Science.gov

Sample records for allelic expression bias

  1. Biased Allelic Expression in Human Primary Fibroblast Single Cells

    PubMed Central

    Borel, Christelle; Ferreira, Pedro G.; Santoni, Federico; Delaneau, Olivier; Fort, Alexandre; Popadin, Konstantin Y.; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Guipponi, Michel; Padioleau, Ismael; Carninci, Piero; Dermitzakis, Emmanouil T.; Antonarakis, Stylianos E.

    2015-01-01

    The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. PMID:25557783

  2. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling

    PubMed Central

    Gibson, Joshua D.; Arechavaleta-Velasco, Miguel E.; Tsuruda, Jennifer M.; Hunt, Greg J.

    2015-01-01

    Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent’s allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation. PMID:26648977

  3. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling.

    PubMed

    Gibson, Joshua D; Arechavaleta-Velasco, Miguel E; Tsuruda, Jennifer M; Hunt, Greg J

    2015-01-01

    Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent's allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation.

  4. Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles.

    PubMed

    Lachance, Joseph; Tishkoff, Sarah A

    2014-10-01

    Gene conversion results in the nonreciprocal transfer of genetic information between two recombining sequences, and there is evidence that this process is biased toward G and C alleles. However, the strength of GC-biased gene conversion (gBGC) in human populations and its effects on hereditary disease have yet to be assessed on a genomic scale. Using high-coverage whole-genome sequences of African hunter-gatherers, agricultural populations, and primate outgroups, we quantified the effects of GC-biased gene conversion on population genomic data sets. We find that genetic distances (FST and population branch statistics) are modified by gBGC. In addition, the site frequency spectrum is left-shifted when ancestral alleles are favored by gBGC and right-shifted when derived alleles are favored by gBGC. Allele frequency shifts due to gBGC mimic the effects of natural selection. As expected, these effects are strongest in high-recombination regions of the human genome. By comparing the relative rates of fixation of unbiased and biased sites, the strength of gene conversion was estimated to be on the order of Nb ≈ 0.05 to 0.09. We also find that derived alleles favored by gBGC are much more likely to be homozygous than derived alleles at unbiased SNPs (+42.2% to 62.8%). This results in a curse of the converted, whereby gBGC causes substantial increases in hereditary disease risks. Taken together, our findings reveal that GC-biased gene conversion has important population genetic and public health implications.

  5. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  6. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  7. Comparative in vivo expression of beta(+)-thalassemia alleles.

    PubMed

    Marwan, M M; Scerri, C A; Zarroag, S O; Cao, A; Kyrri, A; Kalogirou, E; Kleanthous, M; Ioannou, P; Angastiniotis, M; Felice, A E

    1999-08-01

    Double heterozygotes who inherit one abnormal though stable beta-globin variant in association with a molecularly identified beta(+)-thalassaemia allele provide unique opportunities to quantify the in vivo expression of particular beta(+)-thalassemia alleles. The globin products of the two alleles can be separated, quantified and the output of the beta(+)-thalassaemia allele expressed as the MCH-beta(A) in pg beta(A)-globin/beta(+)-thalassemia allele/RBC = 0.5 MCH x Hb A%. In this communication we provide new quantitative data on the expression of five mutations as follows: the beta(+)-87 (C-->G) = 3.8 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-1 (G-->A) = 0.2 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 1); the beta(+) IVS-I-6 (T-->C) = 2.9 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 7); the beta(+) IVS-I-110 (G-->A) = 1.1 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 13), and the beta(+) IVS-II-745 (C-->G) = 1.74 pg beta(A)-globin/beta(+)-thalassemia allele/RBC (n = 2). The values obtained are compared with those of other beta(+)-thalassemia alleles from the literature. It can be seen that the MCH-beta(A) value may be a correct index of thalassemia severity useful for the correlation of genotype with phenotype, and for understanding the effects of mutations in beta-globin genes on pathophysiologically meaningful beta-globin gene expression. PMID:10490134

  8. Mutated tumor alleles are expressed according to their DNA frequency.

    PubMed

    Castle, John C; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-04-22

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency.

  9. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene

    SciTech Connect

    Morrow, J.F.; Rapaport, J.M.; Dryia, T.P.

    1994-09-01

    New germline mutations in the human retinoblastoma gene preferentially arise on a paternally derived allele. In nonhereditary retinoblastoma, the initial somatic mutation seems to have no such bias. The few previous reports of these phenomena included relatively few cases (less than a dozen new germline or initial somatic mutations), so that the magnitude of the paternal allele bias for new germline mutations is not known. Knowledge of the magnitude of the bias is valuable for genetic counseling, since, for example, patients with new germline mutations who reproduce transmit risk for retinoblastoma according to the risk that the transmitted allele has a germline mutation. We sought to quantitate the paternal allele bias and to determine whether paternal age is a factor possibly accounting for it. We studied 311 families with retinoblastoma (261 simplex, 50 multiplex) that underwent clinical genetic testing and 5 informative families recruited from earlier research. Using RFLPs and polymorphic microsatellites in the retinoblastoma gene, we could determine the parental origin of 45 new germline mutations and 44 probable initial somatic mutations. Thirty-seven of the 45 new germline mutations, or 82%, arose on a paternal allele while only 24 of the 44 initial somatic mutations (55%) did so. Increased paternal age does not appear to account for the excess of new paternal germline mutations, since the average age of fathers of children with new germline mutations (29.4 years, n=26, incomplete records on 11) was not significantly different from the average age of fathers of children with maternal germline mutations or somatic initial mutations (29.8 years, n=35, incomplete records on 17).

  10. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.

    PubMed

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-04-18

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org).

  11. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  12. DQB1*06:02 allele specific expression varies by allelic dosage, not narcolepsy status

    PubMed Central

    lachmi, Karin Weiner; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single allele HLA associations. In this study, we explored genome wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and found the largest differences between the groups to be in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65 fold) and protein (1.59 fold) could be demonstrated independent of the disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes. PMID:22326585

  13. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status.

    PubMed

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek; Rico, Tom; Lo, Betty; Aran, Adi; Mignot, Emmanuel

    2012-04-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65-fold) and protein (1.59-fold) could be demonstrated independent of disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes.

  14. How the Number of Alleles Influences Gene Expression

    NASA Astrophysics Data System (ADS)

    Hat, Beata; Paszek, Pawel; Kimmel, Marek; Piechor, Kazimierz; Lipniacki, Tomasz

    2007-07-01

    The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.

  15. Calibrating genomic and allelic coverage bias in single-cell sequencing.

    PubMed

    Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher

    2015-01-01

    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913

  16. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  17. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    PubMed

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. PMID:27480981

  18. Allelic variation in CRHR1 predisposes to panic disorder: evidence for biased fear processing.

    PubMed

    Weber, H; Richter, J; Straube, B; Lueken, U; Domschke, K; Schartner, C; Klauke, B; Baumann, C; Pané-Farré, C; Jacob, C P; Scholz, C-J; Zwanzger, P; Lang, T; Fehm, L; Jansen, A; Konrad, C; Fydrich, T; Wittmann, A; Pfleiderer, B; Ströhle, A; Gerlach, A L; Alpers, G W; Arolt, V; Pauli, P; Wittchen, H-U; Kent, L; Hamm, A; Kircher, T; Deckert, J; Reif, A

    2016-06-01

    Corticotropin-releasing hormone (CRH) is a major regulator of the hypothalamic-pituitary-adrenal axis. Binding to its receptor CRHR1 triggers the downstream release of the stress response-regulating hormone cortisol. Biochemical, behavioral and genetic studies revealed CRHR1 as a possible candidate gene for mood and anxiety disorders. Here we aimed to evaluate CRHR1 as a risk factor for panic disorder (PD). Allelic variation of CRHR1 was captured by 9 single-nucleotide polymorphisms (SNPs), which were genotyped in 531 matched case/control pairs. Four SNPs were found to be associated with PD, in at least one sub-sample. The minor allele of rs17689918 was found to significantly increase risk for PD in females after Bonferroni correction and furthermore decreased CRHR1 mRNA expression in human forebrains and amygdalae. When investigating neural correlates underlying this association in patients with PD using functional magnetic resonance imaging, risk allele carriers of rs17689918 showed aberrant differential conditioning predominantly in the bilateral prefrontal cortex and safety signal processing in the amygdalae, arguing for predominant generalization of fear and hence anxious apprehension. Additionally, the risk allele of rs17689918 led to less flight behavior during fear-provoking situations but rather increased anxious apprehension and went along with increased anxiety sensitivity. Thus reduced gene expression driven by CRHR1 risk allele leads to a phenotype characterized by fear sensitization and hence sustained fear. These results strengthen the role of CRHR1 in PD and clarify the mechanisms by which genetic variation in CRHR1 is linked to this disorder.

  19. Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq

    PubMed Central

    Weissbein, Uri; Schachter, Maya; Egli, Dieter; Benvenisty, Nissim

    2016-01-01

    Genomic instability has profound effects on cellular phenotypes. Studies have shown that pluripotent cells with abnormal karyotypes may grow faster, differentiate less and become more resistance to apoptosis. Previously, we showed that microarray gene expression profiles can be utilized for the analysis of chromosomal aberrations by comparing gene expression levels between normal and aneuploid samples. Here we adopted this method for RNA-Seq data and present eSNP-Karyotyping for the detection of chromosomal aberrations, based on measuring the ratio of expression between the two alleles. We demonstrate its ability to detect chromosomal gains and losses in pluripotent cells and their derivatives, as well as meiotic recombination patterns. This method is advantageous since it does not require matched diploid samples for comparison, is less sensitive to global expression changes caused by the aberration and utilizes already available gene expression profiles to determine chromosomal aberrations. PMID:27385103

  20. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming

    PubMed Central

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-01-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. PMID:27539784

  1. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming.

    PubMed

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-10-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. PMID:27539784

  2. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  3. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition. PMID:26686669

  4. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition.

  5. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris.

    PubMed

    Amarasinghe, Harindra E; Toghill, Bradley J; Nathanael, Despina; Mallon, Eamonn B

    2015-01-01

    Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  6. 5' and 3' untranslated regions contribute to the differential expression of specific HLA-A alleles.

    PubMed

    René, Céline; Lozano, Claire; Villalba, Martin; Eliaou, Jean-François

    2015-12-01

    In hematopoietic stem cell transplantation (HSCT), when no HLA full-matched donor is available, alternative donors could include one HLA-mismatched donor. Recently, the low expressed HLA-C alleles have been identified as permissive mismatches for the best donor choice. Concerning HLA-A, the degree of variability of expression is poorly understood. Here, we evaluated HLA-A expression in healthy individuals carrying HLA-A*02 allele in different genotypes using flow cytometry and allele-specific quantitative RT-PCR. While an interindividual variability of HLA-A*02 cell surface expression, not due to the allele associated, was observed, no difference of the mRNA expression level was shown, suggesting the involvement of the posttranscriptional regulation. The results of qRT-PCR analyses exhibit a differential expression of HLA-A alleles with HLA-A*02 as the strongest expressed allele independently of the second allele. The associated non-HLA-A*02 alleles were differentially expressed, particularly the HLA-A*31 and HLA-A*33 alleles (strong expression) and the HLA-A*29 (low expression). The presence of specific polymorphisms in the 5' and 3' untranslated regions of the HLA-A*31 and HLA-A*33 alleles could contribute to this high level of expression. As previously described for HLA-C, low-expressed HLA-A alleles, such as HLA-A*29, could be considered as a permissive mismatch, although this needs to be confirmed by clinical studies.

  7. Disentangling the relationship between sex-biased gene expression and X-linkage.

    PubMed

    Meisel, Richard P; Malone, John H; Clark, Andrew G

    2012-07-01

    X chromosomes are preferentially transmitted through females, which may favor the accumulation of X-linked alleles/genes with female-beneficial effects. Numerous studies have shown that genes with sex-biased expression are under- or over-represented on the X chromosomes of a wide variety of organisms. The patterns, however, vary between different animal species, and the causes of these differences are unresolved. Additionally, genes with sex-biased expression tend to be narrowly expressed in a limited number of tissues, and narrowly expressed genes are also non-randomly X-linked in a taxon-specific manner. It is therefore unclear whether the unique gene content of the X chromosome is the result of selection on genes with sex-biased expression, narrowly expressed genes, or some combination of the two. To address this problem, we measured sex-biased expression in multiple Drosophila species and at different developmental time points. These data were combined with available expression measurements from Drosophila melanogaster and mouse to reconcile the inconsistencies in X-chromosome content among taxa. Our results suggest that most of the differences between Drosophila and mammals are confounded by disparate data collection/analysis approaches as well as the correlation between sex bias and expression breadth. Both the Drosophila and mouse X chromosomes harbor an excess of genes with female-biased expression after controlling for the confounding factors, suggesting that the asymmetrical transmission of the X chromosome favors the accumulation of female-beneficial mutations in X-linked genes. However, some taxon-specific patterns remain, and we provide evidence that these are in part a consequence of constraints imposed by the dosage compensation mechanism in Drosophila.

  8. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  9. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer.

    PubMed

    Halabi, Najeeb M; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A; Malek, Joel A; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies.

  10. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  11. A computational workflow to identify allele-specific expression and epigenetic modification in maize.

    PubMed

    Wei, Xiaoxing; Wang, Xiangfeng

    2013-08-01

    Allele-specific expression refers to the preferential expression of one of the two alleles in a diploid genome, which has been thought largely attributable to the associated cis-element variation and allele-specific epigenetic modification patterns. Allele-specific expression may contribute to the heterosis (or hybrid vigor) effect in hybrid plants that are produced from crosses of closely-related species, subspecies and/or inbred lines. In this study, using Illumina high-throughput sequencing of maize transcriptomics, chromatic H3K27me3 histone modification and DNA methylation data, we developed a new computational framework to identify allele-specifically expressed genes by simultaneously tracking allele-specific gene expression patterns and the epigenetic modification landscape in the seedling tissues of hybrid maize. This approach relies on detecting nucleotide polymorphisms and any genomic structural variation between two parental genomes in order to distinguish paternally or maternally derived sequencing reads. This computational pipeline also incorporates a modified Chi-square test to statistically identify allele-specific gene expression and epigenetic modification based on the Poisson distribution.

  12. Human leukocyte antigen-E alleles and expression in patients with serous ovarian cancer

    PubMed Central

    Zheng, Hui; Lu, Renquan; Xie, Suhong; Wen, Xuemei; Wang, Hongling; Gao, Xiang; Guo, Lin

    2015-01-01

    Human leukocyte antigen-E (HLA-E) is one of the most extensively studied non-classical MHC class I molecules that is almost non-polymorphic. Only two alleles (HLA-E*0101 and HLA-E*0103) are found in worldwide populations, and suggested to be functional differences between these variants. The HLA-E molecule can contribute to the escape of cancer cells from host immune surveillance. However, it is still unknown whether HLA-E gene polymorphisms might play a role in cancer immune escape. To explore the association between HLA-E alleles and the susceptibility to serous ovarian cancer (SOC), 85 primary SOC patients and 100 healthy women were enrolled. Here, we indicated that high frequency of HLA-E*0103 allele existed in SOC patients by the allele-specific quantitative real-time PCR method. The levels of HLA-E protein expression in SOC patients with the HLA-E*0103 allele were higher than those with the HLA-E*0101 allele using immunohistochemistry analysis. The cell surface expression and functional differences between the two alleles were verified by K562 cells transfected with HLA-E*0101 or HLA-E*0103 allelic heavy chains. The HLA-E*0103 allele made the transfer of the HLA-E molecule to the cell surface easier, and HLA-E/peptides complex more stable. These differences ultimately influenced the function of natural killer cells, showing that the cells transfected with HLA-E*0103 allele inhibited natural killer cells to lysis. This study reveals a novel mechanism regarding the susceptibility to SOC, which is correlated with the HLA-E*0103 allele. PMID:25711417

  13. Origins, distribution and expression of the Duarte-2 (D2) allele of galactose-1-phosphate uridylyltransferase

    PubMed Central

    Carney, Amanda E.; Sanders, Rebecca D.; Garza, Kerry R.; McGaha, Lee Anne; Bean, Lora J. H.; Coffee, Bradford W.; Thomas, James W.; Cutler, David J.; Kurtkaya, Natalie L.; Fridovich-Keil, Judith L.

    2009-01-01

    Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity and carry one profoundly impaired GALT allele (G) along with a second, partially impaired GALT allele (Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense substitution, three intronic base changes and a 4 bp deletion in the 5′ proximal sequence. The four non-coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in mammalian cell and yeast expression studies. In contrast, the 4 bp 5′ deletion characteristic of D2 alleles appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific qRT–PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the difference is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly implicate the 4 bp 5′ deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the basis of the presence and absence of linked coding sequence polymorphisms. PMID:19224951

  14. Biased Facial Expression Interpretation in Shy Children

    ERIC Educational Resources Information Center

    Kokin, Jessica; Younger, Alastair; Gosselin, Pierre; Vaillancourt, Tracy

    2016-01-01

    The relationship between shyness and the interpretations of the facial expressions of others was examined in a sample of 123 children aged 12 to 14?years. Participants viewed faces displaying happiness, fear, anger, disgust, sadness, surprise, as well as a neutral expression, presented on a computer screen. The children identified each expression…

  15. Detecting Allelic Expression Imbalance at Candidate Genes Using 5' Exonuclease Genotyping Technology.

    PubMed

    Gahan, Jillian M; Byrne, Mikaela M; Hill, Matthew; Quinn, Emma M; Murphy, Ross T; Anney, Richard J L; Ryan, Anthony W

    2015-01-01

    Genetic variation along the length of a chromosome can influence the transcription of a gene. In a heterozygous individual, this may lead to one chromosome producing different levels of RNA, compared to its paired chromosome, for a given gene. Allelic differences in gene expression can offer insight into the role of variation in transcription, and subsequently infer a route to conferring disease risk. This phenomenon is known as allele expression imbalance or AEI, which may be assayed using a PCR-based method that includes the quantification of the relative dosage of each allele (e.g., 5' exonuclease assays, TaqMan™). Importantly, in heterozygous individuals the resolution of expression imbalance is performed within a controlled system; the comparison of the alternate allele is reported relative to the wild-type, as the experiment can be performed within a single sample, controlled for background genetic information. Alternative methods for the detection of AEI include Primer-extension MALDI-TOF (Sequenom MassARRAY(®)), Next-Generation Sequencing, and SNP genotyping arrays. Here we present the methods used for the TaqMan™ approach and include a description of the SNP identification, allele-specific PCR, and analytic methods to convert allele amplification metrics to relative allele dosage.

  16. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    PubMed

    Tuch, Brian B; Laborde, Rebecca R; Xu, Xing; Gu, Jian; Chung, Christina B; Monighetti, Cinna K; Stanley, Sarah J; Olsen, Kerry D; Kasperbauer, Jan L; Moore, Eric J; Broomer, Adam J; Tan, Ruoying; Brzoska, Pius M; Muller, Matthew W; Siddiqui, Asim S; Asmann, Yan W; Sun, Yongming; Kuersten, Scott; Barker, Melissa A; De La Vega, Francisco M; Smith, David I

    2010-02-19

    Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  17. Reducing bias of allele frequency estimates by modeling SNP genotype data with informative missingness.

    PubMed

    Lin, Wan-Yu; Liu, Nianjun

    2012-01-01

    The presence of missing single-nucleotide polymorphism (SNP) genotypes is common in genetic studies. For studies with low-density SNPs, the most commonly used approach to dealing with genotype missingness is to simply remove the observations with missing genotypes from the analyses. This naïve method is straightforward but is valid only when the missingness is random. However, a given assay often has a different capability in genotyping heterozygotes and homozygotes, causing the phenomenon of "differential dropout" in the sense that the missing rates of heterozygotes and homozygotes are different. In practice, differential dropout among genotypes exists in even carefully designed studies, such as the data from the HapMap project and the Wellcome Trust Case Control Consortium. Under the assumption of Hardy-Weinberg equilibrium and no genotyping error, we here propose a statistical method to model the differential dropout among different genotypes. Compared with the naïve method, our method provides more accurate allele frequency estimates when the differential dropout is present. To demonstrate its practical use, we further apply our method to the HapMap data and a scleroderma data set. PMID:22719749

  18. Expressing precision and bias in calorimetry

    SciTech Connect

    Hauck, Danielle K; Croft, Stephen; Bracken, David S

    2010-01-01

    The calibration and calibration verification of a nuclear calorimeter represents a substantial investment of time in part because a single calorimeter measurement takes of the order of 2 to 24h to complete. The time to complete a measurement generally increases with the size of the calorimeter measurement well. It is therefore important to plan the sequence of measurements rather carefully so as to cover the dynamic range and achieve the required accuracy within a reasonable time frame. This work will discuss how calibrations and their verification has been done in the past and what we consider to be good general practice in this regard. A proposed approach to calibration and calibration verification is presented which, in the final analysis, makes use of all the available data - both calibration and verification collectively - in order to obtain the best (in a best fit sense) possible calibration. The combination of sample variance and percent recovery are traditionally taken as sufficient to capture the random (precision) and systematic (bias) contributions to the uncertainty in a calorimetric assay. These terms have been defined as well as formulated for a basic calibration. It has been tradition to assume that sensitivity is a linear function of power. However, the availability of computer power and statistical packages should be utilized to fit the response function as accurately as possible using whatever functions are deemed most suitable. Allowing for more flexibility in the response function fit will enable the calibration to be updated according to the results from regular validation measurements through the year. In a companion paper to be published elsewhere we plan to discuss alternative fitting functions.

  19. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    SciTech Connect

    Radvanyi, H.H.; Gourdon, G.; Junien, C. |

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  20. Rapid evolution of male-biased gene expression in Drosophila.

    PubMed

    Meiklejohn, Colin D; Parsch, John; Ranz, José M; Hartl, Daniel L

    2003-08-19

    A number of genes associated with sexual traits and reproduction evolve at the sequence level faster than the majority of genes coding for non-sex-related traits. Whole genome analyses allow this observation to be extended beyond the limited set of genes that have been studied thus far. We use cDNA microarrays to demonstrate that this pattern holds in Drosophila for the phenotype of gene expression as well, but in one sex only. Genes that are male-biased in their expression show more variation in relative expression levels between conspecific populations and two closely related species than do female-biased genes or genes with sexually monomorphic expression patterns. Additionally, elevated ratios of interspecific expression divergence to intraspecific expression variation among male-biased genes suggest that differences in rates of evolution may be due in part to natural selection. This finding has implications for our understanding of the importance of sexual dimorphism for speciation and rates of phenotypic evolution.

  1. TP53 allele loss, mutations and expression in malignant melanoma.

    PubMed Central

    Flørenes, V. A.; Oyjord, T.; Holm, R.; Skrede, M.; Børresen, A. L.; Nesland, J. M.; Fodstad, O.

    1994-01-01

    p53 alterations at the DNA, mRNA and protein levels were studied in tumour metastases sampled from 30 patients with malignant melanoma. Paraffin-embedded sections from these and an additional 12 patients were examined for the presence of p53 protein. TP53 gene aberrations were found in 7 of 30 (23%) of the patients, six of which showed loss of heterozygosity (LOH). Point mutations were detected in only two cases, one of which had LOH whereas the other was non-informative. Increased levels of p53 mRNA were present in only one tumour with, but in six cases without, detectable DNA abnormalities. Four of the latter and six tumours with normal transcript levels had immunohistochemically detectable levels of p53 protein. In 25 cases in which corresponding primary and metastatic lesions could be compared, closely similar immunoreactivity patterns were observed. Increased expression of the MDM2 gene was found in only one tumour in parallel with overexpression of p53. Altogether, the data indicate that inactivation of the p53 regulatory pathway is not of major significance in the tumorigenesis of malignant melanoma. However, a significant association was found between p53 immunoreactivity and the relapse-free period in patients with superficial spreading melanoma. That increased protein expression was predominantly found in tumours without DNA alterations might suggest a role for the wild-type p53 protein in restricting malignant cell proliferation in these cases. Images Figure 2 PMID:7905277

  2. Differential alleleic expression of the type II collagen gene (COL2A2) in osteoarthritic cartilage

    SciTech Connect

    Loughlin, J.; Irven, C.; Sykes, B.; Athanasou, N.; Carr, A.

    1995-05-01

    Osteoarthritis (OA) is a common debilitating disease resulting from the degeneration of articular cartilage. The major protein of cartilage is type II collagen, which is encoded by the COL2A1 gene. Mutations at this locus have been discovered in several individuals with inherited disorders of cartilage. We have identified 27 primary OA patients who are heterozygous for sequence dimorphisms located in the coding region of COL2A1. These dimorphisms were used to distinguish the mRNA output from each of the two COL2A1 alleles in articular cartilage obtained from each patient. Three patients demonstrated differential allelic expression and produced <12% of the normal level of mRNA from one of their COL2A1 alleles. The same allele shows reduced expression in a well-defined OA population than in a control group, suggesting the possible existence of a rare COL2A1 allele that predisposes to OA. 31 refs., 4 figs., 3 tabs.

  3. The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance.

    PubMed

    Pham, Minh-Hieu T; Bonello, Gregory B; Castiblanco, John; Le, Tuan; Sigala, Jose; He, Weijing; Mummidi, Srinivas

    2012-01-01

    CC chemokine ligand 2 (CCL2) is the most potent monocyte chemoattractant and inter-individual differences in its expression level have been associated with genetic variants mapping to the cis-regulatory regions of the gene. An A to G polymorphism in the CCL2 enhancer region at position -2578 (rs1024611; A>G), was found in most studies to be associated with higher serum CCL2 levels and increased susceptibility to a variety of diseases such as HIV-1 associated neurological disorders, tuberculosis, and atherosclerosis. However, the precise mechanism by which rs1024611influences CCL2 expression is not known. To address this knowledge gap, we tested the hypothesis that rs1024611G polymorphism is associated with allelic expression imbalance (AEI) of CCL2. We used haplotype analysis and identified a transcribed SNP in the 3'UTR (rs13900; C>T) can serve as a proxy for the rs1024611 and demonstrated that the rs1024611G allele displayed a perfect linkage disequilibrium with rs13900T allele. Allele-specific transcript quantification in lipopolysaccharide treated PBMCs obtained from heterozygous donors showed that rs13900T allele were expressed at higher levels when compared to rs13900C allele in all the donors examined suggesting that CCL2 is subjected to AEI and that that the allele containing rs1024611G is preferentially transcribed. We also found that AEI of CCL2 is a stable trait and could be detected in newly synthesized RNA. In contrast to these in vivo findings, in vitro assays with haplotype-specific reporter constructs indicated that the haplotype bearing rs1024611G had a lower or similar transcriptional activity when compared to the haplotype containing rs1024611A. This discordance between the in vivo and in vitro expression studies suggests that the CCL2 regulatory region polymorphisms may be functioning in a complex and context-dependent manner. In summary, our studies provide strong functional evidence and a rational explanation for the phenotypic effects of the

  4. Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations.

    PubMed

    Sun, Chang; Southard, Catherine; Witonsky, David B; Kittler, Ralf; Di Rienzo, Anna

    2010-10-01

    The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation.

  5. Short Alleles, Bigger Smiles? The Effect of 5-HTTLPR on Positive Emotional Expressions

    PubMed Central

    Haase, Claudia M.; Beermann, Ursula; Saslow, Laura R.; Shiota, Michelle N.; Saturn, Sarina R.; Lwi, Sandy J.; Casey, James J.; Nguyen, Nguyen K.; Whalen, Patrick K.; Keltner, Dacher J.; Levenson, Robert W.

    2015-01-01

    The present research examined the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene on objectively coded positive emotional expressions (i.e., laughing and smiling behavior objectively coded using the Facial Action Coding System). Three studies with independent samples of participants were conducted. Study 1 examined young adults watching still cartoons. Study 2 examined young, middle-aged, and older adults watching a thematically ambiguous yet subtly amusing film clip. Study 3 examined middle-aged and older spouses discussing an area of marital conflict (which typically produces both positive and negative emotion). Aggregating data across studies, results showed that the short allele of 5-HTTLPR predicted heightened positive emotional expressions. Results remained stable when controlling for age, gender, ethnicity, and depressive symptoms. These findings are consistent with the notion that the short allele of 5-HTTLPR functions as an emotion amplifier, which may confer heightened susceptibility to environmental conditions. PMID:26029940

  6. Short alleles, bigger smiles? The effect of 5-HTTLPR on positive emotional expressions.

    PubMed

    Haase, Claudia M; Beermann, Ursula; Saslow, Laura R; Shiota, Michelle N; Saturn, Sarina R; Lwi, Sandy J; Casey, James J; Nguyen, Nguyen K; Whalen, Patrick K; Keltner, Dacher; Levenson, Robert W

    2015-08-01

    The present research examined the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene on objectively coded positive emotional expressions (i.e., laughing and smiling behavior objectively coded using the Facial Action Coding System). Three studies with independent samples of participants were conducted. Study 1 examined young adults watching still cartoons. Study 2 examined young, middle-aged, and older adults watching a thematically ambiguous yet subtly amusing film clip. Study 3 examined middle-aged and older spouses discussing an area of marital conflict (that typically produces both positive and negative emotion). Aggregating data across studies, results showed that the short allele of 5-HTTLPR predicted heightened positive emotional expressions. Results remained stable when controlling for age, gender, ethnicity, and depressive symptoms. These findings are consistent with the notion that the short allele of 5-HTTLPR functions as an emotion amplifier, which may confer heightened susceptibility to environmental conditions.

  7. Short alleles, bigger smiles? The effect of 5-HTTLPR on positive emotional expressions.

    PubMed

    Haase, Claudia M; Beermann, Ursula; Saslow, Laura R; Shiota, Michelle N; Saturn, Sarina R; Lwi, Sandy J; Casey, James J; Nguyen, Nguyen K; Whalen, Patrick K; Keltner, Dacher; Levenson, Robert W

    2015-08-01

    The present research examined the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene on objectively coded positive emotional expressions (i.e., laughing and smiling behavior objectively coded using the Facial Action Coding System). Three studies with independent samples of participants were conducted. Study 1 examined young adults watching still cartoons. Study 2 examined young, middle-aged, and older adults watching a thematically ambiguous yet subtly amusing film clip. Study 3 examined middle-aged and older spouses discussing an area of marital conflict (that typically produces both positive and negative emotion). Aggregating data across studies, results showed that the short allele of 5-HTTLPR predicted heightened positive emotional expressions. Results remained stable when controlling for age, gender, ethnicity, and depressive symptoms. These findings are consistent with the notion that the short allele of 5-HTTLPR functions as an emotion amplifier, which may confer heightened susceptibility to environmental conditions. PMID:26029940

  8. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression.

    PubMed

    Kim, Jong Kyoung; Kolodziejczyk, Aleksandra A; Ilicic, Tomislav; Illicic, Tomislav; Teichmann, Sarah A; Marioni, John C

    2015-01-01

    Single-cell RNA-sequencing (scRNA-seq) facilitates identification of new cell types and gene regulatory networks as well as dissection of the kinetics of gene expression and patterns of allele-specific expression. However, to facilitate such analyses, separating biological variability from the high level of technical noise that affects scRNA-seq protocols is vital. Here we describe and validate a generative statistical model that accurately quantifies technical noise with the help of external RNA spike-ins. Applying our approach to investigate stochastic allele-specific expression in individual cells, we demonstrate that a large fraction of stochastic allele-specific expression can be explained by technical noise, especially for lowly and moderately expressed genes: we predict that only 17.8% of stochastic allele-specific expression patterns are attributable to biological noise with the remainder due to technical noise. PMID:26489834

  9. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary.

    PubMed

    Olbromski, R; Siadkowska, E; Zelazowska, B; Zwierzchowski, L

    2013-02-01

    Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them-LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C-C motif ligand 2) showed allelic expression imbalance.

  10. The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells.

    PubMed

    Adams, Sean; Xing, Zheng; Li, Jinling; Mendoza, Kristelle; Perez, Daniel; Reed, Kent; Cardona, Carol

    2013-12-01

    The NS1 gene encoded by Type A influenza virus circulates as two alleles, the A and B allele. The immunomodulatory properties of the NS1 A allele have been thoroughly examined; however, comparisons of allele function have been predominantly made in mammalian systems. Here we show that counter to the current understanding of allele function in mammals, the two alleles similarly regulate elements of the type I interferon (IFN) signaling pathway, including the interferon-inducible genes Mx and 2'-5' oligoadenylate synthase (2'-5' OAS), and IL-6, which share the same induction pathway as the interferons in embryo fibroblasts from chickens, turkeys or ducks. Replication of two reassortant viruses demonstrated that the B allele virus replicates more and to higher titers than the A allele virus in duck cells; however, the A allele virus replicates more in the cells from chickens and turkeys. Finally, chimeric constructs were used to identify a region of the NS1 gene that conferred the statistically significant differences in expression and replication observed between the alleles.

  11. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids1[OPEN

    PubMed Central

    2016-01-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  12. Association between high expression macrophage migration inhibitory factor (MIF) alleles and West Nile virus encephalitis.

    PubMed

    Das, Rituparna; Loughran, Kerry; Murchison, Charles; Qian, Feng; Leng, Lin; Song, Yan; Montgomery, Ruth R; Loeb, Mark; Bucala, Richard

    2016-02-01

    Infection with mosquito-borne West Nile virus (WNV) is usually asymptomatic but can lead to severe WNV encephalitis. The innate cytokine, macrophage migration inhibitory factor (MIF), is elevated in patients with WNV encephalitis and promotes viral neuroinvasion and mortality in animal models. In a case-control study, we examined functional polymorphisms in the MIF locus in a cohort of 454 North American patients with neuroinvasive WNV disease and found patients homozygous for high-expression MIF alleles to be >20-fold (p=0.008) more likely to have WNV encephalitis. These data indicate that MIF is an important determinant of severity of WNV neuropathogenesis and may be a therapeutic target.

  13. Transmission-ratio distortion and allele sharing in affected sib pairs: a new linkage statistic with reduced bias, with application to chromosome 6q25.3.

    PubMed

    Lemire, Mathieu; Roslin, Nicole M; Laprise, Catherine; Hudson, Thomas J; Morgan, Kenneth

    2004-10-01

    We studied the effect of transmission-ratio distortion (TRD) on tests of linkage based on allele sharing in affected sib pairs. We developed and implemented a discrete-trait allele-sharing test statistic, Sad, analogous to the Spairs test statistic of Whittemore and Halpern, that evaluates an excess sharing of alleles at autosomal loci in pairs of affected siblings, as well as a lack of sharing in phenotypically discordant relative pairs, where available. Under the null hypothesis of no linkage, nuclear families with at least two affected siblings and one unaffected sibling have a contribution to Sad that is unbiased, with respect to the effects of TRD independent of the disease under study. If more distantly related unaffected individuals are studied, the bias of Sad is generally reduced compared with that of Spairs, but not completely. Moreover, Sad has higher power, in some circumstances, because of the availability of unaffected relatives, who are ignored in affected-only analyses. We discuss situations in which it may be an efficient use of resources to genotype unaffected relatives, which would give insights for promising study designs. The method is applied to a sample of pedigrees ascertained for asthma in a chromosomal region in which TRD has been reported. Results are consistent with the presence of transmission distortion in that region. PMID:15322985

  14. Allele-specific expression at the RET locus in blood and gut tissue of individuals carrying risk alleles for Hirschsprung disease.

    PubMed

    Matera, Ivana; Musso, Marco; Griseri, Paola; Rusmini, Marta; Di Duca, Marco; So, Man-Ting; Mavilio, Domenico; Miao, Xiaoping; Tam, Paul Hk; Ravazzolo, Roberto; Ceccherini, Isabella; Garcia-Barcelo, Merce

    2013-05-01

    RET common variants are associated with Hirschsprung disease (HSCR; colon aganglionosis), a congenital defect of the enteric nervous system. We analyzed a well-known HSCR-associated RET haplotype that encompasses linked alleles in coding and noncoding/regulatory sequences. This risk haplotype correlates with reduced level of RET expression when compared with the wild-type counterpart. As allele-specific expression (ASE) contributes to phenotypic variability in health and disease, we investigated whether RET ASE could contribute to the overall reduction of RET mRNA detected in carriers. We tested heterozygous neuroblastoma cell lines, ganglionic gut tissues (18 HSCR and 14 non-HSCR individuals) and peripheral blood mononuclear cells (PBMCs; 16 HSCR and 14 non-HSCR individuals). Analysis of the data generated by SNaPshot and Pyrosequencing revealed that the RET risk haplotype is significantly more expressed in gut than in PBMCs (P = 0.0045). No ASE difference was detected between patients and controls, irrespective of the sample type. Comparison of total RET expression levels between gut samples with and without ASE, correlated reduced RET expression with preferential transcription from the RET risk haplotype. Nonrandom RET ASE occurs in ganglionic gut regardless of the disease status. RET ASE should not be excluded as a disease mechanism acting during development.

  15. Discrimination of HLA null and low expression alleles by cytokine-induced secretion of recombinant soluble HLA.

    PubMed

    Hinrichs, Jan; Figueiredo, Constança; Hirv, Kaimo; Mytilineos, Joannis; Blasczyk, Rainer; Horn, Peter A; Eiz-Vesper, Britta

    2009-04-01

    The disruption of disulfide bridges can decrease or abolish the cell surface expression of HLA class I molecules. Such disulfide bridges are formed by cysteine residues between amino acid (aa) positions 101/164 (alpha(2) domain) and 203/259 (alpha(3) domain). Sequence alterations in codons 101, 164, 203 and 259 have been observed in eleven HLA-A molecules. All of these variants except of A*3014L and A*3211Q have been reported to result in null expression alleles. In the case of HLA-A*3014L, a transversion at nucleotide position 563 replaces cysteine by serine at position 164 of the mature polypeptide. HLA-A*3014L is not detectable by standard microlymphocytotoxicity assay. To verify low or non-expression of this allele, we cloned soluble HLA-A*3014L and the reference allele HLA-A*3001 into a eukaryotic expression vector and transfected K562, C1R and HEK293 cells. Expression of soluble HLA-A*3014L and HLA-A*3001 was measured in the supernatants of transfected and untransfected cells incubated with or without IFN-gamma and/or TNF-alpha using a W6/32 and anti-beta(2)-microglobulin-based sandwich ELISA. Expression of mRNA transcripts of both alleles was determined by real-time RT-PCR. HLA-A*3014L was not detected in the supernatant of unstimulated transfectants. Stimulation with IFN-gamma and/or TNF-alpha led to an increase of HLA-A*3014L secretion to a detectable level and increased HLA-A*3001 expression up to 8-fold, but did not show any difference in the increase of mRNA levels between HLA-A*3014L and A*3001. Because of this lack of any difference in the mRNA transcription, the protein expression defect is most likely caused by the missing disulfide bond formation in the alpha2 domain. Thus, exposing the cells to cytokine stress allows to distinguish between low- and non-expressed alleles and to classify alleles with a questionable expression pattern (Q alleles). Classifying HLA alleles in expressed and non-expressed variants is essential for matching assessments

  16. Differential allelic expression of IL13 and CSF2 genes associated with asthma

    PubMed Central

    Burkhardt, Jana; Kirsten, Holger; Wolfram, Grit; Quente, Elfi; Ahnert, Peter

    2012-01-01

    An important area of genetic research is the identification of functional mechanisms in polymorphisms associated with diseases. A highly relevant functional mechanism is the influence of polymorphisms on gene expression levels (differential allelic expression, DAE). The coding single nucleotide polymorphisms (SNPs) CSF2rs25882 and IL13rs20541 have been associated with asthma. In this work, we investigated whether the mRNA expression levels of CSF2 or IL13 were correlated with these SNPs. Samples were analyzed by mass spectrometry-based quantification of gene expression. Both SNPs influenced gene expression levels (CSF2rs25882: poverall = 0.008 and pDAE samples = 0.00006; IL13rs20541: poverall = 0.059 and pDAE samples = 0.036). For CSF2, the expression level was increased by 27.4% (95% CI: 18.5%–35.4%) in samples with significant DAE in the presence of one copy of risk variant CSF2rs25882-T. The average expression level of IL13 was increased by 29.8% (95% CI: 3.1%–63.4%) in samples with significant DAE in the presence of one copy of risk variant IL13rs20541-A. Enhanced expression of CSF2 could stimulate macrophages and neutrophils during inflammation and may be related to the etiology of asthma. For IL-13, higher expression could enhance the functional activity of the asthma-associated isoform. Overall, the analysis of DAE provides an efficient approach for identifying possible functional mechanisms that link disease-associated variants with altered gene expression levels. PMID:23055793

  17. First example of an FY*01 allele associated with weakened expression of Fya on red blood cells.

    PubMed

    Arndt, Patricia A; Horn, Trina; Keller, Jessica A; Heri, Suzanne M; Keller, Margaret A

    2015-01-01

    Duffy antigens are important in immunohematology. the reference allele for the Duffy gene (FY) is FY*02, which encodes Fy(b). An A>G single nucleotide polymorphism (SNP) at coding nucleotide (c.) 125 in exon 2 defines the FY*01 allele, which encodes the antithetical Fy(a). A C>T SNP at c.265 in the FY*02 allele is associated with weakening of Fy(b) expression on red blood cells (R BCs) (called Fy(x)). until recently, this latter change had not been described on a FY*01 background allele. Phenotype-matched units were desired for a multi-transfused Vietnamese fetus with α-thalassemia. Genotyping of the fetus using a microarray assay that interrogates three SNPs (c.1-67, c.125, and c.265) in FY yielded indeterminate results for the predicted Duffy phenotype. Genomic sequencing of FY exon 2 showed that the fetal sample had one wild-type FY*01 allele and one new FY*01 allele with the c.265C>T SNP, which until recently had only been found on the FY*02 allele. Genotyping performed on samples from the proband's parents indicated that the father had the same FY genotype as the fetus. Flow cytometry, which has been previously demonstrated as a useful method to study antigen strength on cells, was used to determine if this new FY*01 allele was associated with reduced Fy(a) expression on the father's RBCs. Median fluorescence intensity of the father's RBCs (after incubation with anti-FY(a) and fluorescein-labeled anti-IgG) was similar to known FY*01 heterozygotes. and significantly weaker than known FY*01 homozygotes. In conclusion, the fetus and father both had one normal FY*01 allele and one new FY*01W.01, is associated with weakened expression of Fy(a) on RBCs.

  18. First example of an FY*01 allele associated with weakened expression of Fya on red blood cells.

    PubMed

    Arndt, Patricia A; Horn, Trina; Keller, Jessica A; Heri, Suzanne M; Keller, Margaret A

    2015-01-01

    Duffy antigens are important in immunohematology. the reference allele for the Duffy gene (FY) is FY*02, which encodes Fy(b). An A>G single nucleotide polymorphism (SNP) at coding nucleotide (c.) 125 in exon 2 defines the FY*01 allele, which encodes the antithetical Fy(a). A C>T SNP at c.265 in the FY*02 allele is associated with weakening of Fy(b) expression on red blood cells (R BCs) (called Fy(x)). until recently, this latter change had not been described on a FY*01 background allele. Phenotype-matched units were desired for a multi-transfused Vietnamese fetus with α-thalassemia. Genotyping of the fetus using a microarray assay that interrogates three SNPs (c.1-67, c.125, and c.265) in FY yielded indeterminate results for the predicted Duffy phenotype. Genomic sequencing of FY exon 2 showed that the fetal sample had one wild-type FY*01 allele and one new FY*01 allele with the c.265C>T SNP, which until recently had only been found on the FY*02 allele. Genotyping performed on samples from the proband's parents indicated that the father had the same FY genotype as the fetus. Flow cytometry, which has been previously demonstrated as a useful method to study antigen strength on cells, was used to determine if this new FY*01 allele was associated with reduced Fy(a) expression on the father's RBCs. Median fluorescence intensity of the father's RBCs (after incubation with anti-FY(a) and fluorescein-labeled anti-IgG) was similar to known FY*01 heterozygotes. and significantly weaker than known FY*01 homozygotes. In conclusion, the fetus and father both had one normal FY*01 allele and one new FY*01W.01, is associated with weakened expression of Fy(a) on RBCs. PMID:26829175

  19. Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids☆

    PubMed Central

    Shen, Yingjia; Catchen, Julian; Garcia, Tzintzuni; Amores, Angel; Beldroth, Ion; Wagner, Jonathon R; Zhang, Ziping; Postlethwait, John; Warren, Wes; Schartl, Manfred; Walter, Ronald B.

    2011-01-01

    Variations in gene expression are essential for the evolution of novel phenotypes and for speciation. Studying allelic specific gene expression (ASGE) within interspecies hybrids provides a unique opportunity to reveal underlying mechanisms of genetic variation. Using Xiphophorus interspecies hybrid fishes and high-throughput next generation sequencing technology, we were able to assess variations between two closely related vertebrate species, X. maculatus and X. couchianus, and their F1 interspecies hybrids. We constructed transcriptome-wide SNP polymorphism sets between two highly inbred X. maculatus lines (JP 163 A and B), and between X. maculatus and a second species, X. couchianus. The X. maculatus JP 163 A and B parental lines have been separated in the laboratory for ≈ 70 years and we were able to identify SNPs at a resolution of 1 SNP per 49 kb of transcriptome. In contrast, SNP polymorphisms between X. couchianus and X. maculatus species, which diverged ≈ 5–10 million years ago, were identified about every 700 bp. Using 6,524 transcripts with identified SNPs between the two parental species (X. maculatus and X. couchianus), we mapped RNA-seq reads to determine ASGE within F1 interspecies hybrids. We developed an in silico X. couchianus transcriptome by replacing 90,788 SNP bases for X. maculatus transcriptome with the consensus X. couchianus SNP bases and provide evidence that this procedure overcomes read mapping biases. Employment of the insilico reference transcriptome and tolerating 5 mismatches during read mapping allow direct assessment of ASGE in the F1 interspecies hybrids. Overall, these results show that Xiphophorus is a tractable vertebrate experimental model to investigate how genetic variations that occur during speciation may affect gene interactions and the regulation of gene expression. PMID:21466860

  20. The KIT D816V expressed allele burden for diagnosis and disease monitoring of systemic mastocytosis.

    PubMed

    Erben, Philipp; Schwaab, Juliana; Metzgeroth, Georgia; Horny, Hans-Peter; Jawhar, Mohamad; Sotlar, Karl; Fabarius, Alice; Teichmann, Martina; Schneider, Sven; Ernst, Thomas; Müller, Martin C; Giehl, Michelle; Marx, Alexander; Hartmann, Karin; Hochhaus, Andreas; Hofmann, Wolf-Karsten; Cross, Nicholas C P; Reiter, Andreas

    2014-01-01

    The activating KIT D816V mutation plays a central role in the pathogenesis, diagnosis, and targeted treatment of systemic mastocytosis (SM). For improved and reliable identification of KIT D816V, we have developed an allele-specific quantitative real-time PCR (RQ-PCR) with an enhanced sensitivity of 0.01-0.1 %, which was superior to denaturing high-performance liquid chromatography (0.5-1 %) or conventional sequencing (10-20 %). Overall, KIT D816 mutations were identified in 146/147 (99 %) of patients (D816V, n = 142; D816H, n = 2; D816Y, n = 2) with SM, including indolent SM (ISM, n = 63, 43 %), smoldering SM (n = 8, 5 %), SM with associated hematological non-mast cell lineage disease (SM-AHNMD, n = 16, 11 %), and aggressive SM/mast cell leukemia ± AHNMD (ASM/MCL, n = 60, 41 %). If positive in BM, the KIT D816V mutation was found in PB of all patients with advanced SM (SM-AHNMD, ASM, and MCL) and in 46 % (23/50) of patients with ISM. There was a strong correlation between the KIT D816V expressed allele burden (KIT D816V EAB) with results obtained from DNA by genomic allele-specific PCR and also with disease activity (e.g., serum tryptase level), disease subtype (e.g., indolent vs. advanced SM) and survival. In terms of monitoring of residual disease, qualitative and quantitative assessment of KIT D816V and KIT D816V EAB was successfully used for sequential analysis after chemotherapy or allogeneic stem cell transplantation. We therefore conclude that RQ-PCR assays for KIT D816V are useful complimentary tools for diagnosis, disease monitoring, and evaluation of prognosis in patients with SM. PMID:24281161

  1. Assessing allele-specific expression across multiple tissues from RNA-seq read data

    PubMed Central

    Pirinen, Matti; Lappalainen, Tuuli; Zaitlen, Noah A.; Dermitzakis, Emmanouil T.; Donnelly, Peter; McCarthy, Mark I.; Rivas, Manuel A.

    2015-01-01

    Motivation: RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. Results: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally. Availability and implementation: http://www.well.ox.ac.uk/~rivas/mamba/. R-sources and data examples http://www.iki.fi/mpirinen/ Contact: matti.pirinen@helsinki.fi or rivas@well.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25819081

  2. Allele Specific Expression of MICA Variants in Human Fibroblasts Suggests a Pathogenic Mechanism.

    PubMed

    Shi, Chunhua; Li, Hongye; Couturier, Jacob P; Yang, Karen; Guo, Xinjian; He, Dongyi; Lewis, Dorothy E; Zhou, Xiaodong

    2015-01-01

    The major histocompatibility complex class I chain-related gene A (MICA) is involved in immune responses of both nature killer (NK) cells and subsets of T cells with its receptor NKG2D. MICA is highly polymorphic in sequence which leads to MICA protein variants with distinct features. Specific polymorphisms of MICA have been associated with inflammatory diseases, including ankylosing spondylitis (AS), ulcerative colitis (UC) and Behçet's disease. Studies herein characterize expression features of three MICA variants including MICA*008, a common variant in general population, and *MICA*007 and *019, which are associated with susceptibility to inflammatory diseases. MICA*019 was highly expressed on the surface of fibroblasts whereas expression of MICA*007 was the lowest in the culture supernatant. MICA*008 had low cell surface expression but was the only MICA allele in which exosomal material was detected. Surface or membrane-bound MICA activates NKG2D-mediated cytotoxicity, whereas soluble and exosomal MICAs down-regulate NKG2D. Therefore, comparisons of these three MICA variants in fibroblasts provides insight into understanding how MICA associated immune responses could be regulated to influence levels of inflammation.

  3. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant

    PubMed Central

    Ginart, Paul; Kalish, Jennifer M.; Jiang, Connie L.; Yu, Alice C.; Bartolomei, Marisa S.; Raj, Arjun

    2016-01-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders. PMID:26944681

  4. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    PubMed

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  5. The Impact of Sexual of Orientation and Gender Expression Bias on African American Students

    ERIC Educational Resources Information Center

    Majied, Kamilah F.

    2010-01-01

    This article discusses sexual orientation and gender expression bias as they impact the educational experience of African American students. Sexual orientation and gender expression bias have a unique presentation in Black educational settings. The climate in such settings can be metagrobolized by the combination of distorted notions of Black…

  6. Genetic variation in MHC proteins is associated with T cell receptor expression biases.

    PubMed

    Sharon, Eilon; Sibener, Leah V; Battle, Alexis; Fraser, Hunter B; Garcia, K Christopher; Pritchard, Jonathan K

    2016-09-01

    In each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and, if so, whether differences exist in TCR V gene compatibilities with different MHC alleles. We applied expression quantitative trait locus (eQTL) mapping to test for associations between genetic variation and TCR V gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V gene usage. Fine-mapping of the association signals identifies specific amino acids from MHC genes that bias V gene usage, many of which contact or are spatially proximal to the TCR or peptide in the TCR-peptide-MHC complex. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTL effects mediated by protein-protein interactions and are consistent with intrinsic TCR-MHC specificity. PMID:27479906

  7. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype.

    PubMed Central

    Eldadah, Z A; Brenn, T; Furthmayr, H; Dietz, H C

    1995-01-01

    The Marfan syndrome (MFS) is a connective tissue disorder inherited as an autosomal dominant trait and caused by mutations in the gene encoding fibrillin, a 350-kD glycoprotein that multimerizes to form extracellular microfibrils. It has been unclear whether disease results from a relative deficiency of wild-type fibrillin; from a dominant-negative effect, in which mutant fibrillin monomers disrupt the function of the wild-type protein encoded by the normal allele; or from a dynamic and variable interplay between these two pathogenetic mechanisms. We have now addressed this issue in a cell culture system. A mutant fibrillin allele from a patient with severe MFS was expressed in normal human and murine fibroblasts by stable transfection. Immunohistochemical analysis of the resultant cell lines revealed markedly diminished fibrillin deposition and disorganized microfibrillar architecture. Pulse-chase studies demonstrated normal levels of fibrillin synthesis but substantially reduced deposition into the extracellular matrix. These data illustrate that expression of a mutant fibrillin allele, on a background of two normal alleles, is sufficient to disrupt normal microfibrillar assembly and reproduce the MFS cellular phenotype. This underscores the importance of the fibrillin amino-terminus in normal microfibrillar assembly and suggests that expression of the human extreme 5' fibrillin coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Lastly, this substantiation of a dominant-negative effect offers mutant allele knockout as a potential strategy for gene therapy. Images PMID:7860770

  8. The evolutionary causes and consequences of sex-biased gene expression.

    PubMed

    Parsch, John; Ellegren, Hans

    2013-02-01

    Females and males often differ extensively in their physical traits. This sexual dimorphism is largely caused by differences in gene expression. Recent advances in genomics, such as RNA sequencing (RNA-seq), have revealed the nature and extent of sex-biased gene expression in diverse species. Here we highlight new findings regarding the causes of sex-biased expression, including sexual antagonism and incomplete dosage compensation. We also discuss how sex-biased expression can accelerate the evolution of sex-linked genes.

  9. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro.

    PubMed

    Park, Sang-Wook; Kim, Jihoon; Park, Jong-Lyul; Ko, Ji-Yun; Im, Ilkyun; Do, Hyo-Sang; Kim, Hyemin; Tran, Ngoc-Tung; Lee, Sang-Hun; Kim, Yong Sung; Cho, Yee Sook; Lee, Dong Ryul; Han, Yong-Mahn

    2014-04-01

    Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.

  10. Suppression of gene expression of a recessive SP11/SCR allele by an untranscribed SP11/SCR allele in Brassica self-incompatibility.

    PubMed

    Fujimoto, Ryo; Sugimura, Tetsu; Fukai, Eigo; Nishio, Takeshi

    2006-07-01

    Mutations in the S locus of a self-compatible cultivar Yellow Sarson in Brassica rapa, which has a self-compatible class-I S haplotype, S-f2, were investigated. S-28 in Brassica oleracea was found to be a member of an interspecific pair with S-f2 in B. rapa. The original S haplotype of S-f2 was identified to be S-54 in B. rapa. Sequence comparison of alleles in S-f2 with those in S-54 and B. oleracea S-28 revealed insertion of a retrotransposon-like sequence in the first intron of SRK and 89-bp deletion in the promoter region of SP11. No transcripts of SRK and SP11 were detected in S-f2 homozygotes, suggesting that the insertion and the deletion in SRK and SP11, respectively, caused the loss of the function of these genes. Promoter assay using transgenic plants indicated that the SP11 promoter of S-f2 has no activity. Heterozygotes of S-f2 and a normal class-II S haplotype, S-60, in B. rapa were found to be self-compatible. Interestingly, transcription of SP11-60 was revealed to be suppressed in the S-f2/S-60 heterozygotes, suggesting that an untranscribed class-I SP11 allele suppresses the expression of a recessive class-II SP11 allele in the anthers of S heterozygotes. Similar phenomenon was observed in heterozygotes of a self-compatible class-I S haplotype and a self-incompatible class-II S haplotype in B. oleracea.

  11. Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs

    PubMed Central

    Adoue, Veronique; Schiavi, Alicia; Light, Nicholas; Almlöf, Jonas Carlsson; Lundmark, Per; Ge, Bing; Kwan, Tony; Caron, Maxime; Rönnblom, Lars; Wang, Chuan; Chen, Shu-Huang; Goodall, Alison H; Cambien, Francois; Deloukas, Panos; Ouwehand, Willem H; Syvänen, Ann-Christine; Pastinen, Tomi

    2014-01-01

    Most complex disease-associated genetic variants are located in non-coding regions and are therefore thought to be regulatory in nature. Association mapping of differential allelic expression (AE) is a powerful method to identify SNPs with direct cis-regulatory impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found 40–60% of these cis-rSNPs to be shared across cell types. We uncover a new class of cis-rSNPs, which disrupt footprint-derived de novo motifs that are predominantly bound by repressive factors and are implicated in disease susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new approach for genome-wide functional validation of transcription factor–SNP interactions. By perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive analysis of cis-variation in four cell populations and provide new tools for the identification of functional variants associated to complex diseases. PMID:25326100

  12. Allelic imbalance of tissue-type plasminogen activator (t-PA) gene expression in human brain tissue.

    PubMed

    Tjarnlund-Wolf, A; Hultman, K; Curtis, M A; Faull, R L M; Medcalf, R L; Jern, C

    2011-06-01

    We have identified a single-nucleotide polymorphism (SNP) in the t-PA enhancer (-7351C>T), which is associated with endothelial t-PA release in vivo. In vitro studies demonstrated that this SNP is functional at the level of transcription. In the brain, t-PA has been implicated in both physiologic and pathophysiologic processes. The aim of the present study was to examine the effect of the t-PA -7351C>T SNP on t-PA gene expression in human brain tissue. Allelic mRNA expression was measured in heterozygous post-mortem brain tissues using quantitative TaqMan genotyping assay. Protein-DNA interactions were assessed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Significantly higher levels of t-PA mRNA were generated from chromosomes that harboured the wild-type -7351C allele, as compared to those generated from the mutant T allele (for the hippocampus, C to T allelic ratio of ~1.3, p=0.010, n=12; and for the cortex, C to T allelic ratio of ~1.2, p=0.017, n=12). EMSA showed reduced neuronal and astrocytic nuclear protein binding affinity to the T allele, and identified Sp1 and Sp3 as the major transcription factors that bound to the -7351 site. ChIP analyses confirmed that Sp1 recognises this site in intact cells. In conclusion, the t-PA -7351C>T SNP affects t-PA gene expression in human brain tissue. This finding might have clinical implications for neurological conditions associated with enhanced t-PA levels, such as in the acute phase of cerebral ischaemia, and also for stroke recovery.

  13. [Expression of new mutant alleles of AS1 and AS2 genes controlling leaf morphogenesis in Arabidopsis thaliana].

    PubMed

    Vu, Kh Ch; Ondar, U N; Soldatova, O P

    2008-01-01

    We have studied the morphology and vein branching of rosette leaves in Arabidopsis thaliana mutants as and sa, which proved to be alleles of the A. thaliana AS1 and AS2 genes, respectively. We have also analyzed the localization of bioactive auxin, as measured by the expression of the DR5::GUS transgene, as well as the expression patterns of BP, as measured by the expression of the BP::GUS transgene in leaves of the mutants. In mature leaves of the mutants, BP was expressed ectopically. Furthermore, the mutants showed some defects in the localization and concentration of free auxin compared to the wild type. Our results of studying new alleles of AS1 and AS2 support their role in control of class I KNOX genes and auxin transport. PMID:18409376

  14. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults

    PubMed Central

    Parisi, Michael; Nuttall, Rachel; Edwards, Pamela; Minor, James; Naiman, Daniel; Lü, Jining; Doctolero, Michael; Vainer, Marina; Chan, Cathy; Malley, James; Eastman, Scott; Oliver, Brian

    2004-01-01

    Background Sexual dimorphism results in the formation of two types of individuals with specialized reproductive roles and is most evident in the germ cells and gonads. Results We have undertaken a global analysis of transcription between the sexes using a 31,464 element FlyGEM microarray to determine what fraction of the genome shows sex-biased expression, what tissues express these genes, the predicted functions of these genes, and where these genes map onto the genome. Females and males (both with and without gonads), dissected testis and ovary, females and males with genetically ablated germlines, and sex-transformed flies were sampled. Conclusions Using any of a number of criteria, we find extensive sex-biased expression in adults. The majority of cases of sex differential gene expression are attributable to the germ cells. There is also a large class of genes with soma-biased expression. There is little germline-biased expression indicating that nearly all genes with germline expression also show sex-bias. Monte Carlo simulations show that some genes with sex-biased expression are non-randomly distributed in the genome. PMID:15186491

  15. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    PubMed

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  16. Allelic Expression Imbalance of JAK2 V617F Mutation in BCR-ABL Negative Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2013-01-01

    The discovery of a single point mutation in the JAK2 gene in patients with BCR/ABL-negative myeloproliferative neoplasms (MPNs) has not only brought new insights and pathogenesis, but also has made the diagnosis of MPNs much easier. Although, to date, several mechanisms for the contribution of single JAK2V617F point mutation to phenotypic diversity of MPNs have been suggested in multiple studies, but it is not clear how a unique mutation can cause the phenotypic diversity of MPNs. In this study, our results show that allelic expression imbalance of JAK2 V617F mutant frequently occurs and contributes to phenotypic diversity of BCR-ABL-negative MPNs. The proportion of JAK2 V617F mutant allele was significantly augmented in RNA levels as compared with genomic DNA differently by distinct MPNs subtypes. In detail, preferential expression of JAK2 mutant allele showed threefold increase from the cDNA compared with the genomic DNA from patients with essential thrombocythemia and twofold increase in polycythemia vera. In conclusion, allelic expression imbalance of JAK2 V617F mutant proposes another plausible mechanism for the contribution of single JAK2 point mutation to phenotypic diversity of MPNs. PMID:23349688

  17. Decreased humoral antibody episodes of acute renal allograft rejection in recipients expressing the HLA-DQβ1*0202 allele.

    PubMed

    Mannam, Venkat K R; Santos, Mark; Lewis, Robert E; Cruse, Julius M

    2012-10-01

    The present investigation was designed to show the effect of human leukocyte antigen (HLA) class II molecular allelic specificities in the recipient on the induction of humoral antibody rejection, identified by C4d peritubular capillary staining, as well as specific antibody identified by Luminex technology. Major histocompatibility complex (MHC) class II molecules are expressed on dendritic cells, macrophages, and B lymphocytes and they present antigenic peptides to CD4 positive T lymphocytes. Human renal peritubular and glomerular capillaries express class II MHC molecules upon activation. Expression of class II molecules on renal microvascular endothelial cells exposes them to possible interaction with specific circulating antibodies. We hypothesize that HLA-DQβ1*0202 expression in recipients decreases the likelihood of antibody-mediated renal allograft rejection. We found that 80% (=25) of DQ2 positive haplotype recipients failed to induce humoral antibody renal allograft rejection and 20% (n=25) of DQ2 positive haplotype recipients induced humoral antibody renal allograft rejection (p=0.008). By contrast, 48% (n=46) of DQ2 negative haplotype recipients failed to induce a humoral antibody component of renal allograft rejection and 52% (n=46) of DQ2 negative haplotype recipients induced humoral antibody-mediated renal allograft rejection. Our results suggest that recipients who express the DQβ1*0202 allele are less likely to induce a humoral antibody component of acute renal allograft rejection than are those expressing DQ1, DQ3, or DQ4 alleles. DQβ1*0202 allele expression in recipients could possibly be protective against acute humoral allograft rejection and might serve as a future criterion in recipient selection and in appropriate therapy for acute renal rejection episodes.

  18. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers.

    PubMed

    Polegri, Livia; Calderini, Ornella; Arcioni, Sergio; Pupilli, Fulvio

    2010-06-01

    Apomixis is defined as clonal reproduction by seed. A comparative transcriptomic analysis was undertaken between apomictic and sexual genotypes of Paspalum simplex Morong to identify apomixis-related polymorphisms at the level of mRNA. cDNA-AFLP (amplified fragment length polymorphism) profiling of apomictic and sexual flowers at several stages of development yielded 202 amplicons that showed several kinds of expression specificities. Among these, the large majority consisted of amplicons that were present only in specific stages of development of the apomictic flowers. Ten percent of polymorphic amplicons were present with almost identical intensity in all stages of the apomictic flowers and never in the sexual flowers. Reverse transcription-PCR (RT-PCR) and Southern analyses of these amplicons showed that they belong to constitutively expressed alleles that are specifically present on the apomixis-controlling locus of P. simplex. The most frequent biological functions inferred from the sequence homology of the apomixis-linked alleles were related to signal transduction and nucleic acid/protein-binding activities. Most of these apomixis-linked alleles showed nonsense and frameshift mutations, revealing their probable pseudogene nature. None of the amplicons that were present only in specific stages of development of the apomictic flowers co-segregated with apomixis, indicating they did not originate from additional apomictic alleles but more probably from differential regulation of the same allele in apomictic and sexual flowers. The molecular functions inferred from sequence analysis of these latter amplicons were related to seed storage protein and regulatory genes of various types. The results are discussed regarding the possible role in apomictic reproduction of the differentially expressed genes in relation to their specificity of expression and inferred molecular functions.

  19. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies

    PubMed Central

    Kirkpatrick, Mark

    2016-01-01

    Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive “Twin Peaks” pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies. PMID:27658217

  20. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages

    PubMed Central

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer’s disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  1. MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus

    PubMed Central

    Sakurai, Daisuke; Kaufman, Kenneth M.; Edberg, Jeffrey C.; Kimberly, Robert P.; Kamen, Diane L.; Gilkeson, Gary S.; Jacob, Chaim O.; Scofield, R. Hal; Langefeld, Carl D.; Kelly, Jennifer A.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Vyse, Timothy J.; Pons-Estel, Bernardo A.; Freedman, Barry I.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Gregersen, Peter K.; Anaya, Juan-Manuel; Niewold, Timothy B.; Merrill, Joan T.; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Cantor, Rita M.; Chen, Weiling; Grossman, Jeniffer M.; Hahn, Bevra H.; Harley, John B.; Alarcόn-Riquelme, Marta E.; Brown, Elizabeth E.; Tsao, Betty P.

    2013-01-01

    We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (P meta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the

  2. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    PubMed Central

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  3. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  4. A selective emotional decision-making bias elicited by facial expressions.

    PubMed

    Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B

    2012-01-01

    Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices.

  5. A selective emotional decision-making bias elicited by facial expressions.

    PubMed

    Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B

    2012-01-01

    Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices. PMID:22438936

  6. A Saccharomyces Cerevisiae Rad52 Allele Expressing a C-Terminal Truncation Protein: Activities and Intragenic Complementation of Missense Mutations

    PubMed Central

    Boundy-Mills, K. L.; Livingston, D. M.

    1993-01-01

    A nonsense allele of the yeast RAD52 gene, rad52-327, which expresses the N-terminal 65% of the protein was compared to two missense alleles, rad52-1 and rad52-2, and to a deletion allele. While the rad52-1 and the deletion mutants have severe defects in DNA repair, recombination and sporulation, the rad52-327 and rad52-2 mutants retain either partial or complete capabilities in repair and recombination. These two mutants behave similarly in most tests of repair and recombination during mitotic growth. One difference between these two alleles is that a homozygous rad52-2 diploid fails to sporulate, whereas the homozygous rad52-327 diploid sporulates weakly. The low level of sporulation by the rad52-327 diploid is accompanied by a low percentage of spore viability. Among these viable spores the frequency of crossing over for markers along chromosome VII is the same as that found in wild-type spores. rad52-327 complements rad52-2 for repair and sporulation. Weaker intragenic complementation occurs between rad52-327 and rad52-1. PMID:8417987

  7. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  8. Age-Related Response Bias in the Decoding of Sad Facial Expressions

    PubMed Central

    Fölster, Mara; Hess, Ursula; Hühnel, Isabell; Werheid, Katja

    2015-01-01

    Recent studies have found that age is negatively associated with the accuracy of decoding emotional facial expressions; this effect of age was found for actors as well as for raters. Given that motivational differences and stereotypes may bias the attribution of emotion, the aim of the present study was to explore whether these age effects are due to response bias, that is, the unbalanced use of response categories. Thirty younger raters (19–30 years) and thirty older raters (65–81 years) viewed video clips of younger and older actors representing the same age ranges, and decoded their facial expressions. We computed both raw hit rates and bias-corrected hit rates to assess the influence of potential age-related response bias on decoding accuracy. Whereas raw hit rates indicated significant effects of both the actors’ and the raters’ ages on decoding accuracy for sadness, these age effects were no longer significant when response bias was corrected. Our results suggest that age effects on the accuracy of decoding facial expressions may be due, at least in part, to age-related response bias. PMID:26516920

  9. Allele-Selective Inhibition of Huntingtin and Ataxin-3 Expression by RNA Duplexes Containing Unlocked Nucleic Acid (UNA) Substitutions

    PubMed Central

    Aiba, Yuichiro; Hu, Jiaxin; Liu, Jing; Xiang, Qin; Martinez, Carlos; Corey, David R.

    2014-01-01

    Unlocked nucleic acid (UNA) is an acyclic analog of RNA that can be introduced into RNA or DNA oligonucleotides. The increased flexibility conferred by the acyclic structure fundamentally affects the strength of base-pairing, createing opportunities for improved applications and new insights into molecular recognition. Here we test how UNA substitutions affect allele-selective inhibition of trinucleotide-repeat genes Huntingtin (HTT) and Ataxin-3 (ATX-3) expression. We find that the either the combination of mismatched bases and UNA substitutions or UNA substitutions alone can improve potency and selectivity. Inhibition is potent and selectivities of > 40-fold for inhibiting mutant versus wild-type expression can be achieved. Surprisingly, even though UNA preserves the potential for complete base-pairing, the introduction of UNA substitutions at central positions within fully complementary duplexes leads to >19-fold selectivity. Like mismatched bases, the introduction of central UNA bases disrupts the potential for cleavage of substrate by Argonaute 2 (AGO2) during gene silencing. UNA-substituted duplexes are as effective as other strategies for allele-selective silencing of trinucleotide repeat disease genes. Modulation of AGO2 activity by the introduction of UNA substitutions demonstrates that backbone flexibility is as important as base-pairing for catalysis of fully complementary duplex substrates. UNA can be used to tailor RNA silencing for optimal properties and allele-selective action. PMID:24266403

  10. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection.

    PubMed

    Matsye, Prachi D; Lawrence, Gary W; Youssef, Reham M; Kim, Kyung-Hwan; Lawrence, Katheryn S; Matthews, Benjamin F; Klink, Vincent P

    2012-09-01

    Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.

  11. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  12. Structure and expression of wild-type and suppressible alleles of the Drosophila purple gene

    SciTech Connect

    Kim, Nacksung |; Park, Dongkook; Yim, John

    1996-04-01

    Viable mutant alleles of purple (pr), such as pr{sup bw}, exhibit mutant eye colors. This reflects low 6-pyruvoyl tetrahydropterin (PTP) synthase activity required for pigment synthesis. PTP synthase is also required for synthesis of the enzyme cofactor biopterin; presumably this is why some pr alleles are lethal. The pr{sup bw} eye color phenotype is suppressed by suppressor of sable [su(s)] mutations. The pr gene was cloned to explore the mechanism of this suppression. pr produces two PTP synthase mRNAs: one constitutively from a distal promoter and one in late pupae and young adult heads from a proximal promoter. The latter presumably supports eye pigment synthesis. The pr{sup bw} allele has a 412 retrotransposon in an intron spliced from both mRNAs. However, the head-specific mRNA is reduced > 10-fold in pr{sup bw} and is restored by a su(s) mutation, while the constitutive transcript is barely affected. The Su(s) protein probably alters processing of RNA containing 412. Because the intron containing 412 is the first in the head-specific mRNA and the second in the constitutive mRNA, binding of splicing machinery to nascent transcripts before the 412 insertion is transcribed may preclude the effects of Su(s) protein. 43 refs., 9 figs.

  13. Molecular characterization of a new waxy allele with partial expression in spelt wheat.

    PubMed

    Guzmán, Carlos; Caballero, Leonor; Yamamori, Makoto; Alvarez, Juan B

    2012-06-01

    Starch composition which is dependent on the waxy protein, the enzyme responsible for amylose synthesis in the grain, is an important aspect of the wheat quality. In this report, we describe the characterization of a novel Wx-A1 allele (Wx-A1g formerly known as -Wx-A1a) in Spanish spelt wheat lines which is responsible for a remarkable decline in the concentration of Wx-A1 protein found in the endosperm. Comparison of the DNA sequences in the Wx-A1a and Wx-A1g alleles showed the presence of a 160-bp insertion within the fourth intron in the latter. This insertion had some characteristics of a transposable-like element. RT-PCR analysis showed the presence of normal and aberrant mRNA transcripts in the Wx-A1g lines, indicating that the aberrant transcripts are un-spliced and contained the longer fourth intron. This may be related to the low level of Wx-A1 protein in these lines. In addition, a simple and fast PCR assay was designed for differentiating among different Wx-A1 alleles (a, b, f and g). The mutation described here is not related to either of the Wx-A1 mutations identified previously in common and durum wheats and could help to extend the range of amylose content of wheats.

  14. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain.

    PubMed

    Sittig, Laura J; Redei, Eva E

    2014-01-01

    The gene encoding the thyroid hormone (TH)-metabolizing enzyme, deiodinase type III (Dio3), exhibits a preferential paternal expression in most tissues. Dio3 is part of the Dlk1-Dio3 imprinted locus, so named according to its ancestral genes, Delta-like homolog 1 (Dlk1) and Dio3, which among other important functions control metabolic programming in the developing embryo and fetus. Here, we describe the aspects of the genomic imprinting patterns exhibited by Dio3 across brain regions and development. The corresponding local changes in the dosage of the Dio3 enzyme are inversely related to TH levels that vary from one brain region to another, and affect social and cognitive behaviors. We show that this regional tuning of brain region-specific expression is dependent on parent of origin-specific genetic polymorphisms in the rat, is sexually dimorphic, and is affected by the early environmental challenge of fetal exposure to alcohol, opening the possibility that the potential for variant expression patterns of the Dio3 gene is quite large. The multiple regulatory genomic features within the Dlk1-Dio3 locus, and other imprinted loci, allow mammals to specifically modulate parent-of-origin allelic gene expression brain region. These regulatory structures seem to have evolved as a possible mechanism of adaptation in response to the simultaneous need for highly regulated expression in some tissues during development, but variable expression across specific regions of the brain over the complete life span. Here, we use Dio3 as a single gene example of the epigenetic parent-of-origin allelic expression in specific brain regions and discuss the potential of this general phenomenon to shape evolutionarily relevant social and cognitive behavior in eutherian mammals.

  15. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  16. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  17. Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti.

    PubMed

    Wang, Xu; Werren, John H; Clark, Andrew G

    2015-07-01

    There is extraordinary diversity in sexual dimorphism (SD) among animals, but little is known about its epigenetic basis. To study the epigenetic architecture of SD in a haplodiploid system, we performed RNA-seq and whole-genome bisulfite sequencing of adult females and males from two closely related parasitoid wasps, Nasonia vitripennis and Nasonia giraulti. More than 75% of expressed genes displayed significantly sex-biased expression. As a consequence, expression profiles are more similar between species within each sex than between sexes within each species. Furthermore, extremely male- and female-biased genes are enriched for totally different functional categories: male-biased genes for key enzymes in sex-pheromone synthesis and female-biased genes for genes involved in epigenetic regulation of gene expression. Remarkably, just 70 highly expressed, extremely male-biased genes account for 10% of all transcripts in adult males. Unlike expression profiles, DNA methylomes are highly similar between sexes within species, with no consistent sex differences in methylation found. Therefore, methylation changes cannot explain the extensive level of sex-biased gene expression observed. Female-biased genes have smaller sequence divergence between species, higher conservation to other hymenopterans, and a broader expression range across development. Overall, female-biased genes have been recruited from genes with more conserved and broadly expressing "house-keeping" functions, whereas male-biased genes are more recently evolved and are predominately testis specific. In summary, Nasonia accomplish a striking degree of sex-biased expression without sex chromosomes or epigenetic differences in methylation. We propose that methylation provides a general signal for constitutive gene expression, whereas other sex-specific signals cause sex-biased gene expression.

  18. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.

    PubMed

    Prigoda, Nadia L; Nassuth, Annette; Mable, Barbara K

    2005-07-01

    The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene

  19. A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression

    PubMed Central

    Warburton, Alix; Breen, Gerome; Bubb, Vivien J.; Quinn, John P.

    2016-01-01

    Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterized an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk. PMID:26429811

  20. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  1. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle.

    PubMed

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  2. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele

    PubMed Central

    Ye, Xiaojing; Kohtz, Amy; Pollonini, Gabriella; Riccio, Andrea; Alberini, Cristina M.

    2015-01-01

    Insulin like growth factor 2 (Igf2) is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex, compared to the peripheral tissues. In contrast to its maternal imprinting in peripheral tissues, Igf2 is mainly expressed from the maternal allele in these brain regions. The training-dependent increase in Igf2 expression derives proportionally from both parental alleles, and, hence, is mostly maternal. Thus, Igf2 parental expression in the adult rat brain does not follow the imprinting rules found in peripheral tissues, suggesting differential expression regulation and functions of imprinted genes in the brain. PMID:26495851

  3. Gene Expression Variation in Drosophila melanogaster Due to Rare Transposable Element Insertion Alleles of Large Effect

    PubMed Central

    Cridland, Julie M.; Thornton, Kevin R.; Long, Anthony D.

    2015-01-01

    Transposable elements are a common source of genetic variation that may play a substantial role in contributing to gene expression variation. However, the contribution of transposable elements to expression variation thus far consists of a handful of examples. We used previously published gene expression data from 37 inbred Drosophila melanogaster lines from the Drosophila Genetic Reference Panel to perform a genome-wide assessment of the effects of transposable elements on gene expression. We found thousands of transcripts with transposable element insertions in or near the transcript and that the presence of a transposable element in or near a transcript is significantly associated with reductions in expression. We estimate that within this example population, ∼2.2% of transcripts have a transposable element insertion, which significantly reduces expression in the line containing the transposable element. We also find that transcripts with insertions within 500 bp of the transcript show on average a 0.67 standard deviation decrease in expression level. These large decreases in expression level are most pronounced for transposable element insertions close to transcripts and the effect diminishes for more distant insertions. This work represents the first genome-wide analysis of gene expression variation due to transposable elements and suggests that transposable elements are an important class of mutation underlying expression variation in Drosophila and likely in other systems, given the ubiquity of these mobile elements in eukaryotic genomes. PMID:25335504

  4. Closing the gap: discrimination of the expression profile of HLA questionable alleles by a cytokine-induced secretion approach using HLA-A*32:11Q.

    PubMed

    Föll, D; Hinrichs, J; Tischer, S; Battermann, A; Schambach, A; Figueiredo, C; Immenschuh, S; Blasczyk, R; Eiz-Vesper, B

    2012-05-01

    Matching of human leukocyte antigen (HLA) alleles between donors and recipients plays a major role in hematopoietic stem cell transplantation (HSCT). Null or questionably expressed HLA allelic variants are a major issue in HLA matching, because the aberrant expression of such alleles can have a major impact on the outcome of HSCT and/or its complications such as graft-versus-host disease. The goal of this study was to investigate the potential of a recently developed cytokine-induced secretion assay to differentiate the expression levels of HLA-A*32:11Q (questionable) into a null (N) or low (L) expression variant. An amino acid mutation at position 164 of HLA-A*32:11Q disrupts the disulfide bridge in the α2 domain. HLA-A*32:11Q is not detectable by standard microlymphocytotoxicity assay. To this end, we cloned soluble HLA-A*32:11Q and a reference allele (HLA-A*32:01) into expression vectors and transfected/transduced HEK293 and K562 cells. Allele-expressing K562 cells were simultaneously transfected/transduced with a β2-microglobulin (B2M)-encoding vector to ensure the intact HLA structure with B2M. After treatment with proinflammatory cytokines, secreted soluble HLA molecules were determined by enzyme-linked immunosorbent assay in the supernatant and intracellular accumulation of the recombinant proteins by flow cytometry. HLA-A*32:11Q was nearly undetectable in untreated transfectants. Cytokine treatment increased the secretion of HLA-A*32:11Q to detectable levels and resulted in intracellular accumulation of the allele. There was no difference in mRNA transcription between the A*32 alleles. On the basis of these results, we recommend reclassification of HLA-A*32:11Q as a low expression (L) variant.

  5. Evolution and the expression of biases: situational value changes the endowment effect in chimpanzees

    PubMed Central

    Brosnan, Sarah F.; Jones, Owen D.; Gardner, Molly; Lambeth, Susan P.; Schapiro, Steven J.

    2014-01-01

    Cognitive and behavioral biases, which are widespread among humans, have recently been demonstrated in other primates, suggesting a common origin. Here we examine whether the expression of one shared bias, the endowment effect, varies as a function of context. We tested whether objects lacking inherent value elicited a stronger endowment effect (or preference for keeping the object) in a context in which the objects had immediate instrumental value for obtaining valuable resources (food). Chimpanzee subjects had opportunities to trade tools when food was not present, visible but unobtainable, and obtainable using the tools. We found that the endowment effect for these tools existed only when they were immediately useful, showing that the effect varies as a function of context-specific utility. Such context-specific variation suggests that the variation seen in some human biases may trace predictably to behaviors that evolved to maximize gains in specific circumstances. PMID:25419111

  6. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  7. Perceiving emotions in neutral faces: expression processing is biased by affective person knowledge

    PubMed Central

    Rabovsky, Milena; Abdel Rahman, Rasha

    2015-01-01

    According to a widely held view, basic emotions such as happiness or anger are reflected in facial expressions that are invariant and uniquely defined by specific facial muscle movements. Accordingly, expression perception should not be vulnerable to influences outside the face. Here, we test this assumption by manipulating the emotional valence of biographical knowledge associated with individual persons. Faces of well-known and initially unfamiliar persons displaying neutral expressions were associated with socially relevant negative, positive or comparatively neutral biographical information. The expressions of faces associated with negative information were classified as more negative than faces associated with neutral information. Event-related brain potential modulations in the early posterior negativity, a component taken to reflect early sensory processing of affective stimuli such as emotional facial expressions, suggest that negative affective knowledge can bias the perception of faces with neutral expressions toward subjectively displaying negative emotions. PMID:24948155

  8. Interpretive bias of ambiguous facial expressions in older adults with depressive symptoms.

    PubMed

    Dai, Bibing; Li, Juan; Chen, Tingji; Li, Qi

    2015-03-01

    Cognitive theories of emotional disorders indicate that biases in cognitive processes, such as attention, memory, and interpretation, are common factors that indicate vulnerability to these disorders, although their form varies according to the type of disorder. However, most of the studies have focused on adolescence and adulthood. It is still uncertain whether cognitive biases are risk factors for late-life depression. The present study sought to explore the role of interpretive bias in older adults with depressive symptoms and whether this effect is independent of basic cognitive abilities. Therefore, 18 older adults with depressive symptoms and 21 healthy controls were compared with an ambiguous facial expression identification task, a Mini Mental Status Examination, a Trail Making Test A and B, and a Word Fluency Test. Findings revealed that the depressive group was more likely to identify more ambiguous happy-sad facial expressions as indicative of sadness than were the healthy controls, but the two groups showed no significant differences in the cognitive test scores. These results suggest that interpretive bias indicates vulnerability to late-life depression, but basic cognitive abilities may have no influence in this context. PMID:26263528

  9. Non-random autosome segregation: a stepping stone for the evolution of sex chromosome complexes? Sex-biased transmission of autosomes could facilitate the spread of antagonistic alleles, and generate sex-chromosome systems with multiple X or Y chromosomes.

    PubMed

    Schwander, Tanja; Beukeboom, Leo W

    2011-02-01

    A new study in Caenorhabditis elegans shows that homologous autosomes segregate non-randomly with the sex chromosome in the heterogametic sex. Segregation occurs according to size, small autosomes segregating with, and large autosomes segregating away from the X-chromosome. Such sex-biased transmission of autosomes could facilitate the spread of sexually antagonistic alleles whose effects favor the fitness of one sex at the expense of the other. This may provide a first step toward the evolution of new sex determination systems.

  10. Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds.

    PubMed

    Wu, Huayu; Gaur, Uma; Mekchay, Supamit; Peng, Xianwen; Li, Lianghua; Sun, Hua; Song, Zhongxu; Dong, Binke; Li, Mingbo; Wimmers, Klaus; Ponsuksili, Siriluck; Li, Kui; Mei, Shuqi; Liu, Guisheng

    2015-11-01

    Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.

  11. Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris.

    PubMed

    Wong, Kin-Sing; Huang, Qianli; Au, Chun-Hang; Wang, Jun; Kwan, Hoi-Shan

    2012-01-01

    Laccases from basidiomycetes are efficient enzymes in the degradation of xenobiotics. In this study we aimed to provide an industrially relevant expression system for Lentinula edodes laccases, to characterize their enzymatic properties, and to evaluate their potential in bioremediation. Two 1573-bp allelic laccase genes from L. edodes L54 were cloned based on gene models in the genome sequence. A novel upstream consensus (GCTCCGA/CCGGAG) was proposed as an alternative signature sequence for laccases. Both alleles were overexpressed in Pichia pastoris, purified, and verified by zymograms. Kinetic analyses suggested an order of catalytic efficiency of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)>2,6-dimethoxyphenol>guaiacol>l-3,4-dihydroxyphenylalanine>catechol, and a stable range of working temperature below 40 °C. With the appropriate mediators, 1-hydroxybenzotriazole and 2,2,6,6-tetramethylpiperidine-1-oxyl, the recombinant enzymes could catalyze a 70-100% decolorization of selected dyes and a complete degradation of anthracene. These results laid a solid foundation for the use of L. edodes laccases in bioremediations and for improvement with protein engineering.

  12. Clinical significance and origin of leukocytes that lack HLA-A allele expression in patients with acquired aplastic anemia.

    PubMed

    Maruyama, Hiroyuki; Katagiri, Takamasa; Kashiwase, Koichi; Shiina, Takashi; Sato-Otsubo, Aiko; Zaimoku, Yoshitaka; Maruyama, Kana; Hosokawa, Kohei; Ishiyama, Ken; Yamazaki, Hirohito; Inoko, Hidetoshi; Ogawa, Seishi; Nakao, Shinji

    2016-10-01

    To gain insight into the origin and clinical significance of leukocytes that lack human leukocyte antigen A (HLA-A) allele expression caused by a copy-number-neutral loss of heterozygosity in the short arm of chromosome 6 in patients with acquired aplastic anemia (AA), we used a high-sensitivity flow cytometry assay to investigate the presence of HLA-A allele-lacking leukocytes (HLA-LLs) in 144 AA patients. HLA-LLs, accounting for 0.2-99.8% of each leukocyte population, were detected in 18 of 71 (25.4%) newly diagnosed patients and in 25 of 73 (34.2%) previously treated patients. The lineage combination patterns of the HLA-LLs in the 43 HLA-LL(+) patients were granulocytes (Gs), monocytes (Ms), B cells (Bs), and T cells (Ts; GMBT) in 13 cases, GMB in 16 cases, GM in 11 cases, and B alone in three cases. The response rate to antithymocyte globulin plus cyclosporine therapy (100%) and the 2-year, failure-free survival rate (100%) in 8 newly diagnosed HLA-LL(+) patients were significantly higher than in 23 HLA-LL(-) patients (52.2% for both). These data suggest that HLA-LLs are a useful marker of the presence of immune pathophysiology in AA and that T-cell attacks against hematopoietic progenitor cells, rather than against hematopoietic stem cells, can trigger bone marrow failure in AA patients.

  13. Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression

    PubMed Central

    Kelly, Jennifer A.; Brown, Elizabeth E.; Harley, John B.; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E.; Edberg, Jeffrey C.; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Kaufman, Kenneth M.; Vyse, Timothy J.; Jacob, Chaim O.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Kamen, Diane L.; Gilkeson, Gary S.; Niewold, Timothy B.; Merrill, Joan T.; Scofield, R. Hal; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A.; Freedman, Barry I.; Anaya, Juan-Manuel; Martin, Javier; Yu, C. Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D.; Chen, Weiling; Grossman, Jennifer M.; Cantor, Rita M.; Hahn, Bevra H.; Tsao, Betty P.

    2013-01-01

    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL

  14. The shared genome is a pervasive constraint on the evolution of sex-biased gene expression.

    PubMed

    Griffin, Robert M; Dean, Rebecca; Grace, Jaime L; Rydén, Patrik; Friberg, Urban

    2013-09-01

    Males and females share most of their genomes, and differences between the sexes can therefore not evolve through sequence divergence in protein coding genes. Sexual dimorphism is instead restricted to occur through sex-specific expression and splicing of gene products. Evolution of sexual dimorphism through these mechanisms should, however, also be constrained when the sexes share the genetic architecture for regulation of gene expression. Despite these obstacles, sexual dimorphism is prevalent in the animal kingdom and commonly evolves rapidly. Here, we ask whether the genetic architecture of gene expression is plastic and easily molded by sex-specific selection, or if sexual dimorphism evolves rapidly despite pervasive genetic constraint. To address this question, we explore the relationship between the intersexual genetic correlation for gene expression (rMF), which captures how independently genes are regulated in the sexes, and the evolution of sex-biased gene expression. Using transcriptome data from Drosophila melanogaster, we find that most genes have a high rMF and that genes currently exposed to sexually antagonistic selection have a higher average rMF than other genes. We further show that genes with a high rMF have less pronounced sex-biased gene expression than genes with a low rMF within D. melanogaster and that the strength of the rMF in D. melanogaster predicts the degree to which the sex bias of a gene's expression has changed between D. melanogaster and six other species in the Drosophila genus. In sum, our results show that a shared genome constrains both short- and long-term evolution of sexual dimorphism.

  15. Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression.

    PubMed

    Zhang, Zhi; Parsch, John

    2005-10-01

    Previous studies have shown that genes that are expressed predominantly or exclusively in males tend to evolve rapidly in comparison to other genes. In most cases, however, it is unknown whether this rapid evolution is the result of increased positive (or sexual) selection on male-expressed traits or if it is due to a relaxation of selective constraints. To distinguish between these two possibilities, we analyzed the relationship between the nonsynonymous substitution rate (dN) and local recombination rate for 343 Drosophila genes that were classified as male, female, or nonsex biased in their expression. For the male-biased genes, a positive correlation between dN and recombination rate was observed. This can be explained by an increased rate of adaptive evolution in regions of higher recombination due to a reduction of Hill-Robertson interference. In contrast, the correlation between dN and recombination rate was negative for both female- and nonsex-biased genes, suggesting that these genes are primarily subject to purifying selection, which is expected to be less effective in regions of reduced recombination.

  16. The Sp1-mediaded allelic regulation of MMP13 expression by an ESCC susceptibility SNP rs2252070.

    PubMed

    Shi, Meng; Xia, Jianhong; Xing, Huaixin; Yang, Wenjun; Xiong, Xiangyu; Pan, Wenting; Han, Sichong; Shang, Jinhua; Zhou, Changchun; Zhou, Liqing; Yang, Ming

    2016-01-01

    Metallopeptidase 13 (MMP13), a well-known and highly regulated zinc-dependent MMP collagenase, plays a crucial part in development and progression of esophageal squamous cell carcinoma (ESCC). Therefore, we examined associations between ESCC susceptibility and four haplotype-tagging single nucleotide polymorphisms (htSNPs) using a two stage case-control strategy. Odds ratios (OR) and 95% confidence intervals (95% CI) were computed by logistic regression model. After analyzing 1588 ESCC patients and frequency-matched 1600 unaffected controls, we found that MMP13 rs2252070 G > A genetic polymorphism is significantly associated with ESCC risk in Chinese Han populations (GA: OR = 0.63, 95% CI = 0.54-0.74, P = 1.7 × 10(-6), AA: OR = 0.73, 95% CI = 0.66-0.81, P = 1.8 × 10(-6)). Interestingly, the rs2252070 G-to-A change was shown to diminish a Sp1-binding site in ESCC cells. Reporter gene assays indicated that the rs2252070 A allele locating in a potential MMP13 promoter has low promoter activities. After measuring MMP13 gene expression in sixty-six pairs of esophageal cancer and normal tissues, we observed that the rs2252070 A protective allele carriers showed decreased oncogene MMP13 expression. Results of these analyses underline the support of the notion that MMP13 might function as a key oncogene in esophageal carcinogenesis. PMID:27245877

  17. Premature Termination Mutations in FBN1: Distinct Effects on Differential Allelic Expression and on Protein and Clinical Phenotypes

    PubMed Central

    Schrijver, Iris; Liu, Wanguo; Odom, Raanan; Brenn, Thomas; Oefner, Peter; Furthmayr, Heinz; Francke, Uta

    2002-01-01

    Marfan syndrome (MFS) and other type 1 fibrillinopathies result from mutations in the FBN1 gene, which encodes the connective-tissue microfibrillar protein fibrillin 1. Attempts at correlating genotype with phenotype have suggested considerable heterogeneity. To define the subtype of fibrillinopathy caused by premature termination codon (PTC) mutations, we integrate genotype information and mRNA expression levels with clinical and biochemical phenotypes. By screening the entire FBN1 gene for mutations, we identified 34 probands with PTC mutations. With the exception of two recurrent mutations, these nonsense and frameshift mutations are unique and span the entire FBN1 gene, from IVS2 to IVS63. Allele-specific reverse-transcriptase polymerase chain reaction analyses revealed differential allelic expression in all studied samples, with variable reduction of the mutant transcript. Fibrillin protein synthesis and deposition into the extracellular matrix were studied by pulse-chase analysis of cultured fibroblasts. In the majority of PTC samples, synthesis of normal-sized fibrillin protein was ∼50% of control levels, but matrix deposition was disproportionately decreased. Probands and mutation-positive relatives were clinically evaluated by means of a standardized protocol. Only 71% (22/31) of probands and 58% (14/24) of the mutation-positive family members met current clinical diagnostic criteria for MFS. When compared with our previously reported study group of 44 individuals with FBN1 cysteine substitutions, the PTC group showed statistically significant differences in the frequency of individual signs, especially in the ocular manifestations. Whereas large-joint hypermobility was more common, lens dislocation and retinal detachment were distinctly less common in the PTC group. We conclude that PTC mutations have a major impact on the pathogenesis of type 1 fibrillinopathies and convey a distinct biochemical, clinical, and prognostic profile. PMID:12068374

  18. The homeologous Zea mays gigantea genes: characterization of expression and novel mutant alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two homeologous Zea mays gigantea (gi) genes, gi1 and gi2, arose from the last genome duplication event in the maize lineage. Homologs of these genes in other species are required for correct circadian rhythms and proper regulation of growth and development. Here we characterized the expression ...

  19. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  20. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism. PMID:26193085

  1. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    PubMed

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis. PMID:25817071

  2. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis.

    PubMed

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism.

  3. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    PubMed

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis.

  4. Paternally biased X inactivation in mouse neonatal brain

    PubMed Central

    2010-01-01

    Background X inactivation in female eutherian mammals has long been considered to occur at random in embryonic and postnatal tissues. Methods for scoring allele-specific differential expression with a high degree of accuracy have recently motivated a quantitative reassessment of the randomness of X inactivation. Results After RNA-seq data revealed what appeared to be a chromosome-wide bias toward under-expression of paternal alleles in mouse tissue, we applied pyrosequencing to mouse brain cDNA samples from reciprocal cross F1 progeny of divergent strains and found a small but consistent and highly statistically significant excess tendency to under-express the paternal X chromosome. Conclusions The bias toward paternal X inactivation is reminiscent of marsupials (and extraembryonic tissues in eutherians), suggesting that there may be retained an evolutionarily conserved epigenetic mark driving the bias. Allelic bias in expression is also influenced by the sampling effect of X inactivation and by cis-acting regulatory variation (eQTL), and for each gene we quantify the contributions of these effects in two different mouse strain combinations while controlling for variability in Xce alleles. In addition, we propose an efficient method to identify and confirm genes that escape X inactivation in normal mice by directly comparing the allele-specific expression ratio profile of multiple X-linked genes in multiple individuals. PMID:20663224

  5. Complete dosage compensation and sex-biased gene expression in the moth Manduca sexta.

    PubMed

    Smith, Gilbert; Chen, Yun-Ru; Blissard, Gary W; Briscoe, Adriana D

    2014-03-01

    Sex chromosome dosage compensation balances homogametic sex chromosome expression with autosomal expression in the heterogametic sex, leading to sex chromosome expression parity between the sexes. If compensation is incomplete, this can lead to expression imbalance and sex-biased gene expression. Recent work has uncovered an intriguing and variable pattern of dosage compensation across species that includes a lack of complete dosage compensation in ZW species compared with XY species. This has led to the hypothesis that ZW species do not require complete compensation or that complete compensation would negatively affect their fitness. To date, only one study, a study of the moth Bombyx mori, has discovered evidence for complete dosage compensation in a ZW species. We examined another moth species, Manduca sexta, using high-throughput sequencing to survey gene expression in the head tissue of males and females. We found dosage compensation to be complete in M. sexta with average expression between the Z chromosome in males and females being equal. When genes expressed at very low levels are removed by filtering, we found that average autosome expression was highly similar to average Z expression, suggesting that the majority of genes in M. sexta are completely dosage compensated. Further, this compensation was accompanied by sex-specific gene expression associated with important sexually dimorphic traits. We suggest that complete dosage compensation in ZW species might be more common than previously appreciated and linked to additional selective processes, such as sexual selection. More ZW and lepidopteran species should now be examined in a phylogenetic framework, to understand the evolution of dosage compensation.

  6. Treatment with escitalopram improves the attentional bias toward negative facial expressions in patients with major depressive disorders.

    PubMed

    Zhou, Zhenhe; Cao, Suxia; Li, Hengfen; Li, Youhui

    2015-10-01

    We hypothesized that treatment with escitalopram would improve cognitive bias and contribute to the recovery process for patients with major depressive disorder (MDD). Many previous studies have established that patients with MDD tend to pay selective attention to negative stimuli. The assessment of the level of cognitive bias is regarded as a crucial dimension of treatment outcomes for MDD. To our knowledge, no prior studies have been reported on the effects of treatment with escitalopram on attentional bias in MDD, employing a dot probe task of facial expression. We studied 25 patients with MDD and 25 controls, and used a dot probe task of facial expression to measure cognitive bias. The patients' psychopathologies were rated using the Hamilton Depression Scale (HAMD) at baseline and after 8 weeks of treatment with escitalopram. All participants performed the facial expression dot probe task. The results revealed that the 8 week escitalopram treatment decreased the HAMD scores. The patients with MDD at baseline exhibited an attentional bias towards negative faces, however, no significant bias toward either negative or happy faces were observed in the controls. After the 8 week escitalopram treatment, no significant bias toward negative faces was observed in the patient group. In conclusion, patients with MDD pay more attention to negative facial expressions, and treatment with escitalopram improves this attentional bias toward negative facial expressions. This is the first study, to our knowledge, on the effects of treatment with escitalopram on attentional bias in patients with MDD that has employed a dot probe task of facial expression. PMID:26149404

  7. Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits.

    PubMed

    Xu, Lei; Ma, Xiaole; Zhao, Weihua; Luo, Lizhu; Yao, Shuxia; Kendrick, Keith M

    2015-12-01

    There is considerable interest in the potential therapeutic role of the neuropeptide oxytocin in altering attentional bias towards emotional social stimuli in psychiatric disorders. However, it is still unclear whether oxytocin primarily influences attention towards positive or negative valence social stimuli. Here in a double-blind, placebo controlled, between subject design experiment in 60 healthy male subjects we have used the highly sensitive dual-target rapid serial visual presentation (RSVP) paradigm to investigate whether intranasal oxytocin (40IU) treatment alters attentional bias for emotional faces. Results show that oxytocin improved recognition accuracy of neutral and happy expression faces presented in the second target position (T2) during the period of reduced attentional capacity following prior presentation of a first neutral face target (T1), but had no effect on recognition of negative expression faces (angry, fearful, sad). Oxytocin also had no effect on recognition of non-social stimuli (digits) in this task. Recognition accuracy for neutral faces at T2 was negatively associated with autism spectrum quotient (ASQ) scores in the placebo group, and oxytocin's facilitatory effects were restricted to a sub-group of subjects with higher ASQ scores. Our results therefore indicate that oxytocin primarily enhances the allocation of attentional resources towards faces expressing neutral or positive emotion and does not influence that towards negative emotion ones or non-social stimuli. This effect of oxytocin is strongest in healthy individuals with higher autistic trait scores, thereby providing further support for its potential therapeutic use in autism spectrum disorder.

  8. Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits.

    PubMed

    Xu, Lei; Ma, Xiaole; Zhao, Weihua; Luo, Lizhu; Yao, Shuxia; Kendrick, Keith M

    2015-12-01

    There is considerable interest in the potential therapeutic role of the neuropeptide oxytocin in altering attentional bias towards emotional social stimuli in psychiatric disorders. However, it is still unclear whether oxytocin primarily influences attention towards positive or negative valence social stimuli. Here in a double-blind, placebo controlled, between subject design experiment in 60 healthy male subjects we have used the highly sensitive dual-target rapid serial visual presentation (RSVP) paradigm to investigate whether intranasal oxytocin (40IU) treatment alters attentional bias for emotional faces. Results show that oxytocin improved recognition accuracy of neutral and happy expression faces presented in the second target position (T2) during the period of reduced attentional capacity following prior presentation of a first neutral face target (T1), but had no effect on recognition of negative expression faces (angry, fearful, sad). Oxytocin also had no effect on recognition of non-social stimuli (digits) in this task. Recognition accuracy for neutral faces at T2 was negatively associated with autism spectrum quotient (ASQ) scores in the placebo group, and oxytocin's facilitatory effects were restricted to a sub-group of subjects with higher ASQ scores. Our results therefore indicate that oxytocin primarily enhances the allocation of attentional resources towards faces expressing neutral or positive emotion and does not influence that towards negative emotion ones or non-social stimuli. This effect of oxytocin is strongest in healthy individuals with higher autistic trait scores, thereby providing further support for its potential therapeutic use in autism spectrum disorder. PMID:26372768

  9. Sex-biased expression of microRNAs in Schistosoma mansoni.

    PubMed

    Marco, Antonio; Kozomara, Ana; Hui, Jerome H L; Emery, Aidan M; Rollinson, David; Griffiths-Jones, Sam; Ronshaugen, Matthew

    2013-01-01

    Schistosomiasis is an important neglected tropical disease caused by digenean helminth parasites of the genus Schistosoma. Schistosomes are unusual in that they are dioecious and the adult worms live in the blood system. MicroRNAs play crucial roles during gene regulation and are likely to be important in sex differentiation in dioecious species. Here we characterize 112 microRNAs from adult Schistosoma mansoni individuals, including 84 novel microRNA families, and investigate the expression pattern in different sexes. By deep sequencing, we measured the relative expression levels of conserved and newly identified microRNAs between male and female samples. We observed that 13 microRNAs exhibited sex-biased expression, 10 of which are more abundant in females than in males. Sex chromosomes showed a paucity of female-biased genes, as predicted by theoretical evolutionary models. We propose that the recent emergence of separate sexes in Schistosoma had an effect on the chromosomal distribution and evolution of microRNAs, and that microRNAs are likely to participate in the sex differentiation/maintenance process.

  10. Expressing gambling-related cognitive biases in motor behaviour: rolling dice to win prizes.

    PubMed

    Lim, Matthew S M; Bowden-Jones, Henrietta; Rogers, Robert D

    2014-09-01

    Cognitive perspectives on gambling propose that biased thinking plays a significant role in sustaining gambling participation and, in vulnerable individuals, gambling problems. One prominent set of cognitive biases include illusions of control involving beliefs that it is possible to influence random gaming events. Sociologists have reported that (some) gamblers believe that it is possible to throw dice in different ways to achieve gaming outcomes (e.g., 'dice-setting' in craps). However, experimental demonstrations of these phenomena are lacking. Here, we asked regular gamblers to roll a computer-simulated, but fair, 6 sided die for monetary prizes. Gamblers allowed the die to roll for longer when attempting to win higher value bets, and when attempting to hit high winning numbers. This behaviour was exaggerated in gamblers motivated to keep gambling following the experience of almost-winning in gambling games. These results suggest that gambling cognitive biases find expression in the motor behaviour of rolling dice for monetary prizes, possibly reflecting embodied substrates.

  11. Expressing gambling-related cognitive biases in motor behaviour: rolling dice to win prizes.

    PubMed

    Lim, Matthew S M; Bowden-Jones, Henrietta; Rogers, Robert D

    2014-09-01

    Cognitive perspectives on gambling propose that biased thinking plays a significant role in sustaining gambling participation and, in vulnerable individuals, gambling problems. One prominent set of cognitive biases include illusions of control involving beliefs that it is possible to influence random gaming events. Sociologists have reported that (some) gamblers believe that it is possible to throw dice in different ways to achieve gaming outcomes (e.g., 'dice-setting' in craps). However, experimental demonstrations of these phenomena are lacking. Here, we asked regular gamblers to roll a computer-simulated, but fair, 6 sided die for monetary prizes. Gamblers allowed the die to roll for longer when attempting to win higher value bets, and when attempting to hit high winning numbers. This behaviour was exaggerated in gamblers motivated to keep gambling following the experience of almost-winning in gambling games. These results suggest that gambling cognitive biases find expression in the motor behaviour of rolling dice for monetary prizes, possibly reflecting embodied substrates. PMID:23620161

  12. Stereotypical portrayals of obesity and the expression of implicit weight bias.

    PubMed

    Hinman, Nova G; Burmeister, Jacob M; Kiefner, Allison E; Borushok, Jessica; Carels, Robert A

    2015-01-01

    The strength of implicit anti-fat attitudes may be related to visual portrayals of obesity and individuals' pre-existing explicit attitudes toward appearance and weight. Participants (N=117) completed measures of explicit weight bias, beliefs about weight controllability, orientation toward personal appearance, overweight preoccupation, and two Implicit Association Tests (IAT). One IAT measured implicit anti-fat attitudes when individuals with obesity were shown engaging in behaviors congruent with common stereotypes (e.g., eating snacks, watching television), while a second IAT measured attitudes in response to stereotypically incongruent images (e.g., preparing vegetables, exercising). Whereas implicit weight bias was evident for both IATs, the stereotype congruent IAT was significantly related to higher implicit weight bias, appearance orientation, and overweight preoccupation, and was marginally related to explicit anti-fat attitudes. The stereotypical portrayal of individuals with obesity was related to implicit anti-fat attitudes, which may have implications for the development, maintenance, and expression of stigmatizing anti-fat attitudes.

  13. Cardiac-Restricted Expression of VCP/TER94 RNAi or Disease Alleles Perturbs Drosophila Heart Structure and Impairs Function

    PubMed Central

    Viswanathan, Meera C.; Blice-Baum, Anna C.; Sang, Tzu-Kang; Cammarato, Anthony

    2016-01-01

    Valosin-containing protein (VCP) is a highly conserved mechanoenzyme that helps maintain protein homeostasis in all cells and serves specialized functions in distinct cell types. In skeletal muscle, it is critical for myofibrillogenesis and atrophy. However, little is known about VCP's role(s) in the heart. Its functional diversity is determined by differential binding of distinct cofactors/adapters, which is likely disrupted during disease. VCP mutations cause multisystem proteinopathy (MSP), a pleiotropic degenerative disorder that involves inclusion body myopathy. MSP patients display progressive muscle weakness. They also exhibit cardiomyopathy and die from cardiac and respiratory failure, which are consistent with critical myocardial roles for the enzyme. Nonetheless, efficient models to interrogate VCP in cardiac muscle remain underdeveloped and poorly studied. Here, we investigated the significance of VCP and mutant VCP in the Drosophila heart. Cardiac-restricted RNAi-mediated knockdown of TER94, the Drosophila VCP homolog, severely perturbed myofibrillar organization and heart function in adult flies. Furthermore, expression of MSP disease-causing alleles engendered cardiomyopathy in adults and structural defects in embryonic hearts. Drosophila may therefore serve as a valuable model for examining role(s) of VCP in cardiogenesis and for identifying novel heart-specific VCP interactions, which when disrupted via mutation, contribute to or elicit cardiac pathology. PMID:27500162

  14. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia.

    PubMed

    Wang, Yang; Cao, Yanfei; Huang, Xiaoye; Yu, Tao; Wei, Zhiyun; McGrath, John; Xu, Fei; Bi, Yan; Li, Xingwang; Yang, Fengping; Li, Weidong; Zou, Xia; Peng, Zhihai; Xiao, Yanzeng; Zhang, Yan; He, Lin; He, Guang

    2016-01-01

    Evidence has indicated that the incidence of colorectal cancer (CRC) among schizophrenia is lower than normal. To explore this potential protective effect, we employed an innovative strategy combining association study with allele-specific expression (ASE) analysis in MCC gene. We first genotyped four polymorphisms within MCC in 312 CRC patients, 270 schizophrenia patients and 270 controls. Using the MassArray technique, we performed ASE measurements in a second sample series consisting of 50 sporadic CRC patients, 50 schizophrenia patients and 52 controls. Rs2227947 showed significant differences between schizophrenia cases and controls, and haplotype analysis reported some significant discrepancies among these three subject groups. ASE values of rs2227948 and rs2227947 presented consistently differences between CRC (or schizophrenia) patients and controls. Of the three groups, highest frequencies of ASE in MCC were concordantly found in CRC group, whereas lowest frequencies of ASE were observed in schizophrenia group. Similar trends were confirmed in both haplotype frequencies and ASE frequencies (i.e. CRC > control > schizophrenia). We provide a first indication that MCC might confer alterative genetic susceptibility to CRC in individuals with schizophrenia promising to shed more light on the relationship between schizophrenia and cancer progression. PMID:27226254

  15. Exploring the Effect of Sequence Length and Composition on Allele-Selective Inhibition of Human Huntingtin Expression by Single-Stranded Silencing RNAs

    PubMed Central

    Hu, Jiaxin; Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Lee, Suheung; Pendergraff, Hannah; Boubaker, Jihane; Artates, Jonathan W.; Lagier-Tourenne, Clotilde; Lima, Walt F.; Swayze, Eric E.; Prakash, Thazha P.

    2014-01-01

    Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development. PMID:24694346

  16. Exploring the effect of sequence length and composition on allele-selective inhibition of human huntingtin expression by single-stranded silencing RNAs.

    PubMed

    Hu, Jiaxin; Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Lee, Suheung; Pendergraff, Hannah; Boubaker, Jihane; Artates, Jonathan W; Lagier-Tourenne, Clotilde; Lima, Walt F; Swayze, Eric E; Prakash, Thazha P; Corey, David R

    2014-06-01

    Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development. PMID:24694346

  17. The X Chromosome of Hemipteran Insects: Conservation, Dosage Compensation and Sex-Biased Expression

    PubMed Central

    Pal, Arka; Vicoso, Beatriz

    2015-01-01

    Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/X0 system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order. PMID:26556591

  18. Variation in cell signaling protein expression may introduce sampling bias in primary epithelial ovarian cancer.

    PubMed

    Mittermeyer, Gabriele; Malinowsky, Katharina; Beese, Christian; Höfler, Heinz; Schmalfeldt, Barbara; Becker, Karl-Friedrich; Avril, Stefanie

    2013-01-01

    Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5-9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated) proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17-53%). The extent of intratumoral heterogeneity differed between proteins (p<0.005). Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12-48%). Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at several distinct

  19. Variation in Cell Signaling Protein Expression May Introduce Sampling Bias in Primary Epithelial Ovarian Cancer

    PubMed Central

    Beese, Christian; Höfler, Heinz; Schmalfeldt, Barbara; Becker, Karl-Friedrich; Avril, Stefanie

    2013-01-01

    Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5–9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated) proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17–53%). The extent of intratumoral heterogeneity differed between proteins (p<0.005). Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12–48%). Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at several

  20. Allelic asymmetry of the Lethal hybrid rescue (Lhr) gene expression in the hybrid between Drosophila melanogaster and D. simulans: confirmation by using genetic variations of D. melanogaster.

    PubMed

    Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi

    2014-02-01

    In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.

  1. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation

    PubMed Central

    Deng, Wenjun; Babu, I. Ramesh; Su, Dan; Yin, Shanye; Begley, Thomas J.; Dedon, Peter C.

    2015-01-01

    Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell. PMID:26670883

  2. Emotional expression and the reduction of motivated cognitive bias: evidence from cognitive dissonance and distancing from victims' paradigms.

    PubMed

    Pyszczynski, T; Greenberg, J; Solomon, S; Sideris, J; Stubing, M J

    1993-02-01

    Two experiments tested whether expression of emotions from which motivated cognitive biases presumably provide protection would reduce the extent of such biases. In Study I, we hypothesized that expressing any tension produced by writing a counterattitudinal essay would reduce the extent of dissonance-reducing attitude change. To test this hypothesis, Ss were induced to write an essay arguing for higher tuition. High-choice Ss were either encouraged to express their emotions, to suppress them, or to do neither. As expected, high-choice-express Ss exhibited the least attitude change. Study 2 tested the hypothesis that expressing fear of cancer would reduce the extent of defensive distancing from cancer patients, but expressing sympathy would not. Although control Ss clearly distanced from cancer patients, fear-expression Ss did not. Implications for understanding the role of affect in defense are discussed.

  3. Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression.

    PubMed

    Dean, Rebecca; Mank, Judith E

    2016-09-01

    Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome.

  4. A Panel of Artificial APCs Expressing Prevalent HLA Alleles Permits Generation of Cytotoxic T Cells Specific for Both Dominant and Subdominant Viral Epitopes for Adoptive Therapy1

    PubMed Central

    Hasan, Aisha N.; Kollen, Wouter J.; Trivedi, Deepa; Selvakumar, Annamalai; Dupont, Bo; Sadelain, Michel; O'Reilly, Richard J.

    2009-01-01

    Adoptive transfer of virus-specific T cells can treat infections complicating allogeneic hematopoietic cell transplants. However, autologous antigen-presenting cells (APCs) are often limited in supply. Here, we describe a panel of artificial APCs (AAPCs) consisting of murine 3T3 cells transduced to express human B7.1, ICAM-1 and LFA-3 that each stably express one of a series of 6 common HLA class I alleles. In comparative analyses, T cells sensitized with AAPCs expressing a shared HLA allele or autologous APCs loaded with a pool of 15-mers spanning the sequence of CMVpp65 produced similar yields of HLA-restricted CMVpp65 specific T cells; significantly higher yields could be achieved by sensitization with AAPCs transduced to express the CMVpp65 protein. T cells generated were CD8+, IFNγ+ and exhibited HLA-restricted CMVpp65 specific cytotoxicity. T cells sensitized with either peptide-loaded or transduced AAPCs recognized epitopes presented by each HLA allele known to be immunogenic in man. Sensitization with AAPCs also permitted expansion of IFNγ+ cytotoxic effector cells against subdominant epitopes that were either absent or in low frequencies in T cells sensitized with autologous APCs. This replenishable panel of AAPCs can be used for immediate sensitization and expansion of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. It may be of particular value for recipients of transplants from HLA disparate donors. PMID:19635907

  5. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression

    PubMed Central

    Vecellio, Matteo; Roberts, Amity R; Cohen, Carla J; Cortes, Adrian; Knight, Julian C; Bowness, Paul; Wordsworth, B Paul

    2016-01-01

    Objectives To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). Methods We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. Results The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10−14) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 ‘G’ allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk ‘A’ allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). Conclusion We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS. PMID:26452539

  6. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression

    PubMed Central

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    Objective The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. Methods We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. Results After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Conclusion Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway. PMID:26569609

  7. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks.

    PubMed

    Fleming-Canepa, Ximena; Jensen, Shawna M; Mesa, Christine M; Diaz-Satizabal, Laura; Roth, Alexa J; Parks-Dely, Julie A; Moon, Debra A; Wong, Janet P; Evseev, Danyel; Gossen, Desolie A; Tetrault, David G; Magor, Katharine E

    2016-08-01

    MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species. PMID:27342841

  8. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS.

    PubMed Central

    Onodera, O; Oyake, M; Takano, H; Ikeuchi, T; Igarashi, S; Tsuji, S

    1995-01-01

    Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder characterized by genetic anticipation and variable combinations of symptoms including myoclonus, epilepsy, cerebellar ataxia, choreoathetosis, and dementia. Recently, we discovered that DRPLA is caused by unstable expansion of a CAG repeat of a gene on the short arm of chromosome 12. We determined the consensus DRPLA cDNA sequence containing the complete coding region for 1,185 amino acids. The CAG repeat, which is expanded in DRPLA, is located 1,462 bp downstream from the putative methionine initiation codon and encodes a poly-glutamine tract. Although poly-serine and proline tracts exist near the CAG repeats, these polyserine or proline tracts did not show any polymorphisms, which is in strong contrast to the high heterogeneity in the length of the CAG repeat. Northern blot analysis revealed a 4.7-kb transcript that is widely expressed in various tissues including heart, lung, kidney, placenta, skeletal muscle, and brain. Reverse transcription-PCR analysis revealed that the expanded alleles are transcribed to levels comparable to those of normal alleles. These results indicate that there is no difference in transcriptional efficiency between expanded and normal alleles. Furthermore, mRNA from cerebellar hemispheres of DRPLA patients showed smaller sizes of CAG repeats compared with other regions of the brain, which reflects somatic mosaicism of the expanded alleles of the DRPLA gene. Images Figure 5 Figure 6 PMID:7485154

  9. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS

    SciTech Connect

    Onodera, Osamu; Oyake, Mutsuo; Takano, Hiroki

    1995-11-01

    Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder characterized by genetic anticipation and variable combinations of symptoms including myoclonus, epilepsy, cerebellar ataxia, choreoathetosis, and dementia. Recently, we discovered that DRPLA is caused by unstable expansion of a CAG repeat of a gene on the short arm of chromosome 12. We determined the consensus DRPLA cDNA sequence containing the complete coding region for 1,185 amino acids. The CAG repeat, which is expanded in DRPLA, is located 1,462 bp downstream from the putative methionine initiation codon and encodes a poly-glutamine tract. Although poly-serine and proline tracts exist near the CAG repeats, these poly-serine or proline tracts did not show any polymorphisms, which is in strong contrast to the high heterogeneity in the length of the CAG repeat. Northern blot analysis revealed a 4.7-kb transcript that is widely expressed in various tissues including heart, lung, kidney, placenta, skeletal muscle, and brain. Reverse transcription-PCR analysis revealed that the expanded alleles are transcribed to levels comparable to those of normal alleles. These results indicate that there is no difference in transcriptional efficiency between expanded and normal alleles. Furthermore, mRNA from cerebellar hemispheres of DRPLA patients showed smaller sizes of CAG repeats compared with other regions of the brain, which reflects somatic mosaicism of the expanded alleles of the DRPLA gene. 49 refs., 6 figs.

  10. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution.

    PubMed

    Meisel, Richard P

    2011-06-01

    Genes that are differentially expressed between the sexes (sex-biased genes) are among the fastest evolving genes in animal genomes. The majority of sex-biased expression is attributable to genes that are primarily expressed in sex-limited reproductive tissues, and these reproductive genes are often rapidly evolving because of intra- and intersexual selection pressures. Additionally, studies of multiple taxa have revealed that genes with sex-biased expression are also expressed in a limited number of tissues. This is worth noting because narrowly expressed genes are known to evolve faster than broadly expressed genes. Therefore, it is not clear whether sex-biased genes are rapidly evolving because they have sexually dimorphic expression, because they are expressed in sex-limited reproductive tissues, or because they are narrowly expressed. To determine the extend to which other confounding variables can explain the rapid evolution of sex-biased genes, I analyzed the rates of evolution of sex-biased genes in Drosophila melanogaster and Mus musculus in light of tissue-specific measures of expression. I find that genes with sex-biased expression in somatic tissues shared by both sexes are often evolving faster than non-sex-biased genes, but this is best explained by the narrow expression profiles of sex-biased genes. Sex-biased genes in sex-limited tissues in D. melanogaster, however, evolve faster than other narrowly expressed genes. Therefore, the rapid evolution of sex-biased genes is limited only to those genes primarily expressed in sex-limited reproductive tissues.

  11. Entitativity and intergroup bias: How belonging to a cohesive group allows people to express their prejudices.

    PubMed

    Effron, Daniel A; Knowles, Eric D

    2015-02-01

    We propose that people treat prejudice as more legitimate when it seems rationalistic-that is, linked to a group's pursuit of collective interests. Groups that appear to be coherent and unified wholes (entitative groups) are most likely to have such interests. We thus predicted that belonging to an entitative group licenses people to express prejudice against outgroups. Support for this idea came from 3 correlational studies and 5 experiments examining racial, national, and religious prejudice. The first 4 studies found that prejudice and discrimination seemed more socially acceptable to third parties when committed by members of highly entitative groups, because people could more easily explain entitative groups' biases as a defense of collective interests. Moreover, ingroup entitativity only lent legitimacy to outgroup prejudice when an interests-based explanation was plausible-namely, when the outgroup could possibly threaten the ingroup's interests. The last 4 studies found that people were more willing to express private prejudices when they perceived themselves as belonging to an entitative group. Participants' perceptions of their own race's entitativity were associated with a greater tendency to give explicit voice to their implicit prejudice against other races. Furthermore, experimentally raising participants' perceptions of ingroup entitativity increased explicit expressions of outgroup prejudice, particularly among people most likely to privately harbor such prejudices (i.e., highly identified group members). Together, these findings demonstrate that entitativity can lend a veneer of legitimacy to prejudice and disinhibit its expression. We discuss implications for intergroup relations and shifting national demographics. (PsycINFO Database Record (c) 2015 APA, all rights reserved). PMID:25603374

  12. Entitativity and intergroup bias: How belonging to a cohesive group allows people to express their prejudices.

    PubMed

    Effron, Daniel A; Knowles, Eric D

    2015-02-01

    We propose that people treat prejudice as more legitimate when it seems rationalistic-that is, linked to a group's pursuit of collective interests. Groups that appear to be coherent and unified wholes (entitative groups) are most likely to have such interests. We thus predicted that belonging to an entitative group licenses people to express prejudice against outgroups. Support for this idea came from 3 correlational studies and 5 experiments examining racial, national, and religious prejudice. The first 4 studies found that prejudice and discrimination seemed more socially acceptable to third parties when committed by members of highly entitative groups, because people could more easily explain entitative groups' biases as a defense of collective interests. Moreover, ingroup entitativity only lent legitimacy to outgroup prejudice when an interests-based explanation was plausible-namely, when the outgroup could possibly threaten the ingroup's interests. The last 4 studies found that people were more willing to express private prejudices when they perceived themselves as belonging to an entitative group. Participants' perceptions of their own race's entitativity were associated with a greater tendency to give explicit voice to their implicit prejudice against other races. Furthermore, experimentally raising participants' perceptions of ingroup entitativity increased explicit expressions of outgroup prejudice, particularly among people most likely to privately harbor such prejudices (i.e., highly identified group members). Together, these findings demonstrate that entitativity can lend a veneer of legitimacy to prejudice and disinhibit its expression. We discuss implications for intergroup relations and shifting national demographics. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. RNA-Seq Analysis of Allele-Specific Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from Natural Populations

    PubMed Central

    Bell, Graeme D.M.; Kane, Nolan C.; Rieseberg, Loren H.; Adams, Keith L.

    2013-01-01

    Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations. PMID:23677938

  14. Nonverbal expressions of status and system legitimacy: an interactive influence on race bias.

    PubMed

    Weisbuch, Max; Slepian, Michael L; Eccleston, Collette P; Ambady, Nalini

    2013-11-01

    A voluminous literature has examined how primates respond to nonverbal expressions of status, such as taking the high ground, expanding one's posture, and tilting one's head. We extend this research to human intergroup processes in general and interracial processes in particular. Perceivers may be sensitive to whether racial group status is reflected in group members' nonverbal expressions of status. We hypothesized that people who support the current status hierarchy would prefer racial groups whose members exhibit status-appropriate nonverbal behavior over racial groups whose members do not exhibit such behavior. People who reject the status quo should exhibit the opposite pattern. These hypotheses were supported in three studies using self-report (Study 1) and reaction time (Studies 2 and 3) measures of racial bias and two different status cues (vertical position and head tilt). For perceivers who supported the status quo, high-status cues (in comparison with low-status cues) increased preferences for White people over Black people. For perceivers who rejected the status quo, the opposite pattern was observed.

  15. Nonverbal expressions of status and system legitimacy: an interactive influence on race bias.

    PubMed

    Weisbuch, Max; Slepian, Michael L; Eccleston, Collette P; Ambady, Nalini

    2013-11-01

    A voluminous literature has examined how primates respond to nonverbal expressions of status, such as taking the high ground, expanding one's posture, and tilting one's head. We extend this research to human intergroup processes in general and interracial processes in particular. Perceivers may be sensitive to whether racial group status is reflected in group members' nonverbal expressions of status. We hypothesized that people who support the current status hierarchy would prefer racial groups whose members exhibit status-appropriate nonverbal behavior over racial groups whose members do not exhibit such behavior. People who reject the status quo should exhibit the opposite pattern. These hypotheses were supported in three studies using self-report (Study 1) and reaction time (Studies 2 and 3) measures of racial bias and two different status cues (vertical position and head tilt). For perceivers who supported the status quo, high-status cues (in comparison with low-status cues) increased preferences for White people over Black people. For perceivers who rejected the status quo, the opposite pattern was observed. PMID:24058061

  16. Allele-specific transcription factor binding to common and rare variants associated with disease and gene expression.

    PubMed

    Cavalli, Marco; Pan, Gang; Nord, Helena; Wallerman, Ola; Wallén Arzt, Emelie; Berggren, Olof; Elvers, Ingegerd; Eloranta, Maija-Leena; Rönnblom, Lars; Lindblad Toh, Kerstin; Wadelius, Claes

    2016-05-01

    Genome-wide association studies (GWAS) have identified a large number of disease-associated SNPs, but in few cases the functional variant and the gene it controls have been identified. To systematically identify candidate regulatory variants, we sequenced ENCODE cell lines and used public ChIP-seq data to look for transcription factors binding preferentially to one allele. We found 9962 candidate regulatory SNPs, of which 16 % were rare and showed evidence of larger functional effect than common ones. Functionally rare variants may explain divergent GWAS results between populations and are candidates for a partial explanation of the missing heritability. The majority of allele-specific variants (96 %) were specific to a cell type. Furthermore, by examining GWAS loci we found >400 allele-specific candidate SNPs, 141 of which were highly relevant in our cell types. Functionally validated SNPs support identification of an SNP in SYNGR1 which may expose to the risk of rheumatoid arthritis and primary biliary cirrhosis, as well as an SNP in the last intron of COG6 exposing to the risk of psoriasis. We propose that by repeating the ChIP-seq experiments of 20 selected transcription factors in three to ten people, the most common polymorphisms can be interrogated for allele-specific binding. Our strategy may help to remove the current bottleneck in functional annotation of the genome. PMID:26993500

  17. Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele

    SciTech Connect

    Gouya, L.; Deyback, J.C.; Lamoril, J.

    1996-02-01

    Erythropoietic protoporphyria (EPP) is a monogenic inherited disorder of the heme biosynthetic pathway due to ferrochelatase (FC) deficiency. EPP is generally considered to be transmitted as an autosomal dominant disease with incomplete penetrance, although autosomal recessive inheritance has been documented at the enzymatic and molecular level in some families. In the dominant form of EPP, statistical analysis of FC activities documented a significantly lower mean value in patients than in asymptomatic carriers, suggesting a more complex mode of inheritance. To account for these findings, we tested a multiallelic inheritance model in one EPP family in which the enzymatic data were compatible with this hypothesis. In this EPP family, the specific FC gene mutation was an exon 10 skipping ({triangle}Ex10), resulting from a G deletion within the exon 10 consensus splice donor site. The segregation of all FC alleles within the family was followed using the {triangle}Ex10 mutation and a new intragenic dimorphism (1520 C/T). mRNAs transcribed from each FC allele were then subjected to relative quantification by a primer extension assay and to absolute quantification by a ribonuclease protection assay. The data support the hypothesis that in this family the EPP phenotype results from the coinheritance of a low output normal FC allele and a mutant {triangle}Ex10 allele. 29 refs, 4 figs., 1 tab.

  18. Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele.

    PubMed Central

    Gouya, L.; Deybach, J. C.; Lamoril, J.; Da Silva, V.; Beaumont, C.; Grandchamp, B.; Nordmann, Y.

    1996-01-01

    Erythropoietic protoporphyria (EPP) is a monogenic inherited disorder of the heme biosynthetic pathway due to ferrochelatase (FC) deficiency. EPP is generally considered to be transmitted as an autosomal dominant disease with incomplete penetrance, although autosomal recessive inheritance has been documented at the enzymatic and molecular level in some families. In the dominant form of EPP, statistical analysis of FC activities documented a significantly lower mean value in patients than in asymptomatic carriers, suggesting a more complex mode of inheritance. To account for these findings, we tested a multiallelic inheritance model in one EPP family in which the enzymatic data were compatible with this hypothesis. In this EPP family, the specific FC gene mutation was an exon 10 skipping (delta Ex10), resulting from a G deletion within the exon 10 consensus splice donor site. The segregation of all FC alleles within the family was followed using the delta Ex10 mutation and a new intragenic dimorphism (1520 C/T). mRNAs transcribed from each FC allele were then subjected to relative quantification by a primer extension assay and to absolute quantification by a ribonuclease protection assay. The data support the hypothesis that in this family the EPP phenotype results from the coinheritance of a low output normal FC allele and a mutant delta Ex10 allele. Images Figure 2 Figure 4 PMID:8571955

  19. Artificial antigen presenting cells that express prevalent HLA alleles: A step towards the broad application of antigen-specific adoptive cell therapies.

    PubMed

    Hasan, Aisha N; Selvakumar, Annamalai; Doubrovina, Ekaterina; Riviere, Isabelle; Sadelain, Michel W; O'Reilly, Richard J

    2009-12-01

    The artificial antigen-presenting cells (AAPCs) described in this review were generated to facilitate the production of virus-specific T-cells for the treatment of infections in patients after bone marrow transplant. These AAPCs consist of murine 3T3 cells genetically modified to express critical human molecules needed for T-cell stimulation, such as the co-stimulatory molecules B7.1, ICAM-1, and LFA-3 and one of a series of 6 common HLA class I alleles. When T-cells were sensitized against cytomegalovirus (CMV) using AAPCs that express a shared HLA allele or using autologous antigen-presenting cells (APCs) loaded with the CMVpp65 antigen, they were activated and expanded to become HLA-restricted CMVpp65-specific T-cells. These T-cells demonstrated functional activity in vitro against CMV by producing IFN-gamma and inducing CMVpp65-specific cytotoxicity. T-cells sensitized with AAPCs recognized antigenic epitopes presented by each HLA allele known to be immunogenic in Man. Sensitization with AAPCs also permitted expansion of IFN-gamma+ cytotoxic T-cells against subdominant epitopes that were not effectively recognized by T-cells sensitized with autologous APCs. This panel of AAPCs provides a source of immediately accessible, standardizable, and replenishable "off the shelf" cellular reagents with the potential to make adoptive immunotherapy widely available for the treatment of lethal infections, cancer, and autoimmune diseases. PMID:20040272

  20. Allelic expression imbalance screening of genes in chromosome 1q21–24 region to identify functional variants for Type 2 diabetes susceptibility

    PubMed Central

    Mondal, Ashis K.; Sharma, Neeraj K.; Elbein, Steven C.

    2013-01-01

    Type 2 diabetes (T2D)-associated SNPs are more likely to be expression quantitative trait loci (eQTLs). The allelic expression imbalance (AEI) analysis is the measure of relative expression between two allelic transcripts and is the most sensitive measurement to detect cis-regulatory effects. We performed AEI screening to detect cis-regulators for genes expressed in transformed lymphocytes of 190 Caucasian (CA) and African American (AA) subjects to identify functional variants for T2D susceptibility in the chromosome 1q21–24 region of linkage. Among transcribed SNPs studied in 115 genes, significant AEI (P < 0.001) occurred in 28 and 30 genes in CA and AA subjects, respectively. Analysis of the effect of selected AEI-SNPs (≥10% mean AEI) on total gene expression further established the cis-eQTLs in thioesterase superfamily member-4 (THEM4) (rs13320, P = 0.027), and IGSF8 (rs1131891, P = 0.02). Examination of published genome-wide association data identified significant associations (P < 0.01) of three AEI-SNPs with T2D in the DIAGRAM-v3 dataset. Six AEI single nucleotide polymorphisms, including rs13320 (P = 1.35E-04) in THEM4, were associated with glucose homeostasis traits in the MAGIC dataset. Evaluation of AEI-SNPs for association with glucose homeostasis traits in 611 nondiabetic subjects showed lower AIRG (P = 0.005) in those with TT/TC genotype for rs13320. THEM4 expression in adipose was higher (P = 0.005) in subjects carrying the T allele; in vitro analysis with luciferase construct confirmed the higher expression of the T allele. Resequencing of THEM4 exons in 192 CA subjects revealed four coding nonsynonymous variants, but did not explain transmission of T2D in 718 subjects from 67 Caucasian pedigrees. Our study indicates the role of a cis-regulatory SNP in THEM4 that may influence T2D predisposition by modulating glucose homeostasis. PMID:23673729

  1. Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila.

    PubMed

    Sun, Lin; Johnson, Adam F; Li, Jilong; Lambdin, Aaron S; Cheng, Jianlin; Birchler, James A

    2013-10-01

    Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.

  2. Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage.

    PubMed

    Lagarrigue, Sandrine; Martin, Lisa; Hormozdiari, Farhad; Roux, Pierre-François; Pan, Calvin; van Nas, Atila; Demeure, Olivier; Cantor, Rita; Ghazalpour, Anatole; Eskin, Eleazar; Lusis, Aldons J

    2013-11-01

    We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data.

  3. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus.

    PubMed

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  4. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus

    PubMed Central

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  5. N-Glycosylation of Asparagine 8 Regulates Surface Expression of Major Histocompatibility Complex Class I Chain-related Protein A (MICA) Alleles Dependent on Threonine 24*

    PubMed Central

    Mellergaard, Maiken; Skovbakke, Sarah Line; Schneider, Christine L.; Lauridsen, Felicia; Andresen, Lars; Jensen, Helle; Skov, Søren

    2014-01-01

    NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells to avoid immune recognition. Virus infection and inflammation alter protein N-glycosylation, and we have previously shown that changes in cellular N-glycosylation are involved in regulation of NKG2D ligand surface expression. The specific mode of regulation through N-glycosylation is, however, unknown. Here we investigated whether direct N-glycosylation of the NKG2D ligand MICA itself is critical for cell surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (Asn8) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N-glycosylation site. Mutational analysis revealed that a single amino acid (Thr24) in the extracellular domain of MICA018 was essential for the N-glycosylation dependence, whereas the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N-glycosylation, and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018, and we pinpoint the residues essential for this N-glycosylation dependence. In addition, we show that this regulatory mechanism of MICA surface expression is likely targeted during different pathological conditions. PMID:24872415

  6. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24.

    PubMed

    Mellergaard, Maiken; Skovbakke, Sarah Line; Schneider, Christine L; Lauridsen, Felicia; Andresen, Lars; Jensen, Helle; Skov, Søren

    2014-07-18

    NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells to avoid immune recognition. Virus infection and inflammation alter protein N-glycosylation, and we have previously shown that changes in cellular N-glycosylation are involved in regulation of NKG2D ligand surface expression. The specific mode of regulation through N-glycosylation is, however, unknown. Here we investigated whether direct N-glycosylation of the NKG2D ligand MICA itself is critical for cell surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (Asn(8)) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N-glycosylation site. Mutational analysis revealed that a single amino acid (Thr(24)) in the extracellular domain of MICA018 was essential for the N-glycosylation dependence, whereas the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N-glycosylation, and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018, and we pinpoint the residues essential for this N-glycosylation dependence. In addition, we show that this regulatory mechanism of MICA surface expression is likely targeted during different pathological conditions.

  7. Co-Occurrence of Two Allelic Variants of CYP51 in Erysiphe necator and Their Correlation with Over-Expression for DMI Resistance.

    PubMed

    Rallos, Lynn Esther E; Baudoin, Anton B

    2016-01-01

    Demethylation inhibitors (DMIs) have been an important tool in the management of grapevine powdery mildew caused by Erysiphe necator. Long-term, intensive use of DMIs has resulted in reduced sensitivity in field populations. To further characterize DMI resistance and understand resistance mechanisms in this pathogen, we investigated the cyp51 sequence of 24 single-spored isolates from Virginia and surrounding states and analyzed gene expression in isolates representing a wide range of sensitivity. Two cyp51 alleles were found with respect to the 136th codon of the predicted EnCYP51 sequence: the wild-type (TAT) and the mutant (TTT), which results in the known Y136F amino acid change. Some isolates possessed both alleles, demonstrating gene duplication or increased gene copy number and possibly a requirement for at least one mutant copy of CYP51 for resistance. Cyp51 was over-expressed 1.4- to 19-fold in Y136F-mutant isolates. However, the Y136F mutation was absent in one isolate with moderate to high resistance factor. Two additional synonymous mutations were detected as well, one of which, A1119C was present only in isolates with high cyp51 expression. Overall, our results indicate that at least two mechanisms, cyp51 over-expression and the known target-site mutation in CYP51, contribute to resistance in E. necator, and may be working in conjunction with each other. PMID:26839970

  8. Co-Occurrence of Two Allelic Variants of CYP51 in Erysiphe necator and Their Correlation with Over-Expression for DMI Resistance

    PubMed Central

    Rallos, Lynn Esther E.; Baudoin, Anton B.

    2016-01-01

    Demethylation inhibitors (DMIs) have been an important tool in the management of grapevine powdery mildew caused by Erysiphe necator. Long-term, intensive use of DMIs has resulted in reduced sensitivity in field populations. To further characterize DMI resistance and understand resistance mechanisms in this pathogen, we investigated the cyp51 sequence of 24 single-spored isolates from Virginia and surrounding states and analyzed gene expression in isolates representing a wide range of sensitivity. Two cyp51 alleles were found with respect to the 136th codon of the predicted EnCYP51 sequence: the wild-type (TAT) and the mutant (TTT), which results in the known Y136F amino acid change. Some isolates possessed both alleles, demonstrating gene duplication or increased gene copy number and possibly a requirement for at least one mutant copy of CYP51 for resistance. Cyp51 was over-expressed 1.4- to 19-fold in Y136F-mutant isolates. However, the Y136F mutation was absent in one isolate with moderate to high resistance factor. Two additional synonymous mutations were detected as well, one of which, A1119C was present only in isolates with high cyp51 expression. Overall, our results indicate that at least two mechanisms, cyp51 over-expression and the known target-site mutation in CYP51, contribute to resistance in E. necator, and may be working in conjunction with each other. PMID:26839970

  9. Estimating Gene Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data Alone.

    PubMed

    Gilchrist, Michael A; Chen, Wei-Chen; Shah, Premal; Landerer, Cedric L; Zaretzki, Russell

    2015-05-14

    Extracting biologically meaningful information from the continuing flood of genomic data is a major challenge in the life sciences. Codon usage bias (CUB) is a general feature of most genomes and is thought to reflect the effects of both natural selection for efficient translation and mutation bias. Here we present a mechanistically interpretable, Bayesian model (ribosome overhead costs Stochastic Evolutionary Model of Protein Production Rate [ROC SEMPPR]) to extract meaningful information from patterns of CUB within a genome. ROC SEMPPR is grounded in population genetics and allows us to separate the contributions of mutational biases and natural selection against translational inefficiency on a gene-by-gene and codon-by-codon basis. Until now, the primary disadvantage of similar approaches was the need for genome scale measurements of gene expression. Here, we demonstrate that it is possible to both extract accurate estimates of codon-specific mutation biases and translational efficiencies while simultaneously generating accurate estimates of gene expression, rather than requiring such information. We demonstrate the utility of ROC SEMPPR using the Saccharomyces cerevisiae S288c genome. When we compare our model fits with previous approaches we observe an exceptionally high agreement between estimates of both codon-specific parameters and gene expression levels ([Formula: see text] in all cases). We also observe strong agreement between our parameter estimates and those derived from alternative data sets. For example, our estimates of mutation bias and those from mutational accumulation experiments are highly correlated ([Formula: see text]). Our estimates of codon-specific translational inefficiencies and tRNA copy number-based estimates of ribosome pausing time ([Formula: see text]), and mRNA and ribosome profiling footprint-based estimates of gene expression ([Formula: see text]) are also highly correlated, thus supporting the hypothesis that selection against

  10. Conservation, sex-biased expression and functional annotation of microRNAs in the gonad of Amur sturgeon (Acipenser schrenckii).

    PubMed

    Zhang, Xiujuan; Yuan, Lihong; Li, Linmiao; Jiang, Haiying; Chen, Jinping

    2016-06-01

    MicroRNAs (miRNAs) are involved in post-transcriptional gene regulation and have crucial roles in regulating the expression of gametogenesis-related genes in animals. However, the mechanism of sex determination and differentiation in the sturgeon has remained unclear. Identifying miRNAs and characterizing sex-biased miRNA expression is therefore critical for understanding the role of miRNAs during sexual differentiation in sturgeon. In this study, five different tissues from sturgeon before sex differentiation and the gonads were used for miRNA expression profiling. We screened 1037 miRNAs in miRBase 20.0 and an additional 103 sturgeon miRNAs using microarray and real-time PCR. We found that the sequences of 477 miRNAs out of a total of 1140 miRNAs were highly conserved (100%) among different fish species. From a total of 663 non-redundant miRNA probes, 481 miRNAs were detected in the gonads of both sexes. Of the 148 miRNAs that were identified to have sex-biased expression patterns between the testis and the ovary (P<0.01), 21 miRNAs (14.19%) were relatively highly expressed in the testis or the ovary with fold-changes >2. The microarray expression patterns of 13 randomly selected sex-biased miRNAs were validated using real-time PCR. Target gene prediction revealed a significant enrichment of functional groups (88 GO terms) and 18 KEGG pathways (P<0.05) and suggested that there are interactions between sex-biased miRNAs and 25 putative gametogenesis-related targets. Therefore, our miRNA expression analysis in juvenile A. schrenckii establishes a foundation for understanding and further investigating the role of miRNAs in sturgeon sex differentiation. PMID:27089517

  11. Conservation, sex-biased expression and functional annotation of microRNAs in the gonad of Amur sturgeon (Acipenser schrenckii).

    PubMed

    Zhang, Xiujuan; Yuan, Lihong; Li, Linmiao; Jiang, Haiying; Chen, Jinping

    2016-06-01

    MicroRNAs (miRNAs) are involved in post-transcriptional gene regulation and have crucial roles in regulating the expression of gametogenesis-related genes in animals. However, the mechanism of sex determination and differentiation in the sturgeon has remained unclear. Identifying miRNAs and characterizing sex-biased miRNA expression is therefore critical for understanding the role of miRNAs during sexual differentiation in sturgeon. In this study, five different tissues from sturgeon before sex differentiation and the gonads were used for miRNA expression profiling. We screened 1037 miRNAs in miRBase 20.0 and an additional 103 sturgeon miRNAs using microarray and real-time PCR. We found that the sequences of 477 miRNAs out of a total of 1140 miRNAs were highly conserved (100%) among different fish species. From a total of 663 non-redundant miRNA probes, 481 miRNAs were detected in the gonads of both sexes. Of the 148 miRNAs that were identified to have sex-biased expression patterns between the testis and the ovary (P<0.01), 21 miRNAs (14.19%) were relatively highly expressed in the testis or the ovary with fold-changes >2. The microarray expression patterns of 13 randomly selected sex-biased miRNAs were validated using real-time PCR. Target gene prediction revealed a significant enrichment of functional groups (88 GO terms) and 18 KEGG pathways (P<0.05) and suggested that there are interactions between sex-biased miRNAs and 25 putative gametogenesis-related targets. Therefore, our miRNA expression analysis in juvenile A. schrenckii establishes a foundation for understanding and further investigating the role of miRNAs in sturgeon sex differentiation.

  12. Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele.

    PubMed

    da Costa, Renata Maria Augusto; Riou, Lydia; Paquola, Apuã; Menck, Carlos Frederico Martins; Sarasin, Alain

    2005-02-17

    Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) syndromes are characterized by deficiency in nucleotide excision repair pathway, but with distinguished clinical manifestations. While XP patients exhibit a high frequency of skin cancer, TTD patients are not cancer prone. The relation between lack of DNA repair and their clinical manifestations was investigated through analysis of the transcriptional profile of 12,600 transcripts in two isogenic cell lines with different capabilities of DNA repair. These cell lines result from a stable transfection of the XPB-TTD allele into XP complementation group B fibroblasts, from an XP patient who also have clinical abnormalities corresponding to Cockayne's syndrome (CS). The microarray assays performed under normal growth conditions showed the expression of distinct groups of genes in each cell line. The UVC-transcription modulation of these cells revealed the changes in 869 transcripts. Some of these transcripts had similar modulation pattern in both cells, although with eventually different time patterns for induction or repression. However, some different 'UVC signature' for each cell line was also found, that is, transcripts that were specifically UV regulated depending on the DNA repair status of the cell. These results provide a detailed portrait of expression profiles that may potentially unravel the causes of the different phenotypes of XP/CS and TTD patients. PMID:15608684

  13. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    PubMed

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.

  14. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    PubMed

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  15. Attention Is Required for Acquisition but Not Expression of New Response Biases

    ERIC Educational Resources Information Center

    Miles, James D.; Proctor, Robert W.

    2010-01-01

    Throughout a lifetime of interaction with the physical environment, people develop a strong bias to respond on the same side as the location of a target object, even when its location is irrelevant to the task at hand. Recent research has shown that this compatibility bias can be overridden with relatively brief but focused training. To better…

  16. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms.

    PubMed Central

    Szabó, P E; Mann, J R

    1996-01-01

    It has often been suggested that the parental-specific expression of mammalian imprinted genes might be dependent on maternal-paternal intergenomic or interallelic interactions. Using quantitative allele-specific RT-PCR single nucleotide primer extension assays developed for two imprinted genes, Snrpn and Igf2r, we demonstrate: (i) No role for maternal-paternal allelic interactions: the modes of parental-specific expression of Snrpn and Igf2r in normal ova were unchanged in gynogenetic and androgenetic ova; the latter contain two maternal and two paternal genomes respectively, and cannot undergo maternal-paternal interactions. (ii) No role for allelic counting or exclusion mechanisms: in individual blastomeres of androgenetic ova, both paternal Snrpn alleles were active (Snrpn was not expressed in gynogenetic ova), and in individual gynogenetic and androgenetic blastomeres, both maternal and paternal Igf2r alleles, respectively, were active. (iii) No role for ploidy: the mode of parental-specific expression of Snrpn and Igf2r in normal diploid ova was unchanged in individual blastomeres of triploid and tetraploid ova. Thus, the maternal and paternal genomes function independently in establishing the pre-implantation mode of parental-specific expression of Snrpn and Igf2r, with no role for trans-allelic/genomic interaction phenomena. In addition, the results show that inactive and biallelic modes of expression of imprinted genes are potential mechanisms for the death of gynogenones and androgenones at the peri-implantation stage. Images PMID:8947024

  17. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR

    PubMed Central

    Hammock, Elizabeth A.D.; Law, Caitlin S.; Levitt, Pat

    2014-01-01

    Summary V1aR has a well established role in the neural regulation of adult mammalian social behavior. The role of V1aR in developmentally emerging social behavior is less well understood. We mapped V1aR at post-natal day 8 (P8) and demonstrate developmentally-specific expression in the neocortex and hippocampus. We tested the ability of male and female C57BL/6J mice to show orienting bias to a familiar odor at this age. We demonstrate that females, but not males, show an orienting bias for odors previously paired with the mother, which is eliminated by V1aR signaling. Arginine-vasopressin (AVP) and the vasopressin V1a receptor (V1aR) acting within the forebrain are involved in social behavior in adult animals. Much less is known about the function of V1aR in neurobehavioral development. In the present study, at post-natal day 8 (P8) in neonatal C57BL/6J mice, we map V1aR and use an olfactory exposure paradigm to assess a role for V1aR on olfactory preferences. In addition to V1aR in the lateral septum and ventral tegmental area, we observe V1aR in the neocortex and hippocampus, not typically observed in adult mice, implicating a developmental sensitive period for V1aR to modulate these brain areas in an experience-dependent manner. Males and females were tested on P8 for orienting preferences after exposure to a non-social odor, presented either when the mother was in the home cage (contingent) or when the mother had been removed from the home cage (not contingent). Wild-type female mice show a selective orienting bias toward the exposed odor, but only in the contingent condition. Males did not show orienting bias after either training condition. Female Avpr1a-/- mice showed strong familiar odor bias, regardless of the training condition. This finding led us to test the ability of AVP to diminish odor bias in females. Central application of AVP eliminated odor bias in Avpr1a+/+, but not Avpr1a-/- female mice. Together, these data indicate that AVP acting at V1a

  18. High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids, and allotetraploids.

    PubMed

    Ng, Danny W-K; Shi, Xiaoli; Nah, Gyoungju; Chen, Z Jeffrey

    2014-01-01

    With the next generation sequencing technology, RNA-Seq (RNA sequencing) becomes one of the most powerful tools in quantification of global transcriptomes, discovery of new transcripts and alternative isoforms, as well as detection of single nucleotide polymorphisms (SNPs). RNA-Seq is advantageous over hybridization-based gene quantification methods: (1) it does not require prior information about genomic sequences, (2) it avoids high background problem caused by cross-hybridization, and (3) it is highly sensitive and avoids background and saturation of signals; and finally it is capable of detecting allelic expression differences in hybrids and allopolyploids. We used the RNA-Seq method to determine the genome-wide transcriptome changes in Arabidopsis allotetraploids and their parents, A. thaliana and A. arenosa. The use of this approach allows us to quantify transcriptome from these species and more importantly, to identify allelic or homoeologous-specific gene expression that plays a role in morphological evolution of allopolyploids. The computational pipelines developed are also applicable to the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data in Arabidopsis-related species, hybrids, and allopolyploids. Comparative analysis of RNA-Seq and ChIP-Seq data will allow us to determine the effects of chromatin modifications on nonadditive gene expression in hybrids and allopolyploids.

  19. [Inheritance and phenotype expression of functional and null alleles of aromatic alcohol dehydrogenase (CAD) in diploid wheats].

    PubMed

    Konovalov, A A; Shundrina, I K; Karpova, E V; Nefedov, A A; Goncharov, N P

    2014-11-01

    Functional F and null 0 alleles of the CAD1 (Aadh1) gene, which controls the biosynthesis of aromatic alcohol dehydrogenase, were studied in hybrids of the diploid wheat T. monococcum L. and Triticum sinskajae A.Filat. et Kurk. The gene CAD1 is located in chromosome 5A and is linked with the awnless gene awnS (La) with a recombination frequency of about 32%. Plants with genotypes FF, F0, and 00 were significantly different in the height and mechanical strength of the stalk (culm). The elastic limit of the culm tissues of plants FF was considerably higher than in 00 plants. F0 heterozygotes had intermediate values. The thickness of the wall of the sclerenchyma was thinner in plants with genotype 00. The chemical structure of lignin of plants with the functional CAD allele contained units of a phloroglucinol series missing in the mutant plants. The CAD genotypes had no effect on the relative content of cellulose and lignin in stalks ofdiploid wheat and insignificantly influenced the ratio of H :G : S units in the lignin structure, as well as some components of extractives. PMID:25739284

  20. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons.

    PubMed

    Newell, Nicole R; New, Felicia N; Dalton, Justin E; McIntyre, Lauren M; Arbeitman, Michelle N

    2016-01-01

    Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons. PMID:27247289

  1. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    PubMed Central

    Newell, Nicole R.; New, Felicia N.; Dalton, Justin E.; McIntyre, Lauren M.; Arbeitman, Michelle N.

    2016-01-01

    Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons. PMID:27247289

  2. Feedback training induces a bias for detecting happiness or fear in facial expressions that generalises to a novel task

    PubMed Central

    Griffiths, Sarah; Jarrold, Chris; Penton-Voak, Ian S.; Munafò, Marcus R.

    2015-01-01

    Many psychological disorders are characterised by insensitivities or biases in the processing of subtle facial expressions of emotion. Training using expression morph sequences which vary the intensity of expressions may be able to address such deficits. In the current study participants were shown expressions from either happy or fearful intensity morph sequences, and trained to detect the target emotion (e.g., happy in the happy sequence) as being present in low intensity expressions. Training transfer was tested using a six alternative forced choice emotion labelling task with varying intensity expressions, which participants completed before and after training. Training increased false alarms for the target emotion in the transfer task. Hit rate for the target emotion did not increase once adjustment was made for the increase in false alarms. This suggests that training causes a bias for detecting the target emotion which generalises outside of the training task. However it does not increase accuracy for detecting the target emotion. The results are discussed in terms of the training’s utility in addressing different types of emotion processing deficits in psychological disorders. PMID:26619915

  3. Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence

    PubMed Central

    Bayet, Laurie; Pascalis, Olivier; Quinn, Paul C.; Lee, Kang; Gentaz, Édouard; Tanaka, James W.

    2015-01-01

    Angry faces are perceived as more masculine by adults. However, the developmental course and underlying mechanism (bottom-up stimulus driven or top-down belief driven) associated with the angry-male bias remain unclear. Here we report that anger biases face gender categorization toward “male” responding in children as young as 5–6 years. The bias is observed for both own- and other-race faces, and is remarkably unchanged across development (into adulthood) as revealed by signal detection analyses (Experiments 1–2). The developmental course of the angry-male bias, along with its extension to other-race faces, combine to suggest that it is not rooted in extensive experience, e.g., observing males engaging in aggressive acts during the school years. Based on several computational simulations of gender categorization (Experiment 3), we further conclude that (1) the angry-male bias results, at least partially, from a strategy of attending to facial features or their second-order relations when categorizing face gender, and (2) any single choice of computational representation (e.g., Principal Component Analysis) is insufficient to assess resemblances between face categories, as different representations of the very same faces suggest different bases for the angry-male bias. Our findings are thus consistent with stimulus-and stereotyped-belief driven accounts of the angry-male bias. Taken together, the evidence suggests considerable stability in the interaction between some facial dimensions in social categorization that is present prior to the onset of formal schooling. PMID:25859238

  4. Angry facial expressions bias gender categorization in children and adults: behavioral and computational evidence.

    PubMed

    Bayet, Laurie; Pascalis, Olivier; Quinn, Paul C; Lee, Kang; Gentaz, Édouard; Tanaka, James W

    2015-01-01

    Angry faces are perceived as more masculine by adults. However, the developmental course and underlying mechanism (bottom-up stimulus driven or top-down belief driven) associated with the angry-male bias remain unclear. Here we report that anger biases face gender categorization toward "male" responding in children as young as 5-6 years. The bias is observed for both own- and other-race faces, and is remarkably unchanged across development (into adulthood) as revealed by signal detection analyses (Experiments 1-2). The developmental course of the angry-male bias, along with its extension to other-race faces, combine to suggest that it is not rooted in extensive experience, e.g., observing males engaging in aggressive acts during the school years. Based on several computational simulations of gender categorization (Experiment 3), we further conclude that (1) the angry-male bias results, at least partially, from a strategy of attending to facial features or their second-order relations when categorizing face gender, and (2) any single choice of computational representation (e.g., Principal Component Analysis) is insufficient to assess resemblances between face categories, as different representations of the very same faces suggest different bases for the angry-male bias. Our findings are thus consistent with stimulus-and stereotyped-belief driven accounts of the angry-male bias. Taken together, the evidence suggests considerable stability in the interaction between some facial dimensions in social categorization that is present prior to the onset of formal schooling. PMID:25859238

  5. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal–maternal interface

    PubMed Central

    Buckberry, Sam; Bianco-Miotto, Tina; Bent, Stephen J.; Dekker, Gustaaf A.; Roberts, Claire T.

    2014-01-01

    As males and females share highly similar genomes, the regulation of many sexually dimorphic traits is constrained to occur through sex-biased gene regulation. There is strong evidence that human males and females differ in terms of growth and development in utero and that these divergent growth strategies appear to place males at increased risk when in sub-optimal conditions. Since the placenta is the interface of maternal–fetal exchange throughout pregnancy, these developmental differences are most likely orchestrated by differential placental function. To date, progress in this field has been hampered by a lack of genome-wide information on sex differences in placental gene expression. Therefore, our motivation in this study was to characterize sex-biased gene expression in the human placenta. We obtained gene expression data for >300 non-pathological placenta samples from 11 microarray datasets and applied mapping-based array probe re-annotation and inverse-variance meta-analysis methods which showed that >140 genes (false discovery rate (FDR) <0.05) are differentially expressed between male and female placentae. A majority of these genes (>60%) are autosomal, many of which are involved in high-level regulatory processes such as gene transcription, cell growth and proliferation and hormonal function. Of particular interest, we detected higher female expression from all seven genes in the LHB-CGB cluster, which includes genes involved in placental development, the maintenance of pregnancy and maternal immune tolerance of the conceptus. These results demonstrate that sex-biased gene expression in the normal human placenta occurs across the genome and includes genes that are central to growth, development and the maintenance of pregnancy. PMID:24867328

  6. The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation?

    PubMed

    Vicoso, Beatriz; Charlesworth, Brian

    2009-05-01

    In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.

  7. Expression of the Drosophila retrovirus gypsy as ultrastructurally detectable particles in the ovaries of flies carrying a permissive flamenco allele.

    PubMed

    Lécher, P; Bucheton, A; Pélisson, A

    1997-09-01

    The endogenous retrovirus gypsy is controlled by the Drosophila gene flamenco (flam). New insertions of gypsy occur in any individual Drosophila if its mother is homozygous for the flam1 permissive allele and contains functional gypsy proviruses. The ovaries of flam1 females also contain high amounts of gypsy RNAs. Unexpectedly however, gypsy derepression does not occur in the flam1 female germ-line proper but in the somatic follicular epithelium of the ovary. Since extracts from these females are able to efficiently infect the germ-line of a strain devoid of active gypsy proviruses, we assume that a similar kind of germ-line infection, which would occur inside the flam1 females themselves, could be required for gypsy insertions to occur in their progeny. This hypothesis was confirmed by electron microscopy observations showing that non-enveloped intracytoplasmic particles containing gypsy RNAs accumulate in the apical region of the flam1 follicle cells, close to specific membrane domains to which the gypsy envelope proteins are targeted, whereas both are absent in the flam+ controls. Low amounts of similar virus-like particles were also observed in flam1 oocytes, but it is not yet known whether they entered passively or as a result of membrane fusion. This is the first report of the beginning of a retrovirus cycle in invertebrates and these observations should be taken into account when explaining the maternal effect of the flamenco gene on the multiplication of gypsy proviruses. PMID:9292028

  8. Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias.

    PubMed

    Pan, A; Dutta, C; Das, J

    1998-07-30

    Biases in the codon usage and base compositions at three codon sites in different genes of A+T-rich Gram-negative bacterium Haemophillus influenzae and G+C-rich Gram-positive bacterium Mycobacterium tuberculosis have been examined to address the following questions: (1) whether the synonymous codon usage in organisms having highly skewed base compositions is totally dictated by the mutational bias as reported previously (Sharp, P.M., Devine, K.M., 1989. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 'prefer' optimal codons. Nucleic Acids Res. 17, 5029-5039), or is also controlled by translational selection; (2) whether preference of G in the first codon positions by highly expressed genes, as reported in Escherichia coli (Gutierrez, G., Marquez, L., Marin, A., 1996. Preference for guanosine at first codon position in highly expressed Escherichia coli genes. A relationship with translational efficiency. Nucleic Acids Res. 24, 2525-2527), is true in other bacteria; and (3) whether the usage of bases in three codon positions is species-specific. Result presented here show that even in organisms with high mutational bias, translational selection plays an important role in dictating the synonymous codon usage, though the set of optimal codons is chosen in accordance with the mutational pressure. The frequencies of G-starting codons are positively correlated to the level of expression of genes, as estimated by their Codon Adaptation Index (CAI) values, in M. tuberculosis as well as in H. influenzae in spite of having an A+T-rich genome. The present study on the codon preferences of two organisms with oppositely skewed base compositions thus suggests that the preference of G-starting codons by highly expressed genes might be a general feature of bacteria, irrespective of their overall G+C contents. The ranges of variations in the frequencies of individual bases at the first and second codon positions of genes of both H

  9. Multiple Sclerosis Risk Allele in CLEC16A Acts as an Expression Quantitative Trait Locus for CLEC16A and SOCS1 in CD4+ T Cells

    PubMed Central

    Gustavsen, Marte W.; Bjølgerud, Anja; Brorson, Ina S.; Celius, Elisabeth G.; Spurkland, Anne; Bos, Steffan D.; Harbo, Hanne F.; Berge, Tone

    2015-01-01

    For multiple sclerosis, genome wide association studies and follow up studies have identified susceptibility single nucleotide polymorphisms located in or near CLEC16A at chromosome 16p13.13, encompassing among others CIITA, DEXI and SOCS1 in addition to CLEC16A. These genetic variants are located in intronic or intergenic regions and display strong linkage disequilibrium with each other, complicating the understanding of their functional contribution and the identification of the direct causal variant(s). Previous studies have shown that multiple sclerosis-associated risk variants in CLEC16A act as expression quantitative trait loci for CLEC16A itself in human pancreatic β-cells, for DEXI and SOCS1 in thymic tissue samples, and for DEXI in monocytes and lymphoblastoid cell lines. Since T cells are major players in multiple sclerosis pathogenesis, we have performed expression analyses of the CIITA-DEXI-CLEC16A-SOCS1 gene cluster in CD4+ and CD8+ T cells isolated from multiple sclerosis patients and healthy controls. We observed a higher expression of SOCS1 and CLEC16A in CD4+ T cells in samples homozygous for the risk allele of CLEC16A rs12927355. Pair-wise linear regression analysis revealed high correlation in gene expression in peripheral T cells of CIITA, DEXI, CLEC16A and SOCS1. Our data imply a possible regulatory role for the multiple sclerosis-associated rs12927355 in CLEC16A. PMID:26203907

  10. Evidence of heterogeneity within colorectal liver metastases for allelic losses, mRNA level expression and in vitro response to chemotherapeutic agents.

    PubMed

    Goasguen, Nicolas; de Chaisemartin, Cecile; Brouquet, Antoine; Julié, Catherine; Prevost, Gregoire P; Laurent-Puig, Pierre; Penna, Christophe

    2010-09-01

    A goal of oncology is to predict chemosensitivity of tumors. This approach assumes that in a patient all tumor deposits are homogeneous. We have tested the heterogeneity between several samples of the same liver metastasis (LM; intrametastatic heterogeneity) or between multiple LM (intermetastatic heterogeneity) from colorectal cancer in a single patient. In 16 untreated patients, several fragments of LM and nontumorous liver were collected. Heterogeneity to anticancer drug treatment was assessed in vitro on primary tissue cultures on poly-HEMA-coated surface with or without the topoisomerase-I inhibitor metabolite SN-38. Heterogeneity of response to SN-38 was observed in 55% of cases from one fragment to another in the same LM and in 64% of cases from one LM to another in the same patient. Allelic losses were characterized on 5q, 8p, 17p, 18q, 22q using 29 microsatellites markers. Seven patients (58%) had a perfect homogeneity for allelic losses in their LM whereas 3 (21%) had intrametastatic and 2 (18%) had intermetastatic heterogeneity. The analysis of gene expression was carried out by real time RT-PCR quantification using specific probes for TS, TOPO1, ERCC1, and CES2. Level expression of genes tested appeared heterogeneous with average variations of 57(+ or - 23)%, 52(+ or - 18)%, 53(+ or - 18)%, 56(+ or - 16)% for TS, TOPO1, ERCC1, and CES2 respectively for intermetastatic variability and 47(+ or - 26)%, 36(+ or - 14)%, 38(+ or - 19)%, and 56(+ or - 29)%, respectively for intrametastatic variability. Our results demonstrate intermetastatic and intrametastatic heterogeneity suggesting that pretherapeutic analysis of a single tumor biopsy is likely to lead to a misinterpretation of sensitivity to anticancer treatment.

  11. Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Arid4b Promote Mammary Tumor Growth and Metastasis

    PubMed Central

    Winter, Scott F.; Lukes, Luanne; Walker, Renard C.; Welch, Danny R.; Hunter, Kent W.

    2012-01-01

    Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT–rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA–mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer. PMID:22693453

  12. Analysis of S-locus and expression of S-alleles of self-compatible rapid-cycling Brassica oleracea 'TO1000DH3'.

    PubMed

    Hee-Jeong, Jung; Nasar Uddin, Ahmed; Jong-In, Park; Senthil Kumar, Thamilarasan; Hye-Ran, Kim; Yong-Gu, Cho; Ill-Sup, Nou

    2014-10-01

    Brassica oleracea is a strictly self-incompatible (SI) plant, but rapid-cycling B. oleracea 'TO1000DH3' is self-compatible (SC). Self-incompatibility in Brassicaceae is controlled by multiple alleles of the S-locus. Three S-locus genes, S-locus glycoprotein (SLG), S-locus receptor kinase (SRK) and S-locus protein 11 or S-locus cysteine-rich (SP11/SCR), have been reported to date, all of which are classified into class I and II. In this study, we investigated the molecular mechanism behind alterations of SI to SC in rapid-cycling B. olerace 'TO1000DH3'. Class I SRK were identified by genomic DNA PCR and PCR-RFLP analysis using SRK specific markers and found to be homozygous. Cloning and sequencing of class I SRK revealed a normal kinase domain without any S-domain/transmembrane domain. Moreover, S-locus sequencing analysis revealed only an SLG sequence, but no SP11/SCR. Expression analysis showed no SRK expression in the stigma, although other genes involved in the SI recognition reaction (SLG, MLPK, ARC1, THL) were found to have normal expression in the stigma. Taken together, the above results suggest that structural aberrations such as deletion of the SI recognition genes may be responsible for the breakdown of SI in rapid-cycling B. oleracea 'TO1000DH3'. PMID:24969488

  13. Reduced stability and bi-allelic, coequal expression of profilaggrin mRNA in keratinocytes cultured from subjects with ichthyosis vulgaris.

    PubMed

    Nirunsuksiri, W; Zhang, S H; Fleckman, P

    1998-06-01

    Ichthyosis vulgaris (IV) is an inherited scaling skin disorder in which expression of profilaggrin is reduced. Previous studies have indicated that the reduction is caused by defective post-transcriptional control of gene expression. Here we present evidence that profilaggrin mRNA in keratinocytes cultured from subjects with IV is intrinsically unstable and has a shorter half-life compared with that in normal cells. When IV-affected keratinocytes were treated with the protein synthesis inhibitor cycloheximide, the steady-state level of profilaggrin mRNA was increased due to stabilization of the transcript. In addition, the number of filaggrin repeats within the profilaggrin gene was studied. The number of filaggrin repeats (10-12) in individuals with IV did not differ from that of unaffected subjects. Expression of the gene was bi-allelic and coequal in both control and affected individuals. Our results suggest a model in which a labile ribonuclease and a stabilizing factor may modulate the profilaggrin mRNA steady-state level in normal cells, whereas the stabilizing factor may be absent or functionally inactive in IV-affected keratinocytes.

  14. The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele.

    PubMed

    Quijano, Carolina Diaz; Brunner, Susanne; Keller, Beat; Gruissem, Wilhelm; Sautter, Christof

    2015-02-01

    Wheat provides 20 % of the calories consumed worldwide. Powdery mildew infections of wheat can result in more than 30 % yield loss but it has been demonstrated that wheat overexpressing Pm3b, an allele of the R gene Pm3, has enhanced resistance against powdery mildew under field conditions. A gene expression profile study using GeneChip Wheat Genome Array and Fluidigm 96.96 Dynamic Arrays was performed to obtain insights into the mode of action of Pm3b and to elucidate the molecular basis of pleiotropic effects observed in three out of four independent transgenic events under field conditions. A cluster analysis of the microarray data and a principal component analysis of the Fluidigm 96.96 Dynamic Arrays data showed that transgenic lines and null segregants grouped together. The microarray analysis of samples from fungicide-treated plants revealed that significantly fewer genes were differentially expressed in Pm3b#1 than in Pm3b#2, which had a pleiotropic phenotype in the field, compared to their null segregants. Together, our data provide evidence that the environment influenced gene expression in the Pm3b lines more than the transgene itself.

  15. Observer trait anxiety is associated with response bias to patient facial pain expression independent of pain catastrophizing

    PubMed Central

    Rash, Joshua A; Prkachin, Kenneth M; Campbell, Tavis S

    2015-01-01

    BACKGROUND: Top-down characteristics of an observer influence the detection and estimation of a sufferer’s pain. A comprehensive understanding of these characteristics is important because they influence observer helping behaviours and the sufferer’s experience of pain. OBJECTIVES: To examine the hypothesis that individuals who score high in trait anxiety would perceive more intense pain in others, as indicated by a larger negative response bias, and that this association would persist after adjusting for pain catastrophizing. METHODS: Healthy young adult participants (n=99; 50 male) watched videos containing excerpts of facial expressions taken from patients with shoulder pain and were asked to rate how much pain the patient was experiencing using an 11-point numerical rating scale. Sensitivity and response bias were calculated using signal detection methods. RESULTS: Trait anxiety was a predictor of response bias after statistically adjusting for pain catastrophizing and observer sex. More anxious individuals had a proclivity toward imputing greater pain to a sufferer. CONCLUSIONS: Individuals scoring higher on trait anxiety were more likely to impute pain to a sufferer. Anxious caregivers may be better able to respond with appropriate intervention once pain behaviour is detected, or they may exacerbate symptoms by engaging in excessive palliative care and solicitous behaviour. PMID:25299592

  16. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.

    PubMed Central

    Carlini, D B; Chen, Y; Stephan, W

    2001-01-01

    To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression. PMID:11606539

  17. Pain-related bias in the classification of emotionally ambiguous facial expressions in mothers of children with chronic abdominal pain.

    PubMed

    Liossi, Christina; White, Paul; Croome, Natasha; Hatira, Popi

    2012-03-01

    This study sought to determine whether mothers of young people with chronic abdominal pain (CAP) compared to mothers of pain-free children show a pain recognition bias when they classify facial emotional expressions. One hundred demographically matched mothers of children with CAP (n=50) and control mothers (n=50) were asked to identify different emotions expressed by adults in 2 experiments. In experiment 1, participants were required to identify the emotion in a series of facial images that depicted 100% intensity of the following emotions: Pain, Sadness, Anger, Fear, Happiness, and Neutral. In experiment 2, mothers were required to identify the predominant emotion in a series of computer-interpolated ("morphed") facial images. In this experiment, pain was combined with Sad, Angry, Fearful, Happy, and Neutral facial expressions in different proportions-that is, 90%:10%, 70%:30%, 50%:50%, 30%:70%, 10%:90%. All participants completed measures of state and trait anxiety, depression, and anxiety sensitivity. In experiment 1, there was no difference in the performance of the 2 groups of mothers. In experiment 2, it was found that overall mothers of children with CAP were classifying ambiguous emotional expressions predominantly as pain. Mean response times for CAP and control groups did not differ significantly. Mothers of children with CAP did not report more anxiety, depression, and anxiety sensitivity compared to control mothers. It is concluded that mothers of children with CAP show a pain bias when interpreting ambiguous emotional expressions, which possibly contributes to the maintenance of this condition in children via specific parenting behaviours.

  18. Proper Use of Allele-Specific Expression Improves Statistical Power for cis-eQTL Mapping with RNA-Seq Data

    PubMed Central

    HU, Yi-Juan; SUN, Wei; TZENG, Jung-Ying; PEROU, Charles M.

    2015-01-01

    Studies of expression quantitative trait loci (eQTLs) offer insight into the molecular mechanisms of loci that were found to be associated with complex diseases and the mechanisms can be classified into cis- and trans-acting regulation. At present, high-throughput RNA sequencing (RNA-seq) is rapidly replacing expression microarrays to assess gene expression abundance. Unlike microarrays that only measure the total expression of each gene, RNA-seq also provides information on allele-specific expression (ASE), which can be used to distinguish cis-eQTLs from trans-eQTLs and, more importantly, enhance cis-eQTL mapping. However, assessing the cis-effect of a candidate eQTL on a gene requires knowledge of the haplotypes connecting the candidate eQTL and the gene, which cannot be inferred with certainty. The existing two-stage approach that first phases the candidate eQTL against the gene and then treats the inferred phase as observed in the association analysis tends to attenuate the estimated cis-effect and reduce the power for detecting a cis-eQTL. In this article, we provide a maximum-likelihood framework for cis-eQTL mapping with RNA-seq data. Our approach integrates the inference of haplotypes and the association analysis into a single stage, and is thus unbiased and statistically powerful. We also develop a pipeline for performing a comprehensive scan of all local eQTLs for all genes in the genome by controlling for false discovery rate, and implement the methods in a computationally efficient software program. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to empirical breast cancer data from The Cancer Genome Atlas project. PMID:26568645

  19. Emotional expression recognition and attribution bias among sexual and violent offenders: a signal detection analysis

    PubMed Central

    Gillespie, Steven M.; Rotshtein, Pia; Satherley, Rose-Marie; Beech, Anthony R.; Mitchell, Ian J.

    2015-01-01

    Research with violent offenders has consistently shown impaired recognition of other’s facial expressions of emotion. However, the extent to which similar problems can be observed among sexual offenders remains unknown. Using a computerized task, we presented sexual and violent offenders, and non-offenders, with male and female expressions of anger, disgust, fear, happiness, sadness, and surprise, morphed with neutral expressions at varying levels of intensity (10, 55, and 90% expressive). Based on signal detection theory, we used hit rates and false alarms to calculate the sensitivity index d-prime (d′) and criterion (c) for each emotional expression. Overall, sexual offenders showed reduced sensitivity to emotional expressions across intensity, sex, and type of expression, compared with non-offenders, while both sexual and violent offenders showed particular reduced sensitivity to fearful expressions. We also observed specific effects for high (90%) intensity female faces, with sexual offenders showing reduced sensitivity to anger compared with non-offenders and violent offenders, and reduced sensitivity to disgust compared with non-offenders. Furthermore, both sexual and violent offenders showed impaired sensitivity to high intensity female fearful expressions compared with non-offenders. Violent offenders also showed a higher criterion for classifying moderate and high intensity male expressions as fearful, indicative of a more conservative response style, compared with angry, happy, or sad. These results suggest that both types of offender show problems in emotion recognition, and may have implications for understanding the inhibition of violent and sexually violent behaviors. PMID:26029137

  20. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1)/Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele.

    PubMed

    Davis, Melissa B; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M; Ford, DeJuana; Howerth, Elizabeth W; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  1. Extensive allele-specific translational regulation in hybrid mice.

    PubMed

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-08-07

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.

  2. Sex-Biased Temporal Gene Expression in Male and Female Floral Buds of Seabuckthorn (Hippophae rhamnoides)

    PubMed Central

    Chawla, Aseem; Stobdan, Tsering; Srivastava, Ravi B.; Jaiswal, Varun; Chauhan, Rajinder S.; Kant, Anil

    2015-01-01

    Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn. PMID:25915052

  3. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.).

    PubMed

    Naoumkina, Marina; Thyssen, Gregory; Fang, David D; Hinchliffe, Doug J; Florane, Christopher; Yeater, Kathleen M; Page, Justin T; Udall, Joshua A

    2014-01-01

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.

  4. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    SciTech Connect

    Robert, M.F.; Ashmarina, L.; Poitier, E.

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  5. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods

    PubMed Central

    2012-01-01

    Background The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI) and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs. Results To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2) only in the feminizing Wolbachia strains of isopods. Conclusions These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation. PMID:22497736

  6. Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria.

    PubMed

    Satapathy, Siddhartha Sankar; Dutta, Malay; Buragohain, Alak Kumar; Ray, Suvendra Kumar

    2012-08-01

    It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.

  7. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish.

    PubMed

    Zhang, Jin; Ma, Wenge; He, Yan; Wu, Junjie; Dawar, Farman Ullah; Ren, Fan; Zhao, Xiaohan; Mei, Jie

    2016-03-10

    Sexual size dimorphism has been observed in many cultivable fish species including yellow catfish, in which male fish grow much faster than female fish. Ghrelin is a potent stimulator of pituitary growth hormone (GH) release and known to potentially promote food intake and body weight gain. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), ghrelin and its functional receptor, growth hormone secretagogue receptor (GHSR) cDNAs were cloned. Real-time PCR indicated that both ghrelin and GHSR were more highly expressed in hypothalamus and gut of male fish than female. During normal larval development, expression of ghrelin and GHSR genes was significantly higher in males than in females. 17a-Methyltestosterone (MT) treatment enhanced the expression of ghrelin in female larval fish and GHSR in both sexes, whereas the expression of ghrelin in male larval fish increased in the beginning, then decreased as the treatment time prolonged. Furthermore, the expression of ghrelin and GHSR in male juvenile was significantly increased compared with female juvenile, in short and long term fasting periods, suggesting that male fish may have a better appetite than female during fasting. Our results demonstrate that sex difference in the expression of ghrelin and GHSR may be involved in sexual size dimorphism by regulating feeding and GH/IGF signaling in yellow catfish. PMID:26692148

  8. Fine mapping of QTL and genomic prediction using allele-specific expression SNPs demonstrates that the complex trait of genetic resistance to Marek’s disease is predominantly determined by transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that polymorphisms associated with transcriptional regulation are critical for viral disease resistance was tested by selecting birds using SNPs exhibiting allele-specific expression (ASE) in response to viral challenge. Analysis indicates ASE markers account for 83% of the disease re...

  9. Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists

    PubMed Central

    Nakagawa, Yuko; Ohtsu, Yoshiaki; Medina, Anya; Nagasawa, Masahiro

    2014-01-01

    The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic β-cells. When the expression of receptor subunits is determined in β-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in β-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in β-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca2+ and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca2+ and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists. PMID:24741449

  10. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.

    PubMed

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.

  11. Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

    PubMed Central

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa. PMID:22567157

  12. Estradiol-inducible squelching and cell growth arrest by a chimeric VP16-estrogen receptor expressed in Saccharomyces cerevisiae: suppression by an allele of PDR1.

    PubMed Central

    Gilbert, D M; Heery, D M; Losson, R; Chambon, P; Lemoine, Y

    1993-01-01

    We have constructed and characterized a flexible system for analyzing the phenomenon of squelching and estrogen receptor function in the yeast Saccharomyces cerevisiae. The A/B region of the human estrogen receptor was replaced with the transcriptional activating domain of VP16 and expressed in yeast cells from high-copy-number plasmids. Addition of hormone resulted in an immediate inhibition of expression (squelching) of a chromosomally integrated GAL1:lacZ reporter gene and the eventual arrest of cell growth (toxicity). In order to determine whether a relationship exists between toxicity and squelching, mutations were made in this chimeric receptor (VEO) and their effects on transcriptional activation, squelching, and toxicity were compared. A direct correlation was found between mutations in VEO that reduced VP16 transactivation ability in yeast cells and those that reduced both squelching and toxicity. Surprisingly, mutations in the DNA binding domain (DBD) of VEO dramatically reduced squelching and completely relieved toxicity, suggesting a role for the DBD in squelching and strengthening the correlation between squelching and toxicity. To demonstrate the utility of this system for carrying out genetic selection, a plasmid-based yeast genomic bank was screened for genes that can relieve the toxicity of VEO by means of an elevated copy number, resulting in the repeated cloning of an allele of the PDR1 (pleiotropic drug resistance) gene. We present evidence that mutations in PDR1 can modulate the intracellular availability of estradiol by the same mechanism that leads to multiple drug resistance in yeast cells. Taken together, our results provide evidence that cell growth arrest occurs when squelching exceeds a certain threshold and that strong squelching requires both a DBD and a transcriptional activating domain. Furthermore, we show that growth arrest can provide a useful phenotype for carrying out the genetic analysis of both squelching and estrogen receptor

  13. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  14. Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines

    PubMed Central

    Davis, Hayley; Lewis, Annabelle; Behrens, Axel; Tomlinson, Ian

    2014-01-01

    Objective FBXW7 encodes the substrate recognition component of a ubiquitin ligase that degrades targets such as Notch1, c-Jun, c-Myc and cyclin E. FBXW7 mutations occur in several tumour types, including colorectal cancers. The FBXW7 mutation spectrum in cancers is unusual. Some tumours have biallelic loss of function mutations but most have monoallelic missense mutations involving specific arginine residues at β-propellor tips involved in substrate recognition. Design FBXW7 functional studies have generally used null systems. In order to analyse the most common mutations in human tumours, we created a Fbxw7fl(R482Q)/+ mouse and conditionally expressed this mutation in the intestines using Vill-Cre. We compared these mice with heterozygous null (Fbxw7+/−) mutants. Results A few sizeable intestinal adenomas occurred in approximately 30% of R482Q/+ and Fbxw7+/− mice at age >300 days. Breeding the R482Q allele onto Apc mutant backgrounds led to accelerated morbidity and increased polyp numbers and size. Within the small bowel, polyp distribution was shifted proximally. Elevated levels of two particular Fbxw7 substrates, Klf5 and Tgif1, were found in normal intestine and adenomas of R482Q/+, R482Q/R482Q and Fbxw7−/− mice, but not Fbxw7+/− animals. On the Apc mutant background, Fbxw7+/− mutants had a phenotype intermediate between Fbxw7 wild-type and R482Q/+ mice. Conclusions Heterozygous Fbxw7 propellor tip (R482Q) mutations promote intestinal tumorigenesis on an Apc mutant background. Klf5 and Tgif1 are strong candidates for mediating this effect. Although heterozygous null Fbxw7 mutations also promote tumour growth, these have a weaker effect than R482Q. These findings explain the FBXW7 mutation spectrum found in human cancers, and emphasise the need for animal models faithfully to reflect human disease. PMID:23676439

  15. Predicting gene expression levels from codon biases in α-proteobacterial genomes

    PubMed Central

    Karlin, Samuel; Barnett, Melanie J.; Campbell, Allan M.; Fisher, Robert F.; Mrázek, Jan

    2003-01-01

    Predicted highly expressed (PHX) genes in five currently available high G+C complete α-proteobacterial genomes are analyzed. These include: the nitrogen-fixing plant symbionts Sinorhizobium meliloti (SINME) and Mesorhizobium loti (MESLO), the nonpathogenic aquatic bacterium Caulobacter crescentus (CAUCR), the plant pathogen Agrobacterium tumefaciens (AGRTU), and the mammalian pathogen Brucella melitensis (BRUME). Three of these genomes, SINME, AGRTU, and BRUME, contain multiple chromosomes or megaplasmids (>1 Mb length). PHX genes in these genomes are concentrated mainly in the major (largest) chromosome with few PHX genes found in the secondary chromosomes and megaplasmids. Tricarboxylic acid cycle and aerobic respiration genes are strongly PHX in all five genomes, whereas anaerobic pathways of glycolysis and fermentation are mostly not PHX. Only in MESLO (but not SINME) and BRUME are most glycolysis genes PHX. Many flagellar genes are PHX in MESLO and CAUCR, but mostly are not PHX in SINME and AGRTU. The nonmotile BRUME also carries many flagellar genes but these are generally not PHX and all but one are located in the second chromosome. CAUCR stands out among available prokaryotic genomes with 25 PHX TonB-dependent receptors. These are putatively involved in uptake of iron ions and other nonsoluble compounds. PMID:12775761

  16. The number of alleles at a microsatellite defines the allele frequency spectrum and facilitates fast accurate estimation of theta.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2010-12-01

    Theoretical work focused on microsatellite variation has produced a number of important results, including the expected distribution of repeat sizes and the expected squared difference in repeat size between two randomly selected samples. However, closed-form expressions for the sampling distribution and frequency spectrum of microsatellite variation have not been identified. Here, we use coalescent simulations of the stepwise mutation model to develop gamma and exponential approximations of the microsatellite allele frequency spectrum, a distribution central to the description of microsatellite variation across the genome. For both approximations, the parameter of biological relevance is the number of alleles at a locus, which we express as a function of θ, the population-scaled mutation rate, based on simulated data. Discovered relationships between θ, the number of alleles, and the frequency spectrum support the development of three new estimators of microsatellite θ. The three estimators exhibit roughly similar mean squared errors (MSEs) and all are biased. However, across a broad range of sample sizes and θ values, the MSEs of these estimators are frequently lower than all other estimators tested. The new estimators are also reasonably robust to mutation that includes step sizes greater than one. Finally, our approximation to the microsatellite allele frequency spectrum provides a null distribution of microsatellite variation. In this context, a preliminary analysis of the effects of demographic change on the frequency spectrum is performed. We suggest that simulations of the microsatellite frequency spectrum under evolutionary scenarios of interest may guide investigators to the use of relevant and sometimes novel summary statistics.

  17. The -5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer.

    PubMed

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; Bryś, Magdalena

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the -5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region -5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the -5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that -5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer.

  18. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes

    PubMed Central

    2016-01-01

    Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m3C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response. PMID:25772370

  19. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  20. Nucleotide variation and identification of novel blast resistance alleles of Pib by allele mining strategy.

    PubMed

    Ramkumar, G; Madhav, M S; Devi, S J S Rama; Prasad, M S; Babu, V Ravindra

    2015-04-01

    Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

  1. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  2. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells.

    PubMed

    Bechard, Matthew E; Bankaitis, Eric D; Hipkens, Susan B; Ustione, Alessandro; Piston, David W; Yang, Yu-Ping; Magnuson, Mark A; Wright, Christopher V E

    2016-08-15

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9(+) bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3(TA.LO) cell population, defined as Neurog3 transcriptionally active and Sox9(+) and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9(+) Neurog3(TA.LO) progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3(HI) cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9(+) Neurog3(TA.LO) progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9(+) Neurog3(TA.LO) endocrine-biased progenitors feed production of Neurog3(HI) endocrine-committed cells during pancreas organogenesis. PMID:27585590

  3. Initial invasion of gametophytic self-incompatibility alleles in the absence of tight linkage between pollen and pistil S alleles.

    PubMed

    Sakai, Satoki; Wakoh, Haluka

    2014-08-01

    In homomorphic self-incompatibility (SI) systems of plants, the loci controlling the pollen and pistil types are tightly linked, and this prevents the generation of compatible combinations of alleles expressing pollen and pistil types, which would result in self-fertilization. We modeled the initial invasion of the first pollen and pistil alleles in gametophytic SI to determine whether these alleles can stably coexist in a population without tight linkage. We assume pollen and pistil loci each carry an incompatibility allele S and an allele without an incompatibility function N. We assume that pollen with an S allele are incompatible with pistils carrying S alleles, whereas other crosses are compatible. Ovules in pistils carrying an S allele suffer viability costs because recognition consumes resources. We found that the cost of carrying a pistil S allele allows pollen and pistil S alleles to coexist in a stable equilibrium if linkage is partial. This occurs because parents that carry pistil S alleles but are homozygous for pollen N alleles cannot avoid self-fertilization; however, they suffer viability costs. Hence, pollen N alleles are selected again. When pollen and pistil S alleles can coexist in a polymorphic equilibrium, selection will favor tighter linkage.

  4. Methylation similarities of two CpG sites within exon 5 of human H19 between normal tissues and testicular germ cell tumours of adolescents and adults, without correlation with allelic and total level of expression.

    PubMed Central

    Gillis, A. J.; Verkerk, A. J.; Dekker, M. C.; van Gurp, R. J.; Oosterhuis, J. W.; Looijenga, L. H.

    1997-01-01

    Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis. Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs. To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their nonmalignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant counterparts, in spite of their consistent biallelic expression. Images Figure 1 Figure 3 Figure 4 PMID:9310237

  5. A unique SaeS allele overrides cell-density dependent expression of saeR and lukSF-PV in the ST30-SCCmecIV lineage of CA-MRSA.

    PubMed

    Ramundo, Mariana Severo; Beltrame, Cristiana Ossaille; Botelho, Ana Maria Nunes; Coelho, Leonardo Rocchetto; Silva-Carvalho, Maria Cicera; Ferreira-Carvalho, Bernadete Teixeira; Nicolás, Marisa Fabiana; Guedes, Isabella Alvim; Dardenne, Laurent Emmanuel; O'Gara, James; Figueiredo, Agnes Marie Sá

    2016-09-01

    ST30 (CC30)-SCCmec IV (USA1100) is one of the most common community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) lineages. ST30 isolates typically carry lukSF-PV genes encoding the Panton-Valentine leukocidin (PVL) and are responsible for outbreaks of invasive infections worldwide. In this study, twenty CC30 isolates were analyzed. All were very susceptible to non-β-lactam antimicrobials, 18/20 harbored the lukSF-PV genes, only 1/20 exhibited agr-rnaIII dysfunction, and the majority was not able to form biofilm on inert surfaces. Analysis of lukSF-PV temporal regulation revealed that opposite to other CA-MRSA isolates, these genes were more highly expressed in early log phase than in stationary phase. This inverted lukSF-PV temporal expression was associated with a similar pattern of saeRS expression in the ST30 isolates, namely high level expression in log phase and reduced expression in stationary phase. Reduced saeRS expression in stationary phase was associated with low expression levels of the sae regulators, agr and agr-upregulator sarA, which activate the stationary phase sae-P1 promoter and overexpression of agr-RNAIII restored the levels of saeR and lukSF-PV trancripts in stationary phase. Altered SaeRS activity in the ST30 isolates was attributed to amino acid substitutions (N227S, E268K and S351T) in the HTPase_c domain of SaeS (termed SaeS(SKT)). Complementation of a USA300 saeS mutant with the saeS(SKT) and saeS alleles under the direction of the log phase sae-P3 promoter revealed that saeR and lukSF-PV transcription levels were more significantly activated by saeS(SKT) than saeS. In summary our data identify a unique saeS allele (saeS(SKT)) which appears to override cell-density dependent SaeR and PVL expression in ST30 CA-MRSA isolates. Further studies to determine the contribution of saeS(SKT) allele to the pathogenesis of infections caused by ST30 isolates are merited.

  6. Transformation and pp60v-src autophosphorylation correlate with SHC-GRB2 complex formation in rat and chicken cells expressing host-range and kinase-active, transformation-defective alleles of v-src.

    PubMed Central

    Verderame, M F; Guan, J L; Woods Ignatoski, K M

    1995-01-01

    The biochemical properties of several pp60v-src substrates believed to participate in src-mediated transformation were examined in cells expressing a kinase-active, transformation-defective v-src allele (v-src-F172 delta/Y416F) and its parental allele, v-src-F172 delta, a host-range--dependent allele that transforms chicken cells to a fusiform morphology, but does not transform rat cells. Because pp60v-src-F172 delta is dependent on autophosphorylation for transforming ability, these alleles provide a unique opportunity to examine the role of pp60v-src autophosphorylation in regulating substrate interactions. Increased pp125FAK tyrosine phosphorylation and high levels of pp60v-src-associated phosphotidylinositol-3' kinase activity were detected specifically in chicken cells exhibiting round, refractile transformation but not in cells transformed to a fusiform morphology. Increased pp125FAK kinase activity, but not increased pp125FAK tyrosine-phosphorylation correlated with pp60v-src autophosphorylation and increased anchorage-independent growth. Thus, pp125FAK and PI3'K may participate in morphological transformation by v-src. Furthermore, association of phosphorylated SHC with the adapter GRB2 correlated with increased anchorage-independent growth (and autophosphorylation) in both rat and chicken cells independent of the morphological phenotype induced. Therefore, host-range dependence for transformation may be regulated through association of SHC with GRB2, thus implicating SHC as a crucial substrate for src-dependent transformation. Images PMID:7579711

  7. The A Allele of the rs1990760 Polymorphism in the IFIH1 Gene Is Associated with Protection for Arterial Hypertension in Type 1 Diabetic Patients and with Expression of This Gene in Human Mononuclear Cells

    PubMed Central

    Bouças, Ana P.; Brondani, Letícia A.; Souza, Bianca M.; Lemos, Natália E.; de Oliveira, Fernanda S.; Canani, Luis H.; Crispim, Daisy

    2013-01-01

    Background The rs1990760 polymorphism of interferon induced with helicase C domain 1 (IFIH1) has been associated with type 1 diabetes mellitus (T1DM). Here, we investigated whether this polymorphism is associated with T1DM or its clinical characteristics in a Brazilian population, and if IFIH1 gene expression in mononuclear cells from T1DM patients differs according to the genotypes of this polymorphism. A meta-analysis was also conducted to evaluate if the rs1990760 polymorphism is associated with T1DM. Methods Frequencies of the rs1990760 polymorphism were analyzed in 527 T1DM patients and in 517 healthy subjects. IFIH1 gene expressions according to genotypes were measured in a sub-sample of 26 T1DM patients by quantitative real-time PCR. Results Our data show the association of the A allele with risk to T1DM under a dominant model of inheritance [odds ratio (OR) = 1.421, P = 0.037], adjusting for ethnicity. The meta-analysis revealed significant association between the rs199760A allele and risk for T1DM for all analyzed inheritance models. Surprisingly, T1DM patients carrying the A allele showed lower levels of systolic (P = 0.001) and diastolic (P = 1×10−10) blood pressures as compared to G/G carriers. Furthermore, the A/A genotype seems to be associated with protection to arterial hypertension (AH) after adjustment for covariates (OR = 0.339, P = 0.019). IFIH1 gene expression in mononuclear cells from 26 T1DM patients did not differ among genotypes (P = 0.274). Nevertheless, IFIH1 gene expression was increased in mononuclear cells from T1DM patients with AH as compared with T1DM patients without AH [6.7 (1.7–2.0) vs. 1.8 (1.3–7.1) arbitrary units; P = 0.036]. The association with blood pressures and AH was not observed in patients with type 2 diabetes mellitus. Conclusions Our results indicate that the rs1990760 polymorphism is associated with T1DM. Interestingly, the rs1990760 A allele seems to be associated with

  8. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum.

    PubMed

    Cai, Pengfei; Liu, Shuai; Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N; McManus, Donald P; Chen, Qijun

    2016-04-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions. PMID:27128440

  9. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    PubMed Central

    Zhang, Tiantao; Coates, Brad S.; Ge, Xing; Bai, Shuxiong; He, Kanglai; Wang, Zhenying

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition. PMID:26062030

  10. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae).

    PubMed

    Zhang, Tiantao; Coates, Brad S; Ge, Xing; Bai, Shuxiong; He, Kanglai; Wang, Zhenying

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition.

  11. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum

    PubMed Central

    Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N.; McManus, Donald P.; Chen, Qijun

    2016-01-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions. PMID:27128440

  12. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae).

    PubMed

    Zhang, Tiantao; Coates, Brad S; Ge, Xing; Bai, Shuxiong; He, Kanglai; Wang, Zhenying

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition. PMID:26062030

  13. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  14. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  15. Cell surface expression level variation between two common Human Leukocyte Antigen alleles, HLA-A2 and HLA-B8, is dependent on the structure of the C terminal part of the alpha 2 and the alpha 3 domains.

    PubMed

    Dellgren, Christoffer; Nehlin, Jan O; Barington, Torben

    2015-01-01

    Constitutive cell surface expression of Human Leukocyte Antigen (HLA) class I antigens vary extremely from tissue to tissue and individual antigens may differ widely in expression levels. Down-regulation of class I expression is a known immune evasive mechanism used by cancer cells and viruses. Moreover, recent observations suggest that even minor differences in expression levels may influence the course of viral infections and the frequency of complications to stem cell transplantation. We have shown that some human multipotent stem cells have high expression of HLA-A while HLA-B is only weakly expressed, and demonstrate here that this is also the case for the human embryonic kidney cell line HEK293T. Using quantitative flow cytometry and quantitative polymerase chain reaction we found expression levels of endogenous HLA-A3 (median 71,204 molecules per cell) 9.2-fold higher than the expression of-B7 (P = 0.002). Transfection experiments with full-length HLA-A2 and -B8 encoding plasmids confirmed this (54,031 molecules per cell vs. 2,466, respectively, P = 0.001) independently of transcript levels suggesting a post-transcriptional regulation. Using chimeric constructs we found that the cytoplasmic tail and the transmembrane region had no impact on the differential cell surface expression. In contrast, ~65% of the difference could be mapped to the six C-terminal amino acids of the alpha 2 domain and the alpha 3 domain (amino acids 176-284), i.e. amino acids not previously shown to be of importance for differential expression levels of HLA class I molecules. We suggest that the differential cell surface expression of two common HLA-A and-B alleles is regulated by a post-translational mechanism that may involve hitherto unrecognized molecules. PMID:26258424

  16. Role of the 5-HTTLPR and SNP Promoter Polymorphisms on Serotonin Transporter Gene Expression: a Closer Look at Genetic Architecture and In Vitro Functional Studies of Common and Uncommon Allelic Variants.

    PubMed

    Iurescia, Sandra; Seripa, Davide; Rinaldi, Monica

    2016-10-01

    The serotonin (5-hydroxytriptamine (5-HT)) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is a variable number tandem repeats (VNTR) located in the promoter region of the human 5-HTT-encoding gene SLC6A4. This length polymorphism gives rise to different promoter variants, variously influencing SLC6A4 expression. Over the years, an extensive literature has investigated the relationships between these promoter variants and SLC6A4 gene expression, since these variants have been variously associated to complex neuropsychiatric conditions and traits. In this review, we detail the genetic architecture of the 5-HTTLPR allelic variants reported so far, with a closer look at the two single nucleotide polymorphisms (SNPs) rs25531 and rs25532 that lies in the VNTR and thus increase genetic variability of the SLC6A4 promoter. We summarize the hypothesized molecular mechanisms underlying this variation. We also provide an update on common and uncommon 5-HTTLPR allelic variants reviewing the available data on functional in vitro analysis of their regulatory effect on SLC6A4 gene transcription. Controversial findings are highlighted and critically discussed. A deeper knowledge of the "5-HTTLPR universe" will be useful to better understand the molecular basis of serotonin homeostasis and the pathological basis underlying serotonin-related neuropsychiatric conditions and traits.

  17. Extensive allele-specific translational regulation in hybrid mice

    PubMed Central

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-01-01

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression. PMID:26253569

  18. Urbanization increases left-bias in line-bisection: an expression of elevated levels of intrinsic alertness?

    PubMed Central

    Linnell, Karina J.; Caparos, Serge; Davidoff, Jules

    2014-01-01

    Urbanization impairs attentional selection and increases distraction from task-irrelevant contextual information, consistent with a reduction in attentional engagement with the task in hand. Previously, we proposed an attentional-state account of these findings, suggesting that urbanization increases intrinsic alertness and with it exploration of the wider environment at the cost of engagement with the task in hand. Here, we compare urbanized people with a remote people on a line-bisection paradigm. We show that urbanized people have a left spatial bias where remote people have no significant bias. These findings are consistent with the alertness account and provide the first test of why remote peoples have such an extraordinary capacity to concentrate. PMID:25346707

  19. Estimating Relatedness in the Presence of Null Alleles.

    PubMed

    Huang, Kang; Ritland, Kermit; Dunn, Derek W; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2016-01-01

    Studies of genetics and ecology often require estimates of relatedness coefficients based on genetic marker data. However, with the presence of null alleles, an observed genotype can represent one of several possible true genotypes. This results in biased estimates of relatedness. As the numbers of marker loci are often limited, loci with null alleles cannot be abandoned without substantial loss of statistical power. Here, we show how loci with null alleles can be incorporated into six estimators of relatedness (two novel). We evaluate the performance of various estimators before and after correction for null alleles. If the frequency of a null allele is <0.1, some estimators can be used directly without adjustment; if it is >0.5, the potency of estimation is too low and such a locus should be excluded. We make available a software package entitled PolyRelatedness v1.6, which enables researchers to optimize these estimators to best fit a particular data set.

  20. Children's 5-HTTLPR genotype moderates the link between maternal criticism and attentional biases specifically for facial displays of anger.

    PubMed

    Gibb, Brandon E; Johnson, Ashley L; Benas, Jessica S; Uhrlass, Dorothy J; Knopik, Valerie S; McGeary, John E

    2011-09-01

    Theorists have proposed that negative experiences in childhood may contribute to the development of experience-specific information-processing biases, including attentional biases. There are also clear genetic influences on cognitive processes, with evidence that polymorphisms in specific candidate genes may moderate the impact of environmental stress on attentional biases (e.g., a functional polymorphism in the serotonin transporter gene; 5-HTTLPR). In the current study, we tested a gene×environment (G×E) model of risk for attentional biases. We hypothesised that children whose mothers exhibit high levels of expressed emotion criticism (EE-Crit) would display attentional biases specifically for angry, but not happy or sad, faces, and that this link would be stronger among children carrying one or two copies of the 5-HTTLPR short allele than among those homozygous for the long allele. Results generally supported these hypotheses, though we found that carriers of the 5-HTTLPR short allele who also had a critical mother exhibited attentional avoidance of angry faces rather than preferential attention.

  1. Clinical expression of facioscapulohumeral muscular dystrophy in carriers of 1–3 D4Z4 reduced alleles: experience of the FSHD Italian National Registry

    PubMed Central

    Nikolic, Ana; Ricci, Giulia; Sera, Francesco; Bucci, Elisabetta; Govi, Monica; Mele, Fabiano; Rossi, Marta; Ruggiero, Lucia; Vercelli, Liliana; Ravaglia, Sabrina; Brisca, Giacomo; Fiorillo, Chiara; Villa, Luisa; Maggi, Lorenzo; Cao, Michelangelo; D'Amico, Maria Chiara; Siciliano, Gabriele; Antonini, Giovanni; Santoro, Lucio; Mongini, Tiziana; Moggio, Maurizio; Morandi, Lucia; Pegoraro, Elena; Angelini, Corrado; Di Muzio, Antonio; Rodolico, Carmelo; Tomelleri, Giuliano; Grazia D'Angelo, Maria; Bruno, Claudio; Berardinelli, Angela; Tupler, Rossella

    2016-01-01

    Objectives Facioscapulohumeral muscular dystrophy type 1 (FSHD1) has been genetically linked to reduced numbers (≤8) of D4Z4 repeats at 4q35. Particularly severe FSHD cases, characterised by an infantile onset and presence of additional extra-muscular features, have been associated with the shortest D4Z4 reduced alleles with 1–3 repeats (1–3 DRA). We searched for signs of perinatal onset and evaluated disease outcome through the systematic collection of clinical and anamnestic records of de novo and familial index cases and their relatives, carrying 1–3 DRA. Setting Italy. Participants 66 index cases and 33 relatives carrying 1–3 DRA. Outcomes The clinical examination was performed using the standardised FSHD evaluation form with validated inter-rater reliability. To investigate the earliest signs of disease, we designed the Infantile Anamnestic Questionnaire (IAQ). Comparison of age at onset was performed using the non-parametric Wilcoxon rank-sum or Kruskal-Wallis test. Comparison of the FSHD score was performed using a general linear model and Wald test. Kaplan-Meier survival analysis was used to estimate the age-specific cumulative motor impairment risk. Results No patients had perinatal onset. Among index cases, 36 (54.5%) showed the first signs by 10 years of age. The large majority of patients with early disease onset (26 out of 36, 72.2%) were de novo; whereas the majority of patients with disease onset after 10 years of age were familial (16, 53.3%). Comparison of the disease severity outcome between index cases with age at onset before and over 10 years of age, failed to detect statistical significance (Wald test p value=0.064). Of 61 index cases, only 17 (27.9%) presented extra-muscular conditions. Relatives carrying 1–3 DRA showed a large clinical variability ranging from healthy subjects, to patients with severe motor impairment. Conclusions The size of the D4Z4 allele is not always predictive of severe clinical outcome. The high

  2. De Novo Assembly of the Manila Clam Ruditapes philippinarum Transcriptome Provides New Insights into Expression Bias, Mitochondrial Doubly Uniparental Inheritance and Sex Determination

    PubMed Central

    Ghiselli, Fabrizio; Milani, Liliana; Chang, Peter L.; Hedgecock, Dennis; Davis, Jonathan P.; Nuzhdin, Sergey V.; Passamonti, Marco

    2012-01-01

    Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings. PMID:21976711

  3. De Novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination.

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Chang, Peter L; Hedgecock, Dennis; Davis, Jonathan P; Nuzhdin, Sergey V; Passamonti, Marco

    2012-02-01

    Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings.

  4. Stressful life events moderate the relationship between genes and biased attention to emotional faces in youth

    PubMed Central

    Jenness, Jessica L.; Hankin, Benjamin L.; Young, Jami F.; Smolen, Andrew

    2015-01-01

    Attention bias to emotion may be an intermediate trait for stress-reactive psychopathology associated with biologically plausible candidate genes, yet the precise direction of effects within the youth literature remains unclear. The present study investigated whether stressful life events (SLEs) moderate the link between genetic risk (5-HTTLPR and COMT) and attention bias to emotion among youth (n= 467). Analyses revealed a differential effect of gene. Among youth who had experienced more recent SLEs, those homozygous for the low expressing allele of 5-HTTLPR (S/S) demonstrated preferential attention toward negative emotional expressions, whereas youth homozygous for the high expressing COMT genotype (Val/Val) showed attentional avoidance of positive facial expressions. No interaction between 5-HTTLPR and COMT was found. These findings highlight the importance of investigating stress as a moderator within the intermediate trait literature and suggest that biologically plausible candidate genes may have a differential effect in the pathway to psychological disorders. PMID:27375963

  5. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release

    PubMed Central

    Datsi, Angeliki; Hegazy, Ahmed N.; Varga, Domonkos V.; Holecska, Vivien; Saito, Hirohisa; Nakae, Susumu; Löhning, Max

    2016-01-01

    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies. PMID:27548066

  6. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release.

    PubMed

    Siede, Julia; Fröhlich, Anja; Datsi, Angeliki; Hegazy, Ahmed N; Varga, Domonkos V; Holecska, Vivien; Saito, Hirohisa; Nakae, Susumu; Löhning, Max

    2016-01-01

    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 -especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2- Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies. PMID:27548066

  7. Introduction to Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.

    2010-05-01

    We all have biases, and we are (for the most part) unaware of them. In general, men and women BOTH unconsciously devalue the contributions of women. This can have a detrimental effect on grant proposals, job applications, and performance reviews. Sociology is way ahead of astronomy in these studies. When evaluating identical application packages, male and female University psychology professors preferred 2:1 to hire "Brian” over "Karen” as an assistant professor. When evaluating a more experienced record (at the point of promotion to tenure), reservations were expressed four times more often when the name was female. This unconscious bias has a repeated negative effect on Karen's career. This talk will introduce the concept of unconscious bias and also give recommendations on how to address it using an example for a faculty search committee. The process of eliminating unconscious bias begins with awareness, then moves to policy and practice, and ends with accountability.

  8. Microarray amplification bias: loss of 30% differentially expressed genes due to long probe – poly(A)-tail distances

    PubMed Central

    Boelens, Mirjam C; te Meerman, Gerard J; Gibcus, Johan H; Blokzijl, Tjasso; Boezen, H Marike; Timens, Wim; Postma, Dirkje S; Groen, Harry JM; van den Berg, Anke

    2007-01-01

    Background Laser microdissection microscopy has become a rising tool to assess gene expression profiles of pure cell populations. Given the low yield of RNA, a second round of amplification is usually mandatory to yield sufficient amplified-RNA for microarray approaches. Since amplification induces truncation of RNA molecules, we studied the impact of a second round of amplification on identification of differentially expressed genes in relation to the probe – poly(A)-tail distances. Results Disagreement was observed between gene expression profiles acquired after a second round of amplification compared to a single round. Thirty percent of the differentially expressed genes identified after one round of amplification were not detected after two rounds. These inconsistent genes have a significant longer probe – poly(A)-tail distance. qRT-PCR on unamplified RNA confirmed differential expression of genes with a probe – poly(A)-tail distance >500 nucleotides appearing only after one round of amplification. Conclusion Our data demonstrate a marked loss of 30% of truly differentially expressed genes after a second round of amplification. Therefore, we strongly recommend improvement of amplification procedures and importance of microarray probe design to allow detection of all differentially expressed genes in case of limited amounts of RNA. PMID:17697374

  9. Trans allele methylation and paramutation-like effects in mice

    PubMed Central

    Herman, Herry; Lu, Michael; Anggraini, Melly; Sikora, Aimee; Chang, Yanjie; Yoon, Bong June; Soloway, Paul D

    2009-01-01

    In mammals, imprinted genes have parent-of-origin–specific patterns of DNA methylation that cause allele-specific expression. At Rasgrf1 (encoding RAS protein-specific guanine nucleotide-releasing factor 1), a repeated DNA element is needed to establish methylation and expression of the active paternal allele1. At Igf2r (encoding insulin-like growth factor 2 receptor), a sequence called region 2 is needed for methylation of the active maternal allele2,3. Here we show that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation and expression of the paternal copy of Rasgrf1, indicating that sequences that control methylation can function ectopically. Paternal transmission of the mutated allele also induced methylation and expression in trans of the normally unmethylated and silent wild-type maternal allele. Once activated, the wild-type maternal Rasgrf1 allele maintained its activated state in the next generation independently of the paternal allele. These results recapitulate in mice several features in common with paramutation described in plants4. PMID:12740578

  10. Autoimmune diabetes-prone NOD mice express the Lyt2{sup a} (Lyt2.1) and Lyt3{sup a} (Lyt3.1) alleles of CD8

    SciTech Connect

    Johnson-Tardieu, J.M.; Cornelius, J.G.; Ye, X.

    1996-06-01

    Predisposition to Type I insulin-dependent diabetes (IDD) has a strong underlying genetic basis involving class II major histocompatibility complex (MHC) genes as well as several non-MHC genetic systems. In the non-obese diabetic (NOD) mouse, a model for human IDD, genes associated with the appearance of immune cell infiltrates in the pancreatic islets (insulitis) and/or overt IDD have been mapped to chromosomes 1, 3, 6, 11, and 17. A recent report has suggested that CD8+ lymphocytes of the NOD mouse might be deficient in the expression of the CD8{Beta} molecule, a protein encoded by a gene on chromosome 6. The CD8{Beta} molecule is a T-cell surface marker, the lack of which could affect selection in the thymus, possibly permitting auto-reactive T-cell clones to populate the peripheral lymphoid tissues. For this reason, we examined the expression of the CD8 molecule by lymphocytes in the NOD mouse. Results indicate that the NOD mouse is not deficient in its transcription of detectable mRNA encoding either the CD8{alpha} or {Beta} subunits. However, the NOD mouse expresses the Lyt2{sup a} and Lyt3{sup a} alleles, suggesting that a portion of chromosome 6 centromeric to the diabetes-susceptibility genetic region is derived from an ancestry common to AKR and, like AKR, the CD8{alpha} and CD8{Beta}3.1 (but not CD8{Beta}3.2) subunits are detected on the cell surface of T lymphocytes of the NOD mouse. Interestingly, though, the CD8{Beta}3.1 molecule may not be expressed in the NOD mouse to the same extent as it is expressed in the AKR/J mouse, suggesting the possibility that the NOD mouse possesses a defect somewhere between transcription and cell surface expression of the CD8{Beta} molecule. 36 refs., 5 figs.

  11. Prolactin Expression in the Cochlea of Aged BALB/c Mice Is Gender Biased and Correlates to Loss of Bone Mineral Density and Hearing Loss

    PubMed Central

    Marano, Robert J.; Tickner, Jennifer; Redmond, Sharon L.

    2013-01-01

    Prolactin is a versatile hormone with over 300 known functions and predominantly expressed in the pituitary. However, its expression has additionally been found in a number of extrapituitary organs. Recently, we described the expression of prolactin in the inner ear of mice, where it was correlated to age. Previous research has shown prolactin to be linked to abnormal bone metabolism and hearing loss due to changes in morphology of the bony otic capsule. Here we further investigated the relationship between prolactin, hearing loss and cochlea bone metabolism. BALB/c mice were tested for hearing using ABR at 6 and 12 months of age. Bone mineral density of the cochlea was evaluated using microCT scanning. Prolactin expression was calculated using quantitative real time PCR. Expression of the key regulators of bone metabolism, osteoprotegerin and receptor activator of nuclear factor-kappaB ligand were also determined. We found that prolactin expression was exclusive to the female mice. This also correlated to a greater threshold shift in hearing for the females between 6 and 12 months of age. Analyses of the cochlea also show that the bone mineral density was lower in females compared to males. However, no gender differences in expression of osteoprotegerin or receptor activator of nuclear factor-kappaB ligand could be found. Further analysis of cochlea histological sections revealed larger ostocyte lacunae in the females. These results provide a possible mechanism for an age related hearing loss sub-type that is associated with gender and provides clues as to how this gender bias in hearing loss develops. In addition, it has the potential to lead to treatment for this specific type of hearing loss. PMID:23667691

  12. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity.

    PubMed

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2013-09-01

    The endoplasmic reticulum transmembrane protein, Unc93b1, is essential for trafficking of endosomal TLRs from the endoplasmic reticulum to endosomes. A genetic defect in the human UNC93B1 gene is associated with immunodeficiency. However, systemic lupus erythematosus (SLE) patients express increased levels of the UNC93B1 protein in B cells. Because SLE in patients and certain mouse models exhibits a sex bias and increased serum levels of type I interferons in patients are associated with the disease activity, we investigated whether the female sex hormone estrogen (E2) or type I interferon signaling could up-regulate the expression of the murine Unc93b1 gene. We found that steady-state levels of Unc93b1 mRNA and protein were measurably higher in immune cells (CD3(+), B220(+), CD11b(+) and CD11c(+)) isolated from C57BL/6 (B6) females than age-matched males. Moreover, treatment of CD11b(+) and B220(+) cells with E2 or interferons (IFN-α, IFN-β or IFN-γ) significantly increased the levels of Unc93b1 mRNA and protein. Accordingly, a deficiency of estrogen receptor-α or STAT1 expression in immune cells decreased the expression levels of the Unc93b1 protein. Interestingly, levels of Unc93b1 protein were appreciably higher in B6.Nba2 lupus-prone female mice compared with age-matched B6 females. Furthermore, increased expression of the interferon- and E2-inducible p202 protein in a murine macrophage cell line (RAW264.7) increased the levels of the Unc93b1 protein, whereas knockdown of p202 expression reduced the levels. To our knowledge, our observations demonstrate for the first time that activation of interferon and estrogen signaling in immune cells up-regulates the expression of murine Unc93b1. PMID:23728775

  13. Prolactin expression in the cochlea of aged BALB/c mice is gender biased and correlates to loss of bone mineral density and hearing loss.

    PubMed

    Marano, Robert J; Tickner, Jennifer; Redmond, Sharon L

    2013-01-01

    Prolactin is a versatile hormone with over 300 known functions and predominantly expressed in the pituitary. However, its expression has additionally been found in a number of extrapituitary organs. Recently, we described the expression of prolactin in the inner ear of mice, where it was correlated to age. Previous research has shown prolactin to be linked to abnormal bone metabolism and hearing loss due to changes in morphology of the bony otic capsule. Here we further investigated the relationship between prolactin, hearing loss and cochlea bone metabolism. BALB/c mice were tested for hearing using ABR at 6 and 12 months of age. Bone mineral density of the cochlea was evaluated using microCT scanning. Prolactin expression was calculated using quantitative real time PCR. Expression of the key regulators of bone metabolism, osteoprotegerin and receptor activator of nuclear factor-kappaB ligand were also determined. We found that prolactin expression was exclusive to the female mice. This also correlated to a greater threshold shift in hearing for the females between 6 and 12 months of age. Analyses of the cochlea also show that the bone mineral density was lower in females compared to males. However, no gender differences in expression of osteoprotegerin or receptor activator of nuclear factor-kappaB ligand could be found. Further analysis of cochlea histological sections revealed larger ostocyte lacunae in the females. These results provide a possible mechanism for an age related hearing loss sub-type that is associated with gender and provides clues as to how this gender bias in hearing loss develops. In addition, it has the potential to lead to treatment for this specific type of hearing loss.

  14. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  15. MAGEA10 gene expression in non-small cell lung cancer and A549 cells, and the affinity of epitopes with the complex of HLA-A(∗)0201 alleles.

    PubMed

    Wang, Likui; Xu, Yuefang; Luo, Cheng; Sun, Jian; Zhang, Jinlu; Lee, Ming-Wei; Bai, Aiping; Chen, Guanhua; Frenz, Christopher M; Li, Zhengguo; Huang, Wenlin

    2015-09-01

    MAGEA10, a cancer/testis antigens expressed in tumors but not in normal tissues with the exception of testis and placenta, represents an attractive target for cancer immunotherapy. However, suppressive cytoenvironment and requirement of specific HLA-alleles presentation frequently led to immunotherapy failure. In this study MAGEA10 was scarcely expressed in cancer patients, but enhanced by viili polysaccharides, which indicates a possibility of increasing epitopes presentation. Furthermore the correlation of gene expression with methylation, indicated by R(2) value for MAGEA10 that was 3 times higher than the value for other MAGE genes tested, provides an explanation of why MAGEA10 was highly inhibited, this is also seen by Kaplan-Meier analysis because MAGEA10 did not change the patients' lifespan. By using Molecular-Docking method, 3 MAGEA10 peptides were found binding to the groove position of HLA-A(∗)0210 as same as MAGEA4 peptide co-crystallized with HLA-A(∗)0210, which indicates that they could be promising for HLA-A(∗)0201 presentation in immunotherapy. PMID:26058806

  16. Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children.

    PubMed

    Racca, Anaïs; Guo, Kun; Meints, Kerstin; Mills, Daniel S

    2012-01-01

    Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions.

  17. Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children.

    PubMed

    Racca, Anaïs; Guo, Kun; Meints, Kerstin; Mills, Daniel S

    2012-01-01

    Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions. PMID:22558335

  18. Reduced Recognition of Dynamic Facial Emotional Expressions and Emotion-Specific Response Bias in Children with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Evers, Kris; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2015-01-01

    Emotion labelling was evaluated in two matched samples of 6-14-year old children with and without an autism spectrum disorder (ASD; N = 45 and N = 50, resp.), using six dynamic facial expressions. The Emotion Recognition Task proved to be valuable demonstrating subtle emotion recognition difficulties in ASD, as we showed a general poorer emotion…

  19. Sex-biased expression of sex-differentiating genes FOXL2 and FGF9 in American alligators, Alligator mississippiensis

    PubMed Central

    Janes, Daniel E.; Elsey, Ruth M.; Langan, Esther M.; Valenzuela, Nicole; Edwards, Scott V.

    2013-01-01

    Across amniotes, sex-determining mechanisms exhibit great variation yet the genes that govern sexual differentiation are largely conserved. Studies of evolution of sex-determining and sex-differentiating genes require an exhaustive characterization of functions of those genes such as FOXL2 and FGF9. FOXL2 is associated with ovarian development and FGF9 is known to play a role in testicular organogenesis in mammals and other amniotes. As a step toward characterization of the evolutionary history of sexual development, we measured expression of FOXL2 and FGF9 across three developmental stages and eight juvenile tissue types in male and female American alligators, Alligator mississippiensis. We report surprisingly high expression of FOXL2 before the stage of embryonic development when sex is determined in response to temperature and sustained and variable expression of FGF9 in juvenile male but not female tissue types. Novel characterization of gene expression in reptiles with temperature-dependent sex determination such as American alligators may inform the evolution of sex-determining and sex-differentiating gene networks as they suggest alternative functions from which the genes may have been exapted. Future functional profiling of sex-differentiating genes should similarly follow other genes and other species to enable a broad comparison across sex-determining mechanisms. PMID:23689672

  20. Allele-Specific Induction of IL-1β Expression by C/EBPβ and PU.1 Contributes to Increased Tuberculosis Susceptibility

    PubMed Central

    Zhang, Guoliang; Zhou, Boping; Li, Shaoyuan; Yue, Jun; Yang, Hui; Wen, Yuxin; Zhan, Senlin; Wang, Wenfei; Liao, Mingfeng; Zhang, Mingxia; Zeng, Gucheng; Feng, Carl G.; Sassetti, Christopher M.; Chen, Xinchun

    2014-01-01

    Mycobacterium tuberculosis infection is associated with a spectrum of clinical outcomes, from long-term latent infection to different manifestations of progressive disease. Pro-inflammatory pathways, such as those controlled by IL-1β, have the contrasting potential both to prevent disease by restricting bacterial replication, and to promote disease by inflicting tissue damage. Thus, the ultimate contribution of individual inflammatory pathways to the outcome of M. tuberculosis infection remains ambiguous. In this study, we identified a naturally-occurring polymorphism in the human IL1B promoter region, which alters the association of the C/EBPβ and PU.1 transcription factors and controls Mtb-induced IL-1β production. The high-IL-1β expressing genotype was associated with the development of active tuberculosis, the severity of pulmonary disease and poor treatment outcome in TB patients. Higher IL-1β expression did not suppress the activity of IFN-γ-producing T cells, but instead correlated with neutrophil accumulation in the lung. These observations support a specific role for IL-1β and granulocytic inflammation as a driver of TB disease progression in humans, and suggest novel strategies for the prevention and treatment of tuberculosis. PMID:25329476

  1. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  2. Restricted kappa chain expression in early ontogeny: biased utilization of V kappa exons and preferential V kappa-J kappa recombinations

    PubMed Central

    1993-01-01

    To determine the extent of kappa chain diversity in the preimmune repertoire early in development, kappa cDNA libraries were analyzed from 15-d old fetal omentum, 18-d-old fetal liver, and 3-wk old bone marrow. An anchored polymerase chain reaction approach was used to avoid bias for particular V kappa families. From the sequence analysis of 27 bone marrow clones, 10 different families and 20 unique V kappa genes were identified. In contrast, the V kappa expression in the fetus is highly restricted and clearly differs from the broader distribution see in 3-wk-old bone marrow. Although several V kappa families were represented in the fetal library including V kappa 9, V kappa 10, V kappa 4,5, V kappa 8, and V kappa 1, one or two members of individual families were observed repeatedly. The fetal liver and omentum libraries were found to be largely overlapping. Given the V kappa families/exons identified in the fetal sequences, the mechanism of kappa rearrangements in the early repertoire appears to occur predominantly by inversion. Importantly, the fetal repertoire was further restricted by dominant V kappa-J kappa combinations such as V kappa 4,5-J kappa 5, V kappa 9-J kappa 4, and V kappa 10-J kappa 1. Since in some cases independent rearrangements could be established, the results indicate a bias for particular V kappa-J kappa joins. The results also suggest that clonal expansion/selection in the fetal repertoire takes place after light chain rearrangement as opposed to at the pre-B cell level in the bone marrow. The restriction observed in kappa light chain expression together with known restrictions in gene usage and junctional diversity at the heavy chain level indicate a remarkably conserved fetal repertoire. PMID:8478611

  3. Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies).

    PubMed

    Chen, Jun; Källman, Thomas; Ma, Xiaofei; Gyllenstrand, Niclas; Zaina, Giusi; Morgante, Michele; Bousquet, Jean; Eckert, Andrew; Wegrzyn, Jill; Neale, David; Lagercrantz, Ulf; Lascoux, Martin

    2012-07-01

    Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.

  4. Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (Picea abies)

    PubMed Central

    Chen, Jun; Källman, Thomas; Ma, Xiaofei; Gyllenstrand, Niclas; Zaina, Giusi; Morgante, Michele; Bousquet, Jean; Eckert, Andrew; Wegrzyn, Jill; Neale, David; Lagercrantz, Ulf; Lascoux, Martin

    2012-01-01

    Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (FST = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to FST. The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants. PMID:22542968

  5. Expression of a Chimeric Allergen with High Rare Codons Content in Codon Bias-Adjusted Escherichia coli: Escherichia coli BL21 (DE3)-Codon Plus RIL as an Efficient Host.

    PubMed

    Nouri, Hamid Reza; Karkhah, Ahmad; Varasteh, Abdolreza; Sankian, Mojtaba

    2016-07-01

    The expression of heterologous proteins in Escherichia coli (E. coli) is importantly affected by codon bias. Hence, the aim of the current study was to determine which codon bias-adjusted E. coli strain is sufficient for expression of a chimeric allergen coded by high rare codon content. To investigate the expression level, a chimeric protein of Chenopodium album (C. album) was used as an appropriate model. An expression construct was assembled and was transformed to four strains of codon bias-adjusted E. coli including origami, BL21 (DE3), BL21 (DE3)-codon plus RIL, and Rosetta. The level of expression and solubility of the chimeric allergen was analyzed by SDS-PAGE. In addition, the allergenicity of chimeric allergen was determined using immunoblotting. Our results showed that the chimeric allergen was expressed at high level in E. coli BL21 (DE3)-codon plus RIL and Rosetta. In detail, this recombinant allergen was isolated from soluble fraction in the codon bias-adjusted strains of E. coli BL21 (DE3)-codon plus RIL and Rosetta. Moreover, some lower molecular weight proteins were observed in Rosetta, which could be related to inappropriate expression or broken compartments of the chimeric allergen. The immunoblotting assay confirmed that the IgE-specific immune reactivity of our chimeric allergen expressed in BL21 (DE3)-codon plus RIL was significantly higher than the other strains. Our results showed that the expression of the chimeric allergen with high rare codons content in a codon bias-adjusted strain E. coli BL21 (DE3)-codon plus RIL improves the quality and solubility of the heterologous protein production. PMID:27040822

  6. Expression of a Chimeric Allergen with High Rare Codons Content in Codon Bias-Adjusted Escherichia coli: Escherichia coli BL21 (DE3)-Codon Plus RIL as an Efficient Host.

    PubMed

    Nouri, Hamid Reza; Karkhah, Ahmad; Varasteh, Abdolreza; Sankian, Mojtaba

    2016-07-01

    The expression of heterologous proteins in Escherichia coli (E. coli) is importantly affected by codon bias. Hence, the aim of the current study was to determine which codon bias-adjusted E. coli strain is sufficient for expression of a chimeric allergen coded by high rare codon content. To investigate the expression level, a chimeric protein of Chenopodium album (C. album) was used as an appropriate model. An expression construct was assembled and was transformed to four strains of codon bias-adjusted E. coli including origami, BL21 (DE3), BL21 (DE3)-codon plus RIL, and Rosetta. The level of expression and solubility of the chimeric allergen was analyzed by SDS-PAGE. In addition, the allergenicity of chimeric allergen was determined using immunoblotting. Our results showed that the chimeric allergen was expressed at high level in E. coli BL21 (DE3)-codon plus RIL and Rosetta. In detail, this recombinant allergen was isolated from soluble fraction in the codon bias-adjusted strains of E. coli BL21 (DE3)-codon plus RIL and Rosetta. Moreover, some lower molecular weight proteins were observed in Rosetta, which could be related to inappropriate expression or broken compartments of the chimeric allergen. The immunoblotting assay confirmed that the IgE-specific immune reactivity of our chimeric allergen expressed in BL21 (DE3)-codon plus RIL was significantly higher than the other strains. Our results showed that the expression of the chimeric allergen with high rare codons content in a codon bias-adjusted strain E. coli BL21 (DE3)-codon plus RIL improves the quality and solubility of the heterologous protein production.

  7. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing.

    PubMed

    Zhang, Rui; Li, Xin; Ramaswami, Gokul; Smith, Kevin S; Turecki, Gustavo; Montgomery, Stephen B; Li, Jin Billy

    2014-01-01

    We developed a targeted RNA sequencing method that couples microfluidics-based multiplex PCR and deep sequencing (mmPCR-seq) to uniformly and simultaneously amplify up to 960 loci in 48 samples independently of their gene expression levels and to accurately and cost-effectively measure allelic ratios even for low-quantity or low-quality RNA samples. We applied mmPCR-seq to RNA editing and allele-specific expression studies. mmPCR-seq complements RNA-seq for studying allelic variations in the transcriptome.

  8. Association of the Serotonin Transporter Gene Promoter Region (5-HTTLPR) Polymorphism with Biased Attention for Emotional Stimuli

    PubMed Central

    Beevers, Christopher G.; Wells, Tony T.; Ellis, Alissa J.; McGeary, John E.

    2010-01-01

    A deletion polymorphism in the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with vulnerability to affective disorders, yet the mechanism by which this gene confers vulnerability remains unclear. Two studies examined associations between the 5-HTTLPR polymorphism and attentional bias for emotional stimuli among non-depressed adults. Biased attention, attention engagement, and difficulty with attention disengagement were assessed with a spatial cueing task using emotional stimuli. Results from Study 1 (N = 38) indicated that short 5-HTTLPR allele carriers experienced greater difficulty disengaging their attention from sad and happy stimuli compared to long allele homozygotes. Study 2 participants (N = 144) were genotyped for the 5-HTTLPR polymorphism, including single nucleotide polymorphism (SNP) rs25531 in the long allele of the 5-HTTLPR. Consistent with Study 1, individuals homozygous for the low expressing 5-HTTLPR alleles (i.e., S and LG) experienced greater difficulty disengaging attention from sad, happy, and fear stimuli than high expressing 5-HTTLPR homozygotes. Since this association exists in healthy adults, it may represent a susceptibility factor for affective disorders that becomes problematic during stressful life experiences. PMID:19685963

  9. Allelic loss in colorectal carcinoma

    SciTech Connect

    Kern, S.E.; Fearon, E.R.; Tersmette, K.W.F.; Enterline, J.P.; Vogelstein, B.; Hamilton, S.R. ); Leppert, M.; Nakamura, Yusuke; White, R. )

    1989-06-02

    Clinical and pathological associations with molecular genetic alterations were studied in colorectal carcinomas from 83 patients. Fractional allelic loss, a measure of allelic deletions throughout the genome, and allelic deletions of specific chromosomal arms (the short arm of 17 and long arm of 18) each provided independent prognostic information by multivariate analysis when considered individually with Dukes' classification. Distant metastasis was significantly associated with high fractional allelic loss and with deletions of 17p and 18q. Mutations of ras proto-oncogenes and deletions of 5q had no prognostic importance. Statistically significant associations were also found between allelic losses and a family history of cancer, left-sided tumor location, and absence of extracellular tumor mucin. Allelic deletion analysis thus identified subsets of colorectal carcinoma with increased predilection for distant metastasis and cancer-related death. Further studies may define a subset of genetic alterations that can be used clinically to help assess prognosis.

  10. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action.

    PubMed Central

    Hollick, J B; Chandler, V L

    1998-01-01

    Using alleles of the maize purple plant locus (pl), which encodes a transcriptional regulator of anthocyanin pigment synthesis, we describe a case of single-locus heterosis, or overdominance, where the heterozygote displays a phenotype that is greater than either homozygote. The Pl-Rhoades (Pl-Rh) allele is subject to epigenetic changes in gene expression, resulting in quantitatively distinct expression states. Allelic states with low-expression levels, designated Pl'-mahogany (Pl'-mah), are dominant to the high-expression state of Pl-Rh. Pl'-mah states retain low-expression levels in subsequent generations when homozygous or heterozygous with Pl-Rh. However, Pl'-mah alleles frequently exhibit higher expression levels when heterozygous with other pl alleles; illustrating an overdominant allelic relationship. Higher expression levels are also observed when Pl'-mah is hemizygous. These results suggest that persistent allelic interactions between Pl'-mah and Pl-Rh are required to maintain the low-expression state and that other pl alleles are missing sequences required for this interaction. The Pl-Rh state can be sexually transmitted from Pl'-mah/pl heterozygotes, but not from Pl'-mah hemizygotes, suggesting that fixation of the high-expression state may involve synapsis. The existence of such allele-dependent regulatory mechanisms implicates a novel importance of allele polymorphisms in the genesis and maintenance of genetic variation. PMID:9755217

  11. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation

    PubMed Central

    Henning, Amanda N.; Haag, Jill D.; Smits, Bart M. G.; Gould, Michael N.

    2016-01-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman’s life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  12. The Non-coding Mammary Carcinoma Susceptibility Locus, Mcs5c, Regulates Pappa Expression via Age-Specific Chromatin Folding and Allele-Dependent DNA Methylation.

    PubMed

    Henning, Amanda N; Haag, Jill D; Smits, Bart M G; Gould, Michael N

    2016-08-01

    In understanding the etiology of breast cancer, the contributions of both genetic and environmental risk factors are further complicated by the impact of breast developmental stage. Specifically, the time period ranging from childhood to young adulthood represents a critical developmental window in a woman's life when she is more susceptible to environmental hazards that may affect future breast cancer risk. Although the effects of environmental exposures during particular developmental Windows of Susceptibility (WOS) are well documented, the genetic mechanisms governing these interactions are largely unknown. Functional characterization of the Mammary Carcinoma Susceptibility 5c, Mcs5c, congenic rat model of breast cancer at various stages of mammary gland development was conducted to gain insight into the interplay between genetic risk factors and WOS. Using quantitative real-time PCR, chromosome conformation capture, and bisulfite pyrosequencing we have found that Mcs5c acts within the mammary gland to regulate expression of the neighboring gene Pappa during a critical mammary developmental time period in the rat, corresponding to the human young adult WOS. Pappa has been shown to positively regulate the IGF signaling pathway, which is required for proper mammary gland/breast development and is of increasing interest in breast cancer pathogenesis. Mcs5c-mediated regulation of Pappa appears to occur through age-dependent and mammary gland-specific chromatin looping, as well as genotype-dependent CpG island shore methylation. This represents, to our knowledge, the first insight into cellular mechanisms underlying the WOS phenomenon and demonstrates the influence developmental stage can have on risk locus functionality. Additionally, this work represents a novel model for further investigation into how environmental factors, together with genetic factors, modulate breast cancer risk in the context of breast developmental stage. PMID:27537370

  13. Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families

    SciTech Connect

    Friedman, L.S.; Szabo, C.I.; Ostermeyer, E.A.

    1995-12-01

    Thirty-seven families with four or more cases of breast cancer or breast and ovarian cancer were analyzed for mutations in BRCA1. Twelve different germ-line mutations, four novel and eight previously observed, were detected in 16 families. Five families of Ashkenazi Jewish descent carried the 185delAG mutation and shared the same haplotype at eight polymorphic markers spanning {approximately}850 kb at BRCA1. Expressivity of 185delAG in these families varied, from early-onset bilateral breast cancer and ovarian cancer to late-onset breast cancer without ovarian cancer. Mutation 4184delTCAA occurred independently in two families. In one family, penetrance was complete, with females developing early-onset breast cancer or ovarian cancer and the male carrier developing prostatic cancer, whereas, in the other family, penetrance was incomplete and only breast cancer occurred, diagnosed at ages 38-81 years. Two novel nonsense mutations led to the loss of mutant BRCA1 transcript in families with 10 and 6 cases of early-onset breast cancer and ovarian cancer. A 665-nt segment of the BRCA1 3{prime}-UTR and 1.3 kb of genomic sequence including the putative promoter region were invariant by single-strand conformation analysis in 13 families without coding-sequence mutations. Overall in our series, BRCA1 mutations have been detected in 26 families: 16 with positive BRCA1 lod scores, 7 with negative lod scores (reflecting multiple sporadic breast cancers), and 3 not tested for linkage. Three other families have positive lod scores for linkage to BRCA2, but 13 families without detected BRCA1 mutations have negative lod scores for both BRCA1 and BRCA2. 57 refs., 5 figs., 3 tabs.

  14. Comparative analysis of codon usage bias in Crenarchaea and Euryarchaea genome reveals differential preference of synonymous codons to encode highly expressed ribosomal and RNA polymerase proteins.

    PubMed

    Baruah, Vishwa Jyoti; Satapathy, Siddhartha Sankar; Powdel, Bhesh Raj; Konwarh, Rocktotpal; Buragohain, Alak Kumar; Ray, Suvendra Kumar

    2016-09-01

    The present study was undertaken to investigate the pattern of optimal codon usage in Archaea. Comparative analysis was executed to understand the pattern of codon usage bias between the high expression genes (HEG) and the whole genomes in two Archaeal phyla, Crenarchaea and Euryarchaea. The G+C% of the HEG was found to be less in comparison to the genome G+C% in Crenarchaea, whereas reverse was the case in Euryarchaea. The preponderance of U/A ending codons that code for HEG in Crenarchaea was in sharp contrast to the C/G ended ones in Euryarchaea. The analysis revealed prevalence of Uending codons even within theWWY(nucleotide ambiguity code) families in Crenarchaea vis-à-vis Euryarchaea, bacteria and Eukarya. No plausible interpretation of the observed disparity could be made either in the context of tRNA gene composition or genome G+C%. The results in this study attested that the preferential biasness for codons in HEG of Crenarchaea might be different from Euryarchaea. The main highlights are (i) varied CUB in the HEG and in the whole genomes in Euryarchaea and Crenarchaea. (ii) Crenarchaea was found to have some unusual optimal codons (OCs) compared to other organisms. (iii) G+C% (and GC3) of the HEG were different from the genome G+C% in the two phyla. (iv) Genome G+C% and tRNA gene number failed to explain CUB in Crenarchaea. (v) Translational selection is possibly responsible for A+T rich OCs in Crenarchaea. PMID:27659324

  15. Biased Allostery.

    PubMed

    Edelstein, Stuart J; Changeux, Jean-Pierre

    2016-09-01

    G-protein-coupled receptors (GPCRs) constitute a large group of integral membrane proteins that transduce extracellular signals from a wide range of agonists into targeted intracellular responses. Although the responses can vary depending on the category of G-proteins activated by a particular receptor, responses were also found to be triggered by interactions of the receptor with β-arrestins. It was subsequently discovered that for the same receptor molecule (e.g., the β-adrenergic receptor), some agonists have a propensity to specifically favor responses by G-proteins, others by β-arrestins, as has now been extensively studied. This feature of the GPCR system is known as biased agonism and is subject to various interpretations, including agonist-induced conformational change versus selective stabilization of preexisting active conformations. Here, we explore a complete allosteric framework for biased agonism based on alternative preexisting conformations that bind more strongly, but nonexclusively, either G-proteins or β-arrestins. The framework incorporates reciprocal effects among all interacting molecules. As a result, G-proteins and β-arrestins are in steric competition for binding to the cytoplasmic surface of either the G-protein-favoring or β-arrestin-favoring GPCR conformation. Moreover, through linkage relations, the strength of the interactions of G-proteins or β-arrestins with the corresponding active conformation potentiates the apparent affinity for the agonist, effectively equating these two proteins to allosteric modulators. The balance between response alternatives can also be influenced by the physiological concentrations of either G-proteins or β-arrestins, as well as by phosphorylation or interactions with positive or negative allosteric modulators. The nature of the interactions in the simulations presented suggests novel experimental tests to distinguish more fully among alternative mechanisms. PMID:27602718

  16. Impriniting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching

    SciTech Connect

    Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. )

    1993-07-01

    Genomic imprinting and monoallelic gene expression appear to play a role in human genetic disease and tumorigenesis. The human H19 gene, at chromosome 11p15, has previously been shown to be monoallelically expressed. Since CpG methylation has been implicated in imprinting, the authors analyzed methylation of H19 DNA. In fetal and adult organs the transcriptionally silent H19 allele was extensively hypermethylated through the entire gene and its promoter, and, consistent with a functional role for DNA methylation, expression of an H19 promoter-reporter construct was inhibited by in vitro methylation. Gynogenetic ovarian teratomas were found to contain only hypomethylated H19 DNA, suggesting that the expressed H19 allele might be maternal. This was confirmed by analysis of 11p15 polymorphisms in a patient with Wilms tumor. The tumor had lost the maternal 11p15, and H19 expression in the normal kidney was exclusively from this allele. Imprinting of human H19 appears to be susceptible to tissue-specific modulation in somatic development; in one individual, cerebellar cells were found to express only the otherwise silent allele. Implications of these findings for the role of DNA methylation in imprinting and for H19 as a candidate imprinted tumor-suppressor gene are discussed. 57 refs., 7 figs.

  17. Allelic association between marker loci.

    PubMed

    Lonjou, C; Collins, A; Morton, N E

    1999-02-16

    Allelic association has proven useful to refine the location of major genes prior to positional cloning, but it is of uncertain value for genome scans in complex inheritance. We have extended kinship theory to give information content for linkage and allelic association. Application to pairs of closely linked markers as a surrogate for marker x oligogene pairs indicates that association is largely determined by regional founders, with little effect of subsequent demography. Sub-Saharan Africa has the least allelic association, consistent with settlement of other regions by small numbers of founders. Recent speculation about substantial advantages of isolates over large populations, of constant size over expansion, and of F1 hybrids over incrosses is not supported by theory or data. On the contrary, fewer affected cases, less opportunity for replication, and more stochastic variation tend to make isolates less informative for allelic association, as they are for linkage.

  18. What Is a Recessive Allele?

    ERIC Educational Resources Information Center

    American Biology Teacher, 1991

    1991-01-01

    Presents four misconceptions students have concerning the concepts of recessive and dominant alleles. Discusses the spectrum of dominant-recessive relationships, different levels of analysis between phenotype and genotype, possible causes of dominance, and an example involving wrinkled peas. (MDH)

  19. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  20. Allelic interactions at the nivea locus of Antirrhinum.

    PubMed Central

    Bollmann, J; Carpenter, R; Coen, E S

    1991-01-01

    Most null alleles at the nivea (niv) locus are recessive to Niv+ and, when homozygous, give white flowers rather than the red of the wild type. In contrast, the niv-571 allele is semidominant; although it gives white flowers when homozygous, very pale flowers result when this allele is heterozygous with NIV+. We showed that in heterozygotes, niv-571 acts in trans to inhibit expression of its Niv+ homology 25-fold to 50-fold. The inhibition is reversible after meiosis and partially reversible somatically. The niv-571 allele carries a transposable element Tam3 insertion and three truncated copies of the niv gene, one copy being in inverse orientation. Analysis of two further niv alleles, niv-572 and niv-527, showed that excision of Tam3 from niv-571 does not affect the ability of the allele to repress Niv+ and that one truncated niv copy alone is insufficient to confer semidominance. The detailed structures of various semidominant niv alleles suggest that their effects in trans are not readily explained by production of antisense RNA but are more easily reconciled with a direct recognition/interaction between homologous genes, reminiscent of cosuppression and transvection phenomena described in other systems. PMID:1840900

  1. Identification and functional characterization of three novel alleles for the serotonin transporter-linked polymorphic region.

    PubMed

    Ehli, E A; Hu, Y; Lengyel-Nelson, T; Hudziak, J J; Davies, G E

    2012-02-01

    A promoter polymorphism in the serotonin transporter gene (5-HTTLPR) has been reported to confer relative risk for phenotypes (depression/anxiety) and endophenotypes (amygdala reactivity). In this report, we identify and characterize three rare 5-HTTLPR alleles not previously described in the human literature. The three novel alleles were identified while genotyping 5-HTTLPR in a family-based attention deficit hyperactivity disorder clinical population. Two of the novel alleles are longer than the common 16-repeat long (L) allele (17 and 18 repeats) and the third is significantly smaller than the 14-repeat short (S) allele (11 repeats). The sequence and genetic architecture of each novel allele is described in detail. We report a significant decrease in the expression between the XL₁₇ (17r) allele and the L(A) (16r) allele. The XS₁₁ (11r) allele showed similar expression with the S (14r) allele. A 1.8-fold increase in expression was observed with the L(A)(16r) allele compared with the L(G) (16r) allele, which replicates results from earlier 5-HTTLPR expression experiments. In addition, transcription factor binding site (TFBS) analysis was performed using MatInspector (Genomatix) that showed the presence or absence of different putative TFBSs between the novel alleles and the common L (16r) and S (14r) alleles. The identification of rare variants and elucidation of their functional impact could potentially lead to understanding the contribution that the rare variant may have on the inheritance/susceptibility of multifactorial common diseases.

  2. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  3. Allelic exclusion of immunoglobulin genes: models and mechanisms.

    PubMed

    Vettermann, Christian; Schlissel, Mark S

    2010-09-01

    The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.

  4. Sex-biased transcriptome evolution in Drosophila.

    PubMed

    Assis, Raquel; Zhou, Qi; Bachtrog, Doris

    2012-01-01

    Sex-biased genes are thought to drive phenotypic differences between males and females. The recent availability of high-throughput gene expression data for many related species has led to a burst of investigations into the genomic and evolutionary properties of sex-biased genes. In Drosophila, a number of studies have found that X chromosomes are deficient in male-biased genes (demasculinized) and enriched for female-biased genes (feminized) and that male-biased genes evolve faster than female-biased genes. However, studies have yielded vastly different conclusions regarding the numbers of sex-biased genes and forces shaping their evolution. Here, we use RNA-seq data from multiple tissues of Drosophila melanogaster and D. pseudoobscura, a species with a recently evolved X chromosome, to explore the evolution of sex-biased genes in Drosophila. First, we compare several independent metrics for classifying sex-biased genes and find that the overlap of genes identified by different metrics is small, particularly for female-biased genes. Second, we investigate genome-wide expression patterns and uncover evidence of demasculinization and feminization of both ancestral and new X chromosomes, demonstrating that gene content on sex chromosomes evolves rapidly. Third, we examine the evolutionary rates of sex-biased genes and show that male-biased genes evolve much faster than female-biased genes, which evolve at similar rates to unbiased genes. Analysis of gene expression among tissues reveals that this trend may be partially due to pleiotropic effects of female-biased genes, which limits their evolutionary potential. Thus, our findings illustrate the importance of accurately identifying sex-biased genes and provide insight into their evolutionary dynamics in Drosophila.

  5. 'True' null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements.

    PubMed

    Dąbrowski, M J; Bornelöv, S; Kruczyk, M; Baltzer, N; Komorowski, J

    2015-05-01

    Null alleles are alleles that for various reasons fail to amplify in a PCR assay. The presence of null alleles in microsatellite data is known to bias the genetic parameter estimates. Thus, efficient detection of null alleles is crucial, but the methods available for indirect null allele detection return inconsistent results. Here, our aim was to compare different methods for null allele detection, to explain their respective performance and to provide improvements. We applied several approaches to identify the 'true' null alleles based on the predictions made by five different methods, used either individually or in combination. First, we introduced simulated 'true' null alleles into 240 population data sets and applied the methods to measure their success in detecting the simulated null alleles. The single best-performing method was ML-NullFreq_frequency. Furthermore, we applied different noise reduction approaches to improve the results. For instance, by combining the results of several methods, we obtained more reliable results than using a single one. Rule-based classification was applied to identify population properties linked to the false discovery rate. Rules obtained from the classifier described which population genetic estimates and loci characteristics were linked to the success of each method. We have shown that by simulating 'true' null alleles into a population data set, we may define a null allele frequency threshold, related to a desired true or false discovery rate. Moreover, using such simulated data sets, the expected null allele homozygote frequency may be estimated independently of the equilibrium state of the population.

  6. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  7. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  8. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    SciTech Connect

    Lucotte, G.; David, F.; Berriche, S.

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  9. A genetic optimization approach for isolating translational efficiency bias.

    PubMed

    Raiford, Douglas W; Krane, Dan E; Doom, Travis E W; Raymer, Michael L

    2011-01-01

    The study of codon usage bias is an important research area that contributes to our understanding of molecular evolution, phylogenetic relationships, respiratory lifestyle, and other characteristics. Translational efficiency bias is perhaps the most well-studied codon usage bias, as it is frequently utilized to predict relative protein expression levels. We present a novel approach to isolating translational efficiency bias in microbial genomes. There are several existent methods for isolating translational efficiency bias. Previous approaches are susceptible to the confounding influences of other potentially dominant biases. Additionally, existing approaches to identifying translational efficiency bias generally require both genomic sequence information and prior knowledge of a set of highly expressed genes. This novel approach provides more accurate results from sequence information alone by resisting the confounding effects of other biases. We validate this increase in accuracy in isolating translational efficiency bias on 10 microbial genomes, five of which have proven particularly difficult for existing approaches due to the presence of strong confounding biases.

  10. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  11. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  12. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  13. Invasive Allele Spread under Preemptive Competition

    NASA Astrophysics Data System (ADS)

    Yasi, J. A.; Korniss, G.; Caraco, T.

    We study a discrete spatial model for invasive allele spread in which two alleles compete preemptively, initially only the "residents" (weaker competitors) being present. We find that the spread of the advantageous mutation is well described by homogeneous nucleation; in particular, in large systems the time-dependent global density of the resident allele is well approximated by Avrami's law.

  14. Maternal Bias and Escape from X Chromosome Imprinting in the Midgestation Mouse Placenta

    PubMed Central

    Finn, Elizabeth H; Smith, Cheryl L; Rodriguez, Jesse; Sidow, Arend; Baker, Julie C

    2014-01-01

    To investigate the epigenetic landscape at the interface between mother and fetus, we provide a comprehensive analysis of parent-of-origin bias in the mouse placenta. Using F1 interspecies hybrids between mus musculus (C57BL/6J) and mus musculus castaneus, we sequenced RNA from 23 individual midgestation placentas, five late stage placentas, and two yolk sac samples and then used SNPs to determine whether transcripts were preferentially generated from the maternal or paternal allele. In the placenta, we find 103 genes that show significant and reproducible parent-of-origin bias, of which 78 are novel candidates. Most (96%) show a strong maternal bias which we demonstrate, via multiple mathematical models, pyrosequencing, and FISH, is not due to maternal decidual contamination. Analysis of the X chromosome also reveals paternal expression of Xist and several genes that escape inactivation, most significantly Alas2, Fhl1, and Slc38a5. Finally, sequencing individual placentas allowed us to reveal notable expression similarity between littermates. In all, we observe a striking preference for maternal transcription in the midgestation mouse placenta and a dynamic imprinting landscape in extraembryonic tissues, reflecting the complex nature of epigenetic pathways in the placenta. PMID:24594094

  15. Divertor bias experiments

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    1994-06-01

    Electrical biasing of the divertor target plates has recently been implemented on several tokamaks. The results of these experiments to date will be reviewed in this paper. The bias electrode configuration is unique in each experiment. The effects of biasing on the scrape-off layer (SOL) plasma also differ. By comparing results between machines, and using theoretical models, an understanding of the basic physics of biasing begins to emerge. Divertor biasing has been demonstrated to have a strong influence on the particle and energy transport within the SOL. The ability to externally control the SOL plasma with biasing has promising applications to future tokamak reactors.

  16. Allele-dependent barley grain beta-amylase activity.

    PubMed

    Erkkilä, M J; Leah, R; Ahokas, H; Cameron-Mills, V

    1998-06-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high beta-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and beta-amy1 gene characterization to demonstrate that the high beta-amylase trait in the backcross line is co-inherited with the beta-amy1 gene from the H. spontaneum parent. We have analyzed the beta-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct beta-amy1 alleles. Two of these beta-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain beta-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated beta-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of beta-amylase activity in barley grain is proposed.

  17. Allele-Dependent Barley Grain β-Amylase Activity1

    PubMed Central

    Erkkilä, Maria J.; Leah, Robert; Ahokas, Hannu; Cameron-Mills, Verena

    1998-01-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high β-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and β-amy1 gene characterization to demonstrate that the high β-amylase trait in the backcross line is co-inherited with the β-amy1 gene from the H. spontaneum parent. We have analyzed the β-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct β-amy1 alleles. Two of these β-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain β-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated β-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of β-amylase activity in barley grain is proposed. PMID:9625721

  18. Effect of Osteopontin Alleles on β-Glucan-Induced Granuloma Formation in the Mouse Liver

    PubMed Central

    Tanaka, Kumiko; Morimoto, Junko; Kon, Shigeyuki; Kimura, Chiemi; Inobe, Manabu; Diao, Hongyan; Hirschfeld, Gregor; Weiss, Johannes M.; Uede, Toshimitsu

    2004-01-01

    The granuloma formation is a host defense response against persistent irritants. Osteopontin is centrally involved in the formation of granulomas. Three osteopontin alleles, designated a, b, and c, have been found in mice. Here we used a murine model of zymosan (β-glucan)-induced granuloma formation in the liver to determine possible functional differences between the osteopontin alleles in cell-mediated immunity. In contrast to mice with alleles a or c, mice with the allele b was defective in granuloma formation. As detected by mRNA expression, cytokines and chemokines known to be critically involved in granuloma formation were elicited in liver tissue, regardless of the osteopontin allele expressed. Alignment of the deduced amino acid sequences showed that unlike osteopontin c, b differs from a in 11 amino acids. All three osteopontin alleles had normal cell-binding properties. However, only the b allelic form was defective in the induction of cell migration as tested with dendritic cells. In conclusion, generation of a granulomatous response in mice depends critically on the presence of a functional osteopontin allele. Defective granuloma formation in mice with allele b is likely to be because of an impaired chemotactic function of the osteopontin b protein on immunocompetent cells. PMID:14742262

  19. Antigen-driven C–C Chemokine-mediated HIV-1 Suppression by CD4+ T Cells from Exposed Uninfected Individuals Expressing the Wild-type CCR-5 Allele

    PubMed Central

    Furci, Lucinda; Scarlatti, Gabriella; Burastero, Samuele; Tambussi, Giuseppe; Colognesi, Claudia; Quillent, Caroline; Longhi, Renato; Loverro, Patrizia; Borgonovo, Barbara; Gaffi, Davide; Carrow, Emily; Malnati, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Lazzarin, Adriano; Beretta, Alberto

    1997-01-01

    Despite repeated exposure to HIV-1, certain individuals remain persistently uninfected. Such exposed uninfected (EU) people show evidence of HIV-1–specific T cell immunity and, in rare cases, selective resistance to infection by macrophage-tropic strains of HIV-1. The latter has been associated with a 32–base pair deletion in the C–C chemokine receptor gene CCR-5, the major coreceptor of macrophage-tropic strains of HIV-1. We have undertaken an analysis of the HIV-specific T cell responses in 12 EU individuals who were either homozygous for the wild-type CCR-5 allele or heterozygous for the deletion allele (CCR-5Δ32). We have found evidence of an oligoclonal T cell response mediated by helper T cells specific for a conserved region of the HIV-1 envelope. These cells produce very high levels of C–C chemokines when stimulated by the specific antigen and suppress selectively the replication of macrophage-tropic, but not T cell–tropic, strains of HIV-1. These chemokine-producing helper cells may be part of a protective immune response that could be potentially exploited for vaccine development. PMID:9236198

  20. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective.

    PubMed

    DeVeale, Brian; van der Kooy, Derek; Babak, Tomas

    2012-01-01

    In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA-Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin-dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates. PMID:22479196

  1. Demonstrating the Correspondence Bias

    ERIC Educational Resources Information Center

    Howell, Jennifer L.; Shepperd, James A.

    2011-01-01

    Among the best-known and most robust biases in person perception is the correspondence bias--the tendency for people to make dispositional, rather than situational, attributions for an actor's behavior. The correspondence bias appears in virtually every social psychology textbook and in many introductory psychology textbooks, yet the authors'…

  2. Bias in Grading

    ERIC Educational Resources Information Center

    Malouff, John

    2008-01-01

    Bias in grading can be conscious or unconscious. The author describes different types of bias, such as those based on student attractiveness or performance in prior courses, and a variety of methods of reducing bias, including keeping students anonymous during grading and using detailed criteria for subjective grading.

  3. Acute exposure to ultraviolet-B radiation modulates sex steroid hormones and receptor expression in the skin and may contribute to the sex bias of melanoma in a fish model.

    PubMed

    Mitchell, David L; Fernandez, André A; Garcia, Rachel; Paniker, Lakshmi; Lin, Kevin; Hanninen, Amanda; Zigelsky, Kyle; May, Matthew; Nuttall, Mark; Lo, Herng-Hsiang; Person, Maria D; Earley, Ryan

    2014-05-01

    Using the Xiphophorus fish melanoma model, we show a strong male bias for sunlight-induced malignant melanoma, consistent with that seen in the human population. To examine underlying factors, we exposed adult X. couchianus fish to a single, sublethal dose of UVB and measured circulating sex steroid hormones and expression of associated hormone receptor genes over a 24-h period. We found that a single exposure had profound effects on circulating levels of steroid hormones with significant decreases for all free sex steroids at 6 and 24 h and increases in conjugated 2-estradiol and 11-ketotestosterone at 6 and 24 h, respectively. Whereas ARα expression increased in male and female skin, neither ARβ nor either of the ERs showed significant responses to UVB in either sex. The rapid response of male androgens and their receptors in the skin after UVB irradiation implicates hormones in the male bias of skin cancer and suggests that the photoendocrine response immediately after UV exposure may be relevant to melanomagenesis.

  4. Acute exposure to ultraviolet-B radiation modulates sex steroid hormones and receptor expression in the skin and may contribute to the sex-bias of melanoma in a fish model

    PubMed Central

    Mitchell, David L.; Fernandez, André A.; Garcia, Rachel; Paniker, Lakshmi; Lin, Kevin; Hanninen, Amanda; Zigelsky, Kyle; May, Matthew; Nuttall, Mark; Lo, Herng-hsiang; Person, Maria D.; Earley, Ryan

    2014-01-01

    Using the Xiphophorus fish melanoma model we show a strong male bias for cutaneous malignant melanoma, consistent with that seen in the human population. To examine underlying factors, we exposed adult X. couchianus fish to a single, sub-lethal dose of UVB and measured circulating sex steroid hormones and expression of associated hormone receptor genes over a 24 hour period. We found that a single exposure had profound effects on circulating levels of steroid hormones with significant decreases for all free sex steroids at 6 and 24 h and increases in conjugated 2-estradiol and 11-ketotestosterone at 6 and 24 h, respectively. Whereas ARα expression increased in male and female skin, neither ARβ nor either of the ER’s showed significant responses to UVB in either sex. The rapid response of male androgens and their receptors in the skin after UVB irradiation implicates hormones in the male-bias of skin cancer and suggests that the photoendocrine response immediately after UV exposure may be relevant to melanomagenesis. PMID:24406016

  5. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches.

    PubMed

    Marmesat, Elena; Soriano, Laura; Mazzoni, Camila J; Sommer, Simone; Godoy, José A

    2016-01-01

    The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs) targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers) uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95), yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43), and revealed more alleles at a population level (13 vs 12). Finally, we could link each allele's amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications. PMID:27294261

  6. RHD allele distribution in Africans of Mali

    PubMed Central

    Wagner, Franz F; Moulds, Joann M; Tounkara, Anatole; Kouriba, Bourema; Flegel, Willy A

    2003-01-01

    Background Aberrant and non-functional RHD alleles are much more frequent in Africans than in Europeans. The DAU cluster of RHD alleles exemplifies that the alleles frequent in Africans have evaded recognition until recently. A comprehensive survey of RHD alleles in any African population was lacking. Results We surveyed the molecular structure and frequency of RHD alleles in Mali (West Africa) by evaluating 116 haplotypes. Only 69% could be attributed to standard RHD (55%) or the RHD deletion (14%). The aberrant RHD allele DAU-0 was predicted for 19%, RHDΨ for 7% and Ccdes for 4% of all haplotypes. DAU-3 and the new RHD allele RHD(L207F), dubbed DMA, were found in one haplotype each. A PCR-RFLP for the detection of the hybrid Rhesus box diagnostic for the RHD deletion in Europeans was false positive in 9 individuals, including all carriers of RHDΨ . Including two silent mutations and the RHD deletion, a total of 9 alleles could be differentiated. Conclusion Besides standard RHD and the RHD deletion, DAU-0, RHDΨ and Ccdes are major alleles in Mali. Our survey proved that the most frequent alleles of West Africans have been recognized allowing to devise reliable genotyping and phenotyping strategies. PMID:14505497

  7. Queries for Bias Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Diana F.

    1992-01-01

    Selecting a good bias prior to concept learning can be difficult. Therefore, dynamic bias adjustment is becoming increasingly popular. Current dynamic bias adjustment systems, however, are limited in their ability to identify erroneous assumptions about the relationship between the bias and the target concept. Without proper diagnosis, it is difficult to identify and then remedy faulty assumptions. We have developed an approach that makes these assumptions explicit, actively tests them with queries to an oracle, and adjusts the bias based on the test results.

  8. Four novel PEPD alleles causing prolidase deficiency

    SciTech Connect

    Ledoux, P.; Scriver, C.; Hechtman, P. )

    1994-06-01

    Mutations at the PEPD locus cause prolidase (an enzyme specific for proline- and hydroxyproline-terminated dipeptides) deficiency (McKusick 170100), a rare autosomal recessive disorder characterized by iminodipeptiduria, skin ulcers, mental retardation, and recurrent infections. Four PEPD mutations from five severely affected individuals were characterized by analysis of reverse-transcribed, PCR-amplified (RT-PCR) cDNA. The authors used SSCP analysis on four overlapping cDNA fragments covering the entire coding region of the PEPD gene and detected abnormal SSCP bands for the fragments spanning all or part of exons 13-15 in three of the probands. Direct sequencing of the mutant cDNAs showed a G[yields]A, 1342 substitution (G448R) in two patients and a 3-bp deletion ([Delta]E452 or [Delta]E453) in another. In the other two probands the amplified products were of reduced size. Direct sequencing of these mutant cDNAs revealed a deletion of exon 5 in one patient and of exon 7 in the other. Intronic sequences flanking exons 5 and 7 were identified using inverse PCR followed by direct sequencing. Conventional PCR and direct sequencing then established the intron-exon borders of the mutant genomic DNA revealing two splice acceptor mutations: a G[yields]C substitution at position -1 of intron 4 and an A[yields]G substitution at position -2 of intron 6. The results indicate that the severe form of prolidase deficiency is caused by multiple PEPD alleles. In this report the authors attempt to begin the process of describing these alleles and cataloging their phenotype expression. 31 refs., 8 figs., 2 tabs.

  9. Chronic and acute biases in perceptual stabilization

    PubMed Central

    Al-Dossari, Munira; Blake, Randolph; Brascamp, Jan W.; Freeman, Alan W.

    2015-01-01

    When perceptually ambiguous stimuli are presented intermittently, the percept on one presentation tends to be the same as that on the previous presentation. The role of short-term, acute biases in the production of this perceptual stability is relatively well understood. In addition, however, long-lasting, chronic bias may also contribute to stability. In this paper we develop indices for both biases and for stability, and show that stability can be expressed as a sum of contributions from the two types of bias. We then apply this analytical procedure to binocular rivalry, showing that adjustment of the monocular contrasts can alter the relative contributions of the two biases. Stability is mainly determined by chronic bias when the contrasts are equal, but acute bias dominates stability when right-eye contrast is set lower than left-eye contrast. Finally, we show that the right-eye bias persists in continuous binocular rivalry. Our findings reveal a previously unappreciated contribution of chronic bias to stable perception. PMID:26641947

  10. Study of HLA-DQA1 alleles in celiac children.

    PubMed

    Nieto, A; Blanco Quirós, A; Arranz, E; Alonso Franch, M; Garrote, J A; Calvo, C

    1995-01-01

    The familial incidence of celiac disease (CD) confirms its genetic basis, although acquired factors are also involved. Many authors have reported a linkage between celiac disease and HLA antigens, but there are differences which depend on geographical areas, and nowadays the study must be done at the genetic level. Thirty-eight celiac children and 52 normal controls were included in this study. All individuals were chosen from the Castilla and Leon area. We used the reverse ¿dot block¿ technique, using sequence-specific oligonucleotide DNA probes (Cetus, USA) to determine the HLA-DQA1 alleles in DNA samples previously amplified by PCR (polymerase chain reaction). The different frequency of alleles in patients and controls was assessed by 3 statistical tests: chi square (chi(2)), relative risk (RR) and etiologic fraction (EF). A very high frequency of DQA1*0201 (chi(2):p <0.0001) and DQA1*0501 (chi(2): p <0.0001) alleles was observed in patients; all but one (97%) had the DQA1*0501 allele vs. 40% of controls (RR: 37.00; EF: 0.955). The DQA1*0201 allele also had a high prevalence in celiacs (58%)(RR: 1.375: EF:0.438). The DQA1*01 allele was only found in 10.5% of patients compared to 79% of controls (chi(2): p <0.0001) and the DQA1*03 allele was also decreased in celiacs. There was only one celiac girl without the DQA1*0501 allele. She had no other clinical or serological differences, as compared to the other patients. In the study of allele subtypes, among the DQA1*01 allele, 50% of patients were positive for DQA1*101 and the remaining 50% had DQA1*0102, but none of the individuals were positive for DQA1*0103. Among normal controls, 32 individuals (61.5%) expressed the DQA1*0102 subtype, 15 (28.9%) the DQA1*0101 subtype and 5 (9.6%) the DQA1*0103 subtype. All positive cases for DQA1-*05 belong to the DQA1* 0501 subtype, in both celiac and control groups. There were 10 possible combinations of HLA-DQA1 genes, but we found a very unequal distribution in both celiacs

  11. Reliability assessment of null allele detection: inconsistencies between and within different methods.

    PubMed

    Dąbrowski, M J; Pilot, M; Kruczyk, M; Żmihorski, M; Umer, H M; Gliwicz, J

    2014-03-01

    Microsatellite loci are widely used in population genetic studies, but the presence of null alleles may lead to biased results. Here, we assessed five methods that indirectly detect null alleles and found large inconsistencies among them. Our analysis was based on 20 microsatellite loci genotyped in a natural population of Microtus oeconomus sampled during 8 years, together with 1200 simulated populations without null alleles, but experiencing bottlenecks of varying duration and intensity, and 120 simulated populations with known null alleles. In the natural population, 29% of positive results were consistent between the methods in pairwise comparisons, and in the simulated data set, this proportion was 14%. The positive results were also inconsistent between different years in the natural population. In the null-allele-free simulated data set, the number of false positives increased with increased bottleneck intensity and duration. We also found a low concordance in null allele detection between the original simulated populations and their 20% random subsets. In the populations simulated to include null alleles, between 22% and 42% of true null alleles remained undetected, which highlighted that detection errors are not restricted to false positives. None of the evaluated methods clearly outperformed the others when both false-positive and false-negative rates were considered. Accepting only the positive results consistent between at least two methods should considerably reduce the false-positive rate, but this approach may increase the false-negative rate. Our study demonstrates the need for novel null allele detection methods that could be reliably applied to natural populations.

  12. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  13. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches

    PubMed Central

    Marmesat, Elena; Soriano, Laura; Mazzoni, Camila J.; Sommer, Simone

    2016-01-01

    The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs) targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers) uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95), yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43), and revealed more alleles at a population level (13 vs 12). Finally, we could link each allele’s amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications. PMID:27294261

  14. Dopamine system genes are associated with orienting bias among healthy individuals.

    PubMed

    Zozulinsky, Polina; Greenbaum, Lior; Brande-Eilat, Noa; Braun, Yair; Shalev, Idan; Tomer, Rachel

    2014-09-01

    Healthy individuals display subtle orienting bias, manifested as a tendency to direct greater attention toward one hemispace, and evidence suggests that this bias reflects an individual trait, which may be modulated by asymmetric dopamine signaling in striatal and frontal regions. The current study examined the hypothesis that functional genetic variants within dopaminergic genes (DAT1 3' VNTR, dopamine D2 receptor Taq1A (rs1800497) and COMT Val158Met (rs4680)) contribute to individual differences in orienting bias, as measured by the greyscales paradigm, in a sample of 197 young healthy Israeli Jewish participants. For the Taq1A variant, homozygous carriers of the A2 allele displayed significantly increased leftward orienting bias compared to the carriers of the A1 allele. Additionally, and as previously reported by others, we found that bias towards leftward orienting of attention was significantly greater among carriers of the 9-repeat allele of the DAT1 3' VNTR as compared to the individuals who were homozygous for the 10-repeat allele. No significant effect of the COMT Val158Met on orienting bias was found. Taken together, our findings support the potential influence of genetic variants on inter-individual differences in orienting bias, a phenotype relevant to both normal and impaired cognitive processes.

  15. Interpretation biases in paranoia.

    PubMed

    Savulich, George; Freeman, Daniel; Shergill, Sukhi; Yiend, Jenny

    2015-01-01

    Information in the environment is frequently ambiguous in meaning. Emotional ambiguity, such as the stare of a stranger, or the scream of a child, encompasses possible good or bad emotional consequences. Those with elevated vulnerability to affective disorders tend to interpret such material more negatively than those without, a phenomenon known as "negative interpretation bias." In this study we examined the relationship between vulnerability to psychosis, measured by trait paranoia, and interpretation bias. One set of material permitted broadly positive/negative (valenced) interpretations, while another allowed more or less paranoid interpretations, allowing us to also investigate the content specificity of interpretation biases associated with paranoia. Regression analyses (n=70) revealed that trait paranoia, trait anxiety, and cognitive inflexibility predicted paranoid interpretation bias, whereas trait anxiety and cognitive inflexibility predicted negative interpretation bias. In a group comparison those with high levels of trait paranoia were negatively biased in their interpretations of ambiguous information relative to those with low trait paranoia, and this effect was most pronounced for material directly related to paranoid concerns. Together these data suggest that a negative interpretation bias occurs in those with elevated vulnerability to paranoia, and that this bias may be strongest for material matching paranoid beliefs. We conclude that content-specific biases may be important in the cause and maintenance of paranoid symptoms.

  16. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    PubMed

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.

  17. Efficient genotype elimination via adaptive allele consolidation.

    PubMed

    De Francesco, Nicoletta; Lettieri, Giuseppe; Martini, Luca

    2012-01-01

    We propose the technique of Adaptive Allele Consolidation, that greatly improves the performance of the Lange-Goradia algorithm for genotype elimination in pedigrees, while still producing equivalent output. Genotype elimination consists in removing from a pedigree those genotypes that are impossible according to the Mendelian law of inheritance. This is used to find errors in genetic data and is useful as a preprocessing step in other analyses (such as linkage analysis or haplotype imputation). The problem of genotype elimination is intrinsically combinatorial, and Allele Consolidation is an existing technique where several alleles are replaced by a single “lumped” allele in order to reduce the number of combinations of genotypes that have to be considered, possibly at the expense of precision. In existing Allele Consolidation techniques, alleles are lumped once and for all before performing genotype elimination. The idea of Adaptive Allele Consolidation is to dynamically change the set of alleles that are lumped together during the execution of the Lange-Goradia algorithm, so that both high performance and precision are achieved. We have implemented the technique in a tool called Celer and evaluated it on a large set of scenarios, with good results.

  18. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA

    PubMed Central

    Wong, Kwong-Kwok; Tsang, Yvonne T. M.; Shen, Jianhe; Cheng, Rita S.; Chang, Yi-Mieng; Man, Tsz-Kwong; Lau, Ching C.

    2004-01-01

    Besides their use in mRNA expression profiling, oligonucleotide microarrays have also been applied to single-nucleotide polymorphism (SNP) and loss of heterozygosity (LOH) or allelic imbalance studies. In this report, we evaluate the reliability of using whole genome amplified DNA for analysis with an oligonucleotide microarray containing 11 560 SNPs to detect allelic imbalance and chromosomal copy number abnormalities. Whole genome SNP analyses were performed with DNA extracted from osteosarcoma tissues and patient-matched blood. SNP calls were then generated by Affymetrix® GeneChip® DNA Analysis Software. In two osteosarcoma cases, using unamplified DNA, we identified 793 and 1070 SNP loci with allelic imbalance, respectively. In a parallel experiment with amplified DNA, 78% and 83% of these SNP loci with allelic imbalance was detected. The average false-positive rate is 13.8%. Furthermore, using the Affymetrix® GeneChip® Chromosome Copy Number Tool to analyze the SNP array data, we were able to detect identical chromosomal regions with gain or loss in both amplified and unamplified DNA at cytoband resolution. PMID:15148342

  19. Mammalian expression levels of cellulase and xylanase genes optimised by human codon usage are not necessarily higher than those optimised by the extremely biased approach.

    PubMed

    Liu, Zhiguo; Sun, Yanxia; Feng, Tao; Ji, Qianqian; Cong, Peiqing; Chen, Yaosheng; He, Zuyong

    2014-11-01

    Xylanase gene xynB, cellulase genes egxA and bgl4 were subjected to codon optimisation using two opposing strategies. One was designated the 'one amino acid-one codon' approach, which employs only the codon most used by humans for each amino acid. The other one is referred to as the "humanised" codon usage method, which selects synonymous codons for each amino acid according to the human codon usage table to mimic patterns used in humans. Protein expression levels in mammalian cell lines from each sequence were measured using fluorescence-activated cell sorting, western blotting and enzymatic activity assay. The results indicate that compared with the humanised codon usage method, the relatively simple 'one amino acid-one codon' approach could enhance heterologous protein expression in mammalian cells without apparent drawbacks.

  20. Segregation of male-sterility alleles across a species boundary.

    PubMed

    Weller, S G; Sakai, A K; Culley, T M; Duong, L; Danielson, R E

    2014-02-01

    Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male-sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male-sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male-sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male-sterility allele occurs in the parent species and the hybrid zone. These rare male-sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male-sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.

  1. Political bias is tenacious.

    PubMed

    Ditto, Peter H; Wojcik, Sean P; Chen, Eric Evan; Grady, Rebecca Hofstein; Ringel, Megan M

    2015-01-01

    Duarte et al. are right to worry about political bias in social psychology but they underestimate the ease of correcting it. Both liberals and conservatives show partisan bias that often worsens with cognitive sophistication. More non-liberals in social psychology is unlikely to speed our convergence upon the truth, although it may broaden the questions we ask and the data we collect.

  2. Investigating Test Bias.

    ERIC Educational Resources Information Center

    Hoepfner, Ralph; Strickland, Guy P.

    This study investigates the question of test bias to develop an index of the appropriateness of a test to a particular socioeconomic or racial-ethnic group. Bias is defined as an item by race interaction in an analysis-of-variance design. The sample of 172 third graders at two integrated schools in a large California school district, included 26…

  3. Sampler bias -- Phase 1

    SciTech Connect

    Blanchard, R.J.

    1995-03-07

    This documents Phase 1 determinations on sampler induced bias for four sampler types used in tank characterization. Each sampler, grab sampler or bottle-on-a-string, auger sampler, sludge sampler and universal sampler, is briefly discussed and their physical limits noted. Phase 2 of this document will define additional testing and analysis to further define Sampler Bias.

  4. Latent S alleles are widespread in cultivated self-compatible Brassica napus.

    PubMed

    Ekuere, U U; Parkin, I A P; Bowman, C; Marshall, D; Lydiate, D J

    2004-04-01

    The genetic control of self-incompatibility in Brassica napus was investigated using crosses between resynthesized lines of B. napus and cultivars of oilseed rape. These crosses introduced eight C-genome S alleles from Brassica oleracea (S16, S22, S23, S25, S29, S35, S60, and S63) and one A-genome S allele from Brassica rapa (SRM29) into winter oilseed rape. The inheritance of S alleles was monitored using genetic markers and S phenotypes were determined in the F1, F2, first backcross (B1), and testcross (T1) generations. Two different F1 hybrids were used to develop populations of doubled haploid lines that were subjected to genetic mapping and scored for S phenotype. These investigations identified a latent S allele in at least two oilseed rape cultivars and indicated that the S phenotype of these latent alleles was masked by a suppressor system common to oilseed rape. These latent S alleles may be widespread in oilseed rape varieties and are possibly associated with the highly conserved C-genome S locus of these crop types. Segregation for S phenotype in subpopulations uniform for S genotype suggests the existence of suppressor loci that influenced the expression of the S phenotype. These suppressor loci were not linked to the S loci and possessed suppressing alleles in oilseed rape and non-suppressing alleles in the diploid parents of resynthesized B. napus lines.

  5. Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene

    PubMed Central

    John, Alisha V.; Sramkoski, Lisa L.; Walker, Elizabeth A.; Cooley, Arielle M.; Wittkopp, Patricia J.

    2016-01-01

    To identify genetic variants underlying changes in phenotypes within and between species, researchers often utilize transgenic animals to compare the function of alleles in different genetic backgrounds. In Drosophila, targeted integration mediated by the ΦC31 integrase allows activity of alternative alleles to be compared at the same genomic location. By using the same insertion site for each transgene, position effects are generally assumed to be controlled for because both alleles are surrounded by the same genomic context. Here, we test this assumption by comparing the activity of tan alleles from two Drosophila species, D. americana and D. novamexicana, at five different genomic locations in D. melanogaster. We found that the relative effects of these alleles varied among insertion sites, with no difference in activity observed between them at two sites. One of these sites simply silenced both transgenes, but the other allowed expression of both alleles that was sufficient to rescue a mutant phenotype yet failed to reveal the functional differences between the two alleles. These results suggest that more than one insertion site should be used when comparing the activity of transgenes because failing to do so could cause functional differences between alleles to go undetected. PMID:27449514

  6. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants.

    PubMed

    Stirnweis, Daniel; Milani, Samira D; Brunner, Susanne; Herren, Gerhard; Buchmann, Gabriele; Peditto, David; Jordan, Tina; Keller, Beat

    2014-09-01

    The development of high-yielding varieties with broad-spectrum durable disease resistance is the ultimate goal of crop breeding. In plants, immune receptors of the nucleotide-binding-leucine-rich repeat (NB-LRR) class mediate race-specific resistance against pathogen attack. When employed in agriculture this type of resistance is often rapidly overcome by newly adapted pathogen races. The stacking of different resistance genes or alleles in F1 hybrids or in pyramided lines is a promising strategy for achieving more durable resistance. Here, we identify a molecular mechanism which can negatively interfere with the allele-pyramiding approach. We show that pairwise combinations of different alleles of the powdery mildew resistance gene Pm3 in F1 hybrids and stacked transgenic wheat lines can result in suppression of Pm3-based resistance. This effect is independent of the genetic background and solely dependent on the Pm3 alleles. Suppression occurs at the post-translational level, as levels of RNA and protein in the suppressed alleles are unaffected. Using a transient expression system in Nicotiana benthamiana, the LRR domain was identified as the domain conferring suppression. The results of this study suggest that the expression of closely related NB-LRR resistance genes or alleles in the same genotype can lead to dominant-negative interactions. These findings provide a molecular explanation for the frequently observed ineffectiveness of resistance genes introduced from the secondary gene pool into polyploid crop species and mark an important step in overcoming this limitation.

  7. Allelic Selection of Amplicons in Glioblastoma Revealed by Combining Somatic and Germline Analysis

    PubMed Central

    Wilkins, Katherine; Pe'er, Itsik; Freedman, Matthew L.

    2010-01-01

    Cancer is a disease driven by a combination of inherited risk alleles coupled with the acquisition of somatic mutations, including amplification and deletion of genomic DNA. Potential relationships between the inherited and somatic aspects of the disease have only rarely been examined on a genome-wide level. Applying a novel integrative analysis of SNP and copy number measurements, we queried the tumor and normal-tissue genomes of 178 glioblastoma patients from the Cancer Genome Atlas project for preferentially amplified alleles, under the hypothesis that oncogenic germline variants will be selectively amplified in the tumor environment. Selected alleles are revealed by allelic imbalance in amplification across samples. This general approach is based on genetic principles and provides a method for identifying important tumor-related alleles. We find that SNP alleles that are most significantly overrepresented in amplicons tend to occur in genes involved with regulation of kinase and transferase activity, and many of these genes are known contributors to gliomagenesis. The analysis also implicates variants in synapse genes. By incorporating gene expression data, we demonstrate synergy between preferential allelic amplification and expression in DOCK4 and EGFR. Our results support the notion that combining germline and tumor genetic data can identify regions relevant to cancer biology. PMID:20824129

  8. A SCN10A SNP biases human pain sensitivity

    PubMed Central

    Duan, Guangyou; Han, Chongyang; Wang, Qingli; Guo, Shanna; Zhang, Yuhao; Ying, Ying; Huang, Penghao; Zhang, Li; Macala, Lawrence; Shah, Palak; Zhang, Mi; Li, Ningbo; Dib-Hajj, Sulayman D; Zhang, Xianwei

    2016-01-01

    Background: Nav1.8 sodium channels, encoded by SCN10A, are preferentially expressed in nociceptive neurons and play an important role in human pain. Although rare gain-of-function variants in SCN10A have been identified in individuals with painful peripheral neuropathies, whether more common variants in SCN10A can have an effect at the channel level and at the dorsal root ganglion, neuronal level leading to a pain disorder or an altered normal pain threshold has not been determined. Results: Candidate single nucleotide polymorphism association approach together with experimental pain testing in human subjects was used to explore possible common SCN10A missense variants that might affect human pain sensitivity. We demonstrated an association between rs6795970 (G > A; p.Ala1073Val) and higher thresholds for mechanical pain in a discovery cohort (496 subjects) and confirmed it in a larger replication cohort (1005 female subjects). Functional assessments showed that although the minor allele shifts channel activation by −4.3 mV, a proexcitatory attribute, it accelerates inactivation, an antiexcitatory attribute, with the net effect being reduced repetitive firing of dorsal root ganglion neurons, consistent with lower mechanical pain sensitivity. Conclusions: At the association and mechanistic levels, the SCN10A single nucleotide polymorphism rs6795970 biases human pain sensitivity. PMID:27590072

  9. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer.gov

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  10. Characterization of the treefrog null allele, 1991

    SciTech Connect

    Guttman, S.I.

    1992-04-01

    Spring peeper (Hyla crucifer) tadpoles collected from the waste storage area during the Biological and Ecological Site Characterization of the Feed Materials Production Center (FEMP) in 1986 and 1987 appeared to be unique. A null (inactive) allele was found at the glucose phosphate isomerase enzyme locus in significant frequencies (approximately 20%) each year; this allele did not appear to occur in the offsite sample collected approximately 15km from the FEMP. Null alleles at this locus have not been reported in other amphibian populations; when they have been found in other organisms they have invariably been lethal in the homozygous condition.

  11. Characterization of the treefrog null allele

    SciTech Connect

    Guttman, S.I. . Dept. of Zoology)

    1990-12-01

    As part of the authors intensive year-long baseline ecological study, they characterized the degree of genetic polymorphism and heterozygosity in selected Feed Materials Production Center (FMPC) populations using electrophoretic techniques. These data are being used as an indicator of stress by comparing populations on and off the FMPC site. The current study was initiated to determine whether this GPI null allele is lethal, when homozygous, in spring peepers. Also, a sampling protocol was implemented to determine whether a linear effect occurs relative to the frequency of the null allele offsite and to determine the origination site of the null allele. 18 refs., 2 figs., 4 tabs.

  12. Male-biased genes are overrepresented among novel Drosophila pseudoobscura sex-biased genes

    PubMed Central

    2008-01-01

    Background The origin of functional innovation is among the key questions in biology. Recently, it has been shown that new genes could arise from non-coding DNA and that such novel genes are often involved in male reproduction. Results With the aim of identifying novel genes, we used the technique "generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI)" to extend 84 sex-biased 3'end SAGE tags that previously could not be mapped to the D. pseudoobscura transcriptome. Eleven male-biased and 33 female-biased GLGI fragments were obtained, of which 5 male-biased and 3 female-biased tags corresponded to putatively novel genes. This excess of novel genes with a male-biased gene expression pattern is consistent with previous results, which found novel genes to be primarily expressed in male reproductive tissues. 5' RACE analysis indicated that these novel transcripts are very short in length and could contain introns. Interspecies comparisons revealed that most novel transcripts show evidence for purifying selection. Conclusion Overall, our data indicate that among sex-biased genes a considerable number of novel genes (~2–4%) exist in D. pseudoobscura, which could not be predicted based on D. melanogaster gene models. PMID:18577217

  13. The subtle transmission of race bias via televised nonverbal behavior.

    PubMed

    Weisbuch, Max; Pauker, Kristin; Ambady, Nalini

    2009-12-18

    Compared with more explicit racial slurs and statements, biased facial expressions and body language may resist conscious identification and thus produce a hidden social influence. In four studies, we show that race biases can be subtly transmitted via televised nonverbal behavior. Characters on 11 popular television shows exhibited more negative nonverbal behavior toward black than toward status-matched white characters. Critically, exposure to prowhite (versus problack) nonverbal bias increased viewers' bias even though patterns of nonverbal behavior could not be consciously reported. These findings suggest that hidden patterns of televised nonverbal behavior influence bias among viewers. PMID:20019288

  14. Biased predecision processing.

    PubMed

    Brownstein, Aaron L

    2003-07-01

    Decision makers conduct biased predecision processing when they restructure their mental representation of the decision environment to favor one alternative before making their choice. The question of whether biased predecision processing occurs has been controversial since L. Festinger (1957) maintained that it does not occur. The author reviews relevant research in sections on theories of cognitive dissonance, decision conflict, choice certainty, action control, action phases, dominance structuring, differentiation and consolidation, constructive processing, motivated reasoning, and groupthink. Some studies did not find evidence of biased predecision processing, but many did. In the Discussion section, the moderators are summarized and used to assess the theories. PMID:12848220

  15. Allelic exclusion in transgenic mice carrying mutant human IgM genes

    PubMed Central

    1988-01-01

    Expression of the membrane-bound version of the human mu chain in transgenic mice results in the allelic exclusion of endogenous mouse Ig heavy chain genes (6). The secreted version of the human Ig transgene has no such effect. F1 hybrid animals that carry transgenes for both secreted and membrane-bound human mu chains produce both forms of the human heavy chain while strongly suppressing endogenous mouse mu expression. The simultaneous expression of the two rearranged transgenes in primary B cells suggests that allelic exclusion operates before the formation of a second functionally rearranged heavy chain gene in vivo. PMID:3133444

  16. Assessing Projection Bias in Consumers' Food Preferences.

    PubMed

    de-Magistris, Tiziana; Gracia, Azucena

    2016-01-01

    The aim of this study is to test whether projection bias exists in consumers' purchasing decisions for food products. To achieve our aim, we used a non-hypothetical experiment (i.e., experimental auction), where hungry and non-hungry participants were incentivized to reveal their willingness to pay (WTP). The results confirm the existence of projection bias when consumers made their decisions on food products. In particular, projection bias existed because currently hungry participants were willing to pay a higher price premium for cheeses than satiated ones, both in hungry and satiated future states. Moreover, participants overvalued the food product more when they were delivered in the future hungry condition than in the satiated one. Our study provides clear, quantitative and meaningful evidence of projection bias because our findings are based on economic valuation of food preferences. Indeed, the strength of this study is that findings are expressed in terms of willingness to pay which is an interpretable amount of money.

  17. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  18. Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function.

    PubMed

    Bera, Soumen; Weinberg, Frank; Ekoue, Dede N; Ansenberger-Fricano, Kristine; Mao, Mao; Bonini, Marcelo G; Diamond, Alan M

    2014-09-15

    Glutathione peroxidase 1 (GPx-1) has been implicated in the etiology of several common diseases due to the association between specific allelic variations and cancer risk. The most common among these variations are the codon 198 polymorphism that results in either a leucine or proline and the number of alanine repeat codons in the coding sequence. The molecular and biologic consequences of these variations remain to be characterized. Toward achieving this goal, we have examined the cellular location of GPx-1 encoded by allelic variants by ectopically expressing these genes in MCF-7 human breast carcinoma cells that produce undetectable levels of GPx-1, thus achieving exclusive expression in the same cellular environment. A differential distribution between the cytoplasm and mitochondria was observed, with the allele expressing the leucine-198 polymorphism and 7 alanine repeats being more cytoplasmically located than the other alleles examined. To assess whether the distribution of GPx-1 between the cytoplasm and mitochondria had a biologic consequence, we engineered derivative GPx-1 proteins that were targeted to the mitochondria by the addition of a mitochondria targeting sequence and expressed these proteins in MCF-7 cells. These cells were examined for their response to oxidative stress, energy metabolism, and impact on cancer-associated signaling molecules. The results obtained indicated that both primary GPx-1 sequence and cellular location have a profound impact on cellular biology and offer feasible hypotheses about how expression of distinct GPx-1 alleles can affect cancer risk. Cancer Res; 74(18); 5118-26. ©2014 AACR.

  19. Political bias is tenacious.

    PubMed

    Ditto, Peter H; Wojcik, Sean P; Chen, Eric Evan; Grady, Rebecca Hofstein; Ringel, Megan M

    2015-01-01

    Duarte et al. are right to worry about political bias in social psychology but they underestimate the ease of correcting it. Both liberals and conservatives show partisan bias that often worsens with cognitive sophistication. More non-liberals in social psychology is unlikely to speed our convergence upon the truth, although it may broaden the questions we ask and the data we collect. PMID:26786070

  20. Co-selection and replacement of resistance alleles to Lysinibacillus sphaericus in a Culex quinquefasciatus colony.

    PubMed

    Chalegre, Karlos Diogo de Melo; Tavares, Daniella A; Romão, Tatiany P; de Menezes, Heverly Suzany G; Nascimento, Nathaly A; de Oliveira, Cláudia Maria F; de-Melo-Neto, Osvaldo P; Silva-Filha, Maria Helena N L

    2015-09-01

    The Cqm1 α-glucosidase, expressed within the midgut of Culex quinquefasciatus mosquito larvae, is the receptor for the Binary toxin (Bin) from the entomopathogen Lysinibacillus sphaericus. Mutations of the Cqm1 α-glucosidase gene cause high resistance levels to this bacterium in both field and laboratory populations, and a previously described allele, cqm1REC, was found to be associated with a laboratory-resistant colony (R2362). This study described the identification of a novel resistance allele, cqm1REC-2, that was co-selected with cqm1REC within the R2362 colony. The two alleles display distinct mutations but both generate premature stop codons that prevent the expression of midgut-bound Cqm1 proteins. Using a PCR-based assay to monitor the frequency of each allele during long-term maintenance of the resistant colony, cqm1REC was found to predominate early on but later was replaced by cqm1REC-2 as the most abundant resistance allele. Homozygous larvae for each allele were then generated that displayed similar high-resistance phenotypes with equivalent low levels of transcript and lack of protein expression for both cqm1REC and cqm1REC-2. In progeny from a cross of homozygous individuals for each allele at a 1 : 1 ratio, analyzed for ten subsequent generations, cqm1REC showed a higher frequency than cqm1REC-2. The replacement of cqm1REC by cqm1REC -2 observed in the R2362 colony, kept for 210 generations, indicates changes in fitness related to traits that are unknown but linked to these two alleles, and constitutes a unique example of evolution of resistance within a controlled laboratory environment. PMID:26131741

  1. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA

    SciTech Connect

    Royle, N.J.; Armour, J.A.L.; Crosier, M.; Jeffreys, A.J. )

    1993-01-01

    Somatic events that result in the reduction to hemior homozygosity at all loci affected by the event have been identified in lymphoblastoid DNA from mothers of two CEPH families. Using suitably informative probes, the allele deficiencies were detected by the abnormal transmission of alleles from grandparents to grandchildren, with the apparent absence of the alleles from the parent. Undetected somatic deficiencies in family DNAs could result in misscoring of recombination events and consequently introduce errors into linkage analysis. 15 refs., 2 figs.

  2. Molecular evolution of sex-biased genes in Drosophila.

    PubMed

    Zhang, Zhi; Hambuch, Tina M; Parsch, John

    2004-11-01

    Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.

  3. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  4. A hypomorphic allele of Tsc2 highlights the role of TSC1/TSC2 in signaling to AKT and models mild human TSC2 alleles.

    PubMed

    Pollizzi, Kristen; Malinowska-Kolodziej, Izabela; Doughty, Cheryl; Betz, Charles; Ma, Jian; Goto, June; Kwiatkowski, David J

    2009-07-01

    Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which hamartomas develop in multiple organ systems. Knockout and conditional alleles of Tsc1 and Tsc2 have been previously reported. Here, we describe the generation of a novel hypomorphic allele of Tsc2 (del3), in which exon 3, encoding 37 amino acids near the N terminus of tuberin, is deleted. Embryos homozygous for the del3 allele survive until E13.5, 2 days longer than Tsc2 null embryos. Embryos die from underdevelopment of the liver, deficient hematopoiesis, aberrant vascular development and hemorrhage. Mice that are heterozygous for the del3 allele have a markedly reduced kidney tumor burden in comparison with conventional Tsc2(+/-) mice. Murine embryo fibroblast (MEF) cultures that are homozygous for the del3 allele express mutant tuberin at low levels, and show enhanced activation of mTORC1, similar to Tsc2 null MEFs. Furthermore, the mutant cells show prominent reduction in the activation of AKT. Similar findings were made in the analysis of homozygous del3 embryo lysates. Tsc2-del3 demonstrates GTPase activating protein activity comparable to that of wild-type Tsc2 in a functional assay. These findings indicate that the del3 allele is a hypomorphic allele of Tsc2 with partial function due to reduced expression, and highlight the consistency of AKT downregulation when Tsc1/Tsc2 function is reduced. Tsc2-del3 mice also serve as a model for hypomorphic TSC2 missense mutations reported in TSC patients.

  5. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep.

    PubMed

    Jones, Bryony L; Raga, Tamiru O; Liebert, Anke; Zmarz, Pawel; Bekele, Endashaw; Danielsen, E Thomas; Olsen, Anders Krüger; Bradman, Neil; Troelsen, Jesper T; Swallow, Dallas M

    2013-09-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (-13910(∗)T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene LCT is responsible for lactase persistence and appears to have been under strong directional selection in the last 5,000 years, evidenced by the widespread occurrence of this allele on an extended haplotype. In Africa and the Middle East, the situation is more complicated and at least three other alleles (-13907(∗)G, rs41525747; -13915(∗)G, rs41380347; -14010(∗)C, rs145946881) in the same LCT enhancer region can cause continued lactase expression. Here we examine the LCT enhancer sequence in a large lactose-tolerance-tested Ethiopian cohort of more than 350 individuals. We show that a further SNP, -14009T>G (ss 820486563), is significantly associated with lactose-digester status, and in vitro functional tests confirm that the -14009(∗)G allele also increases expression of an LCT promoter construct. The derived alleles in the LCT enhancer region are spread through several ethnic groups, and we report a greater genetic diversity in lactose digesters than in nondigesters. By examining flanking markers to control for the effects of mutation and demography, we further describe, from empirical evidence, the signature of a soft selective sweep. PMID:23993196

  6. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep.

    PubMed

    Jones, Bryony L; Raga, Tamiru O; Liebert, Anke; Zmarz, Pawel; Bekele, Endashaw; Danielsen, E Thomas; Olsen, Anders Krüger; Bradman, Neil; Troelsen, Jesper T; Swallow, Dallas M

    2013-09-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (-13910(∗)T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene LCT is responsible for lactase persistence and appears to have been under strong directional selection in the last 5,000 years, evidenced by the widespread occurrence of this allele on an extended haplotype. In Africa and the Middle East, the situation is more complicated and at least three other alleles (-13907(∗)G, rs41525747; -13915(∗)G, rs41380347; -14010(∗)C, rs145946881) in the same LCT enhancer region can cause continued lactase expression. Here we examine the LCT enhancer sequence in a large lactose-tolerance-tested Ethiopian cohort of more than 350 individuals. We show that a further SNP, -14009T>G (ss 820486563), is significantly associated with lactose-digester status, and in vitro functional tests confirm that the -14009(∗)G allele also increases expression of an LCT promoter construct. The derived alleles in the LCT enhancer region are spread through several ethnic groups, and we report a greater genetic diversity in lactose digesters than in nondigesters. By examining flanking markers to control for the effects of mutation and demography, we further describe, from empirical evidence, the signature of a soft selective sweep.

  7. A Search for Parent-of-Origin Effects on Honey Bee Gene Expression

    PubMed Central

    Kocher, Sarah D.; Tsuruda, Jennifer M.; Gibson, Joshua D.; Emore, Christine M.; Arechavaleta-Velasco, Miguel E.; Queller, David C.; Strassmann, Joan E.; Grozinger, Christina M.; Gribskov, Michael R.; San Miguel, Phillip; Westerman, Rick; Hunt, Greg J.

    2015-01-01

    Parent-specific gene expression (PSGE) is little known outside of mammals and plants. PSGE occurs when the expression level of a gene depends on whether an allele was inherited from the mother or the father. Kin selection theory predicts that there should be extensive PSGE in social insects because social insect parents can gain inclusive fitness benefits by silencing parental alleles in female offspring. We searched for evidence of PSGE in honey bees using transcriptomes from reciprocal crosses between European and Africanized strains. We found 46 transcripts with significant parent-of-origin effects on gene expression, many of which overexpressed the maternal allele. Interestingly, we also found a large proportion of genes showing a bias toward maternal alleles in only one of the reciprocal crosses. These results indicate that PSGE may occur in social insects. The nonreciprocal effects could be largely driven by hybrid incompatibility between these strains. Future work will help to determine if these are indeed parent-of-origin effects that can modulate inclusive fitness benefits. PMID:26048562

  8. Allelic variation of the β-, γ- and δ-kafirin genes in diverse Sorghum genotypes.

    PubMed

    Laidlaw, H K C; Mace, E S; Williams, S B; Sakrewski, K; Mudge, A M; Prentis, P J; Jordan, D R; Godwin, I D

    2010-11-01

    The β-, γ- and δ-kafirin genes were sequenced from 35 Sorghum genotypes to investigate the allelic diversity of seed storage proteins. A range of grain sorghums, including inbred parents from internationally diverse breeding programs and landraces, and three wild Sorghum relatives were selected to encompass an extensive array of improved and unimproved germplasm in the Eusorghum. A single locus exists for each of the expressed kafirin-encoding genes, unlike the multigenic α-kafirins. Significant diversity was found for each locus, with the cysteine-rich β-kafirin having four alleles, including the first natural null mutant reported for this prolamin subfamily. This allele contains a frame shift insertion at +206 resulting in a premature stop codon. SDS-PAGE revealed that lines with this allele do not produce β-kafirin. An analysis of flour viscosity reveals that these β-kafirin null lines have a difference in grain quality, with significantly lower viscosity observed over the entire Rapid ViscoAnalyser time course. There was less diversity at the protein level within the cysteine-rich γ-kafirin, with only two alleles in the cultivated sorghums. There were only two alleles for the δ-kafirin locus among the S. bicolor germplasm, with one allele encoding ten extra amino acids, of which five were methionine residues, with an additional methionine resulting from a nucleotide substitution. This longer allele encodes a protein with 19.1% methionine. The Asian species, S. propinquum, had distinct alleles for all three kafirin genes. We found no evidence for selection on the three kafirin genes during sorghum domestication even though the δ-kafirin locus displayed comparatively low genetic variation. This study has identified genetic diversity in all single copy seed storage protein genes, including a null mutant for β-kafirin in Sorghum.

  9. Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation

    PubMed Central

    Ryman, Nils; Allendorf, Fred W; Jorde, Per Erik; Laikre, Linda; Hössjer, Ola

    2014-01-01

    Many empirical studies estimating effective population size apply the temporal method that provides an estimate of the variance effective size through the amount of temporal allele frequency change under the assumption that the study population is completely isolated. This assumption is frequently violated, and the magnitude of the resulting bias is generally unknown. We studied how gene flow affects estimates of effective size obtained by the temporal method when sampling from a population system and provide analytical expressions for the expected estimate under an island model of migration. We show that the temporal method tends to systematically underestimate both local and global effective size when populations are connected by gene flow, and the bias is sometimes dramatic. The problem is particularly likely to occur when sampling from a subdivided population where high levels of gene flow obscure identification of subpopulation boundaries. In such situations, sampling in a manner that prevents biased estimates can be difficult. This phenomenon might partially explain the frequently reported unexpectedly low effective population sizes of marine populations that have raised concern regarding the genetic vulnerability of even exceptionally large populations. PMID:24034449

  10. Differences in the ability to suppress interferon β production between allele A and allele B NS1 proteins from H10 influenza A viruses

    PubMed Central

    2010-01-01

    Background In our previous study concerning the genetic relationship among H10 avian influenza viruses with different pathogenicity in mink (Mustela vison), we found that these differences were related to amino acid variations in the NS1 protein. In this study, we extend our previous work to further investigate the effect of the NS1 from different gene pools on type I IFN promoter activity, the production of IFN-β, as well as the expression of the IFN-β mRNA in response to poly I:C. Results Using a model system, we first demonstrated that NS1 from A/mink/Sweden/84 (H10N4) (allele A) could suppress an interferon-stimulated response element (ISRE) reporter system to about 85%. The other NS1 (allele B), from A/chicken/Germany/N/49 (H10N7), was also able to suppress the reporter system, but only to about 20%. The differences in the abilities of the two NS1s from different alleles to suppress the ISRE reporter system were clearly reflected by the protein and mRNA expressions of IFN-β as shown by ELISA and RT-PCR assays. Conclusions These studies reveal that different non-structural protein 1 (NS1) of influenza viruses, one from allele A and another from allele B, show different abilities to suppress the type I interferon β expression. It has been hypothesised that some of the differences in the different abilities of the alleles to suppress ISRE were because of the interactions and inhibitions at later stages from the IFN receptor, such as the JAK/STAT pathway. This might reflect the additional effects of the immune evasion potential of different NS1s. PMID:21194454

  11. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  12. Forensic Loci Allele Database (FLAD): Automatically generated, permanent identifiers for sequenced forensic alleles.

    PubMed

    Van Neste, Christophe; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported. We present the Forensic Loci Allele Database (FLAD) service, made freely available on http://forensic.ugent.be/FLAD/. It offers permanent identifiers for sequenced forensic alleles (STR or SNP) and their microvariants for use in forensic allele nomenclature. Analogous to Genbank, its aim is to provide permanent identifiers for forensically relevant allele sequences. Researchers that are developing forensic sequencing kits or are performing population studies, can register on http://forensic.ugent.be/FLAD/ and add loci and allele sequences with a short and simple application interface (API).

  13. Three allele combinations associated with Multiple Sclerosis

    PubMed Central

    Favorova, Olga O; Favorov, Alexander V; Boiko, Alexey N; Andreewski, Timofey V; Sudomoina, Marina A; Alekseenkov, Alexey D; Kulakova, Olga G; Gusev, Eugenyi I; Parmigiani, Giovanni; Ochs, Michael F

    2006-01-01

    Background Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. Methods 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. Results We identified two previously unknown MS-associated tri-allelic combinations: -509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated. Conclusion These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles. PMID:16872485

  14. How Communication Goals Determine when Audience Tuning Biases Memory

    ERIC Educational Resources Information Center

    Echterhoff, Gerald; Higgins, E. Tory; Kopietz, Rene; Groll, Stephan

    2008-01-01

    After tuning their message to suit their audience's attitude, communicators' own memories for the original information (e.g., a target person's behaviors) often reflect the biased view expressed in their message--producing an audience-congruent memory bias. Exploring the motivational circumstances of message production, the authors investigated…

  15. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules

    PubMed Central

    Prevosto, Claudia; Usmani, M. Farooq; McDonald, Sarah; Gumienny, Aleksandra M.; Key, Tim; Goodman, Reyna S.; Gaston, J. S. Hill; Deery, Michael J.; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  16. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    PubMed

    Prevosto, Claudia; Usmani, M Farooq; McDonald, Sarah; Gumienny, Aleksandra M; Key, Tim; Goodman, Reyna S; Gaston, J S Hill; Deery, Michael J; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  17. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.

    PubMed

    Light, Nicholas; Adoue, Véronique; Ge, Bing; Chen, Shu-Huang; Kwan, Tony; Pastinen, Tomi

    2014-09-01

    Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.

  18. Own Variety Bias

    PubMed Central

    García, Andrea Ariza

    2015-01-01

    In a language identification task, native Belgian French and native Swiss French speakers identified French from France as their own variety. However, Canadian French was not subject to this bias. Canadian and French listeners didn’t claim a different variety as their own.

  19. Biased to Learn Language

    ERIC Educational Resources Information Center

    Sebastian-Galles, Nuria

    2007-01-01

    Some recent publications that explore the foundations of early language development are reviewed in this article. The review adopts the pivotal idea that infants' advancements are helped by the existence of different types of biases. The infant's discovery of the phonological properties of the language of the environment, as well as their learning…

  20. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  1. Own Variety Bias.

    PubMed

    Sloos, Marjoleine; García, Andrea Ariza

    2015-10-01

    In a language identification task, native Belgian French and native Swiss French speakers identified French from France as their own variety. However, Canadian French was not subject to this bias. Canadian and French listeners didn't claim a different variety as their own. PMID:27648211

  2. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J. I.; Wondji, Charles S.

    2015-01-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  3. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    PubMed

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  4. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    PubMed

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  5. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach.

  7. Relatively strong automatic appetitive action-tendencies in male carriers of the OPRM1 G-allele.

    PubMed

    Wiers, R W; Rinck, M; Dictus, M; van den Wildenberg, E

    2009-02-01

    This study investigated whether automatic approach action tendencies for alcohol-related stimuli were associated with variation in the mu-opioid receptor gene (OPRM1), previously related to rewarding effects of alcohol and craving. An adapted approach avoidance task was used, in which participants pulled or pushed a joystick in reaction to the format of a picture shown on the computer screen (e.g. pull landscape pictures and push portrait pictures). Picture size on the screen changed upon joystick movement, so that upon a pull movement picture size increased (creating a sense of approach) and upon a push movement picture size decreased (avoidance). Participants reacted to four categories of pictures: alcohol-related, other appetitive, general positive and general negative. The sample consisted of 84 heavy drinking young men without a g-allele in the A118G (or A355G) single nucleotide polymorphism of the OPRM1 gene and 24 heavy drinking young men with at least one g-allele. Heavy drinking carriers of a g-allele showed relatively strong automatic approach tendencies for alcohol (approach bias). Unexpectedly, they also showed an approach bias for other appetitive stimuli. No approach bias was found for general positive or negative stimuli. These results suggest that automatic approach tendencies in response to appetitive stimuli could play a role in the etiology of addictive behaviors and related disorders. Further research is needed to investigate the specificity of this approach bias and possible gender differences.

  8. Gene × environment interaction on intergroup bias: the role of 5-HTTLPR and perceived outgroup threat

    PubMed Central

    Livingston, Robert W.; Hong, Ying-Yi; Chiao, Joan Y.

    2014-01-01

    Perceived threat from outgroups is a consistent social-environmental antecedent of intergroup bias (i.e. prejudice, ingroup favoritism). The serotonin transporter gene polymorphism (5-HTTLPR) has been associated with individual variations in sensitivity to context, particularly stressful and threatening situations. Here, we examined how 5-HTTLPR and environmental factors signaling potential outgroup threat dynamically interact to shape intergroup bias. Across two studies, we provide novel evidence for a gene–environment interaction on the acquisition of intergroup bias and prejudice. Greater exposure to signals of outgroup threat, such as negative prior contact with outgroups and perceived danger from the social environment, were more predictive of intergroup bias among participants possessing at least one short allele (vs two long alleles) of 5-HTTLPR. Furthermore, this gene x environment interaction was observed for biases directed at diverse ethnic and arbitrarily-defined outgroups across measures reflecting intergroup biases in evaluation and discriminatory behavior. These findings reveal a candidate genetic mechanism for the acquisition of intergroup bias, and suggest that intergroup bias is dually inherited and transmitted through the interplay of social (i.e. contextual cues of outgroup threat) and biological mechanisms (i.e. genetic sensitivity toward threatening contexts) that regulate perceived intergroup threats. PMID:23887814

  9. Gene × environment interaction on intergroup bias: the role of 5-HTTLPR and perceived outgroup threat.

    PubMed

    Cheon, Bobby K; Livingston, Robert W; Hong, Ying-Yi; Chiao, Joan Y

    2014-09-01

    Perceived threat from outgroups is a consistent social-environmental antecedent of intergroup bias (i.e. prejudice, ingroup favoritism). The serotonin transporter gene polymorphism (5-HTTLPR) has been associated with individual variations in sensitivity to context, particularly stressful and threatening situations. Here, we examined how 5-HTTLPR and environmental factors signaling potential outgroup threat dynamically interact to shape intergroup bias. Across two studies, we provide novel evidence for a gene-environment interaction on the acquisition of intergroup bias and prejudice. Greater exposure to signals of outgroup threat, such as negative prior contact with outgroups and perceived danger from the social environment, were more predictive of intergroup bias among participants possessing at least one short allele (vs two long alleles) of 5-HTTLPR. Furthermore, this gene x environment interaction was observed for biases directed at diverse ethnic and arbitrarily-defined outgroups across measures reflecting intergroup biases in evaluation and discriminatory behavior. These findings reveal a candidate genetic mechanism for the acquisition of intergroup bias, and suggest that intergroup bias is dually inherited and transmitted through the interplay of social (i.e. contextual cues of outgroup threat) and biological mechanisms (i.e. genetic sensitivity toward threatening contexts) that regulate perceived intergroup threats.

  10. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles.

    PubMed

    Brunner, Susanne; Hurni, Severine; Streckeisen, Philipp; Mayr, Gabriele; Albrecht, Mario; Yahiaoui, Nabila; Keller, Beat

    2010-11-01

    Some plant resistance genes occur as allelic series, with each member conferring specific resistance against a subset of pathogen races. In wheat, there are 17 alleles of the Pm3 gene. They encode nucleotide-binding (NB-ARC) and leucine-rich-repeat (LRR) domain proteins, which mediate resistance to distinct race spectra of powdery mildew. It is not known if specificities from different alleles can be combined to create resistance genes with broader specificity. Here, we used an approach based on avirulence analysis of pathogen populations to characterize the molecular basis of Pm3 recognition spectra. A large survey of mildew races for avirulence on the Pm3 alleles revealed that Pm3a has a resistance spectrum that completely contains that of Pm3f, but also extends towards additional races. The same is true for the Pm3b and Pm3c gene pair. The molecular analysis of these allelic pairs revealed a role of the NB-ARC protein domain in the efficiency of effector-dependent resistance. Analysis of the wild-type and chimeric Pm3 alleles identified single residues in the C-terminal LRR motifs as the main determinant of allele specificity. Variable residues of the N-terminal LRRs are necessary, but not sufficient, to confer resistance specificity. Based on these data, we constructed a chimeric Pm3 gene by intragenic allele pyramiding of Pm3d and Pm3e that showed the combined resistance specificity and, thus, a broader recognition spectrum compared with the parental alleles. Our findings support a model of stepwise evolution of Pm3 recognition specificities.

  11. Social Anxiety and Interpretation Bias: Effect of Positive Priming.

    PubMed

    Wang, Xiaoling; Qian, Mingyi; Yu, Hongyu; Sun, Yang; Li, Songwei; Yang, Peng; Lin, Muyu; Yao, Nishao; Zhang, Xilin

    2016-10-01

    This study examined how positive-scale assessment of ambiguous social stimuli affects interpretation bias in social anxiety. Participants with high and low social anxiety (N = 60) performed a facial expression discrimination task to assess interpretation bias. Participants were then randomly assigned to assess the emotion of briefly presented faces either on a negative or on a positive scale. They subsequently repeated the facial expression discrimination task. Participants with high versus low social anxiety made more negative interpretations of ambiguous facial expressions. However, those in the positive-scale assessment condition subsequently showed reduced negative interpretations of ambiguous facial expressions. These results suggest that interpretation bias in social anxiety could be mediated by positive priming rather than an outright negative bias.

  12. Temperature trend biases

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Lindau, Ralf

    2016-04-01

    In an accompanying talk we show that well-homogenized national dataset warm more than temperatures from global collections averaged over the region of common coverage. In this poster we want to present auxiliary work about possible biases in the raw observations and on how well relative statistical homogenization can remove trend biases. There are several possible causes of cooling biases, which have not been studied much. Siting could be an important factor. Urban stations tend to move away from the centre to better locations. Many stations started inside of urban areas and are nowadays more outside. Even for villages the temperature difference between the centre and edge can be 0.5°C. When a city station moves to an airport, which often happened around WWII, this takes the station (largely) out of the urban heat island. During the 20th century the Stevenson screen was established as the dominant thermometer screen. This screen protected the thermometer much better against radiation than earlier designs. Deficits of earlier measurement methods have artificially warmed the temperatures in the 19th century. Newer studies suggest we may have underestimated the size of this bias. Currently we are in a transition to Automatic Weather Stations. The net global effect of this transition is not clear at this moment. Irrigation on average decreases the 2m-temperature by about 1 degree centigrade. At the same time, irrigation has increased significantly during the last century. People preferentially live in irrigated areas and weather stations serve agriculture. Thus it is possible that there is a higher likelihood that weather stations are erected in irrigated areas than elsewhere. In this case irrigation could lead to a spurious cooling trend. In the Parallel Observations Science Team of the International Surface Temperature Initiative (ISTI-POST) we are studying influence of the introduction of Stevenson screens and Automatic Weather Stations using parallel measurements

  13. When do children exhibit a "yes" bias?

    PubMed

    Okanda, Mako; Itakura, Shoji

    2010-01-01

    This study investigated whether one hundred and thirty-five 3- to 6-year-old children exhibit a yes bias to various yes-no questions and whether their knowledge status affects the production of a yes bias. Three-year-olds exhibited a yes bias to all yes-no questions such as preference-object and knowledge-object questions pertaining to objects, and knowledge-face questions pertaining to facial expressions. Four-year-olds tended to say "yes" only to knowledge-object questions. Five-year-olds did not show any strong response tendency. Six-year-olds exhibited a nay-saying bias to knowledge-face questions. Also, 3-year-olds could indicate the correct option when asked questions with 2 response options. It suggested that 3-year-olds tended to inappropriately say "yes" to yes-no questions, although they knew the answers to the questions. The mechanism of a yes bias was discussed.

  14. Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant clonal interference of alleles at a single locus.

    PubMed

    Lee, Ming-Chun; Marx, Christopher J

    2013-03-01

    It has increasingly been recognized that adapting populations of microbes contain not one, but many lineages continually arising and competing at once. This process, termed "clonal interference," alters the rate and dynamics of adaptation and biases winning mutations toward those with the largest selective effect. Here we uncovered a dramatic example of clonal interference between multiple similar mutations occurring at the same locus within replicate populations of Methylobacterium extorquens AM1. Because these mutational events involved the transposition of an insertion sequence into a narrow window of a single gene, they were both readily detectable at low frequencies and could be distinguished due to differences in insertion sites. This allowed us to detect up to 17 beneficial alleles of this type coexisting in a single population. Despite conferring a large selective benefit, the majority of these alleles rose and then fell in frequency due to other lineages emerging that were more fit. By comparing allele-frequency dynamics to the trajectories of fitness gains by these populations, we estimated the fitness values of the genotypes that contained these mutations. Collectively across all populations, these alleles arose upon backgrounds with a wide range of fitness values. Within any single population, however, multiple alleles tended to rise and fall synchronously during a single wave of multiple genotypes with nearly identical fitness values. These results suggest that alleles of large benefit arose repeatedly in failed "soft sweeps" during narrow windows of adaptation due to the combined effects of epistasis and clonal interference. PMID:23307898

  15. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster

    PubMed Central

    Yi, Hankuil; Richards, Eric J

    2008-01-01

    Background Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. Results We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 × bal F1 hybrids, cpr1 × snc1 F1 hybrids and bal × snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal × snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 × snc1 F1 hybrids, as well as from cpr1 × bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 × snc1 crosses was destabilized during the late F1 generation to early F2 generation. Conclusion With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or

  16. Extracellular Superoxide Dismutase Polymorphism in Mice: Allele- Specific Effects on Phenotype

    PubMed Central

    Jun, Sujung; Pierce, Anson; Dory, Ladislav

    2010-01-01

    Extracellular superoxide dismutase (ecSOD) protects the extracellular matrix (ECM) from oxidative stress. We previously reported a new allele for ecSOD, expressed in 129P3/J mice (129), which differs from the wild-type (wt), expressed in C57BL/6J and other strains, by two amino acid substitutions and a 10 bp deletion in the 3' UTR of the mRNA [1]. The newly discovered allele is associated with a phenotype of significantly increased circulating and heparin-releasable enzyme activities and levels. In order to examine the properties of the two forms of ecSOD in an identical environment we generated, by extensive backcrossing of ecSOD heterozygous progeny to C57BL/6J females, a congenic C57 strain with the 129 (or wt) allele of ecSOD. These mice are homozygous for nearly 5,000 SNPs across all chromosomes, as determined by Affymetrix Parallele Mouse 5K SNP panel. The present study describes the generation of the congenic mice (genetically >99.8 % identical) and their ecSOD phenotype. The congenic mice plasma ecSOD activities before and after heparin administration recapitulate the differences reported in the founder mice. Tissue enzyme distribution is similar in both congenic groups, although the 129 allele is associated with higher levels of enzyme expression despite lower levels of enzyme mRNA. In these characteristics the phenotype is also allele driven, with little impact by the rest of the genome. The congenic mice carrying the 129 allele have mRNA levels that are in between those found in the founder 129P3/J and C57BL/6J strains. We conclude that the ecSOD phenotype in most aspects of enzyme expression is allele- driven, with the exception of tissue mRNA levels, where a significant contribution by the surrounding (host) genome is observed. These results also suggest potential allele-specific differences in the regulation of ecSOD synthesis and intracellular processing/secretion of ecSOD, independent of the genotype context. Most importantly, the congenic mice

  17. A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells

    PubMed Central

    Calabrese, J. Mauro; Starmer, Joshua; Schertzer, Megan D.; Yee, Della; Magnuson, Terry

    2015-01-01

    Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had been described previously as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse. PMID:25711832

  18. Assessing Bias in Search Engines.

    ERIC Educational Resources Information Center

    Mowshowitz, Abbe; Kawaguchi, Akira

    2002-01-01

    Addresses the measurement of bias in search engines on the Web, defining bias as the balance and representation of items in a collection retrieved from a database for a set of queries. Assesses bias by measuring the deviation from the ideal of the distribution produced by a particular search engine. (Author/LRW)

  19. Negativity bias and basic values.

    PubMed

    Schwartz, Shalom H

    2014-06-01

    Basic values explain more variance in political attitudes and preferences than other personality and sociodemographic variables. The values most relevant to the political domain are those likely to reflect the degree of negativity bias. Value conflicts that represent negativity bias clarify differences between what worries conservatives and liberals and suggest that relations between ideology and negativity bias are linear. PMID:24970450

  20. Do Heliconius butterfly species exchange mimicry alleles?

    PubMed

    Smith, Joel; Kronforst, Marcus R

    2013-08-23

    Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes.

  1. Express

    Integrated Risk Information System (IRIS)

    Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  2. Genomic landscape of human allele-specific DNA methylation.

    PubMed

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J; Smith, Andrew D

    2012-05-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  3. A bird's eye view of a deleterious recessive allele.

    PubMed

    Ekblom, Robert

    2016-07-01

    In the endangered Scottish chough (Pyrrhocorax pyrrhocorax) population, a lethal blindness syndrome is found to be caused by a deleterious recessive allele. Photo: Gordon Yates. In Focus: Trask, A.E., Bignal, E.M., McCracken, D.I., Monaghan, P., Piertney, S.B. & Reid, J.M. (2016) Evidence of the phenotypic expression of a lethal recessive allele under inbreeding in a wild population of conservation concern. Journal of Animal Ecology, 85, 879-891. In this issue of Journal of Animal Ecology, Trask et al. () report on a strange, lethal, blindness that regularly affects chicks of an endangered bird population. The authors show that the inheritance mode of this blindness disease precisely matches the expectations of a recessive deleterious mutation. Intriguingly, there is also an indication that the disease-causing variant might be maintained in the population by balancing selection, due to a selective advantage for heterozygotes. Could this finding have consequences for conservation actions implemented for the population? PMID:27279331

  4. Genomic landscape of human allele-specific DNA methylation

    PubMed Central

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J.; Smith, Andrew D.

    2012-01-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  5. Recombinase-based conditional and reversible gene regulation via XTR alleles

    PubMed Central

    Robles-Oteiza, Camila; Taylor, Sarah; Yates, Travis; Cicchini, Michelle; Lauderback, Brian; Cashman, Christopher R.; Burds, Aurora A.; Winslow, Monte M.; Jacks, Tyler; Feldser, David M.

    2015-01-01

    Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R). PMID:26537451

  6. Recombinase-based conditional and reversible gene regulation via XTR alleles.

    PubMed

    Robles-Oteiza, Camila; Taylor, Sarah; Yates, Travis; Cicchini, Michelle; Lauderback, Brian; Cashman, Christopher R; Burds, Aurora A; Winslow, Monte M; Jacks, Tyler; Feldser, David M

    2015-01-01

    Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R). PMID:26537451

  7. Allelic variation contributes to bacterial host specificity.

    PubMed

    Yue, Min; Han, Xiangan; De Masi, Leon; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S; Fraser, George P; Zhao, Shaohua; McDermott, Patrick F; Weill, François-Xavier; Mainil, Jacques G; Arze, Cesar; Fricke, W Florian; Edwards, Robert A; Brisson, Dustin; Zhang, Nancy R; Rankin, Shelley C; Schifferli, Dieter M

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  8. Allelic variation contributes to bacterial host specificity

    SciTech Connect

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

  9. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; et al

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  10. Allelic variation contributes to bacterial host specificity

    PubMed Central

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  11. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans.

    PubMed

    Keinan, Alon; Mullikin, James C; Patterson, Nick; Reich, David

    2007-10-01

    Large data sets on human genetic variation have been collected recently, but their usefulness for learning about history and natural selection has been limited by biases in the ways polymorphisms were chosen. We report large subsets of SNPs from the International HapMap Project that allow us to overcome these biases and to provide accurate measurement of a quantity of crucial importance for understanding genetic variation: the allele frequency spectrum. Our analysis shows that East Asian and northern European ancestors shared the same population bottleneck expanding out of Africa but that both also experienced more recent genetic drift, which was greater in East Asians.

  12. Heterozygosity and extra-pair paternity: biased tests result from the use of shared markers.

    PubMed

    Wetzel, Daniel P; Westneat, David F

    2009-05-01

    Recent studies of extra-pair paternity have found support for the idea that heterozygous males have an advantage in siring offspring. Most studies use DNA microsatellite loci to determine paternity and then use the same loci to estimate individual heterozygosity. However, because the likelihood of detecting extra-pair offspring depends on the combinations of parental alleles, it is possible that biases arise from particular allele combinations. This might produce false support for the influence of heterozygosity on mating behaviour. We used a simulation model to assess how large this bias might be. We found two sources of bias. First, we found a bias in the null hypothesis of a simple statistical test commonly used to test several predictions of the heterozygosity hypothesis. The use of randomization tests could eliminate this bias. Second, we found that using the same loci for both paternity and heterozygosity can cause an increase in results supporting the heterozygosity hypothesis when no effect of heterozygosity actually exists. This bias is reduced through the use of more markers with higher levels of polymorphism and heterozygosity, but can be eliminated entirely by using a separate set of markers to determine paternity and assess heterozygosity. The two sources of bias reduce evidence favouring the heterozygosity hypothesis, but do not negate all of the studies that support it. We suggest that further studies of heterozygosity and extra-pair paternity are important and likely to be informative, but our recommendations should be incorporated by researchers to improve the reliability of their conclusions.

  13. Accelerated evolution of morph-biased genes in pea aphids.

    PubMed

    Purandare, Swapna R; Bickel, Ryan D; Jaquiery, Julie; Rispe, Claude; Brisson, Jennifer A

    2014-08-01

    Phenotypic plasticity, the production of alternative phenotypes (or morphs) from the same genotype due to environmental factors, results in some genes being expressed in a morph-biased manner. Theoretically, these morph-biased genes experience relaxed selection, the consequence of which is the buildup of slightly deleterious mutations at these genes. Over time, this is expected to result in increased protein divergence at these genes between species and a signature of relaxed purifying selection within species. Here we test these theoretical expectations using morph-biased genes in the pea aphid, a species that produces multiple morphs via polyphenism. We find that morph-biased genes exhibit faster rates of evolution (in terms of dN/dS) relative to unbiased genes and that divergence generally increases with increasing morph bias. Further, genes with expression biased toward rarer morphs (sexual females and males) show faster rates of evolution than genes expressed in the more common morph (asexual females), demonstrating that the amount of time a gene spends being expressed in a morph is associated with its rate of evolution. And finally, we show that genes expressed in the rarer morphs experience decreased purifying selection relative to unbiased genes, suggesting that it is a relaxation of purifying selection that contributes to their faster rates of evolution. Our results provide an important empirical look at the impact of phenotypic plasticity on gene evolution.

  14. On the use of the transmission disequilibrium test to detect pseudo-autosomal variants affecting traits with sex-limited expression.

    PubMed

    Elansary, Mahmoud; Stinckens, Anneleen; Ahariz, Naima; Cambisano, Nadine; Coppieters, Wouter; Grindflek, Eli; van Son, Maren; Buys, Nadine; Georges, Michel

    2015-08-01

    We herein describe the realization of a genome-wide association study for scrotal hernia and cryptorchidism in Norwegian and Belgian commercial pig populations. We have used the transmission disequilibrium test to avoid spurious associations due to population stratification. By doing so, we obtained genome-wide significant signals for both diseases with SNPs located in the pseudo-autosomal region in the vicinity of the pseudo-autosomal boundary. By further analyzing these signals, we demonstrate that the observed transmission disequilibria are artifactual. We determine that transmission bias at pseudo-autosomal markers will occur (i) when analyzing traits with sex-limited expression and (ii) when the allelic frequencies at the marker locus differ between X and Y chromosomes. We show that the bias is due to the fact that (i) sires will preferentially transmit the allele enriched on the Y (respectively X) chromosome to affected sons (respectively daughters) and (ii) dams will appear to preferentially transmit the allele enriched on the Y (respectively X) to affected sons (respectively daughters), as offspring inheriting the other allele are more likely to be non-informative. We define the conditions to mitigate these issues, namely by (i) extracting information from maternal meiosis only and (ii) ignoring trios for which sire and dam have the same heterozygous genotype. We show that by applying these rules to scrotal hernia and cryptorchidism, the pseudo-autosomal signals disappear, confirming their spurious nature. PMID:25996251

  15. Biases in small RNA deep sequencing data

    PubMed Central

    Raabe, Carsten A.; Tang, Thean-Hock; Brosius, Juergen; Rozhdestvensky, Timofey S.

    2014-01-01

    High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias. PMID:24198247

  16. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, Oliver E.; Pan, David

    1994-01-01

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

  17. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, O.E.; Pan, D.

    1994-07-19

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

  18. Increasing long term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  19. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  20. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele.

    PubMed

    Bange, Johannes; Prechtl, Dieter; Cheburkin, Yuri; Specht, Katja; Harbeck, Nadia; Schmitt, Manfred; Knyazeva, Tatjana; Müller, Susanne; Gärtner, Silvia; Sures, Irmi; Wang, Hongyang; Imyanitov, Evgeny; Häring, Hans-Ulrich; Knayzev, Pjotr; Iacobelli, Stefano; Höfler, Heinz; Ullrich, Axel

    2002-02-01

    Expression analysis of genes encoding components of the phosphotyrosine signaling system by cDNA array hybridization revealed elevated levels of FGFR4 transcripts in several mammary carcinoma cell lines. In the FGFR4 gene transcript from MDA-MB-453 mammary carcinoma cells, a G to A conversion was discovered that results in the substitution of glycine by arginine at position 388 in the transmembrane domain of the receptor. The Arg(388) allele was also found in cell lines derived from a variety of other tumor types as well as in the germ-line of cancer patients and healthy individuals. Analysis of three geographically separated groups indicated that it occurs in approximately 50% of the human population. Investigation of the clinical data of 84 breast cancer patients revealed that homo- or heterozygous carriers of the Arg(388) allele had a significantly reduced disease-free survival time (P = 0.01) within a median follow-up of 62 months. Moreover, the FGFR4 Arg(388) allele was associated with early lymph node metastasis and advanced tumor-node-metastasis (TNM) stage in 82 colon cancer patients. Consistent with this finding, MDA-MB-231 mammary tumor cells expressing FGFR4 Arg(388) exhibited increased motility relative to cells expressing the FGFR4 Gly(388) isotype. Our results support the conclusion that the FGFR4 Arg(388) allele represents a determinant that is innocuous in healthy individuals but predisposes cancer patients for significantly accelerated disease progression.

  1. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    PubMed Central

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci. PMID:26666962

  2. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets.

    PubMed

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1-1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1-1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  3. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome.

    PubMed

    Joshi, Ricky S; Garg, Paras; Zaitlen, Noah; Lappalainen, Tuuli; Watson, Corey T; Azam, Nidha; Ho, Daniel; Li, Xin; Antonarakis, Stylianos E; Brunner, Han G; Buiting, Karin; Cheung, Sau Wai; Coffee, Bradford; Eggermann, Thomas; Francis, David; Geraedts, Joep P; Gimelli, Giorgio; Jacobson, Samuel G; Le Caignec, Cedric; de Leeuw, Nicole; Liehr, Thomas; Mackay, Deborah J; Montgomery, Stephen B; Pagnamenta, Alistair T; Papenhausen, Peter; Robinson, David O; Ruivenkamp, Claudia; Schwartz, Charles; Steiner, Bernhard; Stevenson, David A; Surti, Urvashi; Wassink, Thomas; Sharp, Andrew J

    2016-09-01

    Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.

  4. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome.

    PubMed

    Joshi, Ricky S; Garg, Paras; Zaitlen, Noah; Lappalainen, Tuuli; Watson, Corey T; Azam, Nidha; Ho, Daniel; Li, Xin; Antonarakis, Stylianos E; Brunner, Han G; Buiting, Karin; Cheung, Sau Wai; Coffee, Bradford; Eggermann, Thomas; Francis, David; Geraedts, Joep P; Gimelli, Giorgio; Jacobson, Samuel G; Le Caignec, Cedric; de Leeuw, Nicole; Liehr, Thomas; Mackay, Deborah J; Montgomery, Stephen B; Pagnamenta, Alistair T; Papenhausen, Peter; Robinson, David O; Ruivenkamp, Claudia; Schwartz, Charles; Steiner, Bernhard; Stevenson, David A; Surti, Urvashi; Wassink, Thomas; Sharp, Andrew J

    2016-09-01

    Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects. PMID:27569549

  5. The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.

    PubMed

    Michalak, Pawel; Ma, Daina

    2008-06-15

    Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.

  6. The male transmission bias of the insulin (INS) gene in insulin-dependent diabetes (IDD) can not be explained by maternal imprinting

    SciTech Connect

    Bui, M.M.; She, J.X.

    1994-09-01

    A locus contributing to IDD susceptibility has previously been mapped to a region on human chromosome 11p near the INS gene. To fine map the position of this susceptibility locus, polymorphisms in and flanking INS were analyzed in normal and IDD populations by PCR and restriction enzyme digestion. Regions flanking INS were not associated with IDD (p=NS). In contrast, homozygosity for the {open_quotes}+{close_quotes} INS allele was significantly increased in the IDD population (n=197) compared to 159 controls (RR=2.0, p<0.005), indicating an INS association with IDD. Transmission of the IDD-associated INS {open_quotes}+{close_quotes} alleles from parents to children in unaffected families was random (p=NS). However, in 107 multiplex and 15 simplex IDD families, transmission of the INS {open_quotes}+{close_quotes} allele from heterozygous parents to diabetic children revealed linkage of the INS gene to IDD (p<0.003). This linkage was limited to male meioses (p=0.01), suggest the potential for maternal imprinting of INS. The expression of the {open_quotes}+{close_quotes} and {open_quotes}-{close_quotes} INS allele was analyzed by RT-PCR in two normal heterozygous human fetal pancreases. Both transcripts were detected, indicating a lack of INS maternal imprinting in the human pancreas. Our results suggest that the IDD susceptibility locus on 11p is the INS gene, and that male transmission bias of the INS gene in IDD can not be explained by maternal imprinting.

  7. Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.

    PubMed

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; da Motta, Carlos Henrique Ares Silveira; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio

    2015-05-01

    Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications.

  8. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes

    PubMed Central

    Krueger, Felix; Andrews, Simon R.

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  9. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays

    PubMed Central

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-01-01

    Motivation: Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. Results: The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. Availability: The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementaruy information: Supplementary data are available at Bioinformatics online. PMID:20529889

  10. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    PubMed

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  11. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development.

    PubMed

    Leskow, Carla Coluccio; Kamenetzky, Laura; Dominguez, Pia Guadalupe; Díaz Zirpolo, José Antonio; Obata, Toshihiro; Costa, Hernán; Martí, Marcelo; Taboga, Oscar; Keurentjes, Joost; Sulpice, Ronan; Ishihara, Hirofumi; Stitt, Mark; Fernie, Alisdair Robert; Carrari, Fernando

    2016-07-01

    Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level. PMID:27194734

  12. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    PubMed

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  13. Borrowed alleles and convergence in serpentine adaptation.

    PubMed

    Arnold, Brian J; Lahner, Brett; DaCosta, Jeffrey M; Weisman, Caroline M; Hollister, Jesse D; Salt, David E; Bomblies, Kirsten; Yant, Levi

    2016-07-19

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment. PMID:27357660

  14. Borrowed alleles and convergence in serpentine adaptation

    PubMed Central

    Arnold, Brian J.; Lahner, Brett; DaCosta, Jeffrey M.; Weisman, Caroline M.; Hollister, Jesse D.; Salt, David E.; Bomblies, Kirsten; Yant, Levi

    2016-01-01

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata. In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata. This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment. PMID:27357660

  15. Borrowed alleles and convergence in serpentine adaptation.

    PubMed

    Arnold, Brian J; Lahner, Brett; DaCosta, Jeffrey M; Weisman, Caroline M; Hollister, Jesse D; Salt, David E; Bomblies, Kirsten; Yant, Levi

    2016-07-19

    Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment.

  16. Assessing Projection Bias in Consumers’ Food Preferences

    PubMed Central

    de-Magistris, Tiziana; Gracia, Azucena

    2016-01-01

    The aim of this study is to test whether projection bias exists in consumers’ purchasing decisions for food products. To achieve our aim, we used a non-hypothetical experiment (i.e., experimental auction), where hungry and non-hungry participants were incentivized to reveal their willingness to pay (WTP). The results confirm the existence of projection bias when consumers made their decisions on food products. In particular, projection bias existed because currently hungry participants were willing to pay a higher price premium for cheeses than satiated ones, both in hungry and satiated future states. Moreover, participants overvalued the food product more when they were delivered in the future hungry condition than in the satiated one. Our study provides clear, quantitative and meaningful evidence of projection bias because our findings are based on economic valuation of food preferences. Indeed, the strength of this study is that findings are expressed in terms of willingness to pay which is an interpretable amount of money. PMID:26828930

  17. Racial bias shapes social reinforcement learning.

    PubMed

    Lindström, Björn; Selbing, Ida; Molapour, Tanaz; Olsson, Andreas

    2014-03-01

    Both emotional facial expressions and markers of racial-group belonging are ubiquitous signals in social interaction, but little is known about how these signals together affect future behavior through learning. To address this issue, we investigated how emotional (threatening or friendly) in-group and out-group faces reinforced behavior in a reinforcement-learning task. We asked whether reinforcement learning would be modulated by intergroup attitudes (i.e., racial bias). The results showed that individual differences in racial bias critically modulated reinforcement learning. As predicted, racial bias was associated with more efficiently learned avoidance of threatening out-group individuals. We used computational modeling analysis to quantitatively delimit the underlying processes affected by social reinforcement. These analyses showed that racial bias modulates the rate at which exposure to threatening out-group individuals is transformed into future avoidance behavior. In concert, these results shed new light on the learning processes underlying social interaction with racial-in-group and out-group individuals.

  18. Characterizing allelic association in the genome era

    PubMed Central

    WEIR, B. S.; LAURIE, C. C.

    2015-01-01

    Summary Whole genome data are allowing the estimation of population genetic parameters with an accuracy not imagined 50 years ago. Variation in these parameters along the genome is being found empirically where once only approximate theoretical values were available. Along with increased information, however, has come the issue of multiple testing and the realization that high values of the coefficients of variation of quantities such as relatedness measures may make it difficult to draw inferences. This review concentrates on measures of allelic association within and between individuals and within and between populations. PMID:21429275

  19. Experimentally Increased Codon Bias in the Drosophila Adh Gene Leads to an Increase in Larval, But Not Adult, Alcohol Dehydrogenase Activity

    PubMed Central

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B.

    2010-01-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages. PMID:19966063

  20. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    PubMed

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  1. The intentionality bias and schizotypy.

    PubMed

    Moore, J W; Pope, A

    2014-01-01

    The "intentionality bias" refers to our automatic tendency to judge other people's actions to be intentional. In this experiment we extended research on this effect in two key ways. First, we developed a novel nonlinguistic task for assessing the intentionality bias. This task used video stimuli of ambiguous movements. Second, we investigated the relationship between the strength of this bias and schizotypy (schizophrenia-like symptoms in healthy individuals). Our results showed that the intentionality bias was replicated for the video stimuli and also that this bias is stronger in those individuals scoring higher on the schizotypy rating scales. Overall these findings lend further support for the existence of the intentionality bias. We also discuss the possible relevance of these findings for our understanding of certain symptoms of schizophrenic illness.

  2. Short communication: the beta-casein (CSN2) silent allele C1 is highly spread in goat breeds.

    PubMed

    Chessa, S; Rignanese, D; Küpper, J; Pagnacco, G; Erhardt, G; Caroli, A

    2008-11-01

    Several single nucleotide polymorphisms have been identified in the goat milk casein genes, most of them modifying the amino acid sequence of the coded protein. At least 9 variants have been found in goat beta-CN (CSN2); 6 of them were characterized at the DNA level (A, A1, C, E, 0, and 0'), whereas the other 3 variants were described only at the protein level. The recently identified silent A1 allele is characterized by a C-->T transition at the 180th nucleotide of the ninth exon. In the present work, typing results from different breeds (3 Italian, 3 German, and a composite of African breeds for a total of 335 samples) demonstrated that the same mutation is carried by the CSN2*C allele. In addition, the T nucleotide at the 180th nucleotide of the ninth exon was always associated with CSN2*C in all the breeds analyzed. Thus, another silent allele occurs at goat CSN2 and can be named CSN2*C1. The much wider distribution of C1 with respect to the A1 allele indicates that the single nucleotide polymorphisms characterizing the silent mutation originated from CSN2*C. A method for the identification of this allele simultaneously with 5 of the 6 DNA-characterized alleles is also proposed. The mutation involved codifies for the same protein of the C allele; nevertheless, its location in the 3' untranslated region of the gene might affect the specific casein expression.

  3. Toward a Comprehensive Understanding of Executive Cognitive Function in Implicit Racial Bias

    PubMed Central

    Ito, Tiffany A.; Friedman, Naomi P.; Bartholow, Bruce D.; Correll, Joshua; Loersch, Chris; Altamirano, Lee J.; Miyake, Akira

    2014-01-01

    Although performance on laboratory-based implicit bias tasks often is interpreted strictly in terms of the strength of automatic associations, recent evidence suggests that such tasks are influenced by higher-order cognitive control processes, so-called executive functions (EFs). However, extant work in this area has been limited by failure to account for the unity and diversity of EFs, focus on only a single measure of bias and/or EF, and relatively small sample sizes. The current study sought to comprehensively model the relation between individual differences in EFs and the expression of racial bias in three commonly used laboratory measures. Participants (N=485) completed a battery of EF tasks (session 1) and three racial bias tasks (session 2), along with numerous individual difference questionnaires. The main findings were as follows: (1) measures of implicit bias were only weakly intercorrelated; (2) EF and estimates of automatic processes both predicted implicit bias and also interacted, such that the relation between automatic processes and bias expression was reduced at higher levels of EF; (3) specific facets of EF were differentially associated with overall task performance and controlled processing estimates across different bias tasks; (4) EF did not moderate associations between implicit and explicit measures of bias; and (5) external, but not internal, motivation to control prejudice depended on EF to reduce bias expression. Findings are discussed in terms of the importance of global and specific EF abilities in determining expression of implicit racial bias. PMID:25603372

  4. Toward a comprehensive understanding of executive cognitive function in implicit racial bias.

    PubMed

    Ito, Tiffany A; Friedman, Naomi P; Bartholow, Bruce D; Correll, Joshua; Loersch, Chris; Altamirano, Lee J; Miyake, Akira

    2015-02-01

    Although performance on laboratory-based implicit bias tasks often is interpreted strictly in terms of the strength of automatic associations, recent evidence suggests that such tasks are influenced by higher-order cognitive control processes, so-called executive functions (EFs). However, extant work in this area has been limited by failure to account for the unity and diversity of EFs, focus on only a single measure of bias and/or EF, and relatively small sample sizes. The current study sought to comprehensively model the relation between individual differences in EFs and the expression of racial bias in 3 commonly used laboratory measures. Participants (N = 485) completed a battery of EF tasks (Session 1) and 3 racial bias tasks (Session 2), along with numerous individual difference questionnaires. The main findings were as follows: (a) measures of implicit bias were only weakly intercorrelated; (b) EF and estimates of automatic processes both predicted implicit bias and also interacted, such that the relation between automatic processes and bias expression was reduced at higher levels of EF; (c) specific facets of EF were differentially associated with overall task performance and controlled processing estimates across different bias tasks; (d) EF did not moderate associations between implicit and explicit measures of bias; and (e) external, but not internal, motivation to control prejudice depended on EF to reduce bias expression. Findings are discussed in terms of the importance of global and specific EF abilities in determining expression of implicit racial bias.

  5. Toward a comprehensive understanding of executive cognitive function in implicit racial bias.

    PubMed

    Ito, Tiffany A; Friedman, Naomi P; Bartholow, Bruce D; Correll, Joshua; Loersch, Chris; Altamirano, Lee J; Miyake, Akira

    2015-02-01

    Although performance on laboratory-based implicit bias tasks often is interpreted strictly in terms of the strength of automatic associations, recent evidence suggests that such tasks are influenced by higher-order cognitive control processes, so-called executive functions (EFs). However, extant work in this area has been limited by failure to account for the unity and diversity of EFs, focus on only a single measure of bias and/or EF, and relatively small sample sizes. The current study sought to comprehensively model the relation between individual differences in EFs and the expression of racial bias in 3 commonly used laboratory measures. Participants (N = 485) completed a battery of EF tasks (Session 1) and 3 racial bias tasks (Session 2), along with numerous individual difference questionnaires. The main findings were as follows: (a) measures of implicit bias were only weakly intercorrelated; (b) EF and estimates of automatic processes both predicted implicit bias and also interacted, such that the relation between automatic processes and bias expression was reduced at higher levels of EF; (c) specific facets of EF were differentially associated with overall task performance and controlled processing estimates across different bias tasks; (d) EF did not moderate associations between implicit and explicit measures of bias; and (e) external, but not internal, motivation to control prejudice depended on EF to reduce bias expression. Findings are discussed in terms of the importance of global and specific EF abilities in determining expression of implicit racial bias. PMID:25603372

  6. Haploinsufficiency predictions without study bias

    PubMed Central

    Steinberg, Julia; Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2015-01-01

    Any given human individual carries multiple genetic variants that disrupt protein-coding genes, through structural variation, as well as nucleotide variants and indels. Predicting the phenotypic consequences of a gene disruption remains a significant challenge. Current approaches employ information from a range of biological networks to predict which human genes are haploinsufficient (meaning two copies are required for normal function) or essential (meaning at least one copy is required for viability). Using recently available study gene sets, we show that these approaches are strongly biased towards providing accurate predictions for well-studied genes. By contrast, we derive a haploinsufficiency score from a combination of unbiased large-scale high-throughput datasets, including gene co-expression and genetic variation in over 6000 human exomes. Our approach provides a haploinsufficiency prediction for over twice as many genes currently unassociated with papers listed in Pubmed as three commonly-used approaches, and outperforms these approaches for predicting haploinsufficiency for less-studied genes. We also show that fine-tuning the predictor on a set of well-studied ‘gold standard’ haploinsufficient genes does not improve the prediction for less-studied genes. This new score can readily be used to prioritize gene disruptions resulting from any genetic variant, including copy number variants, indels and single-nucleotide variants. PMID:26001969

  7. Deleterious alleles in the human genome are on average younger than neutral alleles of the same frequency.

    PubMed

    Kiezun, Adam; Pulit, Sara L; Francioli, Laurent C; van Dijk, Freerk; Swertz, Morris; Boomsma, Dorret I; van Duijn, Cornelia M; Slagboom, P Eline; van Ommen, G J B; Wijmenga, Cisca; de Bakker, Paul I W; Sunyaev, Shamil R

    2013-01-01

    Large-scale population sequencing studies provide a complete picture of human genetic variation within the studied populations. A key challenge is to identify, among the myriad alleles, those variants that have an effect on molecular function, phenotypes, and reproductive fitness. Most non-neutral variation consists of deleterious alleles segregating at low population frequency due to incessant mutation. To date, studies characterizing selection against deleterious alleles have been based on allele frequency (testing for a relative excess of rare alleles) or ratio of polymorphism to divergence (testing for a relative increase in the number of polymorphic alleles). Here, starting from Maruyama's theoretical prediction (Maruyama T (1974), Am J Hum Genet USA 6:669-673) that a (slightly) deleterious allele is, on average, younger than a neutral allele segregating at the same frequency, we devised an approach to characterize selection based on allelic age. Unlike existing methods, it compares sets of neutral and deleterious sequence variants at the same allele frequency. When applied to human sequence data from the Genome of the Netherlands Project, our approach distinguishes low-frequency coding non-synonymous variants from synonymous and non-coding variants at the same allele frequency and discriminates between sets of variants independently predicted to be benign or damaging for protein structure and function. The results confirm the abundance of slightly deleterious coding variation in humans.

  8. A prescription for galaxy biasing evolution as a nuisance parameter

    NASA Astrophysics Data System (ADS)

    Clerkin, L.; Kirk, D.; Lahav, O.; Abdalla, F. B.; Gaztañaga, E.

    2015-04-01

    There is currently no consistent approach to modelling galaxy bias evolution in cosmological inference. This lack of a common standard makes the rigorous comparison or combination of probes difficult. We show that the choice of biasing model has a significant impact on cosmological parameter constraints for a survey such as the Dark Energy Survey (DES), considering the two-point correlations of galaxies in five tomographic redshift bins. We find that modelling galaxy bias with a free biasing parameter per redshift bin gives a Figure of Merit (FoM) for dark energy equation of state parameters w0, wa smaller by a factor of 10 than if a constant bias is assumed. An incorrect bias model will also cause a shift in measured values of cosmological parameters. Motivated by these points and focusing on the redshift evolution of linear bias, we propose the use of a generalized galaxy bias which encompasses a range of bias models from theory, observations and simulations, b(z) = c + (b0 - c)/D(z)α, where parameters c, b0 and α depend on galaxy properties such as halo mass. For a DES-like galaxy survey, we find that this model gives an unbiased estimate of w0, wa with the same number or fewer nuisance parameters and a higher FoM than a simple b(z) model allowed to vary in z-bins. We show how the parameters of this model are correlated with cosmological parameters. We fit a range of bias models to two recent data sets, and conclude that this generalized parametrization is a sensible benchmark expression of galaxy bias on large scales.

  9. A note on the use of the generalized odds ratio in meta-analysis of association studies involving bi- and tri-allelic polymorphisms

    PubMed Central

    2011-01-01

    Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations. PMID:21645382

  10. Microarrays for high-throughput genotyping of MICA alleles using allele-specific primer extension.

    PubMed

    Baek, I C; Jang, J-P; Choi, H-B; Choi, E-J; Ko, W-Y; Kim, T-G

    2013-10-01

    The role of major histocompatibility complex (MHC) class I chain-related gene A (MICA), a ligand of NKG2D, has been defined in human diseases by its allele associations with various autoimmune diseases, hematopoietic stem cell transplantation (HSCT) and cancer. This study describes a practical system to develop MICA genotyping by allele-specific primer extension (ASPE) on microarrays. From the results of 20 control primers, strict and reliable cut-off values of more than 30,000 mean fluorescence intensity (MFI) as positive and less than 3000 MFI as negative, were applied to select high-quality specific extension primers. Among 55 allele-specific primers, 44 primers could be initially selected as optimal primer. Through adjusting the length, six primers were improved. The other failed five primers were corrected by refractory modification. MICA genotypes by ASPE on microarrays showed the same results as those by nucleotide sequencing. On the basis of these results, ASPE on microarrays may provide high-throughput genotyping for MICA alleles for population studies, disease-gene associations and HSCT.

  11. Allelic disequilibrium and allele frequency distribution as a function of social and demographic history.

    PubMed Central

    Thompson, E A; Neel, J V

    1997-01-01

    Allelic disequilibrium between closely linked genes is a common observation in human populations and often gives rise to speculation concerning the role of selective forces. In a previous treatment, we have developed a population model of the expected distribution of rare variants (including private polymorphisms) in Amerindians and have argued that, because of the great expansion of Amerindian numbers with the advent of agriculture, most of these rare variants are of relatively recent origin. Many other populations have similar histories of striking recent expansions. In this treatment, we demonstrate that, in consequence of this fact, a high degree of linkage disequilibrium between two nonhomologous alleles <0.5 cM apart is the "normal" expectation, even in the absence of selection. This expectation is enhanced by the previous subdivision of human populations into relatively isolated tribes characterized by a high level of endogamy and inbreeding. We also demonstrate that the alleles associated with a recessive disease phenotype are expected to exist in a population in very variable frequencies: there is no need to postulate positive selection with respect to the more common disease-associated alleles for such entities as phenylketonuria or cystic fibrosis. PMID:8981963

  12. Detection of Allelic Frequency Differences between the Sexes in Humans: A Signature of Sexually Antagonistic Selection

    PubMed Central

    Lucotte, Elise A.; Laurent, Romain; Heyer, Evelyne; Ségurel, Laure; Toupance, Bruno

    2016-01-01

    Sexually antagonistic (SA) selection, a form of selection that can occur when both sexes have different fitness optima for a trait, is a major force shaping the evolution of organisms. A seminal model developed by Rice (Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742.) predicts that the X chromosome should be a hotspot for the accumulation of loci under SA selection as compared with the autosomes. Here, we propose a methodological framework designed to detect a specific signature of SA selection on viability, differences in allelic frequencies between the sexes. Applying this method on genome-wide single nucleotide polymorphism (SNP) data in human populations where no sex-specific population stratification could be detected, we show that there are overall significantly more SNPs exhibiting differences in allelic frequencies between the sexes on the X chromosome as compared with autosomes, supporting the predictions of Rice’s model. This pattern is consistent across populations and is robust to correction for potential biases such as differences in linkage disequilibrium, sample size, and genotyping errors between chromosomes. Although SA selection is not the only factor resulting in allelic frequency differences between the sexes, we further show that at least part of the identified X-linked loci is caused by such a sex-specific processes. PMID:27189992

  13. Molecular identification of rare FY*Null and FY*X alleles in Caucasian thalassemic family from Sardinia.

    PubMed

    Manfroi, Silvia; Scarcello, Antonio; Pagliaro, Pasqualepaolo

    2015-10-01

    Molecular genetic studies on Duffy blood group antigens have identified mutations underlying rare FY*Null and FY*X alleles. FY*Null has a high frequency in Blacks, especially from sub-Saharan Africa, while its frequency is not defined in Caucasians. FY*X allele, associated with Fy(a-b+w) phenotype, has a frequency of 2-3.5% in Caucasian people while it is absent in Blacks. During the project of extensive blood group genotyping in patients affected by hemoglobinopathies, we identified FY*X/FY*Null and FY*A/FY*Null genotypes in a Caucasian thalassemic family from Sardinia. We speculate on the frequency of FY*X and FY*Null alleles in Caucasian and Black people; further, we focused on the association of FY*X allele with weak Fyb antigen expression on red blood cells and its identification performing high sensitivity serological typing methods or genotyping.

  14. Association between suicide attempt and a tri-allelic functional polymorphism in serotonin transporter gene promoter in Chinese patients with schizophrenia.

    PubMed

    Hung, Chi-Fa; Lung, For-Wey; Chen, Chien-Hsiun; O'Nions, Elizabeth; Hung, Tai-Hsin; Chong, Mian-Yoon; Wu, Ching-Kuan; Wen, Jung-Kwang; Lin, Pao-Yen

    2011-10-31

    Mounting evidence supports the association between a polymorphism in the serotonin transporter gene promoter region (5-HTTLPR) and suicidal behaviour. Recently, a novel variant of the 5-HTTLPR L allele was identified. The previously unknown L(G) allele produced similar levels of gene expression to the S allele and might have been misclassified as a "high-expression" allele in previous association studies. In this study, we aimed to compare the genotype distribution of the tri-allelic 5-HTTLPR polymorphism in 168 Chinese patients with schizophrenia, including 60 suicide attempters and 108 non-suicide attempters. In our analysis, which used the L(A) dominant model, it was found that the L(A) allele carriers were significantly more likely to have attempted suicide (p=0.035). Further analysis showed this association existed only in male patients (p=0.012). A similar association between the L(A) allele and violent suicide attempt was also found (p=0.028). In addition, logistic regression confirmed our findings that male L(A) allele carriers were at a higher risk of suicide, although the lack of a significant association in females may reflect insufficient power due to small sample size. However, no association was found when we examined the traditional bi-allelic 5-HTTLPR. These findings differ from those reported in Caucasian subjects, where no associations have been reported. Different genetic backgrounds may give rise to different allelic distribution, causing differential effects on the expression of endophenotypes of suicide behaviours. Although the potential influence of multiple comparisons might weaken our findings, our study provides preliminary evidence for a potentially gender-specific role of a "high-expression" 5-HTTLPR polymorphism in susceptibility to suicide in Chinese patients with schizophrenia.

  15. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    PubMed Central

    2012-01-01

    Background Low-molecular-weight glutenin subunits (LMW-GS) strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs) using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work provided new insights into the

  16. Perceptual biases in facial emotion recognition in borderline personality disorder.

    PubMed

    Daros, Alexander R; Uliaszek, Amanda A; Ruocco, Anthony C

    2014-01-01

    Individuals with borderline personality disorder (BPD) have biases in facial emotion recognition, which may underlie many of the core features of this disorder. Although they are known to misperceive specific prototypic expressions of emotion (i.e., those displayed at full emotional intensity), patients with this disorder may also show biases in their perceptions of emotions that are expressed at lower levels of emotional intensity. Females with BPD (n = 31) and IQ- and demographically matched nonpsychiatric controls (n = 28) completed a task assessing the recognition of neutral as well as happy and sad facial expressions at mild, moderate, and prototypic emotional intensities. Whereas patients with BPD were more likely than controls to ascribe an emotion to a neutral facial expression, they did not consistently attribute a more negative or positive valence to these faces as compared with controls. Patients were also more likely to perceive mildly sad facial expressions as more intensely sad, and this finding could not be attributed to depressed mood. The results of this study suggest that perceptions of even subtle expressions of negative affect in faces may be subjectively magnified by individuals with BPD, although there was no consistent evidence for a negative perceptual bias for faces displaying a neutral expression. These biases in facial emotion perception for patients with BPD may contribute to difficulties understanding others' emotional states and to problems engaging effectively in social interactions.

  17. A High-Throughput Data Mining of Single Nucleotide Polymorphisms in Coffea Species Expressed Sequence Tags Suggests Differential Homeologous Gene Expression in the Allotetraploid Coffea arabica1[W

    PubMed Central

    Vidal, Ramon Oliveira; Mondego, Jorge Maurício Costa; Pot, David; Ambrósio, Alinne Batista; Andrade, Alan Carvalho; Pereira, Luiz Filipe Protasio; Colombo, Carlos Augusto; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães

    2010-01-01

    Polyploidization constitutes a common mode of evolution in flowering plants. This event provides the raw material for the divergence of function in homeologous genes, leading to phenotypic novelty that can contribute to the success of polyploids in nature or their selection for use in agriculture. Mounting evidence underlined the existence of homeologous expression biases in polyploid genomes; however, strategies to analyze such transcriptome regulation remained scarce. Important factors regarding homeologous expression biases remain to be explored, such as whether this phenomenon influences specific genes, how paralogs are affected by genome doubling, and what is the importance of the variability of homeologous expression bias to genotype differences. This study reports the expressed sequence tag assembly of the allopolyploid Coffea arabica and one of its direct ancestors, Coffea canephora. The assembly was used for the discovery of single nucleotide polymorphisms through the identification of high-quality discrepancies in overlapped expressed sequence tags and for gene expression information indirectly estimated by the transcript redundancy. Sequence diversity profiles were evaluated within C. arabica (Ca) and C. canephora (Cc) and used to deduce the transcript contribution of the Coffea eugenioides (Ce) ancestor. The assignment of the C. arabica haplotypes to the C. canephora (CaCc) or C. eugenioides (CaCe) ancestral genomes allowed us to analyze gene expression contributions of each subgenome in C. arabica. In silico data were validated by the quantitative polymerase chain reaction and allele-specific combination TaqMAMA-based method. The presence of differential expression of C. arabica homeologous genes and its implications in coffee gene expression, ontology, and physiology are discussed. PMID:20864545

  18. Sequential biases in accumulating evidence

    PubMed Central

    Huggins, Richard; Dogo, Samson Henry

    2015-01-01

    Whilst it is common in clinical trials to use the results of tests at one phase to decide whether to continue to the next phase and to subsequently design the next phase, we show that this can lead to biased results in evidence synthesis. Two new kinds of bias associated with accumulating evidence, termed ‘sequential decision bias’ and ‘sequential design bias’, are identified. Both kinds of bias are the result of making decisions on the usefulness of a new study, or its design, based on the previous studies. Sequential decision bias is determined by the correlation between the value of the current estimated effect and the probability of conducting an additional study. Sequential design bias arises from using the estimated value instead of the clinically relevant value of an effect in sample size calculations. We considered both the fixed‐effect and the random‐effects models of meta‐analysis and demonstrated analytically and by simulations that in both settings the problems due to sequential biases are apparent. According to our simulations, the sequential biases increase with increased heterogeneity. Minimisation of sequential biases arises as a new and important research area necessary for successful evidence‐based approaches to the development of science. © 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. PMID:26626562

  19. Classifying sex biased congenital anomalies

    SciTech Connect

    Lubinsky, M.S.

    1997-03-31

    The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.

  20. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  1. Frequency of null allele of Human Leukocyte Antigen-G (HLA-G) locus in subjects to recurrent miscarriage

    PubMed Central

    Alizadeh, Nazila; Mosaferi, Elnaz; Farzadi, Laya; Majidi, Jafar; Monfaredan, Amir; Yousefi, Bahman; Baradaran, Behzad

    2016-01-01

    Background: Human leukocyte antigen-G (HLA-G) is a non-classical class I molecule highly expressed by extravillous cytotrophoblast cells. Due to a single base pair deletion, its function can be compensated by other isoforms. Investigating the frequency of null allele in Recurrent Miscarriage (RM) subjects could be useful in understanding the relationship between frequency of this allele and RM in a given population. Objective: This study aimed to determine the frequency of HLA-G*0105N null allele and its potential association with down-regulation of HLA-G in subjects with RM. Materials and Methods: Western blotting was used to assess the level of HLA-G protein expression. For investigating the frequency of HLA-G*0105N null allele in RM subjects, PCR-RFLP method was used. Exon 3 of HLA-G gene was amplified by polymerase chain reaction (PCR). Subsequently, PpuM-1 enzyme was employed to digest the PCR products and fragments were analyzed using gel electrophoresis. Results: Digestion using restriction enzyme showed the presence of heterozygous HLA-G*0105N null allele in 10% of the test population. Western blotting results confirmed the decrease in expression of HLA-G in the placental tissue of subjects with RM compared to subjects who could give normal birth. Conclusion: The frequency of heterozygous HLA-G*0105N null allele was high to some extent in subjects with RM. The mutation rate in subjects suggested that there is a significant association between RM and frequency of mutations in this allele. PMID:27525330

  2. Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene.

    PubMed Central

    Primo-Parmo, S. L.; Bartels, C. F.; Wiersema, B.; van der Spek, A. F.; Innis, J. W.; La Du, B. N.

    1996-01-01

    The silent phenotype of human butyrylcholinesterase (BChE), present in most human populations in frequencies of approximately 1/100,000, is characterized by the complete absence of BChE activity or by activity <10% of the average levels of the usual phenotype. Heterogeneity in this phenotype has been well established at the phenotypic level, but only a few silent BCHE alleles have been characterized at the DNA level. Twelve silent alleles of the human butyrylcholinesterase gene (BCHE) have been identified in 17 apparently unrelated patients who were selected by their increased sensitivity to the muscle relaxant succinylcholine. All of these alleles are characterized by single nucleotide substitutions or deletions leading to distinct changes in the structure of the BChE enzyme molecule. Nine of the nucleotide substitutions result in the replacement of single amino acid residues. Three of these variants, BCHE*33C, BCHE*198G, and BCHE*201T, produce normal amounts of immunoreactive but enzymatically inactive BChE protein in the plasma. The other six amino acid substitutions, encoded by BCHE*37S, BCHE*125F, BCHE*170E, BCHE*471R, and BCHE*518L, seem to cause reduced expression of BChE protein, and their role in determining the silent phenotype was confirmed by expression in cell culture. The other four silent alleles, BCHE*271STOP, BCHE*500STOP, BCHE*FS6, and BCHE*I2E3-8G, encode BChES truncated at their C-terminus because of premature stop codons caused by nucleotide substitutions, a frame shift, or altered splicing. The large number of different silent BCHE alleles found within a relatively small number of patients shows that the heterogeneity of the silent BChE phenotype is high. The characterization of silent BChE variants will be useful in the study of the structure/function relationship for this and other closely related enzymes. Images Figure 2 PMID:8554068

  3. A pseudodeficiency allele (D152N) of the human {beta}-glucuronidase gene

    SciTech Connect

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1995-10-01

    We present evidence that a 480G{r_arrow}A transition in the coding region of the {Beta}glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of {Beta}-glucuronidase activity without apparent deleterious consequences. The 48OG{r_arrow}A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G{r_arrow}A change was also present in an unrelated individual with another MPSVII allele who had unusually low {Beta}-glucuronidase activity, but whose clinical symptoms were probably unrelated to {Beta}-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G{r_arrow}A mutation with a PCR method and detected one carrier. Reduced {Beta}-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in {approximately}50% of the enzyme expressed. 25 refs., 3 figs., 3 tabs.

  4. A novel HLA-A allele: A*0257.

    PubMed

    García-Ortiz, J E; Cox, S T; Sandoval-Ramirez, L; Little, A M; Marsh, S G E; Madrigal, J A; Argüello, J R

    2004-01-01

    A novel human leucocyte antigen-A*02 (HLA-A*02) allele was detected by reference strand-mediated conformation analysis (RSCA) of a DNA sample from a Tarahumara individual. Direct sequencing of HLA-A locus polymerase chain reaction products identified a mutation in one of the alleles. Cloning and sequencing confirmed the presence of a new allele, A*0257 which differed from A*0206 by two nucleotides at positions 355 and 362, inducing changes in residues 95 and 97, respectively, within the peptide-binding site. Those changes suggest that allele A*0257 may have resulted from an intralocus recombination event.

  5. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  6. A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae.

    PubMed

    Kim, Hyun Seok; Huh, Juyoung; Riles, Linda; Reyes, Alejandro; Fay, Justin C

    2012-07-01

    Both linkage and linkage disequilibrium mapping provide well-defined approaches to mapping quantitative trait alleles. However, alleles of small effect are particularly difficult to refine to individual genes and causative mutations. Quantitative noncomplementation provides a means of directly testing individual genes for quantitative trait alleles in a fixed genetic background. Here, we implement a genome-wide noncomplementation screen for quantitative trait alleles that affect colony color or size by using the yeast deletion collection. As proof of principle, we find a previously known allele of CYS4 that affects colony color and a novel allele of CTT1 that affects resistance to hydrogen peroxide. To screen nearly 4700 genes in nine diverse yeast strains, we developed a high-throughput robotic plating assay to quantify colony color and size. Although we found hundreds of candidate alleles, reciprocal hemizygosity analysis of a select subset revealed that many of the candidates were false positives, in part the result of background-dependent haploinsufficiency or second-site mutations within the yeast deletion collection. Our results highlight the difficulty of identifying small-effect alleles but support the use of noncomplementation as a rapid means of identifying quantitative trait alleles of large effect. PMID:22870398

  7. Cognitive Bias in Systems Verification

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  8. Observational biases for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Sandford, Emily

    2016-09-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 AU of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  9. Generation of a conditional knockout allele for the NFAT5 gene in mice.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity enhancer element binding protein (TonEBP) plays a crucial role in protection of renal medullary cells against hyperosmotic stress, urinary concentration, the adaptive immune response, and other physiological systems. Since it is also important for development, conventional homozygous-null mutations result in perinatal death, which hinders the analysis of NFAT5 function in specific tissues in vivo. Here we describe the generation of mice with a conditional-null allele, in which loxP sites are inserted around exon 4. Mice harboring the floxed allele (NFAT5(flx) ) were mated to a strain expressing a tamoxifen-inducible derivative of the Cre-recombinase (Cre (+)) under the control of the ubiqitinC promoter. The resultant homozygous conditional knockout mice (Cre (+) NFAT5 (flx/flx) ) are viable, fertile, and show normal expression of NFAT5 and NFAT5 target genes, indicating that the conditional alleles retain their wild-type function. Induction of Cre-mediated recombination by administration of tamoxifen in 8-week-old mice resulted in a decrease in NFAT5 expression of about 70-90% in all tested tissues (renal cortex, renal outer medulla, renal inner medulla, heart, lung, spleen, skeletal muscle). Accordingly, the expression of the NFAT5 target genes aldose reductase and heat shock protein 70 in the renal medulla was also significantly decreased. Mice harboring this conditional knockout allele should be useful in future studies for gaining a better understanding of tissue and cell-type specific functions of NFAT5 in adult animals under physiological and pathophysiological conditions. PMID:25601839

  10. Dual role of vitamin D-binding protein 1F allele in chronic obstructive pulmonary disease susceptibility: a meta-analysis.

    PubMed

    Xiao, M; Wang, T; Zhu, T; Wen, F

    2015-04-17

    Vitamin D-binding protein (DBP), a highly polymorphic serum protein, encoded by GC gene, is important in the development of chronic obstructive pulmonary disease (COPD). This meta-analysis was performed to assess the association between GC polymorphisms (1F, 1S, and 2 alleles) and COPD susceptibility. Published case-control studies were retrieved from the Pubmed, Embase, and China National Knowledge Infrastructure databases. After data extraction, pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Seven case-control studies were included. Pooled effect size showed that GC polymorphisms were not significantly associated with COPD susceptibility. According to ethnicity, the 1F allele was significantly correlated with COPD susceptibility in Asians (1F vs 1S, OR: 1.52, 95%CI: 1.16-2.00 and 1F vs 2, OR: 1.87, 95%CI: 1.42-2.44), indicating that individuals with the 1F allele have an increased risk of COPD compared to those with the 1S or 2 allele. However, the 1F allele was associated with a lower, insignificant risk of COPD than the 1S and 2 alleles in Caucasians (1F vs 1S, OR: 0.83, 95%CI: 0.64-1.08 and 1F vs 2, OR: 0.73, 95%CI: 0.54-0.98). Moreover, no significant association was found for the 1S and 2 alleles in Asians (OR: 1.23, 95%CI: 0.90- 1.69) and Caucasians (OR: 0.89, 95%CI: 0.70-1.13). After excluding each study, the pooled results were robust and no publication bias was observed. We found that the GC 1F allele confers a risk of COPD in Asians, whereas the 1F allele may protect against COPD in Caucasians.

  11. Mono-allelic retrotransposon insertion addresses epigenetic transcriptional repression in human genome

    PubMed Central

    2012-01-01

    Background Retrotransposons have been extensively studied in plants and animals and have been shown to have an impact on human genome dynamics and evolution. Their ability to move within genomes gives retrotransposons to affect genome instability. Methods we examined the polymorphic inserted AluYa5, evolutionary young Alu, in the progesterone receptor gene to determine the effects of Alu insertion on molecular environment. We used mono-allelic inserted cell lines which carry both Alu-present and Alu-absent alleles. To determine the epigenetic change and gene expression, we performed restriction enzyme digestion, Pyrosequencing, and Chromatin Immunoprecipitation. Results We observed that the polymorphic insertion of evolutionally young Alu causes increasing levels of DNA methylation in the surrounding genomic area and generates inactive histone tail modifications. Consequently the Alu insertion deleteriously inactivates the neighboring gene expression. Conclusion The mono-allelic