presence of ribavirin, using standard molecular cloning and nucleotide sequencing. Here we selectively amplify and analyze low-melting-temperature cDNA duplexes copied from FMDV genome populations passaged in the absence or presence of ribovirin Hypermutated genomes with high frequencies of A and U were present in both ribavirin -treated and untreated populations, but the major effect of ribavirin mutagenesis was to accelerate the occurrence of AU-rich mutant clouds during the early replication rounds of the virus. The standard FMDV quasispecies passaged in the absence of ribavirin included the salient transition-modulating, ribavirin resistance mutation, whose frequency increased in populations treated with ribavirin. Thus, even nonmutagenized FMDV quasispecies include a deep, mutationally biased portion of sequence space, in support of the view that the virus replicates close to the error threshold for maintenance of genetic information.

  2. Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups

    PubMed Central

    Genovesi, Laura A.; Ng, Ching Ging; Davis, Melissa J.; Remke, Marc; Taylor, Michael D.; Adams, David J.; Rust, Alistair G.; Ward, Jerrold M.; Ban, Kenneth H.; Jenkins, Nancy A.; Copeland, Neal G.; Wainwright, Brandon J.

    2013-01-01

    The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1lacZ/+), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1lacZ/+ controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups. PMID:24167280

  3. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis.

    PubMed

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J Pablo; Lopez, Bernard S

    2016-07-11

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses.

  4. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus.

    PubMed

    Urbański, Dorian Fabian; Małolepszy, Anna; Stougaard, Jens; Andersen, Stig Uggerhøj

    2012-02-01

    Use of insertion mutants facilitates functional analysis of genes, but it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics in most plant species. The main challenge is developing efficient high-throughput procedures for both mutagenesis and identification of insertion sites. To date, only floral-dip T-DNA transformation of Arabidopsis has produced independent germinal insertions, thereby allowing generation of mutant populations from seeds of single plants. In addition, advances in insertion detection have been hampered by a lack of protocols, including software for automated data analysis, that take full advantage of high-throughput next-generation sequencing. We have addressed these challenges by developing the FSTpoolit protocol and software package, and here we demonstrate its efficacy by detecting 8935 LORE1 insertions in 3744 Lotus japonicus plants. The identified insertions show that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to homogenous gene targeting and exonic insertion preference. As LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating progeny generates a complete mutant population. This ease of LORE1 mutagenesis, combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource.

  5. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  6. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.

    PubMed

    Ito, Yasuhiro; Nishizawa-Yokoi, Ayako; Endo, Masaki; Mikami, Masafumi; Toki, Seiichi

    2015-11-01

    Site-directed mutagenesis using genetic approaches can provide a wealth of resources for crop breeding as well as for biological research. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genome region; the system functions in a variety of organisms, including plants. Here, we report application of the CRISPR/Cas9 system to efficient mutagenesis of the tomato genome. In this study, we targeted the tomato RIN gene, which encodes a MADS-box transcription factor regulating fruit ripening. Three regions within the gene were targeted and mutations consisting either of a single base insertion or deletion of more than three bases were found at the Cas9 cleavage sites in T0 regenerated plants. The RIN-protein-defective mutants produced incomplete-ripening fruits in which red color pigmentation was significantly lower than that of wild type, while heterologous mutants expressing the remaining wild-type gene reached full-ripening red color, confirming the important role of RIN in ripening. Several mutations that were generated at three independent target sites were inherited in the T1 progeny, confirming the applicability of this mutagenesis system in tomato.

  7. Integrated Mimicry of B Cell Antibody Mutagenesis Using Yeast Homologous Recombination

    PubMed Central

    Wittrup, K. Dane

    2014-01-01

    Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies. PMID:20645027

  8. Integrated mimicry of B cell antibody mutagenesis using yeast homologous recombination.

    PubMed

    Swers, Jeffrey S; Yeung, Yik A; Wittrup, K Dane

    2011-01-01

    Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies.

  9. Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups.

    PubMed

    Genovesi, Laura A; Ng, Ching Ging; Davis, Melissa J; Remke, Marc; Taylor, Michael D; Adams, David J; Rust, Alistair G; Ward, Jerrold M; Ban, Kenneth H; Jenkins, Nancy A; Copeland, Neal G; Wainwright, Brandon J

    2013-11-12

    The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups. PMID:24167280

  10. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives.

    PubMed

    Caignard, Grégory; Eva, Megan M; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  11. Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli

    PubMed Central

    Mortazavi, Pooneh; Knight, Rob; Gill, Ryan T.

    2016-01-01

    Chemical genomics expands our understanding of microbial tolerance to inhibitory chemicals, but its scope is often limited by the throughput of genome-scale library construction and genotype-phenotype mapping. Here we report a method for rapid, parallel, and deep characterization of the response to antibiotics in Escherichia coli using a barcoded genome-scale library, next-generation sequencing, and streamlined bioinformatics software. The method provides quantitative growth data (over 200,000 measurements) and identifies contributing antimicrobial resistance and susceptibility alleles. Using multivariate analysis, we also find that subtle differences in the population responses resonate across multiple levels of functional hierarchy. Finally, we use machine learning to identify a unique allelic and proteomic fingerprint for each antibiotic. The method can be broadly applied to tolerance for any chemical from toxic metabolites to next-generation biofuels and antibiotics. PMID:26771672

  12. Dense deposit disease and the factor H H402 allele.

    PubMed

    Lau, Keith K; Smith, Richard J; Kolbeck, Peter C; Butani, Lavjay

    2008-06-01

    Herein, we describe the case of an 8-year-old boy who presented with a nephritic nephrotic syndrome. His laboratory investigation was significant for a persistently low serum complement 3 level. A renal biopsy was performed, based on which, he was diagnosed with dense deposit disease/membranoproliferative glomerulonephritis type II (DDD/MPGN II). He was treated with alternate-day oral corticosteroids, angiotensin-converting enzyme (ACE) inhibitors and tacrolimus. Factor H mutational analysis showed the Y402H and I62V allele polymorphisms. The purpose of our report is to discuss the association of the H402 allele variant of factor H with the DDD/MPGN II phenotype and its possible therapeutic implications.

  13. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    PubMed Central

    Song, Jian; Yang, Xiping; Resende, Marcio F. R.; Neves, Leandro G.; Todd, James; Zhang, Jisen; Comstock, Jack C.; Wang, Jianping

    2016-01-01

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes. PMID:27375658

  14. Natural Allelic Variations in Highly Polyploidy Saccharum Complex.

    PubMed

    Song, Jian; Yang, Xiping; Resende, Marcio F R; Neves, Leandro G; Todd, James; Zhang, Jisen; Comstock, Jack C; Wang, Jianping

    2016-01-01

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.

  15. Natural Allelic Variations in Highly Polyploidy Saccharum Complex.

    PubMed

    Song, Jian; Yang, Xiping; Resende, Marcio F R; Neves, Leandro G; Todd, James; Zhang, Jisen; Comstock, Jack C; Wang, Jianping

    2016-01-01

    Sugarcane (Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designed based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWA-mem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. The target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes. PMID:27375658

  16. Inferring Selection Intensity and Allele Age from Multilocus Haplotype Structure

    PubMed Central

    Chen, Hua; Slatkin, Montgomery

    2013-01-01

    It is a challenging task to infer selection intensity and allele age from population genetic data. Here we present a method that can efficiently estimate selection intensity and allele age from the multilocus haplotype structure in the vicinity of a segregating mutant under positive selection. We use a structured-coalescent approach to model the effect of directional selection on the gene genealogies of neutral markers linked to the selected mutant. The frequency trajectory of the selected allele follows the Wright-Fisher model. Given the position of the selected mutant, we propose a simplified multilocus haplotype model that can efficiently model the dynamics of the ancestral haplotypes under the joint influence of selection and recombination. This model approximates the ancestral genealogies of the sample, which reduces the number of states from an exponential function of the number of single-nucleotide polymorphism loci to a quadratic function. That allows parameter inference from data covering DNA regions as large as several hundred kilo-bases. Importance sampling algorithms are adopted to evaluate the probability of a sample by exploring the space of both allele frequency trajectories of the selected mutation and gene genealogies of the linked sites. We demonstrate by simulation that the method can accurately estimate selection intensity for moderate and strong positive selection. We apply the method to a data set of the G6PD gene in an African population and obtain an estimate of 0.0456 (95% confidence interval 0.0144−0.0769) for the selection intensity. The proposed method is novel in jointly modeling the multilocus haplotype pattern caused by recombination and mutation, allowing the analysis of haplotype data in recombining regions. Moreover, the method is applicable to data from populations under exponential growth and a variety of other demographic histories. PMID:23797107

  17. Tracing pastoralist migrations to southern Africa with lactase persistence alleles.

    PubMed

    Macholdt, Enrico; Lede, Vera; Barbieri, Chiara; Mpoloka, Sununguko W; Chen, Hua; Slatkin, Montgomery; Pakendorf, Brigitte; Stoneking, Mark

    2014-04-14

    Although southern African Khoisan populations are often assumed to have remained largely isolated during prehistory, there is growing evidence for a migration of pastoralists from eastern Africa some 2,000 years ago, prior to the arrival of Bantu-speaking populations in southern Africa. Eastern Africa harbors distinctive lactase persistence (LP) alleles, and therefore LP alleles in southern African populations may be derived from this eastern African pastoralist migration. We sequenced the lactase enhancer region in 457 individuals from 18 Khoisan and seven Bantu-speaking groups from Botswana, Namibia, and Zambia and additionally genotyped four short tandem repeat (STR) loci that flank the lactase enhancer region. We found nine single-nucleotide polymorphisms, of which the most frequent is -14010(∗)C, which was previously found to be associated with LP in Kenya and Tanzania and to exhibit a strong signal of positive selection. This allele occurs in significantly higher frequency in pastoralist groups and in Khoe-speaking groups in our study, supporting the hypothesis of a migration of eastern African pastoralists that was primarily associated with Khoe speakers. Moreover, we find a signal of ongoing positive selection in all three pastoralist groups in our study, as well as (surprisingly) in two foraging groups. PMID:24704073

  18. The Joint Allele-Frequency Spectrum in Closely Related Species

    PubMed Central

    Chen, Hua; Green, Richard E.; Pääbo, Svante; Slatkin, Montgomery

    2007-01-01

    We develop the theory for computing the joint frequency spectra of alleles in two closely related species. We allow for arbitrary population growth in both species after they had a common ancestor. We focus on the case in which a single chromosome is sequenced from one of the species. We use classical diffusion theory to show that, if the ancestral species was at equilibrium under mutation and drift and a chromosome from one of the descendant species carries the derived allele, the frequency spectrum in the other species is uniform, independently of the demographic history of both species. We also predict the expected densities of segregating and fixed sites when the chromosome from the other species carries the ancestral allele. We compare the predictions of our model with the site-frequency spectra of SNPs in the four HapMap populations of humans when the nucleotide present in the Neanderthal DNA sequence is ancestral or derived, using the chimp genome as the outgroup. PMID:17603120

  19. FKBP5 risk alleles and the development of intrusive memories.

    PubMed

    Cheung, Jessica; Bryant, Richard A

    2015-11-01

    Intrusive memories are unwanted recollections that maintain distress and are central to numerous psychological disorders, including posttraumatic stress disorder (PTSD). Convergent evidence suggests that glucocorticoid increases enhance the strength of emotional memories. The FKBP5 polymorphism modulates glucocorticoid receptor sensitivity, and has been shown to increase risk for PTSD. Healthy high and low risk FKBP5 allele carriers (N=46) underwent a cold pressor task, and then viewed negative and neutral images. Two days later participants were given a surprise recall test and measure of intrusive memories of the images. Following the cold pressor task, high-risk allele participants had a higher cortisol response than low-risk participants. High-risk carriers also reported more intrusive memories of the negative and neutral images than low-risk carriers. These findings point to the minor alleles of the FKBP5 polymorphism being a risk factor for development of intrusive memories, possibly as a result of impaired glucocorticoid receptor sensitivity. This may explain one mechanism for FKBP5 being a risk factor for PTSD following traumatic events.

  20. Tracing pastoralist migrations to southern Africa with lactase persistence alleles.

    PubMed

    Macholdt, Enrico; Lede, Vera; Barbieri, Chiara; Mpoloka, Sununguko W; Chen, Hua; Slatkin, Montgomery; Pakendorf, Brigitte; Stoneking, Mark

    2014-04-14

    Although southern African Khoisan populations are often assumed to have remained largely isolated during prehistory, there is growing evidence for a migration of pastoralists from eastern Africa some 2,000 years ago, prior to the arrival of Bantu-speaking populations in southern Africa. Eastern Africa harbors distinctive lactase persistence (LP) alleles, and therefore LP alleles in southern African populations may be derived from this eastern African pastoralist migration. We sequenced the lactase enhancer region in 457 individuals from 18 Khoisan and seven Bantu-speaking groups from Botswana, Namibia, and Zambia and additionally genotyped four short tandem repeat (STR) loci that flank the lactase enhancer region. We found nine single-nucleotide polymorphisms, of which the most frequent is -14010(∗)C, which was previously found to be associated with LP in Kenya and Tanzania and to exhibit a strong signal of positive selection. This allele occurs in significantly higher frequency in pastoralist groups and in Khoe-speaking groups in our study, supporting the hypothesis of a migration of eastern African pastoralists that was primarily associated with Khoe speakers. Moreover, we find a signal of ongoing positive selection in all three pastoralist groups in our study, as well as (surprisingly) in two foraging groups.

  1. Functional Dissection of an Alternatively Spliced Herpesvirus Gene by Splice Site Mutagenesis

    PubMed Central

    Schommartz, Tim; Loroch, Stefan; Alawi, Malik; Grundhoff, Adam; Sickmann, Albert

    2016-01-01

    ABSTRACT Herpesviruses have large and complex DNA genomes. The largest among the herpesviruses, those of the cytomegaloviruses, include over 170 genes. Although most herpesvirus gene products are expressed from unspliced transcripts, a substantial number of viral transcripts are spliced. Some viral transcripts are subject to alternative splicing, which leads to the expression of several proteins from a single gene. Functional analysis of individual proteins derived from an alternatively spliced gene is difficult, as deletion and nonsense mutagenesis, both common methods used in the generation of viral gene knockout mutants, affect several or all gene products at the same time. Here, we show that individual gene products of an alternatively spliced herpesvirus gene can be inactivated selectively by mutagenesis of the splice donor or acceptor site and by intron deletion or substitution mutagenesis. We used this strategy to dissect the essential M112/113 gene of murine cytomegalovirus (MCMV), which encodes the MCMV Early 1 (E1) proteins. The expression of each of the four E1 protein isoforms was inactivated individually, and the requirement for each isoform in MCMV replication was analyzed in fibroblasts, endothelial cells, and macrophages. We show that the E1 p87 isoform, but not the p33, p36, and p38 isoforms, is essential for viral replication in cell culture. Moreover, the presence of one of the two medium-size isoforms (p36 or p38) and the presence of intron 1, but not its specific sequence, are required for viral replication. This study demonstrates the usefulness of splice site mutagenesis for the functional analysis of alternatively spliced herpesvirus genes. IMPORTANCE Herpesviruses include up to 170 genes in their DNA genomes. The functions of most viral gene products remain poorly defined. The construction of viral gene knockout mutants has thus been an important tool for functional analysis of viral proteins. However, this strategy is of limited use when

  2. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  3. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  4. Conditional Allele Mouse Planner (CAMP): software to facilitate the planning and design of breeding strategies involving mice with conditional alleles.

    PubMed

    Hoffert, Jason D; Pisitkun, Trairak; Miller, R Lance

    2012-06-01

    Transgenic and conditional knockout mouse models play an important role in biomedical research and their use has grown exponentially in the last 5-10 years. Generating conditional knockouts often requires breeding multiple alleles onto the background of a single mouse or group of mice. Breeding these mice depends on parental genotype, litter size, transmission frequency, and the number of breeding rounds. Therefore, a well planned breeding strategy is critical for keeping costs to a minimum. However, designing a viable breeding strategy can be challenging. With so many different variables this would be an ideal task for a computer program. To facilitate this process, we created a Java-based program called Conditional Allele Mouse Planner (CAMP). CAMP is designed to provide an estimate of the number of breeders, amount of time, and costs associated with generating mice of a particular genotype. We provide a description of CAMP, how to use it, and offer it freely as an application.

  5. Power of IRT in GWAS: successful QTL mapping of sum score phenotypes depends on interplay between risk allele frequency, variance explained by the risk allele, and test characteristics.

    PubMed

    van den Berg, Stéphanie M; Service, Susan K

    2012-12-01

    As data from sequencing studies in humans accumulate, rare genetic variants influencing liability to disease and disorders are expected to be identified. Three simulation studies show that characteristics and properties of diagnostic instruments interact with risk allele frequency to affect the power to detect a quantitative trait locus (QTL) based on a test score derived from symptom counts or questionnaire items. Clinical tests, that is, tests that show a positively skewed phenotypic sum score distribution in the general population, are optimal to find rare risk alleles of large effect. Tests that show a negatively skewed sum score distribution are optimal to find rare protective alleles of large effect. For alleles of small effect, tests with normally distributed item parameters give best power for a wide range of allele frequencies. The item-response theory framework can help understand why an existing measurement instrument has more power to detect risk alleles with either low or high frequency, or both kinds.

  6. The number of alleles at a microsatellite defines the allele frequency spectrum and facilitates fast accurate estimation of theta.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2010-12-01

    Theoretical work focused on microsatellite variation has produced a number of important results, including the expected distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. However, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approximations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which we express as a function of θ, the population-scaled mutation rate, based on simulated data. Discovered relationships between θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ. The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the microsatellite frequency spectrum under evolutionary scenarios of interest may guide investigators to the use of relevant and sometimes novel summary statistics.

  7. Increasing long-term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  8. Allele Name Translation Tool and Update NomenCLature: software tools for the automated translation of HLA allele names between successive nomenclatures.

    PubMed

    Mack, S J; Hollenbach, J A

    2010-05-01

    In this brief communication, we describe the Allele Name Translation Tool (antt) and Update NomenCLature (uncl), free programs developed to facilitate the translation of human leukocyte antigen (HLA) allele names recorded using the December 2002 version of the HLA allele nomenclature (e.g. A*01010101) to those recorded using the colon-delimited version of the HLA allele nomenclature (e.g. A*01:01:01:01) that was adopted in April 2010. In addition, the antt and uncl translate specific HLA allele-name changes (e.g. DPB1*0502 is translated to DPB1*104:01), as well as changes to the locus prefix for HLA-C (i.e. Cw* is translated to C*). The antt and uncl will also translate allele names that have been truncated to two, four, or six digits, as well as ambiguous allele strings. The antt is a locally installed and run application, while uncl is a web-based tool that requires only an Internet connection and a modern browser. The antt accepts a variety of HLA data-presentation and allele-name formats. In addition, the antt can translate using user-defined conversion settings (e.g. the names of alleles that encode identical peptide binding domains can be translated to a common 'P-code'), and can serve as a preliminary data-sanity tool. The antt is available for download, and uncl for use, at www.igdawg.org/software.

  9. Allele Name Translation Tool and Update NomenCLature: software tools for the automated translation of HLA allele names between successive nomenclatures.

    PubMed

    Mack, S J; Hollenbach, J A

    2010-05-01

    In this brief communication, we describe the Allele Name Translation Tool (antt) and Update NomenCLature (uncl), free programs developed to facilitate the translation of human leukocyte antigen (HLA) allele names recorded using the December 2002 version of the HLA allele nomenclature (e.g. A*01010101) to those recorded using the colon-delimited version of the HLA allele nomenclature (e.g. A*01:01:01:01) that was adopted in April 2010. In addition, the antt and uncl translate specific HLA allele-name changes (e.g. DPB1*0502 is translated to DPB1*104:01), as well as changes to the locus prefix for HLA-C (i.e. Cw* is translated to C*). The antt and uncl will also translate allele names that have been truncated to two, four, or six digits, as well as ambiguous allele strings. The antt is a locally installed and run application, while uncl is a web-based tool that requires only an Internet connection and a modern browser. The antt accepts a variety of HLA data-presentation and allele-name formats. In addition, the antt can translate using user-defined conversion settings (e.g. the names of alleles that encode identical peptide binding domains can be translated to a common 'P-code'), and can serve as a preliminary data-sanity tool. The antt is available for download, and uncl for use, at www.igdawg.org/software. PMID:20412076

  10. Allele walking: a new and highly accurate approach to HLA-DRB1 typing. Application to DRB1*04 alleles.

    PubMed

    Nieto, A; Tobes, R; Martín, J; Pareja, E

    1997-02-01

    We have developed a typing method, which can be used even in small laboratories, to produce a highly accurate and reliable allele assignment in any homozygous or heterozygous situation. We have called the method allele walking (AW) and it consists of sequential rounds of PCR-RFLP. After digestion, electrophoresis separates alleles positive for the mutation from the negative alleles; the cleaved fragment is then recovered from the gel and analyzed for mutations at another codon. In this way, AW is able to positively ascertain which mutations are in the same chromosome (cis-linkage) and assigns alleles independently from each other. Artificial sites are created in the PCR step in order to positively detect substitutions not naturally recognized by any of the existing or convenient enzymes. We report the application of AW for typing the 22 DRB1*04 alleles. The first PCR-RFLP round groups DRB1*04 alleles. Subsequently, the mutations at codons 86, 74, 71, 57 and 37 can be analyzed for the unambiguous assignment of the majority of the alleles. Additional polymorphisms at different codons can be assayed to resolve any undetermined alleles. The viability of all the restriction sites used as well as the feasibility of AW were successfully tested. PMID:9062970

  11. Time of recombination in the Drosophila Melanogaster oocyte. III. Selection and characterization of temperature-sensitive and -insensitive, recombination-deficient alleles in Drosophila

    SciTech Connect

    Grell, R.F.

    1984-10-01

    The procedure for the selection of a temperature-sensitive recombination mutant in Drosophila is described. Use of this procedure has led to the recovery of three alleles at a new recombination locus called rec-1, located within the region of chromosome 3 circumscribed by Deficiency(3R)sbd/sup 105/. One allele, rec-1/sup 26/, is temperature sensitive, and the other two alleles, rec-1/sup 6/ and rec-1/sup 16/, are temperature insensitive. Gene dosage studies reveal rec-1/sup 26/ to be a leaky mutant with greater recombination activity in two doses than in one. The other two alleles show no dose response, implying that they may be null mutants. The temperature response curves of rec-1/sup 26/ as a homozygote and in heteroallelic combination with rec-1/sup 16/ suggest that the sharp decrease in recombination between 28/sup 0/ and 31/sup 0/ indicates temperature denaturation of an enzyme or other protein specified by the mutant and associated with the recombination process. The ability of small changes in temperature to reverse or abolish polarity in recombination along the X chromosome arm in rec-1/sup 26//rec-1/sup 16/ females brings into question the use of the ''polarity'' criterion to partition mutants into two functional types, i.e., precondition mutants that display polarity and exchange mutants that do not. Evidence that rec-1 may be part of a complex locus residing in a chromosome segment harboring a variety of recombination-related genes is presented.

  12. Membrane surface charge dictates the structure and function of the epithelial Na+/H+ exchanger

    PubMed Central

    Alexander, Robert Todd; Jaumouillé, Valentin; Yeung, Tony; Furuya, Wendy; Peltekova, Iskra; Boucher, Annie; Zasloff, Michael; Orlowski, John; Grinstein, Sergio

    2011-01-01

    The Na+/H+ exchanger NHE3 plays a central role in intravascular volume and acid–base homeostasis. Ion exchange activity is conferred by its transmembrane domain, while regulation of the rate of transport by a variety of stimuli is dependent on its cytosolic C-terminal region. Liposome- and cell-based assays employing synthetic or recombinant segments of the cytosolic tail demonstrated preferential association with anionic membranes, which was abrogated by perturbations that interfere with electrostatic interactions. Resonance energy transfer measurements indicated that segments of the C-terminal domain approach the bilayer. In intact cells, neutralization of basic residues in the cytosolic tail by mutagenesis or disruption of electrostatic interactions inhibited Na+/H+ exchange activity. An electrostatic switch model is proposed to account for multiple aspects of the regulation of NHE3 activity. PMID:21245831

  13. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  14. Teachers' Centers Exchange Directory.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Kreitzman, Ruth

    This directory has three major sections. The foreword is a brief essay describing the purpose of the Teachers' Centers Exchange, the "network" of teachers' centers, and the reasons for compiling and publishing this directory. The second section gives descriptions of 78 teachers' centers in the Exchange's network. These descriptions highlight each…

  15. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  16. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  17. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  18. Building Relationships through Exchange

    ERIC Educational Resources Information Center

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder…

  19. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  20. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  1. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  2. Environmental Exchange Box

    ERIC Educational Resources Information Center

    Moseley, Christine

    2003-01-01

    In this activity, teachers in one state create and share an "exchange box" of environmental and cultural items with students of another state. The Environmental Exchange Box activity enables teachers to improve students' skills in scientific inquiry and develop attitudes and values conducive to science learning such as wonder, curiosity, and…

  3. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  4. Advancing allele group-specific amplification of the complete HLA-C gene--isolation of novel alleles from three allele groups (C*04, C*07 and C*08).

    PubMed

    Cisneros, E; Martínez-Pomar, N; Vilches, M; Martín, P; de Pablo, R; Nuñez Del Prado, N; Nieto, A; Matamoros, N; Moraru, M; Vilches, C

    2013-10-01

    A variety of strategies have been designed for sequence-based HLA typing (SBT) and for the isolation of new human leucocyte antigen (HLA) alleles, but unambiguous characterization of complete genomic sequences remains a challenge. We recently reported a simple method for the group-specific amplification (GSA) and sequencing of a full-length C*04 genomic sequence in isolation from the accompanying allele. Here we build on this strategy and present homologous methods that enable the isolation of HLA-C alleles belonging to another two allele groups. Using this approach, which can be applied to sequence-based typing in some clinical settings, we have successfully characterized three novel HLA-C alleles (C*04:128, C*07:01:01:02, and C*08:62).

  5. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  6. Genetic variation at the tomato Cf-4/Cf-9 locus induced by EMS mutagenesis and intralocus recombination.

    PubMed Central

    Wulff, Brande B H; Thomas, Colwyn M; Parniske, Martin; Jones, Jonathan D G

    2004-01-01

    The interaction between tomato (Lycopersicon esculentum) and the leaf mold pathogen Cladosporium fulvum is an excellent model for investigating disease resistance gene evolution. The interaction is controlled in a gene-for-gene manner by Cf genes that encode type I transmembrane extracellular leucine-rich repeat glycoproteins that recognize their cognate fungal avirulence (Avr) proteins. Cf-4 from L. hirsutum and Cf-9 from L. pimpinellifolium are located at the same locus on the short arm of tomato chromosome 1 in an array of five paralogs. Molecular analysis has shown that one mechanism for generating sequence variation in Cf genes is intragenic sequence exchange through unequal crossing over or gene conversion. To investigate this we used a facile genetic selection to identify novel haplotypes in the progeny of Cf-4/Cf-9 trans-heterozygotes that lacked Cf-4 and Cf-9. This selection is based on the ability of Avr4 and Avr9 to induce Cf-4- or Cf-9-dependent seedling death. The crossovers were localized to the same intergenic region defining a recombination hotspot in this cross. As part of a structure-function analysis of Cf-9 and Cf-4, nine EMS-induced mutant alleles have been characterized. Most mutations result in single-amino-acid substitutions in their C terminus at residues that are conserved in other Cf proteins. PMID:15166169

  7. Chromosome 5 allele loss in human colorectal carcinomas.

    PubMed

    Solomon, E; Voss, R; Hall, V; Bodmer, W F; Jass, J R; Jeffreys, A J; Lucibello, F C; Patel, I; Rider, S H

    That the sporadic and inherited forms of a particular cancer could both result from mutations in the same gene was first proposed by Knudson. He further proposed that these mutations act recessively at the cellular level, and that both copies of the gene must be lost for the cancer to develop. In sporadic cases both events occur somatically whereas in dominant familial cases susceptibility is inherited through a germline mutation and the cancer develops after a somatic change in the homologous allele. This model has since been substantiated in the case of retinoblastoma, Wilms tumour, acoustic neuroma and several other tumours, in which loss of heterozygosity was shown in tumour material compared to normal tissue from the same patient. The dominantly inherited disorder, familial adenomatous polyposis (FAP, also called familial polyposis coli), which gives rise to multiple adenomatous polyps in the colon that have a relatively high probability of progressing to a malignant adenocarcinoma, provides a basis for studying recessive genes in the far more common colorectal carcinomas using this approach. Following a clue as to the location of the FAP gene given by a case report of an individual with an interstitial deletion of chromosome 5q, who had FAP and multiple developmental abnormalities, we have examined sporadic colorectal adenocarcinomas for loss of alleles on chromosome 5. Using a highly polymorphic 'minisatellite' probe which maps to chromosome 5q we have shown that at least 20% of this highly heterogeneous set of tumours lose one of the alleles present in matched normal tissue. This parallels the assignment of the FAP gene to chromosome 5 (see accompanying paper) and suggests that becoming recessive for this gene may be a critical step in the progression of a relatively high proportion of colorectal cancers. PMID:2886919

  8. Bovine Polledness – An Autosomal Dominant Trait with Allelic Heterogeneity

    PubMed Central

    Medugorac, Ivica; Seichter, Doris; Graf, Alexander; Russ, Ingolf; Blum, Helmut; Göpel, Karl Heinrich; Rothammer, Sophie; Förster, Martin; Krebs, Stefan

    2012-01-01

    The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ∼381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations. PMID:22737241

  9. Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

    PubMed

    Koso, Hideto; Takeda, Haruna; Yew, Christopher Chin Kuan; Ward, Jerrold M; Nariai, Naoki; Ueno, Kazuko; Nagasaki, Masao; Watanabe, Sumiko; Rust, Alistair G; Adams, David J; Copeland, Neal G; Jenkins, Nancy A

    2012-10-30

    Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.

  10. Analysis of the distribution of HLA-A alleles in populations from five continents.

    PubMed

    Middleton, D; Williams, F; Meenagh, A; Daar, A S; Gorodezky, C; Hammond, M; Nascimento, E; Briceno, I; Perez, M P

    2000-10-01

    The variation and frequency of HLA-A genotypes were established by PCR-SSOP typing in diverse geographically distributed populations: Brazilian, Colombian Kogui, Cuban, Mexican, Omani, Singapore Chinese, and South African Zulu. HLA-A allelic families with only one allele were identified for HLA-A*01, -A*23, -A*25, -A*31, -A*32, -A*36, -A*43, -A*69, -A*80; and with two alleles for HLA-A*03, -A*11, -A*26, -A*29, -A*33, -A*34, and -A*66. Greater variation was detected for HLA-A*02, -A*24, and -A*68 allele families. Colombian Kogui and Mexican Seris showed the least diversity with respect to HLA-A alleles, albeit with small numbers tested, with only four and five HLA-A alleles identified, respectively. It would appear by their presence in all populations studied, either rural or indigenous, that certain alleles are very important in pathogen peptide presentation. PMID:11082518

  11. Analysis of the distribution of HLA-A alleles in populations from five continents.

    PubMed

    Middleton, D; Williams, F; Meenagh, A; Daar, A S; Gorodezky, C; Hammond, M; Nascimento, E; Briceno, I; Perez, M P

    2000-10-01

    The variation and frequency of HLA-A genotypes were established by PCR-SSOP typing in diverse geographically distributed populations: Brazilian, Colombian Kogui, Cuban, Mexican, Omani, Singapore Chinese, and South African Zulu. HLA-A allelic families with only one allele were identified for HLA-A*01, -A*23, -A*25, -A*31, -A*32, -A*36, -A*43, -A*69, -A*80; and with two alleles for HLA-A*03, -A*11, -A*26, -A*29, -A*33, -A*34, and -A*66. Greater variation was detected for HLA-A*02, -A*24, and -A*68 allele families. Colombian Kogui and Mexican Seris showed the least diversity with respect to HLA-A alleles, albeit with small numbers tested, with only four and five HLA-A alleles identified, respectively. It would appear by their presence in all populations studied, either rural or indigenous, that certain alleles are very important in pathogen peptide presentation.

  12. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model

    PubMed Central

    Bard-Chapeau, Emilie A.; Nguyen, Anh-Tuan; Rust, Alistair G.; Sayadi, Ahmed; Lee, Philip; Chua, Belinda Q; New, Lee-Sun; de Jong, Johann; Ward, Jerrold M.; Chin, Christopher KY.; Chew, Valerie; Toh, Han Chong; Abastado, Jean-Pierre; Benoukraf, Touati; Soong, Richie; Bard, Frederic A.; Dupuy, Adam J.; Johnson, Randy L.; Radda, George K.; Chan, Eric CY.; Wessels, Lodewyk FA.; Adams, David J.

    2014-01-01

    The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC we performed a near saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers, and a bewildering number (2860) of candidate later stage drivers, that were enriched for genes mutated, deregulated, or that function in signaling pathways important for human HCC, with a striking 1199 genes linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. PMID:24316982

  13. p53 Mutagenesis by benzo[a]pyrene derived radical cations.

    PubMed

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Penning, Trevor M; Field, Jeffrey

    2012-10-15

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 μM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 μM to 10 μM B[a]P with no significant increase seen with further escalation to 50 μM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  14. Identification and functional characterization of three novel alleles for the serotonin transporter-linked polymorphic region.

    PubMed

    Ehli, E A; Hu, Y; Lengyel-Nelson, T; Hudziak, J J; Davies, G E

    2012-02-01

    A promoter polymorphism in the serotonin transporter gene (5-HTTLPR) has been reported to confer relative risk for phenotypes (depression/anxiety) and endophenotypes (amygdala reactivity). In this report, we identify and characterize three rare 5-HTTLPR alleles not previously described in the human literature. The three novel alleles were identified while genotyping 5-HTTLPR in a family-based attention deficit hyperactivity disorder clinical population. Two of the novel alleles are longer than the common 16-repeat long (L) allele (17 and 18 repeats) and the third is significantly smaller than the 14-repeat short (S) allele (11 repeats). The sequence and genetic architecture of each novel allele is described in detail. We report a significant decrease in the expression between the XL₁₇ (17r) allele and the L(A) (16r) allele. The XS₁₁ (11r) allele showed similar expression with the S (14r) allele. A 1.8-fold increase in expression was observed with the L(A)(16r) allele compared with the L(G) (16r) allele, which replicates results from earlier 5-HTTLPR expression experiments. In addition, transcription factor binding site (TFBS) analysis was performed using MatInspector (Genomatix) that showed the presence or absence of different putative TFBSs between the novel alleles and the common L (16r) and S (14r) alleles. The identification of rare variants and elucidation of their functional impact could potentially lead to understanding the contribution that the rare variant may have on the inheritance/susceptibility of multifactorial common diseases.

  15. An Allele of Sequoia Dominantly Enhances a Trio Mutant Phenotype to Influence Drosophila Larval Behavior

    PubMed Central

    Liebl, Eric C.

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency. PMID:24376789

  16. A facile and efficient transposon mutagenesis method for generation of multi-codon deletions in protein sequences.

    PubMed

    Liu, Shu-Su; Wei, Xuan; Ji, Qun; Xin, Xiu; Jiang, Biao; Liu, Jia

    2016-06-10

    Substitutions, insertions and deletions are all important mutation events in natural and laboratory protein evolution. However, protein engineering using insertions and deletions (indels) is hindered by the lack of a convenient mutagenesis method. Here, we describe a general transposon mutagenesis method that allows for removal of up to five consecutive in-frame codons from a random position of a target protein. This method, referred to as codon deletion mutagenesis (CDM), relies on an engineered Mu transposon that carries asymmetric terminal sequences flanking the MuA transposase recognition sites. CDM requires minimal DNA manipulations, and can generate multi-codon deletions with high efficiency (>90%). As a proof of principle, we constructed five libraries of green fluorescent protein (GFP) containing one to five random codon deletions, respectively. Several variants with multi-codon deletions remained fluorescent, none of which could be easily identified using traditional mutagenesis method. CDM provides a facile and efficient approach to sampling a protein sequence with multi-codon deletions. It will not only facilitate our understanding of the effects of amino acid deletions on protein function but also expedite protein engineering using deletion mutagenesis. PMID:27071724

  17. Clustered Charge-to-Alanine Mutagenesis of the Vaccinia Virus H5 Gene: Isolation of a Dominant, Temperature-Sensitive Mutant with a Profound Defect in Morphogenesis

    PubMed Central

    DeMasi, Joseph; Traktman, Paula

    2000-01-01

    The vaccinia virus H5 gene encodes a 22.3-kDa phosphoprotein that is expressed during both the early and late phases of viral gene expression. It is a major component of virosomes and has been implicated in viral transcription and, as a substrate of the B1 kinase, may participate in genome replication. To enable a genetic analysis of the role of H5 during the viral life cycle, we used clustered charge-to-alanine mutagenesis in an attempt to create a temperature-sensitive (ts) virus with a lesion in the H5 gene. Five mutant viruses were isolated, with one of them, tsH5-4, having a strong ts phenotype as assayed by plaque formation and measurements of 24-h viral yield. Surprisingly, no defects in genome replication or viral gene expression were detected at the nonpermissive temperature. By electron microscopy, we observed a profound defect in the early stages of virion morphogenesis, with arrest occurring prior to the formation of crescent membranes or immature particles. Nonfunctional, “curdled” virosomes were detected in tsH5-4 infections at the nonpermissive temperature. These structures appeared to revert to functional virosomes after a temperature shift to permissive conditions. We suggest an essential role for H5 in normal virosome formation and the initiation of virion morphogenesis. By constructing recombinant genomes containing two H5 alleles, wild type and H5-4, we determined that H5-4 exerted a dominant phenotype. tsH5-4 is the first example of a dominant ts mutant isolated and characterized in vaccinia virus. PMID:10666270

  18. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  19. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  20. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  1. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  2. Genomic landscape of human allele-specific DNA methylation.

    PubMed

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J; Smith, Andrew D

    2012-05-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  3. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    PubMed

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  4. Inferring the age of a fixed beneficial allele.

    PubMed

    Ormond, Louise; Foll, Matthieu; Ewing, Gregory B; Pfeifer, Susanne P; Jensen, Jeffrey D

    2016-01-01

    Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype-based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian-based approach that rather estimates these parameters for fixed beneficial mutations in single populations. We integrate a range of existing diversity, site frequency spectrum, haplotype- and linkage disequilibrium-based summary statistics. We show that for strong selective sweeps on de novo mutations the method can estimate allele age and selection strength even in nonequilibrium demographic scenarios. We extend our approach to models of selection on standing variation, and co-infer the frequency at which selection began to act upon the mutation. Finally, we apply our method to estimate the age and selection strength of a previously identified mutation underpinning cryptic colour adaptation in a wild deer mouse population, and compare our findings with previously published estimates as well as with geological data pertaining to the presumed shift in selective pressure. PMID:26576754

  5. Allele frequency of CODIS 13 in Indonesian population.

    PubMed

    Untoro, Evi; Atmadja, Djaja Surya; Pu, Chang-En; Wu, Fang-Chi

    2009-04-01

    Since the first application of DNA technology in 1985 in forensic cases, and the acceptance of this technology in 1988 at court, the DNA typing is widely used in personal identification, parentage cases and tracing the source of biological samples found in the crime scene. The FBI on 1990 had recommended the forensic labs to used 13 loci of Short Tandem Repeats (STR), known as CODIS 13, as the loci of choice for forensic use. The research on the population DNA database on these loci is extremely important for calculating the Paternity Index as well as Matching Probability for forensic application of DNA technology. As many as 402 unrelated persons, consisted of 322 from western part of Indonesia and 80 from eastern part of Indonesia, were chosen as the respondents of this research, after signing the informed consent. The peripheral blood sample was taken using sterile lancets and dropped onto FTA classic cards. The DNA was extracted by FTA purification solution (3x) and TE(-1) (2x), and amplified by PCR mix, either Cofiler or Profiler Plus (Perkin Elmers), followed by sequencing using ABI Prism type 3100 Avant Genetic Analyzer. The analysis showed that the alleles frequencies of Indonesian is specific, different with the other Asian populations with some specific alleles and microvariant were found.

  6. A bird's eye view of a deleterious recessive allele.

    PubMed

    Ekblom, Robert

    2016-07-01

    In the endangered Scottish chough (Pyrrhocorax pyrrhocorax) population, a lethal blindness syndrome is found to be caused by a deleterious recessive allele. Photo: Gordon Yates. In Focus: Trask, A.E., Bignal, E.M., McCracken, D.I., Monaghan, P., Piertney, S.B. & Reid, J.M. (2016) Evidence of the phenotypic expression of a lethal recessive allele under inbreeding in a wild population of conservation concern. Journal of Animal Ecology, 85, 879-891. In this issue of Journal of Animal Ecology, Trask et al. () report on a strange, lethal, blindness that regularly affects chicks of an endangered bird population. The authors show that the inheritance mode of this blindness disease precisely matches the expectations of a recessive deleterious mutation. Intriguingly, there is also an indication that the disease-causing variant might be maintained in the population by balancing selection, due to a selective advantage for heterozygotes. Could this finding have consequences for conservation actions implemented for the population? PMID:27279331

  7. Allelic loss and linkage studies in prostate cancer

    SciTech Connect

    Johnson, D.R.; Bale, A.E.; Lytton, B.

    1994-09-01

    Prostate cancer is the most common malignancy in U.S. males. Many examples of familial aggregation have been reported, and segregration analysis suggests that an autosomal dominant gene with a penetrance of 88% by age 85 accounts for 9% of all cases. Because many dominant cancer predisposition syndromes are related to germline mutations in tumor suppressor genes, we analyzed a series of sporadic and hereditary tumors for allelic loss. High grade sporadic, paraffin-embedded, primary prostate tumors were obtained from the archival collection in the Department of Pathology at Yale and hereditary tumors from three families were obtained by an advertisement in the New York Times and from referrals by urologists. PCR analysis showed loss in 4/7 informative sporadic prostate tumors with NEFL (8p21), in 8/22 informative tumors with D10S169 (10q26-qter), in 2/8 informative tumors with D10S108 (10q) and in 4/23 informative tumors with D10S89 (10p) in agreement with previous studies. PYGM on chromosome 11 and D9S127 on chromosome 9 showed no loss. Linkage analysis with NEFL in 3 prostate cancer families gave strongly negative results for close linkage (Z=-2.1 at {theta}=0.01) but LOD scores were very dependent on parameters, e.g. gene frequency, phenocopy rate, and penetrance. Linkage analysis with chromosome 10 markers and systematic analysis of the genome for other area of allelic loss are underway.

  8. Allele frequency of CODIS 13 in Indonesian population.

    PubMed

    Untoro, Evi; Atmadja, Djaja Surya; Pu, Chang-En; Wu, Fang-Chi

    2009-04-01

    Since the first application of DNA technology in 1985 in forensic cases, and the acceptance of this technology in 1988 at court, the DNA typing is widely used in personal identification, parentage cases and tracing the source of biological samples found in the crime scene. The FBI on 1990 had recommended the forensic labs to used 13 loci of Short Tandem Repeats (STR), known as CODIS 13, as the loci of choice for forensic use. The research on the population DNA database on these loci is extremely important for calculating the Paternity Index as well as Matching Probability for forensic application of DNA technology. As many as 402 unrelated persons, consisted of 322 from western part of Indonesia and 80 from eastern part of Indonesia, were chosen as the respondents of this research, after signing the informed consent. The peripheral blood sample was taken using sterile lancets and dropped onto FTA classic cards. The DNA was extracted by FTA purification solution (3x) and TE(-1) (2x), and amplified by PCR mix, either Cofiler or Profiler Plus (Perkin Elmers), followed by sequencing using ABI Prism type 3100 Avant Genetic Analyzer. The analysis showed that the alleles frequencies of Indonesian is specific, different with the other Asian populations with some specific alleles and microvariant were found. PMID:19261522

  9. Cytochrome allelic variants and clopidogrel metabolism in cardiovascular diseases therapy.

    PubMed

    Jarrar, Mohammed; Behl, Shalini; Manyam, Ganiraju; Ganah, Hany; Nazir, Mohammed; Nasab, Reem; Moustafa, Khaled

    2016-06-01

    Clopidogrel and aspirin are among the most prescribed dual antiplatelet therapies to treat the acute coronary syndrome and heart attacks. However, their potential clinical impacts are a subject of intense debates. The therapeutic efficiency of clopidogrel is controlled by the actions of hepatic cytochrome P450 (CYPs) enzymes and impacted by individual genetic variations. Inter-individual polymorphisms in CYPs enzymes affect the metabolism of clopidogrel into its active metabolites and, therefore, modify its turnover and clinical outcome. So far, clinical trials fail to confirm higher or lower adverse cardiovascular effects in patients treated with combinations of clopidogrel and proton pump inhibitors, compared with clopidogrel alone. Such inconclusive findings may be due to genetic variations in the cytochromes CYP2C19 and CYP3A4/5. To investigate potential interactions/effects of these cytochromes and their allele variants on the treatment of acute coronary syndrome with clopidogrel alone or in combination with proton pump inhibitors, we analyze recent literature and discuss the potential impact of the cytochrome allelic variants on cardiovascular events and stent thrombosis treated with clopidogrel. The diversity of CYP2C19 polymorphisms and prevalence span within various ethnic groups, subpopulations and demographic areas are also debated. PMID:27072373

  10. Allele mining and enhanced genetic recombination for rice breeding.

    PubMed

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources.

  11. Genomic landscape of human allele-specific DNA methylation

    PubMed Central

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J.; Smith, Andrew D.

    2012-01-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  12. Association of MICA and MICB alleles with symptomatic dengue infection.

    PubMed

    García, Gissel; del Puerto, Florencia; Pérez, Ana B; Sierra, Beatriz; Aguirre, Eglys; Kikuchi, Mihoko; Sánchez, Lizet; Hirayama, Kenji; Guzmán, María G

    2011-10-01

    Dengue viruses (DV) are one of the most important arthropod-borne viral diseases in the developing world. DV can cause syndromes that are either self-limiting or severe. Allelic variants of human leukocyte antigen (HLA) genes have been demonstrated to be associated with disease susceptibility. Here we report the association of nonclassical HLA class I MICA-MICB genes with disease outcome during DV infection. A sequencing-based typing method and genotyping of MICA and MICB in a well-characterized group of Cuban individuals with dengue hemorrhagic fever (DHF), dengue fever (DF), or asymptomatic dengue infection (ADI) was performed. Statistical analysis revealed a tendency for MICA*008 and MICB*008 to associate with susceptibility to illness when symptomatic versus asymptomatic cases (odds ratio [OR] = 2.1, p(v) = 0.03, and OR = 10.4, p = 0.0096, respectively) were compared. Surprisingly, a stronger association of both allelic forms was observed for the DF patients compared with the ADI group (MICA*008, OR = 5.2, p = 0.0001; and MICB*008, OR = 13.2, p = 0.0025) rather than the severe cases. Major histocompatibility class I-related gene-related natural killer cells and/or γδ and αβ T-cell activation might regulate the development of symptomatic DF and DHF.

  13. A genetic model of melanoma tumorigenesis based on allelic losses

    SciTech Connect

    Hayward, N.K.; Palmer, J.M.; Walters, M.K.

    1994-09-01

    Previous karyotypic studies have indicated a possible series of non-random chromosomal events involved in the progression of melanoma. We sought to define a model of melanocyte tumorigenesis by studying allelic deletions of polymorphic simple tandem repeat markers mapping to chromosome 1, 6q, 7, 9p, 10, 11, 17, and 21 in thirty matched pairs of melanoma and constitutional DNAs. The most frequent and earliest deletions were found on 9p (57%) and 10q (32%) and with the exception of one case, no sample has loss of markers on another chromosome without concomitant loss of markers on 9p and/or 10q. Losses on 6q were also a frequent (32%) event that sometimes occurred in primary melanomas, whereas losses of loci on distal 1p (26%) or 11q (26%) occurred only in metastic melanomas. A background rate (0-17%) of allele loss was seen on chromosomes 7, 17, and 21. Homozygous deletions in a panel of 31 melanoma cell lines were only detected for markers on 9p (4 cases). These data strongly support the previous model of melanoma tumorigenesis based primarily on karyotypic findings in melanocytic lesions. However, we have been able to further augment the model by delimiting the regions of loss on 10q to a region distal to D10S254, and on 1p, to between D1S243 and D1S160.

  14. Assessment of PAX6 alleles in 66 families with aniridia.

    PubMed

    Bobilev, A M; McDougal, M E; Taylor, W L; Geisert, E E; Netland, P A; Lauderdale, J D

    2016-06-01

    We report on PAX6 alleles associated with a clinical diagnosis of classical aniridia in 81 affected individuals representing 66 families. Allelic variants expected to affect PAX6 function were identified in 61 families (76 individuals). Ten cases of sporadic aniridia (10 families) had complete (8 cases) or partial (2 cases) deletion of the PAX6 gene. Sequence changes that introduced a premature termination codon into the open reading frame of PAX6 occurred in 47 families (62 individuals). Three individuals with sporadic aniridia (three families) had sequence changes (one deletion, two run-on mutations) expected to result in a C-terminal extension. An intronic deletion of unknown functional significance was detected in one case of sporadic aniridia (one family), but not in unaffected relatives. Within these 61 families, single nucleotide substitutions accounted for 30/61 (49%), indels for 23/61 (38%), and complete deletion of the PAX6 locus for 8/61 (13%). In five cases of sporadic aniridia (five families), no disease-causing mutation in the coding region was detected. In total, 23 unique variants were identified that have not been reported in the Leiden Open Variation Database (LOVD) database. Within the group assessed, 92% had sequence changes expected to reduce PAX6 function, confirming the primacy of PAX6 haploinsufficiency as causal for aniridia.

  15. Characterization of ROP18 alleles in human toxoplasmosis.

    PubMed

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis.

  16. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  17. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  18. Greywater heat exchanger

    SciTech Connect

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  19. Occurrence in vivo of sister chromatid exchanges at the same locus in successive cell divisions caused by nonrepairable lesions induced by gamma rays

    SciTech Connect

    Morales-Ramirez, P.; Vallarino-Kelly, T.; Rodriguez-Reyes, R.

    1988-01-01

    The capacity of lesions induced by gamma radiation to produce sister chromatid exchanges (SCE) in successive divisions in mouse bone marrow cells in vivo was evaluated using a protocol for the three-way differentiation of sister chromatids. Evidence was obtained that exposure to gamma radiation induces DNA lesions that result in the formation of SCE at the same locus in two successive cell divisions. The relevance of this observation with respect to DNA repair and mutagenesis is discussed.

  20. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)