Science.gov

Sample records for allelic wrky genes

  1. Alternative Splicing of Rice WRKY62 and WRKY76 Transcription Factor Genes in Pathogen Defense.

    PubMed

    Liu, Jiqin; Chen, Xujun; Liang, Xiaoxing; Zhou, Xiangui; Yang, Fang; Liu, Jia; He, Sheng Yang; Guo, Zejian

    2016-06-01

    The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response. PMID:27208272

  2. Alternative Splicing of Rice WRKY62 and WRKY76 Transcription Factor Genes in Pathogen Defense1[OPEN

    PubMed Central

    Chen, Xujun; Zhou, Xiangui; Yang, Fang

    2016-01-01

    The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response. PMID:27208272

  3. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  4. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances.

    PubMed

    Wang, Xiatian; Zeng, Jian; Li, Ying; Rong, Xiaoli; Sun, Jiutong; Sun, Tao; Li, Miao; Wang, Lianzhe; Feng, Ying; Chai, Ruihong; Chen, Mingjie; Chang, Junli; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled 10 unigenes from expressed sequence tags (ESTs) of wheat and designated them as TaWRKY44-TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA), H2O2 and gibberellin (GA). The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC), soluble sugar, proline and superoxide dismutase (SOD) content, as well as higher activities of catalase (CAT) and peroxidase (POD), but less ion leakage (IL), lower contents of malondialdehyde (MDA), and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT, and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS)-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression. PMID:26322057

  5. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. PMID:23644253

  6. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana

    PubMed Central

    Chen, Xiaobo; Lu, Wenjing; Li, Han; Wang, Xiuling; Hao, Lili; Guo, Xingqi

    2015-01-01

    WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41) was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS) staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS) scavenging and the expression of antioxidant genes. PMID:26562293

  7. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  8. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng.

    PubMed

    Nuruzzaman, Mohammed; Cao, Hongzhe; Xiu, Hao; Luo, Tiao; Li, Jijia; Chen, Xianghui; Luo, Junli; Luo, Zhiyong

    2016-02-01

    WRKY proteins belong to a transcription factor (TF) family and play dynamic roles in many plant processes, including plant responses to abiotic and biotic stresses, as well as secondary metabolism. However, no WRKY gene in Panax ginseng C.A. Meyer has been reported to date. In this study, a number of WRKY unigenes from methyl jasmonate (MeJA)-treated adventitious root transcriptome of this species were identified using next-generation sequencing technology. A total of 48 promising WRKY unigenes encoding WRKY proteins were obtained by eliminating wrong and incomplete open reading frame (ORF). Phylogenetic analysis reveals 48 WRKY TFs, including 11 Group I, 36 Group II, and 1 Group III. Moreover, one MeJA-responsive unigene designated as PgWRKY1 was cloned and characterized. It contains an entire ORF of 1077 bp and encodes a polypeptide of 358 amino acid residues. The PgWRKY1 protein contains a single WRKY domain consisting of a conserved amino acid sequence motif WRKYGQK and a C2H2-type zinc-finger motif belonging to WRKY subgroup II-d. Subcellular localization of PgWRKY1-GFP fusion protein in onion and tobacco epidermis cells revealed that PgWRKY1 was exclusively present in the nucleus. Quantitative real-time polymerase chain reaction analysis demonstrated that the expression of PgWRKY1 was relatively higher in roots and lateral roots compared with leaves, stems, and seeds. Importantly, PgWRKY1 expression was significantly induced by salicylic acid, abscisic acid, and NaCl, but downregulated by MeJA treatment. These results suggested that PgWRKY1 might be a multiple stress-inducible gene responding to hormones and salt stresses.

  9. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean

    PubMed Central

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment. PMID:26870047

  10. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s)

    PubMed Central

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V. Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-01-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  11. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  12. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.

  13. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Yanbing, Gu; Zhirui, Ji; Fumei, Chi; Zhuang, Qiao; Chengnan, Xu; Junxiang, Zhang; Zongshan, Zhou; Qinglong, Dong

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles. PMID:27001479

  14. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Yanbing, Gu; Zhirui, Ji; Fumei, Chi; Zhuang, Qiao; Chengnan, Xu; Junxiang, Zhang; Zongshan, Zhou; Qinglong, Dong

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  15. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  16. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  17. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  18. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    PubMed

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  19. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  20. Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses.

    PubMed

    Wei, Kaifa; Chen, Juan; Chen, Yanfeng; Wu, LingJuan; Xie, Daoxin

    2012-07-01

    The WRKY transcription factor family plays crucial roles in biotic responses, such as fungi, bacteria, viruses and nematode infections and insect attacks. In this article, multiple-strategy analyses of the three subgroups were performed in order to gain structural and evolutionary proofs of the overall WRKY family and unravel the functions possessed by each group or subgroup. Thus we analyzed the similarity of WRKY factors between maize and Arabidopsis based on homology modelling. The gene structure and motif analyses of Group II demonstrated that specific motifs existing in the given subgroups may contribute to the functional diversification of WRKY proteins and the two types of conserved intron splice sites suggest their evolutionary conservation. The evolutionary divergence time estimation of Group III proteins indicated that the divergence of Group III occurred during the Neogene period. Further, we focused on the roles of maize WRKYs in pathogen responses based on publicly available microarray experiments. The result suggested that some ZmWRKYs are expressed specifically under the infection of certain fungus, among which some are up-regulated and some are down-regulated, indicating their positive or negative roles in pathogen response. Also, some genes remain unchanged upon fungal infection. Pearson correlation coefficient (PCC) analysis was performed using 62 fungal infection experiments to calculate the correlation between each pair of genes. A PCC value higher than 0.6 was regarded as strong correlation - in these circumstances, ninety pairs of genes showed a strong positive correlation, while fifteen pairs of genes displayed a strong negative correlation. These correlated genes form a co-regulatory network and help us investigate the existence of interactions between WRKY proteins.

  1. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    PubMed

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  2. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution

  3. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution

  4. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones

    PubMed Central

    Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong

    2016-01-01

    Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C2H2-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress–inducible genes responding to both salt and hormones. PMID:26959011

  5. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones.

    PubMed

    Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong

    2016-01-01

    Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C₂H₂-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress-inducible genes responding to both salt and hormones. PMID:26959011

  6. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    PubMed

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells.

  7. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  8. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  9. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.)

    PubMed Central

    Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I–III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  10. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba.

    PubMed

    Liao, Yong-Ling; Shen, Yong-Bao; Chang, Jie; Zhang, Wei-Wei; Cheng, Shui-Yuan; Xu, Feng

    2015-01-01

    WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5'-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter. PMID:26351628

  11. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY

  12. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY

  13. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway.

    PubMed

    Zou, Xiaolu; Seemann, Jeffrey R; Neuman, Dawn; Shen, Qingxi J

    2004-12-31

    The creosote bush (Larrea tridentata) is a xerophytic evergreen C3 shrub thriving in vast arid areas of North America. As the first step toward understanding the molecular mechanisms controlling the drought tolerance of this desert plant, we have isolated a dozen genes encoding transcription factors, including LtWRKY21 that encodes a protein of 314 amino acid residues. Transient expression studies with the GFP-LtWRKY21 fusion construct indicate that the LtWRKY21 protein is localized in the nucleus and is able to activate the promoter of an abscisic acid (ABA)-inducible gene, HVA22, in a dosage-dependent manner. The transactivating activity of LtWRKY21 relies on the C-terminal sequence containing the WRKY domain and a N-terminal motif that is essential for the repression activity of some regulators in ethylene signaling. LtWRKY21 interacts synergistically with ABA and transcriptional activators VP1 and ABI5 to control the expression of the HVA22 promoter. Co-expression of VP1, ABI5, and LtWRKY21 leads to a much higher expression of the HVA22 promoter than does the ABA treatment alone. In contrast, the Lt-WRKY21-mediated transactivation is inhibited by two known negative regulators of ABA signaling: 1-butanol, an inhibitor of phospholipase D, and abi1-1, a dominant negative mutant protein phosphatase. Interestingly, abi1-1 does not block the synergistic effect of LtWRKY21, VP1, and ABI5 co-expression, indicating that LtWRKY21, VP1, and ABI5 may form a complex that functions downstream of ABI1 to control ABA-regulated expression of genes.

  14. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance.

    PubMed

    Li, Shujia; Fu, Qiantang; Chen, Ligang; Huang, Weidong; Yu, Diqiu

    2011-06-01

    Limited information is available regarding the exact function of specific WRKY transcription factors in plant responses to heat stress. We analyzed the roles of WRKY25, WRKY26, and WRKY33, three types of group I WRKY proteins, in the regulation of resistance to heat stress. Expression of WRKY25 and WRKY26 was induced upon treatment with high temperature, whereas WRKY33 expression was repressed. Heat-treated WRKY single mutants exhibited small responses, while wrky25wrky26 and wrky25wrky33 double mutants and the wrky25wrky26wrky33 triple mutants showed substantially increased susceptibility to heat stress, showing reduced germination, decreased survival, and elevated electrolyte leakage, compared with wild-type plants. In contrast, constitutive expression of WRKY25, WRKY26, or WRKY33 enhanced resistance to heat stress. Expression studies of selected heat-defense genes in single, double, and triple mutants, as well as in over-expressing lines, were correlated with their thermotolerance phenotypes and demonstrated that the three WRKY transcription factors modulate transcriptional changes of heat-inducible genes in response to heat treatment. In addition, our findings provided evidence that WRKY25, WRKY26, and WRKY33 were involved in regulation of the heat-induced ethylene-dependent response and demonstrated positive cross-regulation within these three genes. Together, these results indicate that WRKY25, WRKY26, and WRKY33 positively regulate the cooperation between the ethylene-activated and heat shock proteins-related signaling pathways that mediate responses to heat stress; and that these three proteins interact functionally and play overlapping and synergetic roles in plant thermotolerance.

  15. Marker production by PCR amplification with primer pairs from conserved sequences of WRKY genes in chili pepper.

    PubMed

    Kim, Hyoun-Joung; Lee, Heung-Ryul; Han, Jung-Heon; Yeom, Seon-In; Harn, Chee-Hark; Kim, Byung-Dong

    2008-04-30

    Despite increasing awareness of the importance of WRKY genes in plant defense signaling, the locations of these genes in the Capsicum genome have not been established. To develop WRKY-based markers, primer sequences were deduced from the conserved sequences of the DNA binding motif within the WRKY domains of tomato and pepper genes. These primers were derived from upstream and downstream parts of the conserved sequences of the three WRKY groups. Six primer combinations of each WRKY group were tested for polymorphisms between the mapping parents, C. annuum 'CM334' and C. annuum 'Chilsungcho'. DNA fragments amplified by primer pairs deduced from WRKY Group II genes revealed high levels of polymorphism. Using 32 primer pairs to amplify upstream and downstream parts of the WRKY domain of WRKY group II genes, 60 polymorphic bands were detected. Polymorphisms were not detected with primer pairs from downstream parts of WRKY group II genes. Half of these primers were subjected to F2 genotyping to construct a linkage map. Thirty of 41 markers were located evenly spaced on 20 of the 28 linkage groups, without clustering. This linkage map also consisted of 199 AFLP and 26 SSR markers. This WRKY-based marker system is a rapid and simple method for generating sequence-specific markers for plant gene families.

  16. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.).

    PubMed

    Xiaohua, Xiang; Xinru, Wu; Jiangtao, Chao; Minglei, Yang; Fan, Yang; Guo, Chen; Guanshan, Liu; Yuanying, Wang

    2016-09-01

    The coding products of WRKY gene family plays important roles in plant growth and development as well as in various stress responses. They have been identified in various plants, but only few in common tobacco (Nicotiana tabacum L.). In this study, 164 putative WRKY proteins in the common tobacco genome were identified by using the conserved WRKY sequence (PF03106) from the Pfam database. Phylogenetic trees, functional domain analysis, chromosomal localization, subcellular localization and tissue expression patterns were analyzed with the bioinformatics softwares, including DNAMAN 5.0, Weblogo 3, MEGA 5.1, MG2C and MEME. First of all, phylogenetic trees divided all the candidate genes into three subfamilies: Ⅰ, Ⅱ and Ⅲ, respectively, and subfamily Ⅱ could be further divided into five subgroups: group Ⅱ-a, -b, -c, -d and -e. Secondly, the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK followed by a zinc-finger motif. Most of the NtWRKY genes contained 2-5 exons and a highly conserved gene structure. Thirdly, 154 out of 164 NtWRKY genes were distributed with different densities on 24 chromosomes, and each subfamily with different patterns and frequency. The largest number of NtWRKY genes was found on chromosome VI, and only one on chromosome X. Fourthly, the majority of NtWRKY members located in the nucleus, with 74 percent of subfamily Ⅲ in the extracellular matrix. Lastly, the members in the same subfamily had different spatial and temporal expression profiles, with 11 NtWRKY genes in roots, stems and leaves expressed at various levels. The expression of genes NtWRKY26, NtWRKY30 and NtWRKY32 can be induced by Phytophthora nicotianae. Our research thus provides valuable information for NtWRKY gene cloning and functional characterization in common tobacco. PMID:27644745

  17. Non-Cell-Autonomous Regulation of Root Hair Patterning Genes by WRKY75 in Arabidopsis1[W

    PubMed Central

    Rishmawi, Louai; Pesch, Martina; Juengst, Christian; Schauss, Astrid C.; Schrader, Andrea; Hülskamp, Martin

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), root hairs are formed in cell files over the cleft of underlying cortex cells. This pattern is established by a well-known gene regulatory network of transcription factors. In this study, we show that WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE. The WRKY75 protein binds to the CAPRICE promoter in a yeast one-hybrid assay. Binding to the promoter fragment requires an intact WRKY protein-binding motif, the W box. A comparison of the spatial expression of WRKY75 and the localization of the WRKY75 protein revealed that WRKY75 is expressed in the pericycle and vascular tissue and that the WRKY75 RNA or protein moves into the epidermis. PMID:24676857

  18. The WRKY Transcription Factor Genes in Eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.)

    PubMed Central

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-01-01

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs. PMID:25853261

  19. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.).

    PubMed

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-04-07

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.

  20. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by str...

  1. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy.

  2. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    PubMed

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  3. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    PubMed

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation. PMID:26600674

  4. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    SciTech Connect

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  5. Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants

    PubMed Central

    Bahrini, Insaf; Ogawa, Taiichi; Kobayashi, Fuminori; Kawahigashi, Hiroyuki; Handa, Hirokazu

    2011-01-01

    Recently we cloned and characterized the gene for the wheat transcription factor TaWRKY45 and showed that TaWRKY45 was upregulated in response to benzothiadiazole (BTH) and Fusarium head blight (FHB) and that its overexpression conferred enhanced resistance against F. graminearum. To characterize the functional role of TaWRKY45 in the disease resistance of wheat, in the present study we conducted expression analyses of TaWRKY45 with inoculations of powdery mildew and leaf rust and evaluated TaWRKY45-overexpressing wheat plants for resistance to these diseases. TaWRKY45 was upregulated in response to infections with Blumeria graminis, a causal fungus for powdery mildew, and Puccinia triticina, a causal fungus for leaf rust. Constitutive overexpression of the TaWRKY45 transgene conferred enhanced resistance against these two fungi on transgenic wheat plants grown under greenhouse conditions. However, the expression of two resistance-related genes, Pm3 and Lr34, was not induced by the inoculation with powdery mildew in TaWRKY45-overexpressing wheat plants. These results suggest that TaWRKY45 is involved in the defense responses for multiple fungal diseases in wheat but that resistance involving TaWRKY45 differs from at least Pm3 and/or Lr34-related resistance. Our present and previous studies indicate that TaWRKY45 may be potentially utilized to improve a wide range of disease resistance in wheat. PMID:23136468

  6. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    PubMed

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  7. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress

    PubMed Central

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  8. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins

    PubMed Central

    Wang, Min; Vannozzi, Alessandro; Wang, Gang; Zhong, Yan; Corso, Massimiliano; Cavallini, Erika; Cheng, Zong-Ming (Max)

    2015-01-01

    WRKY proteins are a class of transcription factors (TFs) involved in the regulation of various physiological processes, including the plant response to biotic and abiotic stresses. Recent studies in Arabidopsis have revealed that some WRKY TFs interact with a class of proteins designed as VQ proteins because of their typical conserved motif (FxxxVQxLTG). So far, no information is available about the genomic organization and the function of VQ motif-containing protein in grapevine (Vitis vinifera L). In the current study, we analyzed the 12X V1 prediction of the nearly homozygous PN40024 genotype identifying up to 18 predicted VQ genes (VvVQ). VvVQs phylogenetic and bioinformatic analyses indicated that the intron-exon structures and motif distribution are highly divergent between different members of the grapevine VQ family. Moreover, the analysis of the V. vinifera cv. Corvina expression atlas revealed a tissue- and stage-specific expression of several members of the family which also showed a significant correlation with WRKY TFs. Grapevine VQ genes also exhibited altered expression in response to drought, powdery mildew infection, salicylic acid (SA) and ethylene (ETH) treatments. The present study represents the first characterization of VQ genes in a grapevine genotype and it is a pivotal foundation for further studies aimed at functionally characterizing this mostly unknown grapevine multigenic family. PMID:26124765

  9. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family

    PubMed Central

    Wang, Min; Vannozzi, Alessandro; Wang, Gang; Liang, Ying-Hai; Tornielli, Giovanni Battista; Zenoni, Sara; Cavallini, Erika; Pezzotti, Mario; Cheng, Zong-Ming (Max)

    2014-01-01

    The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors (TFs) that are involved in the regulation of various physiological processes, such as development and senescence, and in plant response to many biotic and abiotic stresses. Despite the growing number of studies on the genomic organisation of WRKY gene family in different species, little information is available about this family in grapevine (Vitis vinifera L.). In the present study, a total number of 59 putative grapevine WRKY transcription factors (VvWRKYs) were identified based on the analysis of various genomic and proteomic grapevine databases. According to their structural and phylogentic features, the identified grapevine WRKY transcription factors were classified into three main groups. In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine, the VvWRKYs expression profiles were examined in publicly available microarray data. Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. To also extend our analysis to situations not covered by the arrays and to validate our results, the expression profiles of selected VvWRKYs in response to drought stress, Erysiphe necator (powdery mildew) infection, and hormone treatments (salicilic acid and ethylene), were investigated by quantitative real-time reverse transcription PCR (qRT-PCR). The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine. PMID:26504535

  10. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    PubMed

    Fan, Qingqing; Song, Aiping; Jiang, Jiafu; Zhang, Ting; Sun, Hainan; Wang, Yinjie; Chen, Sumei; Chen, Fadi

    2016-01-01

    WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG) treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway. PMID:26938878

  11. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes

    PubMed Central

    Fan, Qingqing; Song, Aiping; Jiang, Jiafu; Zhang, Ting; Sun, Hainan; Wang, Yinjie; Chen, Sumei; Chen, Fadi

    2016-01-01

    WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG) treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway. PMID:26938878

  12. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes.

  13. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. PMID:25481634

  14. Genome-wide Identification of WRKY Genes in the Desert Poplar Populus euphratica and Adaptive Evolution of the Genes in Response to Salt Stress

    PubMed Central

    Ma, Jianchao; Lu, Jing; Xu, Jianmei; Duan, Bingbing; He, Xiaodong; Liu, Jianquan

    2015-01-01

    WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species Populus euphratica, which is highly tolerant of salt stress. In this study, we identified 107 PeWRKY genes from the P. euphratica genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener Populus trichocarpa. Ten PeWRKY genes are specific to P. euphratica, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios>1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the WRKY gene family may have played an important role in the acquisition of high salt tolerance by P. euphratica. PMID:26309388

  15. The Mg-Chelatase H Subunit of Arabidopsis Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition[W][OA

    PubMed Central

    Shang, Yi; Yan, Lu; Liu, Zhi-Qiang; Cao, Zheng; Mei, Chao; Xin, Qi; Wu, Fu-Qing; Wang, Xiao-Fang; Du, Shu-Yuan; Jiang, Tao; Zhang, Xiao-Feng; Zhao, Rui; Sun, Hai-Li; Liu, Rui; Yu, Yong-Tao; Zhang, Da-Peng

    2010-01-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans the chloroplast envelope and that the cytosolic C terminus of ABAR interacts with a group of WRKY transcription factors (WRKY40, WRKY18, and WRKY60) that function as negative regulators of ABA signaling in seed germination and postgermination growth. WRKY40, a central negative regulator, inhibits expression of ABA-responsive genes, such as ABI5. In response to a high level of ABA signal that recruits WRKY40 from the nucleus to the cytosol and promotes ABAR–WRKY40 interaction, ABAR relieves the ABI5 gene of inhibition by repressing WRKY40 expression. These findings describe a unique ABA signaling pathway from the early signaling events to downstream gene expression. PMID:20543028

  16. Downstream targets of WRKY33.

    PubMed

    Petersen, Klaus; Fiil, Berthe Katrine; Mundy, John; Petersen, Morten

    2008-11-01

    Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. In a recent publication we show that MPK4 and its substrate MKS1 interact with WRKY33 in vivo, and that WRKY33 is released from complexes with MPK4 upon infection. Transcriptome analysis of a wrky33 loss-of-function mutant identified a subset of defense-related genes as putative targets of WRKY33. These genes include PAD3 and CYP71A13, which encode cytochrome P450 monoxygenases required for synthesis of the antimicrobial phytoalexin camalexin. Chromatin immunoprecipitation confirmed that WRKY33 bound the promoter of PAD3 when plants were inoculated with pathogens. Here we further discuss the involvement of two other targets of WRKY33, NUDT6 and ROF2 in defense responses against invading pathogens.

  17. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes

    PubMed Central

    Ye, Yu-Jie; Xiao, Yun-Yi; Han, Yan-Chao; Shan, Wei; Fan, Zhong-Qi; Xu, Qun-Gang; Kuang, Jian-Fei; Lu, Wang-Jin; Lakshmanan, Prakash; Chen, Jian-Ye

    2016-01-01

    Most harvested fruits and vegetables are stored at low temperature but many of them are highly sensitive to chilling injury. Jasmonic acid (JA), a plant hormone associated with various stress responses, is known to reduce chilling injury in fruits. However, little is known about the transcriptional regulation of JA biosynthesis in relation to cold response of fruits. Here, we show the involvement of a Group I WRKY transcription factor (TF) from banana fruit, MaWRKY26, in regulating JA biosynthesis. MaWRKY26 was found to be nuclear-localized with transcriptional activation property. MaWRKY26 was induced by cold stress or by methyl jasmonate (MeJA), which enhances cold tolerance in banana fruit. More importantly, MaWRKY26 transactivated JA biosynthetic genes MaLOX2, MaAOS3 and MaOPR3 via binding to their promoters. Further, MaWRKY26 physically interacted with a VQ motif-containing protein MaVQ5, and the interaction attenuated MaWRKY26-induced transactivation of JA biosynthetic genes. These results strongly suggest that MaVQ5 might act as a repressor of MaWRKY26 in activating JA biosynthesis. Taken together, our findings provide new insights into the transcriptional regulation of JA biosynthesis in response to cold stress and a better understanding of the molecular aspects of chilling injury in banana fruit. PMID:27004441

  18. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci...

  19. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A.

    PubMed

    Xu, Yan-Hua; Wang, Jia-Wei; Wang, Shui; Wang, Jian-Ying; Chen, Xiao-Ya

    2004-05-01

    The cotton (+)-delta-cadinene synthase (CAD1), a sesquiterpene cyclase, catalyzes a branch-point step leading to biosynthesis of sesquiterpene phytoalexins, including gossypol. CAD1-A is a member of CAD1 gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated several WRKY cDNAs from Gossypium arboreum. One of them, GaWRKY1, encodes a protein containing a single WRKY domain and a putative N-terminal Leu zipper. Similar to genes encoding enzymes of cotton sesquiterpene pathway, GaWRKY1 was down-regulated in a glandless cotton cultivar that contained much less gossypol. GaWRKY1 showed a temporal and spatial pattern of expression comparable to that of CAD1-A in various aerial organs examined, including sepal, stigma, anther, and developing seeds. In suspension cells, expression of both GaWRKY1 and CAD1-A genes and biosynthesis of sesquiterpene aldehydes were strongly induced by a fungal elicitor preparation and methyl jasmonate. GaWRKY1 interacted with the 3x W-box derived from CAD1-A promoter in yeast (Saccharomyces cerevisiae) one-hybrid system and in vitro. Furthermore, in transgenic Arabidopsis plants, overexpression of GaWRKY1 highly activated the CAD1-A promoter, and transient assay in tobacco (Nicotiana tabacum) leaves demonstrated that W-box was required for this activation. These results suggest that GaWRKY1 participates in regulation of sesquiterpene biosynthesis in cotton, and CAD1-A is a target gene of this transcription factor. PMID:15133151

  20. The WRKY45-2 WRKY13 WRKY42 Transcriptional Regulatory Cascade Is Required for Rice Resistance to Fungal Pathogen1[OPEN

    PubMed Central

    Cheng, Hongtao; Liu, Hongbo; Deng, Yong; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2015-01-01

    Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae. PMID:25624395

  1. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae.

    PubMed

    Kaliyappan, Raja; Viswanathan, Sriram; Suthanthiram, Backiyarani; Subbaraya, Uma; Marimuthu Somasundram, Saraswathi; Muthu, Mayilvaganan

    2016-01-01

    The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a

  2. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae

    PubMed Central

    Suthanthiram, Backiyarani; Subbaraya, Uma; Marimuthu Somasundram, Saraswathi; Muthu, Mayilvaganan

    2016-01-01

    The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a

  3. Genome-Wide Analysis of the Expression of WRKY Family Genes in Different Developmental Stages of Wild Strawberry (Fragaria vesca) Fruit.

    PubMed

    Zhou, Heying; Li, Yuxuan; Zhang, Qing; Ren, Suyue; Shen, Yuanyue; Qin, Ling; Xing, Yu

    2016-01-01

    WRKY proteins play important regulatory roles in plant developmental processes such as senescence, trichome initiation and embryo morphogenesis. In strawberry, only FaWRKY1 (Fragaria × ananassa) has been characterized, leaving numerous WRKY genes to be identified and their function characterized. The publication of the draft genome sequence of the strawberry genome allowed us to conduct a genome-wide search for WRKY proteins in Fragaria vesca, and to compare the identified proteins with their homologs in model plants. Fifty-nine FvWRKY genes were identified and annotated from the F. vesca genome. Detailed analysis, including gene classification, annotation, phylogenetic evaluation, conserved motif determination and expression profiling, based on RNA-seq data, were performed on all members of the family. Additionally, the expression patterns of the WRKY genes in different fruit developmental stages were further investigated using qRT-PCR, to provide a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in strawberry. PMID:27138272

  4. Genome-Wide Analysis of the Expression of WRKY Family Genes in Different Developmental Stages of Wild Strawberry (Fragaria vesca) Fruit

    PubMed Central

    Zhang, Qing; Ren, Suyue; Shen, Yuanyue; Qin, Ling; Xing, Yu

    2016-01-01

    WRKY proteins play important regulatory roles in plant developmental processes such as senescence, trichome initiation and embryo morphogenesis. In strawberry, only FaWRKY1 (Fragaria × ananassa) has been characterized, leaving numerous WRKY genes to be identified and their function characterized. The publication of the draft genome sequence of the strawberry genome allowed us to conduct a genome-wide search for WRKY proteins in Fragaria vesca, and to compare the identified proteins with their homologs in model plants. Fifty-nine FvWRKY genes were identified and annotated from the F. vesca genome. Detailed analysis, including gene classification, annotation, phylogenetic evaluation, conserved motif determination and expression profiling, based on RNA-seq data, were performed on all members of the family. Additionally, the expression patterns of the WRKY genes in different fruit developmental stages were further investigated using qRT-PCR, to provide a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in strawberry. PMID:27138272

  5. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.

    PubMed

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Kumar, Arvind; Leung, Hei; Kikuchi, Shoshi

    2014-01-01

    The OsWRKY genes play various roles in developmental processes and in stress-related responses in plants. We describe the rice OsWRKY gene expression profiles (GEPs) under control, hormone-treated, and water-deficit treatment (WDT) conditions. The preferential expression of 3 genes was observed in specific tissues, suggesting that these genes may play important roles in the root and panicle stages of growth. To investigate the GEPs in the root and panicle of 3 rice genotypes, we used 2 near-isogenic rice lines from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water (FTSW) for severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Affymetrix and Agilent was performed on all the tissues. The majority of the OsWRKY genes that were activated were activated in the drought-tolerant IR77298-14-1-2-B-10 line but not in the drought-susceptible IR77298-14-1-2-B-13 or IR64 lines. In IR77298-14-1-2-B-10, non-redundant genes (9) were very specific in their higher expression levels. Approximately 27 and 43% more genes from group III and subgroup IV-a, respectively, were activated in the panicle during severe stress than during the control treatment. We found 5 OsWRKY genes that introgressed in the drought-tolerant IR77298-14-1-2-B-10 line. Os01g43650 was up-regulated in the root under both WDTs and in the panicle under mild stress. OsWRKY up-regulated genes with tissue-specific expression patterns that contained at least 3 cis-elements in the tolerant line. These results provide a useful reference for the cloning of candidate genes for further functional analysis.

  6. [Expression profiles of AtWRKY25, AtWRKY26 and AtWRKY33 under abiotic stresses.].

    PubMed

    Fu, Qian-Tang; Yu, Di-Qiu

    2010-08-01

    The transcription factor WRKY family is one type of key regulatory components of plant development and defense against stress factors. The expression profiles of three AtWRKY genes under abiotic stresses were analyzed by Northern blotting analysis. The expression of AtWRKY25, AtWRKY26, and AtWRKY33 changed during stress treatments including thermal factors, NaCl, abscisic acid (ABA) and osmotic stress, and significantly under NaCl and cold treatments, suggesting a specific role of the three AtWRKYs in adaptation to environmental stresses in plants. We also found that the three AtWRKY genes showed distinct expression patterns under thermal stresses. AtWRKY25 and AtWRKY26 were gradually induced during heat and cold treatments, whereas AtWRKY33 was suppressed by heat treatment and induced rapidly during cold stress, indicating that the three AtWRKYs may play different roles in response to temperature factors. In addition, we analyzed the sequence of the promoters with bioinformatics approach, and some cis-elements involved in abiotic stresses and hormonal responses were revealed. The results provided important information for studying biological functions of three AtWRKY genes.

  7. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development.

    PubMed

    Yang, Yan; Chi, Yingjun; Wang, Ze; Zhou, Yuan; Fan, Baofang; Chen, Zhixiang

    2016-08-01

    WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to biotic and abiotic stresses. GmWRKY58 and GmWRKY76 are both localized to the nucleus, recognize the TTGACC W-box sequence with a high specificity, and function as transcriptional activators in both yeast and plant cells. Expression of GmWRKY58 and GmWRKY76 was detected at low levels in roots, stem, leaves, flowers, and pods. Expression of the two genes in leaves increased substantially during the first 4 weeks after germination but steadily declined thereafter with increased age. To determine their biological functions, transgenic Arabidopsis plants were generated overexpressing GmWRKY58 or GmWRKY76 Unlike AtWRKY70 and AtWRKY54, overexpression of GmWRKY58 or GmWRKY76 had no effect on disease resistance and only small effects on abiotic stress tolerance of the transgenic plants. Significantly, transgenic Arabidopsis plants overexpressing GmWRKY58 or GmWRKY76 flowered substantially earlier than control plants and this early flowering phenotype was associated with increased expression of several flowering-promoting genes, some of which are enriched in W-box sequences in their promoters recognized by GmWRKY58 and GmWRKY76. In addition, virus-induced silencing of GmWRKY58 and GmWRKY76 in soybean resulted in stunted plants with reduced leaf expansion and terminated stem growth. These results provide strong evidence for functional divergence among close structural homologs of WRKY proteins from different plant species. PMID:27335454

  8. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development.

    PubMed

    Yang, Yan; Chi, Yingjun; Wang, Ze; Zhou, Yuan; Fan, Baofang; Chen, Zhixiang

    2016-08-01

    WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to biotic and abiotic stresses. GmWRKY58 and GmWRKY76 are both localized to the nucleus, recognize the TTGACC W-box sequence with a high specificity, and function as transcriptional activators in both yeast and plant cells. Expression of GmWRKY58 and GmWRKY76 was detected at low levels in roots, stem, leaves, flowers, and pods. Expression of the two genes in leaves increased substantially during the first 4 weeks after germination but steadily declined thereafter with increased age. To determine their biological functions, transgenic Arabidopsis plants were generated overexpressing GmWRKY58 or GmWRKY76 Unlike AtWRKY70 and AtWRKY54, overexpression of GmWRKY58 or GmWRKY76 had no effect on disease resistance and only small effects on abiotic stress tolerance of the transgenic plants. Significantly, transgenic Arabidopsis plants overexpressing GmWRKY58 or GmWRKY76 flowered substantially earlier than control plants and this early flowering phenotype was associated with increased expression of several flowering-promoting genes, some of which are enriched in W-box sequences in their promoters recognized by GmWRKY58 and GmWRKY76. In addition, virus-induced silencing of GmWRKY58 and GmWRKY76 in soybean resulted in stunted plants with reduced leaf expansion and terminated stem growth. These results provide strong evidence for functional divergence among close structural homologs of WRKY proteins from different plant species.

  9. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development

    PubMed Central

    Yang, Yan; Chi, Yingjun; Wang, Ze; Zhou, Yuan; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to biotic and abiotic stresses. GmWRKY58 and GmWRKY76 are both localized to the nucleus, recognize the TTGACC W-box sequence with a high specificity, and function as transcriptional activators in both yeast and plant cells. Expression of GmWRKY58 and GmWRKY76 was detected at low levels in roots, stem, leaves, flowers, and pods. Expression of the two genes in leaves increased substantially during the first 4 weeks after germination but steadily declined thereafter with increased age. To determine their biological functions, transgenic Arabidopsis plants were generated overexpressing GmWRKY58 or GmWRKY76. Unlike AtWRKY70 and AtWRKY54, overexpression of GmWRKY58 or GmWRKY76 had no effect on disease resistance and only small effects on abiotic stress tolerance of the transgenic plants. Significantly, transgenic Arabidopsis plants overexpressing GmWRKY58 or GmWRKY76 flowered substantially earlier than control plants and this early flowering phenotype was associated with increased expression of several flowering-promoting genes, some of which are enriched in W-box sequences in their promoters recognized by GmWRKY58 and GmWRKY76. In addition, virus-induced silencing of GmWRKY58 and GmWRKY76 in soybean resulted in stunted plants with reduced leaf expansion and terminated stem growth. These results provide strong evidence for functional divergence among close structural homologs of WRKY proteins from different plant species. PMID:27335454

  10. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses.

    PubMed

    Jiang, Yuanqing; Deyholos, Michael K

    2009-01-01

    Previous microarray analyses of Arabidopsis roots identified two closely related WRKY transcription factors (WRKY25 and WRKY33) among the transcripts that increased in abundance following treatment with NaCl. Here, we report further characterization of these genes, which we found to be inducible by a variety of abiotic stresses in an SOS-pathway independent manner, although WRKY33 induction was dependent on ABA signaling. Transcripts of both genes were detected in roots and leaves, while specific patterns of enrichment were observed in stems and floral buds for WRKY25 and WRKY33, respectively. We also identified upstream intergenic regions from each gene that were sufficient to confer stress-inducible expression on a reporter gene. However, the stress sensitivity of wrky25 null mutants did not differ from wild-type under any assay condition, while wrky33 null mutants and wrky25wrky33 double mutants showed only a moderate increase in NaCl-sensitivity, suggesting functional redundancy with other transcription factors. Nevertheless, overexpression of WRKY25 or WRKY33 was sufficient to increase Arabidopsis NaCl tolerance, while increasing sensitivity to ABA. Through microarray analyses of relevant genotypes, we identified 31 and 208 potential downstream targets of WRKY25 and WRKY33, respectively, most of which contained a W-box in their upstream regions.

  11. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    PubMed

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis. PMID:27019084

  12. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling

    PubMed Central

    Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis. PMID:27019084

  13. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses.

    PubMed

    Zhou, Jie; Wang, Jian; Zheng, Zuyu; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2015-08-01

    Arabidopsis AtWRKY33 plays a critical role in broad plant stress responses. Whether there are evolutionarily conserved homologues of AtWRKY33 in other plants and what make AtWRKY33 such an important protein in plant stress responses are largely unknown. We compared AtWRKY33 with its close homologues to identify AtWRKY33-specific regulatory and structural elements, which were then functionally analysed through complementation. We also performed phylogenetic analysis to identify structural AtWRKY33 homologues in other plants and functionally analysed two tomato homologues through complementation and gene silencing. AtWRKY33 has an extended C-terminal domain (CTD) absent in its close homologue AtWRKY25. Both its CTD and the strong pathogen/stress-responsive expression of AtWRKY33 are necessary to complement the critical phenotypes of atwrky33. Structural AtWRKY33 homologues were identified in both dicot and monocot plants including two (SlWRKY33A and SlWRKY33B) in tomato. Molecular complementation and gene silencing confirmed that the two tomato WRKY genes play a critical role similar to that of AtWRKY33 in plant stress responses. Thus, WRKY33 proteins are evolutionarily conserved with a critical role in broad plant stress responses. Both its CTD and promoter are critical for the uniquely important roles of WRKY33 in plant stress responses.

  14. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses

    PubMed Central

    Zhou, Jie; Wang, Jian; Zheng, Zuyu; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2015-01-01

    Arabidopsis AtWRKY33 plays a critical role in broad plant stress responses. Whether there are evolutionarily conserved homologues of AtWRKY33 in other plants and what make AtWRKY33 such an important protein in plant stress responses are largely unknown. We compared AtWRKY33 with its close homologues to identify AtWRKY33-specific regulatory and structural elements, which were then functionally analysed through complementation. We also performed phylogenetic analysis to identify structural AtWRKY33 homologues in other plants and functionally analysed two tomato homologues through complementation and gene silencing. AtWRKY33 has an extended C-terminal domain (CTD) absent in its close homologue AtWRKY25. Both its CTD and the strong pathogen/stress-responsive expression of AtWRKY33 are necessary to complement the critical phenotypes of atwrky33. Structural AtWRKY33 homologues were identified in both dicot and monocot plants including two (SlWRKY33A and SlWRKY33B) in tomato. Molecular complementation and gene silencing confirmed that the two tomato WRKY genes play a critical role similar to that of AtWRKY33 in plant stress responses. Thus, WRKY33 proteins are evolutionarily conserved with a critical role in broad plant stress responses. Both its CTD and promoter are critical for the uniquely important roles of WRKY33 in plant stress responses. PMID:25969555

  15. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    PubMed

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. PMID:27268959

  16. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    PubMed

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense.

  17. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice

    PubMed Central

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-01-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. PMID:26663563

  18. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco.

    PubMed

    Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying

    2012-04-01

    WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.

  19. Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    PubMed Central

    Meerow, Alan W.; Noblick, Larry; Borrone, James W.; Couvreur, Thomas L. P.; Mauro-Herrera, Margarita; Hahn, William J.; Kuhn, David N.; Nakamura, Kyoko; Oleas, Nora H.; Schnell, Raymond J.

    2009-01-01

    Background The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the “abominable mysteries” of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. Methodology/Principal Findings We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. Conclusions/Significance This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for

  20. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling

    PubMed Central

    Muthamilarasan, Mehanathan; Bonthala, Venkata S.; Khandelwal, Rohit; Jaishankar, Jananee; Shweta, Shweta; Nawaz, Kashif; Prasad, Manoj

    2015-01-01

    Transcription factors (TFs) are major players in stress signaling and constitute an integral part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analyzed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II, and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity) and hormone treatments (abscisic acid, salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signaling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signaling. PMID:26635818

  1. A gene feature enumeration approach for describing HLA allele polymorphism.

    PubMed

    Mack, Steven J

    2015-12-01

    HLA genotyping via next generation sequencing (NGS) poses challenges for the use of HLA allele names to analyze and discuss sequence polymorphism. NGS will identify many new synonymous and non-coding HLA sequence variants. Allele names identify the types of nucleotide polymorphism that define an allele (non-synonymous, synonymous and non-coding changes), but do not describe how polymorphism is distributed among the individual features (the flanking untranslated regions, exons and introns) of a gene. Further, HLA alleles cannot be named in the absence of antigen-recognition domain (ARD) encoding exons. Here, a system for describing HLA polymorphism in terms of HLA gene features (GFs) is proposed. This system enumerates the unique nucleotide sequences for each GF in an HLA gene, and records these in a GF enumeration notation that allows both more granular dissection of allele-level HLA polymorphism and the discussion and analysis of GFs in the absence of ARD-encoding exon sequences.

  2. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    PubMed

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  3. WRKY13 acts in stem development in Arabidopsis thaliana.

    PubMed

    Li, Wei; Tian, Zhaoxia; Yu, Diqiu

    2015-07-01

    Stems are important for plants to grow erectly. In stems, sclerenchyma cells must develop secondary cell walls to provide plants with physical support. The secondary cell walls are mainly composed of lignin, xylan and cellulose. Deficiency of overall stem development could cause weakened stems. Here we prove that WRKY13 acts in stem development. The wrky13 mutants take on a weaker stem phenotype. The number of sclerenchyma cells, stem diameter and the number of vascular bundles were reduced in wrky13 mutants. Lignin-synthesis-related genes were repressed in wrky13 mutants. Chromatin immunoprecipitation assays proved that WRKY13 could directly bind to the promoter of NST2. Taken together, we proposed that WRKY13 affected the overall development of stem. Identification of the role of WRKY13 may help to resolve agricultural problems caused by weaker stems.

  4. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants.

    PubMed

    Yoda, H; Ogawa, M; Yamaguchi, Y; Koizumi, N; Kusano, T; Sano, H

    2002-04-01

    In order to identify genes that are involved in the defense reaction against pathogen attack, we screened for examples that are regulated during the hypersensitive response (HR) to infection by tobacco mosaic virus (TMV) of tobacco ( Nicotiana tabacum cv. Xanthi nc) carrying the N gene, which confers resistance to TMV. Among seven genes initially identified by fluorescent differential display, one clone was further characterized because its transcripts accumulated rapidly and transiently after the onset of HR. Its full-length cDNA of 1346 bp encoded a polypeptide consisting of 258 amino acids. The deduced protein contained a single WRKY domain, a Cys(2)His(2) zinc-finger motif and a leucine-zipper motif, showing high similarity to WIZZ, a member of the family of WRKY transcription factors in tobacco. The gene was thus designated TIZZ. A GFP-TIZZ fusion protein was found to localize to the nucleus upon introduction into epidermal cells of onion. Bacterially expressed TIZZ was able to bind to the W-box (TTGAC) element that is recognized by other WRKY proteins, but transactivation assays showed it to be unable to activate reporter gene expression by itself. TIZZ transcripts were induced in TMV-infected nahG transgenic tobacco plants, in which salicylic acid fails to accumulate. Neither exogenously applied salicylic acid nor mechanical wounding induced TIZZ transcript accumulation. These results indicate the presence of salicylic acid-independent pathways for HR signal transduction, in which a novel type of WRKY protein(s) may play a critical role for the activation of defense. PMID:11976958

  5. How the Number of Alleles Influences Gene Expression

    NASA Astrophysics Data System (ADS)

    Hat, Beata; Paszek, Pawel; Kimmel, Marek; Piechor, Kazimierz; Lipniacki, Tomasz

    2007-07-01

    The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.

  6. Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles.

    PubMed

    Lachance, Joseph; Tishkoff, Sarah A

    2014-10-01

    Gene conversion results in the nonreciprocal transfer of genetic information between two recombining sequences, and there is evidence that this process is biased toward G and C alleles. However, the strength of GC-biased gene conversion (gBGC) in human populations and its effects on hereditary disease have yet to be assessed on a genomic scale. Using high-coverage whole-genome sequences of African hunter-gatherers, agricultural populations, and primate outgroups, we quantified the effects of GC-biased gene conversion on population genomic data sets. We find that genetic distances (FST and population branch statistics) are modified by gBGC. In addition, the site frequency spectrum is left-shifted when ancestral alleles are favored by gBGC and right-shifted when derived alleles are favored by gBGC. Allele frequency shifts due to gBGC mimic the effects of natural selection. As expected, these effects are strongest in high-recombination regions of the human genome. By comparing the relative rates of fixation of unbiased and biased sites, the strength of gene conversion was estimated to be on the order of Nb ≈ 0.05 to 0.09. We also find that derived alleles favored by gBGC are much more likely to be homozygous than derived alleles at unbiased SNPs (+42.2% to 62.8%). This results in a curse of the converted, whereby gBGC causes substantial increases in hereditary disease risks. Taken together, our findings reveal that GC-biased gene conversion has important population genetic and public health implications.

  7. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.

    PubMed

    Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian

    2016-07-01

    Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. PMID:27208259

  8. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.

    PubMed

    Pandey, Shree P; Roccaro, Mario; Schön, Moritz; Logemann, Elke; Somssich, Imre E

    2010-12-01

    The two closely related Arabidopsis transcription factors, WRKY18 and WRKY40, play a major and partly redundant role in PAMP-triggered basal defense. We monitored the transcriptional reprogramming induced by the powdery mildew fungus, Golovinomyces orontii, during early stages of infection with respect to the role of WRKY18/40. Expression of >1300 Arabidopsis genes was differentially altered already 8 hours post infection (hpi), indicating rapid pre-penetration signaling between the pathogen and the host. We found that WRKY18/40 negatively affects pre-invasion host defenses and deduced a subset of genes that appear to be under WRKY18/40 control. A mutant lacking the WRKY18/40 repressors executes pathogen-dependent but exaggerated expression of some defense genes leading, for example, to strongly elevated levels of camalexin. This implies that WRKY18/40 act in a feedback repression system controlling basal defense. Moreover, using chromatin immunoprecipitation (ChIP), direct in vivo interactions of WRKY40 to promoter regions containing W box elements of the regulatory gene EDS1, the AP2-type transcription factor gene RRTF1 and to JAZ8, a member of the JA-signaling repressor gene family were demonstrated. Our data support a model in which WRKY18/40 negatively modulate the expression of positive regulators of defense such as CYP71A13, EDS1 and PAD4, but positively modulate the expression of some key JA-signaling genes by partly suppressing the expression of JAZ repressors.

  9. Allelic exclusion of immunoglobulin genes: models and mechanisms.

    PubMed

    Vettermann, Christian; Schlissel, Mark S

    2010-09-01

    The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.

  10. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    PubMed Central

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar. PMID:26819184

  11. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  12. Silencing of genes and alleles by RNAi in Anopheles gambiae.

    PubMed

    Lamacchia, Marina; Clayton, John R; Wang-Sattler, Rui; Steinmetz, Lars M; Levashina, Elena A; Blandin, Stéphanie A

    2013-01-01

    Anopheles gambiae mosquitoes are the major vectors of human malaria parasites. However, mosquitoes are not passive hosts for parasites, actively limiting their development in vivo. Our current understanding of the mosquito antiparasitic response is mostly based on the phenotypic analysis of gene knockdowns obtained by RNA interference (RNAi), through the injection or transfection of long dsRNAs in adult mosquitoes or cultured cells, respectively. Recently, RNAi has been extended to silence specifically one allele of a given gene in a heterozygous context, thus allowing to compare the contribution of different alleles to a phenotype in the same genetic background. PMID:22990777

  13. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement.

    PubMed

    Kang, Xiaojun; Li, Wei; Zhou, Yun; Ni, Min

    2013-01-01

    Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. Short hypocotyl under BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. PMID:23505389

  14. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  15. The WRKY transcription factor family and senescence in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  16. Simultaneous inference of haplotypes and alleles at a causal gene.

    PubMed

    Larribe, Fabrice; Dupont, Mathieu J; Boucher, Gabrielle

    2015-01-01

    We present a methodology which jointly infers haplotypes and the causal alleles at a gene influencing a given trait. Often in human genetic studies, the available data consists of genotypes (series of genetic markers along the chromosomes) and a phenotype. However, for many genetic analyses, one needs haplotypes instead of genotypes. Our methodology is not only able to estimate haplotypes conditionally on the disease status, but is also able to infer the alleles at the unknown disease locus. Some applications of our methodology are in genetic mapping and in genetic counseling.

  17. The WRKY family of transcription factors in rice and Arabidopsis and their origins.

    PubMed

    Wu, Kun-Lu; Guo, Ze-Jian; Wang, Hai-Hua; Li, Jing

    2005-02-28

    WRKY transcription factors, originally isolated from plants contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. Evidence is accumulating to suggest that the WRKY proteins play significant roles in responses to biotic and abiotic stresses, and in development. In this research, we identified 102 putative WRKY genes from the rice genome and compared them with those from Arabidopsis. The WRKY genes from rice and Arabidopsis were divided into three groups with several subgroups on the basis of phylogenies and the basic structure of the WRKY domains (WDs). The phylogenetic trees generated from the WDs and the genes indicate that the WRKY gene family arose during evolution through duplication and that the dramatic amplification of rice WRKY genes in group III is due to tandem and segmental gene duplication compared with those of Arabidopsis. The result suggests that some of the rice WRKY genes in group III are evolutionarily more active than those in Arabidopsis, and may have specific roles in monocotyledonous plants. Further, it was possible to identify the presence of WRKY-like genes in protists (Giardia lamblia and Dictyostelium discoideum) and green algae Chlamydomonas reinhardtii through database research, demonstrating the ancient origin of the gene family. The results obtained by alignments of the WDs from different species and other analysis imply that domain gain and loss is a divergent force for expansion of the WRKY gene family, and that a rapid amplification of the WRKY genes predate the divergence of monocots and dicots. On the basis of these results, we believe that genes encoding a single WD may have been derived from the C-terminal WD of the genes harboring two WDs. The conserved intron splicing positions in the WDs of higher plants offer clues about WRKY gene evolution, annotation, and classification.

  18. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    PubMed Central

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  19. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance.

    PubMed

    Li, Peiling; Song, Aiping; Gao, Chunyan; Jiang, Jiafu; Chen, Sumei; Fang, Weimin; Zhang, Fei; Chen, Fadi

    2015-10-01

    Members of the large WRKY transcription factor family are responsible for the regulation of plant growth, development and the stress response. Here, five WRKY members were isolated from chrysanthemum. They each contained a single WRKY domain and a C2H2 zinc finger motif, so were classified into group II. Transient expression experiments demonstrated that all five were expressed in the nucleus, although CmWRKY42 was also expressed in the cytoplasm. When expressed heterologously in yeast, the products of CmWRKY22 and CmWRKY48 exhibited transactivation activity, while those of CmWRKY21, CmWRKY40 and CmWRKY42 did not. The transcription of the five CmWRKY genes was profiled when the plants were challenged with a variety of abiotic and biotic stress agents, as well as being treated with various phytohormones. CmWRKY21 proved to be markedly induced by salinity stress, and suppressed by high temperature exposure; CmWRKY22 was induced by high temperature exposure; CmWRKY40 was highly induced by salinity stress, and treatment with either abscisic acid (ABA) or methyl jasmonate (MeJA); CmWRKY42 was up-regulated by salinity stress, low temperature, ABA and MeJA treatment and aphid infestation; CmWRKY48 was induced by drought stress, ABA and MeJA treatment and aphid infestation. The function of CmWRKY48 was further investigated by over-expressing it transgenically. The constitutive expression of this transcription factor inhibited the aphids' population growth capacity, suggesting that it may represent an important component of the plant's defense machinery against aphids. PMID:26184088

  20. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum.

    PubMed

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  1. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum

    PubMed Central

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  2. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKY(Y115E) phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  3. Gene-based rare allele analysis identified a risk gene of Alzheimer's disease.

    PubMed

    Kim, Jong Hun; Song, Pamela; Lim, Hyunsun; Lee, Jae-Hyung; Lee, Jun Hong; Park, Sun Ah

    2014-01-01

    Alzheimer's disease (AD) has a strong propensity to run in families. However, the known risk genes excluding APOE are not clinically useful. In various complex diseases, gene studies have targeted rare alleles for unsolved heritability. Our study aims to elucidate previously unknown risk genes for AD by targeting rare alleles. We used data from five publicly available genetic studies from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the database of Genotypes and Phenotypes (dbGaP). A total of 4,171 cases and 9,358 controls were included. The genotype information of rare alleles was imputed using 1,000 genomes. We performed gene-based analysis of rare alleles (minor allele frequency≤3%). The genome-wide significance level was defined as meta P<1.8×10(-6) (0.05/number of genes in human genome = 0.05/28,517). ZNF628, which is located at chromosome 19q13.42, showed a genome-wide significant association with AD. The association of ZNF628 with AD was not dependent on APOE ε4. APOE and TREM2 were also significantly associated with AD, although not at genome-wide significance levels. Other genes identified by targeting common alleles could not be replicated in our gene-based rare allele analysis. We identified that rare variants in ZNF628 are associated with AD. The protein encoded by ZNF628 is known as a transcription factor. Furthermore, the associations of APOE and TREM2 with AD were highly significant, even in gene-based rare allele analysis, which implies that further deep sequencing of these genes is required in AD heritability studies.

  4. Allele Mining Strategies: Principles and Utilisation for Blast Resistance Genes in Rice (Oryza sativa L.).

    PubMed

    Ashkani, Sadegh; Yusop, Mohd Rafii; Shabanimofrad, Mahmoodreza; Azady, Amin; Ghasemzadeh, Ali; Azizi, Parisa; Latif, Mohammad Abdul

    2015-01-01

    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.

  5. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    PubMed

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  6. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  7. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency1[OPEN

    PubMed Central

    Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin

    2016-01-01

    Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. PMID:27208259

  8. [LEP gene allelic polymorphism in a subpopulation of Ayrshire cattle].

    PubMed

    Kovaljuk, N V; Satsuk, V F; Volchenko, A E; Machulskaja, E V

    2015-02-01

    Genotyping of the leptin gene locus (LEP) (SNP: R25C, Y7F, and A80V) has been conducted in cows from two cattle droves (n = 106 and n = 34) and in bulls of Ayrshire cattle (n = 9) that are intensively used at present for artificial insemination in cows in Krasnodar krai. The absence of A80V polymorphism (C --> T at position 95691973 bp of leptin gene) has been established in the genotypes of Ayrshire cattle as compared to Holstein cattle; however, the F allele (Y7F site A --> T at position 95689996 bp of LEP gene), which is rare in Holstein cattle, was shown to be frequent in Ayrshire cows and producer bulls (with a frequency of 0.22-0.79). The heterozygosity did not exceed 0.11 in adult animals, which might be evidence of a decreased vitality in animals bearing the FF genotype. Moreover, the CC genotype (R25C site T-C at position 95690050 bp of LEP gene) was revealed to be linked to the YY genotype (Y7F site) in 97% of cases from possible combinations of the CCYY, CCYF, and CCFF genotypes, while the FF genotype (Y7F site) was observed to be linked to the RR genotype (R25C site) in 100% of cases of possible combinations of FFCC, FFRC, and FFRR genotypes.

  9. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper.

    PubMed

    Cai, Hanyang; Yang, Sheng; Yan, Yan; Xiao, Zhuoli; Cheng, Junbin; Wu, Ji; Qiu, Ailian; Lai, Yan; Mou, Shaoliang; Guan, Deyi; Huang, Ronghua; He, Shuilin

    2015-06-01

    High temperature (HT), high humidity (HH), and pathogen infection often co-occur and negatively affect plant growth. However, these stress factors and plant responses are generally studied in isolation. The mechanisms of synergistic responses to combined stresses are poorly understood. We isolated the subgroup IIb WRKY family member CaWRKY6 from Capsicum annuum and performed quantitative real-time PCR analysis. CaWRKY6 expression was upregulated by individual or simultaneous treatment with HT, HH, combined HT and HH (HTHH), and Ralstonia solanacearum inoculation, and responded to exogenous application of jasmonic acid (JA), ethephon, and abscisic acid (ABA). Virus-induced gene silencing of CaWRKY6 enhanced pepper plant susceptibility to R. solanacearum and HTHH, and downregulated the hypersensitive response (HR), JA-, ethylene (ET)-, and ABA-induced marker gene expression, and thermotolerance-associated expression of CaHSP24, ER-small CaSHP, and Chl-small CaHSP. CaWRKY6 overexpression in pepper attenuated the HTHH-induced suppression of resistance to R. solanacearum infection. CaWRKY6 bound to and activated the CaWRKY40 promoter in planta, which is a pepper WRKY that regulates heat-stress tolerance and R. solanacearum resistance. CaWRKY40 silencing significantly blocked HR-induced cell death and reduced transcriptional expression of CaWRKY40. These data suggest that CaWRKY6 is a positive regulator of R. solanacearum resistance and heat-stress tolerance, which occurs in part by activating CaWRKY40.

  10. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    PubMed

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.

  11. Rice WRKY45 plays important roles in fungal and bacterial disease resistance.

    PubMed

    Shimono, Masaki; Koga, Hironori; Akagi, Aya; Hayashi, Nagao; Goto, Shingo; Sawada, Miyuki; Kurihara, Takayuki; Matsushita, Akane; Sugano, Shoji; Jiang, Chang-Jie; Kaku, Hisatoshi; Inoue, Haruhiko; Takatsuji, Hiroshi

    2012-01-01

    Plant 'activators', such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene.

  12. GhWRKY68 Reduces Resistance to Salt and Drought in Transgenic Nicotiana benthamiana

    PubMed Central

    Jia, Haihong; Wang, Chen; Wang, Fang; Liu, Shuchang; Li, Guilin; Guo, Xingqi

    2015-01-01

    The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA) and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS), reduced enzyme activities, elevated malondialdehyde (MDA) content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS. PMID:25793865

  13. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    PubMed

    Jia, Haihong; Wang, Chen; Wang, Fang; Liu, Shuchang; Li, Guilin; Guo, Xingqi

    2015-01-01

    The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA) and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS), reduced enzyme activities, elevated malondialdehyde (MDA) content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS. PMID:25793865

  14. Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus.

    PubMed

    Cuesta, Susana; Guzmán, Carlos; Alvarez, Juan B

    2013-11-01

    Grain hardness is an important quality trait in wheat. This trait is related to the variation in, and the presence of, puroindolines (PINA and PINB). This variation can be increased by the allelic polymorphism present in the Aegilops species that are related to wheat. This study evaluated allelic Pina and Pinb gene variability in five diploid species of the Aegilops genus, along with the molecular characterization of the main allelic variants found in each species. This polymorphism resulted in 16 alleles for the Pina gene and 24 alleles for the Pinb gene, of which 10 and 17, respectively, were novel. Diverse mutations were detected in the deduced mature proteins of these alleles, which could influence the hardness characteristics of these proteins. This study shows that the diploid species of the Aegilops genus could be a good source of genetic variability for both Pina and Pinb genes, which could be used in breeding programmes to extend the range of different textures in wheat.

  15. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris.

    PubMed

    Amarasinghe, Harindra E; Toghill, Bradley J; Nathanael, Despina; Mallon, Eamonn B

    2015-01-01

    Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  16. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection.

    PubMed

    Wang, Yuna; Dang, Fengfeng; Liu, Zhiqin; Wang, Xu; Eulgem, Thomas; Lai, Yan; Yu, Lu; She, Jianju; Shi, Youliang; Lin, Jinhui; Chen, Chengcong; Guan, Deyi; Qiu, Ailian; He, Shuilin

    2013-02-01

    WRKY transcription factors are encoded by large gene families across the plant kingdom. So far, their biological and molecular functions in nonmodel plants, including pepper (Capsicum annuum) and other Solanaceae, remain poorly understood. Here, we report on the functional characterization of a new group I WRKY protein from pepper, termed CaWRKY58. Our data indicate that CaWRKY58 can be localized to the nucleus and can activate the transcription of the reporter β-glucuronidase (GUS) gene driven by the 35S core promoter with two copies of the W-box in its proximal upstream region. In pepper plants infected with the bacterial pathogen Ralstonia solanacearum, CaWRKY58 transcript levels showed a biphasic response, manifested in an early/transient down-regulation and late up-regulation. CaWRKY58 transcripts were suppressed by treatment with methyl jasmonate and abscisic acid. Tobacco plants overexpressing CaWRKY58 did not show any obvious morphological phenotypes, but exhibited disease symptoms of greater severity than did wild-type plants. The enhanced susceptibility of CaWRKY58-overexpressing tobacco plants correlated with the decreased expression of hypersensitive response marker genes, as well as various defence-associated genes. Consistently, CaWRKY58 pepper plants silenced by virus-induced gene silencing (VIGS) displayed enhanced resistance to the highly virulent R. solanacearum strain FJC100301, and this was correlated with enhanced transcripts of defence-related pepper genes. Our results suggest that CaWRKY58 acts as a transcriptional activator of negative regulators in the resistance of pepper to R. solanacearum infection.

  17. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection.

    PubMed

    Dang, Fengfeng; Wang, Yuna; She, Jianju; Lei, Yufen; Liu, Zhiqin; Eulgem, Thomas; Lai, Yan; Lin, Jing; Yu, Lu; Lei, Dan; Guan, Deyi; Li, Xia; Yuan, Qian; He, Shuilin

    2014-03-01

    WRKY proteins are encoded by a large gene family and are linked to many biological processes across a range of plant species. The functions and underlying mechanisms of WRKY proteins have been investigated primarily in model plants such as Arabidopsis and rice. The roles of these transcription factors in non-model plants, including pepper and other Solanaceae, are poorly understood. Here, we characterize the expression and function of a subgroup IIe WRKY protein from pepper (Capsicum annuum), denoted as CaWRKY27. The protein localized to nuclei and activated the transcription of a reporter GUS gene construct driven by the 35S promoter that contained two copies of the W-box in its proximal upstream region. Inoculation of pepper cultivars with Ralstonia solanacearum induced the expression of CaWRKY27 transcript in 76a, a bacterial wilt-resistant pepper cultivar, whereas it downregulated the expression of CaWRKY27 transcript in Gui-1-3, a bacterial wilt-susceptible pepper cultivar. CaWRKY27 transcript levels were also increased by treatments with salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH). Transgenic tobacco plants overexpressing CaWRKY27 exhibited resistance to R. solanacearum infection compared to that of wild-type plants. This resistance was coupled with increased transcript levels in a number of marker genes, including hypersensitive response genes, and SA-, JA- and ET-associated genes. By contrast, virus-induced gene silencing (VIGS) of CaWRKY27 increased the susceptibility of pepper plants to R. solanacearum infection. These results suggest that CaWRKY27 acts as a positive regulator in tobacco resistance responses to R. solanacearum infection through modulation of SA-, JA- and ET-mediated signaling pathways.

  18. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements.

    PubMed

    Lippok, Bernadette; Birkenbihl, Rainer P; Rivory, Gaelle; Brümmer, Janna; Schmelzer, Elmon; Logemann, Elke; Somssich, Imre E

    2007-04-01

    WRKY transcription factors regulate distinct parts of the plant defense transcriptome. Expression of many WRKY genes themselves is induced by pathogens or pathogen-mimicking molecules. Here, we demonstrate that Arabidopsis WRKY33 responds to various stimuli associated with plant defense as well as to different kinds of phytopathogens. Although rapid pathogen-induced AtWRKY33 expression does not require salicylic acid (SA) signaling, it is dependent on PAD4, a key regulator upstream of SA. Activation of AtWRKY33 is independent of de novo protein synthesis, suggesting that it is at least partly under negative regulatory control. We show that a set of three WRKY-specific cis-acting DNA elements (W boxes) within the AtWRKY33 promoter is required for efficient pathogen- or PAMP-triggered gene activation. This strongly indicates that WRKY transcription factors are major components of the regulatory machinery modulating immediate to early expression of this gene in response to pathogen attack.

  19. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes. PMID:26975939

  20. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-03-15

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.

  1. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants

    PubMed Central

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes. PMID:26975939

  2. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    PubMed

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  3. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.

    PubMed

    Zheng, Zuyu; Qamar, Synan Abu; Chen, Zhixiang; Mengiste, Tesfaye

    2006-11-01

    Plant WRKY transcription factors are key regulatory components of plant responses to microbial infection. In addition to regulating the expression of defense-related genes, WRKY transcription factors have also been shown to regulate cross-talk between jasmonate- and salicylate-regulated disease response pathways. The two pathways mediate resistance against different types of microbial pathogens, and there are numerous reports of antagonistic interactions between them. Here we show that mutations of the Arabidopsis WRKY33 gene encoding a WRKY transcription factor cause enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the jasmonate-regulated plant defensin PDF1.2 gene. Ectopic over-expression of WRKY33, on the other hand, increases resistance to the two necrotrophic fungal pathogens. The wrky33 mutants do not show altered responses to a virulent strain of the bacterial pathogen Pseudomonas syringae, although the ectopic expression of WRKY33 results in enhanced susceptibility to this pathogen. The susceptibility of WRKY33-over-expressing plants to P. syringae is associated with reduced expression of the salicylate-regulated PR-1 gene. The WRKY33 transcript is induced in response to pathogen infection, or treatment with salicylate or the paraquat herbicide that generates activated oxygen species in exposed cells. WRKY33 is localized to the nucleus of plant cells and recognizes DNA molecules containing the TTGACC W-box sequence. Together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic pathogens.

  4. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance.

    PubMed

    Shen, Zedan; Yao, Jun; Sun, Jian; Chang, Liwei; Wang, Shaojie; Ding, Mingquan; Qian, Zeyong; Zhang, Huilong; Zhao, Nan; Sa, Gang; Hou, Peichen; Lang, Tao; Wang, Feifei; Zhao, Rui; Shen, Xin; Chen, Shaoliang

    2015-06-01

    Poplar species increase expressions of transcription factors to deal with salt environments. We assessed the salt-induced transcriptional responses of heat-shock transcription factor (HSF) and WRKY1 in Populus euphratica, and their roles in salt tolerance. High NaCl (200mM) induced PeHSF and PeWRKY1 expressions in P. euphratica, with a rapid rise in roots than in leaves. Moreover, the salt-elicited PeHSF reached its peak level 6h earlier than PeWRKY1 in leaves. PeWRKY1 was down-regulated in salinized P. euphratica when PeHSF was silenced by tobacco rattle virus-based gene silencing. Subcellular assays in onion epidermal cells and Arabidopsis protoplasts revealed that PeHSF and PeWRKY1 were restricted to the nucleus. Transgenic tobacco plants overexpressing PeWRKY1 showed improved salt tolerance in terms of survival rate, root growth, photosynthesis, and ion fluxes. We further isolated an 1182-bp promoter fragment upstream of the translational start of PeWRKY1 from P. euphratica. Promoter sequence analysis revealed that PeWRKY1 harbours four tandem repeats of heat shock element (HSE) in the upstream regulatory region. Yeast one-hybrid assay showed that PeHSF directly binds the cis-acting HSE. To determine whether the HSE cluster was important for salt-induced PeWRKY1 expression, the promoter-reporter construct PeWRKY1-pro::GUS was transferred to tobacco plants. β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. Therefore, we conclude that salinity increased PeHSF transcription in P. euphratica, and that PeHSF binds the cis-acting HSE of the PeWRKY1 promoter, thus activating PeWRKY1 expression. PMID:25900569

  5. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    PubMed

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. PMID:27105420

  6. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    PubMed

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry.

  7. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes.

  8. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  9. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-09-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  10. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    PubMed Central

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  11. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

    PubMed

    Luo, Xiao; Sun, Xiaoli; Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time.

  12. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection.

    PubMed

    Birkenbihl, Rainer P; Diezel, Celia; Somssich, Imre E

    2012-05-01

    The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.

  13. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action.

    PubMed Central

    Hollick, J B; Chandler, V L

    1998-01-01

    Using alleles of the maize purple plant locus (pl), which encodes a transcriptional regulator of anthocyanin pigment synthesis, we describe a case of single-locus heterosis, or overdominance, where the heterozygote displays a phenotype that is greater than either homozygote. The Pl-Rhoades (Pl-Rh) allele is subject to epigenetic changes in gene expression, resulting in quantitatively distinct expression states. Allelic states with low-expression levels, designated Pl'-mahogany (Pl'-mah), are dominant to the high-expression state of Pl-Rh. Pl'-mah states retain low-expression levels in subsequent generations when homozygous or heterozygous with Pl-Rh. However, Pl'-mah alleles frequently exhibit higher expression levels when heterozygous with other pl alleles; illustrating an overdominant allelic relationship. Higher expression levels are also observed when Pl'-mah is hemizygous. These results suggest that persistent allelic interactions between Pl'-mah and Pl-Rh are required to maintain the low-expression state and that other pl alleles are missing sequences required for this interaction. The Pl-Rh state can be sexually transmitted from Pl'-mah/pl heterozygotes, but not from Pl'-mah hemizygotes, suggesting that fixation of the high-expression state may involve synapsis. The existence of such allele-dependent regulatory mechanisms implicates a novel importance of allele polymorphisms in the genesis and maintenance of genetic variation. PMID:9755217

  14. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer.

    PubMed

    Halabi, Najeeb M; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A; Malek, Joel A; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies.

  15. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  16. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana

    PubMed Central

    Yan, Yan; Jia, Haihong; Wang, Fang; Wang, Chen; Liu, Shuchang; Guo, Xingqi

    2015-01-01

    WRKY proteins constitute transcriptional regulators involved in various biological processes, especially in coping with diverse biotic and abiotic stresses. However, in contrast to other well-characterized WRKY groups, the functions of group III WRKY transcription factors are poorly understood in the economically important crop cotton (Gossypium hirsutum). In this study, a group III WRKY gene from cotton, GhWRKY27a, was isolated and characterized. Our data indicated that GhWRKY27a localized to the nucleus and that GhWRKY27a expression could be strongly induced by abiotic stresses, pathogen infection, and multiple defense-related signaling molecules. Virus-induced gene silencing (VIGS) of GhWRKY27a enhanced tolerance to drought stress in cotton. In contrast, GhWRKY27a overexpression in Nicotiana benthamiana markedly reduced plant tolerance to drought stress, as determined through physiological analyses of leaf water loss, survival rates, and the stomatal aperture. This susceptibility was coupled with reduced stomatal closure in response to abscisic acid and decreased expression of stress-related genes. In addition, GhWRKY27a-overexpressing plants exhibited reduced resistance to Rhizoctonia solani infection, mainly demonstrated by the transgenic lines exhibiting more severe disease symptoms, accompanied by attenuated expression of defense-related genes in N. benthamiana. Taken together, these findings indicated that GhWRKY27a functions in negative responses to drought tolerance and in resistance to R. solani infection. PMID:26483697

  17. Recombinase-based conditional and reversible gene regulation via XTR alleles

    PubMed Central

    Robles-Oteiza, Camila; Taylor, Sarah; Yates, Travis; Cicchini, Michelle; Lauderback, Brian; Cashman, Christopher R.; Burds, Aurora A.; Winslow, Monte M.; Jacks, Tyler; Feldser, David M.

    2015-01-01

    Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R). PMID:26537451

  18. Recombinase-based conditional and reversible gene regulation via XTR alleles.

    PubMed

    Robles-Oteiza, Camila; Taylor, Sarah; Yates, Travis; Cicchini, Michelle; Lauderback, Brian; Cashman, Christopher R; Burds, Aurora A; Winslow, Monte M; Jacks, Tyler; Feldser, David M

    2015-01-01

    Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R). PMID:26537451

  19. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance.

    PubMed

    Yokotani, Naoki; Sato, Yuko; Tanabe, Shigeru; Chujo, Tetsuya; Shimizu, Takafumi; Okada, Kazunori; Yamane, Hisakazu; Shimono, Masaki; Sugano, Shoji; Takatsuji, Hiroshi; Kaku, Hisatoshi; Minami, Eiichi; Nishizawa, Yoko

    2013-11-01

    OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance.

  20. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley.

    PubMed

    Marè, Caterina; Mazzucotelli, Elisabetta; Crosatti, Cristina; Francia, Enrico; Stanca, A Michele; Cattivelli, Luigi

    2004-05-01

    WRKY proteins constitute a large family of plant specific transcription factors implicated in many different processes. Here we describe Hv-WRKY38, a barley gene coding for a WRKY protein, whose expression is involved in cold and drought stress response. Hv-WRKY38 was early and transiently expressed during exposure to low non-freezing temperature, in ABA-independent manner. Furthermore, it showed a continuous induction during dehydration and freezing treatments. A WRKY38:YFP fusion protein was found to localise into the nucleus upon introduction into epidermal onion cells. Bacterially expressed Hv-WRKY38 was able to bind in vitro to the W-box element (T)TGAC(C/T) also recognisable by other WRKY proteins. Hv-WRKY38 genomic DNA was sequenced and mapped onto the centromeric region of the barley chromosome 6H. Arabidopsis and rice sequences homologous to Hv-WRKY38 were also identified. Our results indicate that Hv-WRKY38 transcription factor may play a regulatory role in abiotic stress response.

  1. Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway

    PubMed Central

    Jaffar, Muhammad Abuzar; Song, Aiping; Faheem, Muhammad; Chen, Sumei; Jiang, Jiafu; Liu, Chen; Fan, Qingqing; Chen, Fadi

    2016-01-01

    Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes. PMID:27187353

  2. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    PubMed Central

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  3. Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway.

    PubMed

    Jaffar, Muhammad Abuzar; Song, Aiping; Faheem, Muhammad; Chen, Sumei; Jiang, Jiafu; Liu, Chen; Fan, Qingqing; Chen, Fadi

    2016-01-01

    Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes. PMID:27187353

  4. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    PubMed

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-05-31

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  5. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    PubMed

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  6. Allelic Richness following Population Founding Events – A Stochastic Modeling Framework Incorporating Gene Flow and Genetic Drift

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Zarmi, Yair; Bar-David, Shirli

    2014-01-01

    Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population's long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic richness. This paper presents a stochastic model for the allelic richness of a newly founded population experiencing genetic drift and gene flow. The model follows the dynamics of alleles lost during the founder event and simulates the effect of gene flow on maintenance and recovery of allelic richness. The probability of an allele's presence in the population was identified as the relevant statistical property for a meaningful interpretation of allelic richness. A method is discussed that combines the probability of allele presence with a population's allele frequency spectrum to provide predictions for allele recovery. The model's analysis provides insights into the dynamics of allelic richness following a founder event, taking into account gene flow and the allele frequency spectrum. Furthermore, the model indicates that the “One Migrant per Generation” rule, a commonly used conservation guideline related to heterozygosity, may be inadequate for addressing preservation of diversity at the allelic level. This highlights the importance of distinguishing between heterozygosity and allelic richness as measures of genetic diversity, since focusing merely on the preservation of heterozygosity might not be enough to adequately preserve allelic richness, which is crucial for species persistence and evolution. PMID:25526062

  7. Allelic richness following population founding events--a stochastic modeling framework incorporating gene flow and genetic drift.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Zarmi, Yair; Bar-David, Shirli

    2014-01-01

    Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population's long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic richness. This paper presents a stochastic model for the allelic richness of a newly founded population experiencing genetic drift and gene flow. The model follows the dynamics of alleles lost during the founder event and simulates the effect of gene flow on maintenance and recovery of allelic richness. The probability of an allele's presence in the population was identified as the relevant statistical property for a meaningful interpretation of allelic richness. A method is discussed that combines the probability of allele presence with a population's allele frequency spectrum to provide predictions for allele recovery. The model's analysis provides insights into the dynamics of allelic richness following a founder event, taking into account gene flow and the allele frequency spectrum. Furthermore, the model indicates that the "One Migrant per Generation" rule, a commonly used conservation guideline related to heterozygosity, may be inadequate for addressing preservation of diversity at the allelic level. This highlights the importance of distinguishing between heterozygosity and allelic richness as measures of genetic diversity, since focusing merely on the preservation of heterozygosity might not be enough to adequately preserve allelic richness, which is crucial for species persistence and evolution.

  8. Allelic variation of the β-, γ- and δ-kafirin genes in diverse Sorghum genotypes.

    PubMed

    Laidlaw, H K C; Mace, E S; Williams, S B; Sakrewski, K; Mudge, A M; Prentis, P J; Jordan, D R; Godwin, I D

    2010-11-01

    The β-, γ- and δ-kafirin genes were sequenced from 35 Sorghum genotypes to investigate the allelic diversity of seed storage proteins. A range of grain sorghums, including inbred parents from internationally diverse breeding programs and landraces, and three wild Sorghum relatives were selected to encompass an extensive array of improved and unimproved germplasm in the Eusorghum. A single locus exists for each of the expressed kafirin-encoding genes, unlike the multigenic α-kafirins. Significant diversity was found for each locus, with the cysteine-rich β-kafirin having four alleles, including the first natural null mutant reported for this prolamin subfamily. This allele contains a frame shift insertion at +206 resulting in a premature stop codon. SDS-PAGE revealed that lines with this allele do not produce β-kafirin. An analysis of flour viscosity reveals that these β-kafirin null lines have a difference in grain quality, with significantly lower viscosity observed over the entire Rapid ViscoAnalyser time course. There was less diversity at the protein level within the cysteine-rich γ-kafirin, with only two alleles in the cultivated sorghums. There were only two alleles for the δ-kafirin locus among the S. bicolor germplasm, with one allele encoding ten extra amino acids, of which five were methionine residues, with an additional methionine resulting from a nucleotide substitution. This longer allele encodes a protein with 19.1% methionine. The Asian species, S. propinquum, had distinct alleles for all three kafirin genes. We found no evidence for selection on the three kafirin genes during sorghum domestication even though the δ-kafirin locus displayed comparatively low genetic variation. This study has identified genetic diversity in all single copy seed storage protein genes, including a null mutant for β-kafirin in Sorghum.

  9. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  10. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    PubMed

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  11. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    PubMed

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.

  12. Identification of novel alleles of the rice blast resistance gene Pi54

    NASA Astrophysics Data System (ADS)

    Vasudevan, Kumar; Gruissem, Wilhelm; Bhullar, Navreet K.

    2015-10-01

    Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.

  13. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato

    PubMed Central

    Yogendra, Kalenahalli N.; Kumar, Arun; Sarkar, Kobir; Li, Yunliang; Pushpa, Doddaraju; Mosa, Kareem A.; Duggavathi, Raj; Kushalappa, Ajjamada C.

    2015-01-01

    Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato–Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls. PMID:26417019

  14. Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes.

    PubMed Central

    Breen, T R

    1999-01-01

    trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription. PMID:10224264

  15. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  16. Detecting Allelic Expression Imbalance at Candidate Genes Using 5' Exonuclease Genotyping Technology.

    PubMed

    Gahan, Jillian M; Byrne, Mikaela M; Hill, Matthew; Quinn, Emma M; Murphy, Ross T; Anney, Richard J L; Ryan, Anthony W

    2015-01-01

    Genetic variation along the length of a chromosome can influence the transcription of a gene. In a heterozygous individual, this may lead to one chromosome producing different levels of RNA, compared to its paired chromosome, for a given gene. Allelic differences in gene expression can offer insight into the role of variation in transcription, and subsequently infer a route to conferring disease risk. This phenomenon is known as allele expression imbalance or AEI, which may be assayed using a PCR-based method that includes the quantification of the relative dosage of each allele (e.g., 5' exonuclease assays, TaqMan™). Importantly, in heterozygous individuals the resolution of expression imbalance is performed within a controlled system; the comparison of the alternate allele is reported relative to the wild-type, as the experiment can be performed within a single sample, controlled for background genetic information. Alternative methods for the detection of AEI include Primer-extension MALDI-TOF (Sequenom MassARRAY(®)), Next-Generation Sequencing, and SNP genotyping arrays. Here we present the methods used for the TaqMan™ approach and include a description of the SNP identification, allele-specific PCR, and analytic methods to convert allele amplification metrics to relative allele dosage.

  17. Characterization of WRKY co-regulatory networks in rice and Arabidopsis

    PubMed Central

    Berri, Stefano; Abbruscato, Pamela; Faivre-Rampant, Odile; Brasileiro, Ana CM; Fumasoni, Irene; Satoh, Kouji; Kikuchi, Shoshi; Mizzi, Luca; Morandini, Piero; Pè, Mario Enrico; Piffanelli, Pietro

    2009-01-01

    Background The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. Results The presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. Conclusion In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is

  18. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary.

    PubMed

    Olbromski, R; Siadkowska, E; Zelazowska, B; Zwierzchowski, L

    2013-02-01

    Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them-LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C-C motif ligand 2) showed allelic expression imbalance.

  19. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress.

  20. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum.

    PubMed

    Wang, Zheng; Fang, Hedi; Chen, Yu; Chen, Keping; Li, Guanying; Gu, Shoulai; Tan, Xiaoli

    2014-09-01

    Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus) resulting in a tremendous yield loss worldwide. Studies on various host-pathogen interactions have shown that plant WRKY transcription factors are essential for defence. For the B. napus-S. sclerotiorum interaction, little direct evidence has been found with regard to the biological roles of specific WRKY genes in host resistance. In this study, we isolated a B. napus WRKY gene, BnWRKY33, and found that the gene is highly responsive to S. sclerotiorum infection. Transgenic B. napus plants overexpressing BnWRKY33 showed markedly enhanced resistance to S. sclerotiorum, constitutive activation of the expression of BnPR1 and BnPDF1.2, and inhibition of H2 O2 accumulation in response to pathogen infection. Further, we isolated a mitogen-activated protein (MAP) kinase substrate gene, BnMKS1, and found that not only can BnWRKY33 interact with BnMKS1, which can also interact with BnMPK4, using the yeast two-hybrid assay, consistent with their collective nuclear localization, but also BnWRKY33, BnMKS1 and BnMPK4 are substantially and synergistically expressed in response to S. sclerotiorum infection. In contrast, the three genes showed differential expression in response to phytohormone treatments. Together, these results suggest that BnWRKY33 plays an important role in B. napus defence to S. sclerotiorum, which is most probably associated with the activation of the salicylic acid (SA)- and jasmonic acid (JA)-mediated defence response and inhibition of H2 O2 accumulation, and we propose a potential mechanism in which BnMPK4-BnMKS1-BnWRKY33 exist in a nuclear localized complex to regulate resistance to S. sclerotiorum in oilseed rape.

  1. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.

    PubMed

    Mao, Guohong; Meng, Xiangzong; Liu, Yidong; Zheng, Zuyu; Chen, Zhixiang; Zhang, Shuqun

    2011-04-01

    Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.

  2. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    PubMed

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  3. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    PubMed

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  4. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus

    PubMed Central

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  5. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  6. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  7. No evidence for allelic association between bipolar disorder and monoamine oxidase A gene polymorphisms

    SciTech Connect

    Craddock, N.; Daniels, J.; Roberts, E.

    1995-08-14

    We have tested the hypothesis that DNA markers in the MAOA gene show allelic association with bipolar affective disorder. Eighty-four unrelated Caucasian patients with DSM III-R bipolar disorder and 84 Caucasian controls were typed for three markers in MAOA: a dinucleotide repeat in intron 2, a VNTR in intron 1, and an Fnu4HI RFLP in exon 8. No evidence for allelic association was observed between any of the markers and bipolar disorder. 9 refs., 1 tab.

  8. [Analysis of allelic content of genes responsible for baking properties in allocytoplasmic wheat hybrids].

    PubMed

    Klimushina, M V; Divashuk, M G; Mukhammed, T A K; Semenov, O G; Karlov, G I

    2013-05-01

    A collection comprised of allocytoplasmic hybrids of mild wheat (ACPH) was screened for the allelic state of genes responsible for baking properties (high-molecular glutenins, puroindolines, and Waxy). The possibility of the introgression of the Waxy gene of T. timopheevii into the mild wheat genome was demonstrated in several ACPH samples using the set of molecular markers. Allelic gene variants responsible for the baking properties were revealed for 22 ACPH samples, which make it possible to detect the most challenging samples for both molecular-genetic research and applied science.

  9. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.

    PubMed

    Yan, Huiru; Jia, Haihong; Chen, Xiaobo; Hao, Lili; An, Hailong; Guo, Xingqi

    2014-12-01

    Drought and high salinity are two major environmental factors that significantly limit the productivity of agricultural crops worldwide. WRKY transcription factors play essential roles in the adaptation of plants to abiotic stresses. However, WRKY genes involved in drought and salt tolerance in cotton (Gossypium hirsutum) are largely unknown. Here, a group IId WRKY gene, GhWRKY17, was isolated and characterized. GhWRKY17 was found to be induced after exposure to drought, salt, H2O2 and ABA. The constitutive expression of GhWRKY17 in Nicotiana benthamiana remarkably reduced plant tolerance to drought and salt stress, as determined through physiological analyses of the germination rate, root growth, survival rate, leaf water loss and Chl content. GhWRKY17 transgenic plants were observed to be more sensitive to ABA-mediated seed germination and root growth. However, overexpressing GhWRKY17 in N. benthamiana impaired ABA-induced stomatal closure. Furthermore, we found that GhWRKY17 modulated the increased sensitivity of plants to drought by reducing the level of ABA, and transcript levels of ABA-inducible genes, including AREB, DREB, NCED, ERD and LEA, were clearly repressed under drought and salt stress conditions. Consistent with the accumulation of reactive oxygen species (ROS), reduced proline contents and enzyme activities, elevated electrolyte leakage and malondialdehyde, and lower expression of ROS-scavenging genes, including APX, CAT and SOD, the GhWRKY17 transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants. These results therefore indicate that GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants.

  10. Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates.

    PubMed

    Cropp, Susan; Boinski, Sue; Li, Wen-Hsiung

    2002-06-01

    Most Neotropical primate species possess a polymorphic X-linked and a monomorphic autosomal color vision gene. Consequently, populations are composed of both dichromatics and trichromatics. Most theories on the maintenance of this genetic system revolve around possible advantages for foraging ecology. To examine the issue from a different angle, we compared the numbers and relative frequencies of alleles at the X-linked locus among three species of Saimiri representing a wide range of geographical and behavioral variation in the genus. Exons 3, 4, and 5 of the X-linked opsin gene were sequenced for a large number of X chromosomes for all three species. Several synonymous mutations were detected in exons 4 and 5 for the originally reported alleles but only a single nonsynonymous change was detected. Two alleles were found that appeared to be the result of recombination events. The low occurrence of recombinant alleles and absence of mutations in the amino acids critical for spectral tuning indicates that stabilizing selection acts to maintain the combinations of critical sites specific to each allele. Allele frequencies were approximately the same for all Saimiri species, with a slight but significant difference between S. boliviensis and S. oerstedii. No apparent correlation exists between allele frequencies and behavioral or biogeographical differences between species, casting doubt on the speculation that the spectral sensitivities of the alleles have been maintained because they are specifically well-tuned to Saimiri visual ecology. Rather, the spectral tuning peaks might have been maintained because they are as widely spaced as possible within the limited range of middlewave to longwave spectra useful to all primates. This arrangement creates a balance between maximizing the distance between spectral tuning peaks (allowing the color opponency of the visual system to distinguish between peaks) and maximizing the number of alleles within a limited range (yielding

  11. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  12. Molecular cloning and characterization of a group II WRKY transcription factor from Jatropha curcas, an important biofuel crop.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; Agarwal, Pradeep K

    2014-08-01

    The WRKY family of transcription factors (TFs) play an intricate role in regulating the stress signaling pathways by autoregulation or may be by cross regulation through interaction with other proteins. Although WRKY TFs are considered to be plant specific, however, their presence has been reported from unicellular algae, slime mould, and gymnosperms. We have isolated the JcWRKY cDNA from an important biofuel crop Jatropha curcas growing in the wastelands of India. The JcWRKY gene has an ORF of 693 bp and encodes a 230 amino acids protein with estimated molecular mass of 25.25 kDa. JcWRKY shows close homology to FaWRKY1 and St-WRKY1. The JcWRKY contains seven potential phosphorylation sites, which might be involved in regulating its function. The transcript analysis revealed that the JcWRKY transcript gets upregulated in response to salinity, dehydration, salicylic acid (SA), methyl jasmonate (MeJa), and collar rot fungus Macrophomina. However, maximum expression is observed under SA, highlighting its role in enhancing systemic acquired resistance for disease tolerance. The JcWRKY recombinant protein showed binding to W-box of pathogenesis related-1 (PR-1) and iso1 (encoding isoamylase1) promoters. Overexpression of JcWRKY in Escherichia coli enhanced the growth of cells in NaCl, KCl, mannitol, sorbitol, SA, and MeJa treatments, indicating that it protects and promotes growth under ionic, osmotic, and chemical stresses. The enhancement in growth can be due to the regulation of stress responsive genes. Therefore, it can be used as an important gene for enhancing abiotic and biotic resistance in plants and to facilitate faster growth of E. coli cells under stress conditions for efficient expression.

  13. Molecular Cloning and Characterization of a Group II WRKY Transcription Factor from Jatropha curcas, an Important Biofuel Crop

    PubMed Central

    Dabi, Mitali

    2014-01-01

    The WRKY family of transcription factors (TFs) play an intricate role in regulating the stress signaling pathways by autoregulation or may be by cross regulation through interaction with other proteins. Although WRKY TFs are considered to be plant specific, however, their presence has been reported from unicellular algae, slime mould, and gymnosperms. We have isolated the JcWRKY cDNA from an important biofuel crop Jatropha curcas growing in the wastelands of India. The JcWRKY gene has an ORF of 693 bp and encodes a 230 amino acids protein with estimated molecular mass of 25.25 kDa. JcWRKY shows close homology to FaWRKY1 and St-WRKY1. The JcWRKY contains seven potential phosphorylation sites, which might be involved in regulating its function. The transcript analysis revealed that the JcWRKY transcript gets upregulated in response to salinity, dehydration, salicylic acid (SA), methyl jasmonate (MeJa), and collar rot fungus Macrophomina. However, maximum expression is observed under SA, highlighting its role in enhancing systemic acquired resistance for disease tolerance. The JcWRKY recombinant protein showed binding to W-box of pathogenesis related-1 (PR-1) and iso1 (encoding isoamylase1) promoters. Overexpression of JcWRKY in Escherichia coli enhanced the growth of cells in NaCl, KCl, mannitol, sorbitol, SA, and MeJa treatments, indicating that it protects and promotes growth under ionic, osmotic, and chemical stresses. The enhancement in growth can be due to the regulation of stress responsive genes. Therefore, it can be used as an important gene for enhancing abiotic and biotic resistance in plants and to facilitate faster growth of E. coli cells under stress conditions for efficient expression. PMID:24720696

  14. Allelic exclusion in transgenic mice carrying mutant human IgM genes

    PubMed Central

    1988-01-01

    Expression of the membrane-bound version of the human mu chain in transgenic mice results in the allelic exclusion of endogenous mouse Ig heavy chain genes (6). The secreted version of the human Ig transgene has no such effect. F1 hybrid animals that carry transgenes for both secreted and membrane-bound human mu chains produce both forms of the human heavy chain while strongly suppressing endogenous mouse mu expression. The simultaneous expression of the two rearranged transgenes in primary B cells suggests that allelic exclusion operates before the formation of a second functionally rearranged heavy chain gene in vivo. PMID:3133444

  15. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  16. Patterns of variation among distinct alleles of the Flag silk gene from Nephila clavipes.

    PubMed

    Higgins, Linden E; White, Sheryl; Nuñez-Farfán, Juan; Vargas, Jesus

    2007-02-20

    Spider silk proteins and their genes are very attractive to researchers in a wide range of disciplines because they permit linking many levels of organization. However, hypotheses of silk gene evolution have been built primarily upon single sequences of each gene each species, and little is known about allelic variation within a species. Silk genes are known for their repeat structure with high levels of homogenization of nucleotide and amino acid sequence among repeated units. One common explanation for this homogeneity is gene convergence. To test this model, we sequenced multiple alleles of one intron-exon segment from the Flag gene from four populations of the spider Nephila clavipes and compared the new sequences to a published sequence. Our analysis revealed very high levels of heterozygosity in this gene, with no pattern of population differentiation. There was no evidence of gene convergence within any of these alleles, with high levels of nucleotide and amino acid substitution among the repeating motifs. Our data suggest that minimally, there is relaxed selection on mutations in this gene and that there may actually be positive selection for heterozygosity.

  17. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    PubMed

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.

  18. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    PubMed

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID

  19. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch

    PubMed Central

    Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID

  20. Allelic associations of two polymorphic microsatellites in intron 40 of the human von Willebrand factor gene

    SciTech Connect

    Pena, S.D.J.; De Souza, K.T. ); De Andrade, M.; Chakraborty, R. )

    1994-01-18

    At intron 40 of the von Willebrand factor (vWF) gene, two GATA-repeat polymorphic sites exist that are physically separated by 212 bp. At the first site (vWF1 locus), seven segregating repeat alleles were observed in a Brazilian Caucasian population, and at the second (vWF2 locus) there were eight alleles, detected through PCR amplifications of this DNA region. Haplotype analysis of individuals revealed 36 different haplotypes in a sample of 338 chromosomes examined. Allele frequencies between generations and gender at each locus were not significantly different, and the genotype frequencies were consistent with their Hardy-Weinberg expectations. Linkage disequilibrium between loci is highly significant with positive allele size association; that is, large alleles at the loci tend to occur together, and so do the same alleles. Variability at each locus appeared to have arisen in a stepwise fashion, suggesting replication slippage as a possible mechanism of production of new alleles. However, the authors observed an increased number of haplotypes, in contrast with the predictions of a stepwise production of variation in the entire region, suggesting some form of cooperative changes between loci that could be due to either gene conversion, or a common control mechanism of production of new variation at these repeat polymorphism sites. The high degree of polymorphism (gene diversity values of 72% and 78% at vWF1 and vWF2, respectively, and of 93% at the haplotype level) makes these markers informative for paternity testing, genetic counseling, and individual-identification purposes.

  1. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.

    PubMed

    Yu, Yanchong; Liu, Zhenhua; Wang, Long; Kim, Sang-Gyu; Seo, Pil J; Qiao, Meng; Wang, Nan; Li, Shuo; Cao, Xiaofeng; Park, Chung-Mo; Xiang, Fengning

    2016-01-01

    Flowering is crucial for achieving reproductive success. A large number of well-delineated factors affecting flowering are involved in complex genetic networks in Arabidopsis thaliana. However, the underlying part played by the WRKY transcription factors in this process is not yet clear. Here, we report that WRKY71 is able to accelerate flowering in Arabidopsis. An activation-tagged mutant WRKY71-1D and a constitutive over-expresser of WRKY71 both flowered earlier than the wild type (WT). In contrast, both the RNA interference-based multiple WRKY knock-out mutant (w71w8 + 28RNAi) and the dominant repression line (W71-SRDX) flowered later. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) and the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1) and FRUITFULL (FUL) were greater in WRKY71-1D than in the WT, but lower in w71w8 + 28RNAi and W71-SRDX. Further, WRKY71 was shown to bind to the W-boxes in the FT and LFY promoters in vitro and in vivo. The suggestion is that WRKY71 activity hastens flowering via the direct activation of FT and LFY.

  2. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster

    PubMed Central

    Yi, Hankuil; Richards, Eric J

    2008-01-01

    Background Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. Results We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 × bal F1 hybrids, cpr1 × snc1 F1 hybrids and bal × snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal × snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 × snc1 F1 hybrids, as well as from cpr1 × bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 × snc1 crosses was destabilized during the late F1 generation to early F2 generation. Conclusion With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or

  3. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  4. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana

    PubMed Central

    Sheikh, Arsheed H.; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K.; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  5. Major histocompatibility complex class I chain related (MIC) A gene, TNFa microsatellite alleles and TNFB alleles in juvenile idiopathic arthritis patients from Latvia.

    PubMed

    Nikitina Zake, Liene; Cimdina, Ija; Rumba, Ingrida; Dabadghao, Preethi; Sanjeevi, Carani B

    2002-05-01

    In order to analyze involvement of major histocompatibility complex class I chain-related gene A (MICA) and tumor necrosis factor a (TNFa) microsatellite polymorphisms as well as TNFB gene in juvenile idiopathic arthritis (JIA), we studied 128 patients divided into groups according to clinical features [monoarthritis (n = 14), oligoarthritis (n = 58), polyarthritis (n = 50), and systemic (n = 6)], and 114 age- and sex-matched healthy controls from Latvia. DNA samples were amplified with specific primers and used for genotyping of MICA and TNFa microsatellite. Typing for a biallelic NcoI polymerase chain reaction RFLP polymorphism located at the first intron of TNFB gene was done as follows: restriction digests generated fragments of 555bp and 185bp for TNFB*1 allele, and 740bp for TNFB*2 allele. The results were compared between cases and controls. We found significant increase of MICA allele A4 (p = 0.009; odds ratio [OR] = 2.3) and allele TNFa2 (p = 0.0001; OR = 4.4) in patients compared with controls. The frequency of allele TNFa9 was significantly decreased (p = 0.0001; OR = 0.1) in patients with JIA. No significant differences of TNFB allele frequency were found. Our data suggest that MICA and TNFa microsatellite polymorphisms may be used as markers for determination of susceptibility and protection from JIA.

  6. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  7. Allelic Diversity of MSP1 Gene in Plasmodium falciparum from Rural and Urban Areas of Gabon.

    PubMed

    Mawili-Mboumba, Denise Patricia; Mbondoukwe, Noé; Adande, Elvire; Bouyou-Akotet, Marielle Karine

    2015-08-01

    The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families' frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.

  8. Nonfunctional alleles of long‐day suppressor genes independently regulate flowering time

    PubMed Central

    Zheng, Xiao‐Ming; Feng, Li; Wang, Junrui; Qiao, Weihua; Zhang, Lifang; Cheng, Yunlian

    2015-01-01

    Abstract Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long‐day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long‐day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times. PMID:26220807

  9. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  10. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  11. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections. PMID:26407876

  12. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  13. Worldwide allele frequencies of the human apolipoprotein E gene: climate, local adaptations, and evolutionary history.

    PubMed

    Eisenberg, Dan T A; Kuzawa, Christopher W; Hayes, M Geoffrey

    2010-09-01

    The epsilon4 allele of the apolipoprotein E (APOE) gene is associated with increased cholesterol levels and heart disease. Population allele frequencies of APOE have previously been shown to vary, with epsilon4 frequencies generally increasing with latitude. We hypothesize that this trend resulted from natural selection protecting against low-cholesterol levels. In high-latitude cold environments and low-latitude hot environments, metabolic rate is elevated, which could require higher cholesterol levels. To explore this hypothesis, we compiled APOE allele frequencies, latitude, temperature, and elevation from populations around the world. epsilon4 allele frequencies show a curvilinear relationship with absolute latitude, with lowest frequencies found in the mid-latitudes where temperatures generally require less expenditure on cooling/thermogenesis. Controlling for population structure in a subset of populations did not appreciably change this pattern of association, consistent with selection pressures that vary by latitude shaping epsilon4 allele frequencies. Temperature records also predict APOE frequency in a curvilinear fashion, with lowest epsilon4 frequencies at moderate temperatures. The model fit between historical temperatures and epsilon4 is less than between latitude and epsilon4, but strengthened after correcting for estimated temperature differences during the Paleolithic. Contrary to our hypothesis, we find that elevation did not improve predictive power, and an integrated measure of the cholesterol effect of multiple APOE alleles was less related to latitude than was epsilon4 alone. Our results lend mixed support for a link between past temperature and human APOE allele distribution and point to the need to develop better models of past climate in future analyses.

  14. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    PubMed

    Liu, Wei; Xue, Lei

    2012-01-01

    The Drosophila Pax gene gooseberry (gsb) is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  15. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations.

    PubMed

    Gonzalez-Galarza, Faviel F; Christmas, Stephen; Middleton, Derek; Jones, Andrew R

    2011-01-01

    The allele frequency net database (http://www.allelefrequencies.net) is an online repository that contains information on the frequencies of immune genes and their corresponding alleles in different populations. The extensive variability observed in genes and alleles related to the immune system response and its significance in transplantation, disease association studies and diversity in populations led to the development of this electronic resource. At present, the system contains data from 1133 populations in 608,813 individuals on the frequency of genes from different polymorphic regions such as human leukocyte antigens, killer-cell immunoglobulin-like receptors, major histocompatibility complex Class I chain-related genes and a number of cytokine gene polymorphisms. The project was designed to create a central source for the storage of frequency data and provide individuals with a set of bioinformatics tools to analyze the occurrence of these variants in worldwide populations. The resource has been used in a wide variety of contexts, including clinical applications (histocompatibility, immunology, epidemiology and pharmacogenetics) and population genetics. Demographic information, frequency data and searching tools can be freely accessed through the website.

  16. Differential alleleic expression of the type II collagen gene (COL2A2) in osteoarthritic cartilage

    SciTech Connect

    Loughlin, J.; Irven, C.; Sykes, B.; Athanasou, N.; Carr, A.

    1995-05-01

    Osteoarthritis (OA) is a common debilitating disease resulting from the degeneration of articular cartilage. The major protein of cartilage is type II collagen, which is encoded by the COL2A1 gene. Mutations at this locus have been discovered in several individuals with inherited disorders of cartilage. We have identified 27 primary OA patients who are heterozygous for sequence dimorphisms located in the coding region of COL2A1. These dimorphisms were used to distinguish the mRNA output from each of the two COL2A1 alleles in articular cartilage obtained from each patient. Three patients demonstrated differential allelic expression and produced <12% of the normal level of mRNA from one of their COL2A1 alleles. The same allele shows reduced expression in a well-defined OA population than in a control group, suggesting the possible existence of a rare COL2A1 allele that predisposes to OA. 31 refs., 4 figs., 3 tabs.

  17. The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells.

    PubMed

    Adams, Sean; Xing, Zheng; Li, Jinling; Mendoza, Kristelle; Perez, Daniel; Reed, Kent; Cardona, Carol

    2013-12-01

    The NS1 gene encoded by Type A influenza virus circulates as two alleles, the A and B allele. The immunomodulatory properties of the NS1 A allele have been thoroughly examined; however, comparisons of allele function have been predominantly made in mammalian systems. Here we show that counter to the current understanding of allele function in mammals, the two alleles similarly regulate elements of the type I interferon (IFN) signaling pathway, including the interferon-inducible genes Mx and 2'-5' oligoadenylate synthase (2'-5' OAS), and IL-6, which share the same induction pathway as the interferons in embryo fibroblasts from chickens, turkeys or ducks. Replication of two reassortant viruses demonstrated that the B allele virus replicates more and to higher titers than the A allele virus in duck cells; however, the A allele virus replicates more in the cells from chickens and turkeys. Finally, chimeric constructs were used to identify a region of the NS1 gene that conferred the statistically significant differences in expression and replication observed between the alleles.

  18. Structural analysis of substitution patterns in alleles of human immunoglobulin VH genes.

    PubMed

    Romo-González, Tania; Vargas-Madrazo, Enrique

    2005-05-01

    The diversity in repertoires of antibodies (Abs) needed in response to the antigen challenge is produced by evolutionary and somatic processes. The mechanisms operating at a somatic level have been studied in great detail. In contrast, neither the mechanisms nor the strategies of diversification at an evolutionary level have yet been understood in similar detail. Particularly, the substitution patterns in alleles of immunoglobulin genes (Igs) have not been systematically studied. Furthermore, there is a scarcity of studies which link the analysis at a genetic level of the diversification of repertoires with the structural consequences at the protein level of the changes in DNA information. For the purpose of systematically characterizing the strategies of evolutionary diversification through sequence variation at alleles, in this work, we built a database for all the alleles of the IGHV locus in humans reported until now. Based on these data, we performed diverse analyses of substitution patterns and linked these results with studies at the protein level. We found that the sequence diversification in different alleles does not operate with equal intensity for all V genes. Our studies, both of the number of substitutions and of the type of amino acid change per sub-segment of the V-REGION evidenced differences in the selective pressure to which these regions are exposed. The implications of these results for understanding the evolutionary diversification strategies, as well as for the somatic generation of antibody repertoires are discussed.

  19. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    PubMed

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression.

  20. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    PubMed

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  1. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models.

    PubMed

    Thrall, Peter H; Barrett, Luke G; Dodds, Peter N; Burdon, Jeremy J

    2015-01-01

    Gene-for-gene (GFG) and matching-allele (MA) models are qualitatively different paradigms for describing the outcome of genetic interactions between hosts and pathogens. The GFG paradigm was largely built on the foundations of Flor's early work on the flax-flax rust interaction and is based on the concept of genetic recognition leading to incompatible disease outcomes, typical of host immune recognition. In contrast, the MA model is based on the assumption that genetic recognition leads to compatible interactions, which can result when pathogens require specific host factors to cause infection. Results from classical MA and GFG models have led to important predictions regarding various coevolutionary phenomena, including the role of fitness costs associated with resistance and infectivity, the distribution of resistance genes in wild populations, patterns of local adaptation and the evolution and maintenance of sexual reproduction. Empirical evidence (which we review briefly here), particularly from recent molecular advances in understanding of the mechanisms that determine the outcome of host-pathogen encounters, suggests considerable variation in specific details of the functioning of interactions between hosts and pathogens, which may contain elements of both models. In this regard, GFG and MA scenarios likely represent endpoints of a continuum of potentially more complex interactions that occur in nature. Increasingly, this has been recognized in theoretical studies of coevolutionary processes in plant host-pathogen and animal host-parasite associations (e.g., departures from strict GFG/MA assumptions, diploid genetics, multi-step infection processes). However, few studies have explored how different genetic assumptions about host resistance and pathogen infectivity might impact on disease epidemiology or pathogen persistence within and among populations. Here, we use spatially explicit simulations of the basic MA and GFG scenarios to highlight qualitative

  2. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models

    PubMed Central

    Thrall, Peter H.; Barrett, Luke G.; Dodds, Peter N.; Burdon, Jeremy J.

    2016-01-01

    Gene-for-gene (GFG) and matching-allele (MA) models are qualitatively different paradigms for describing the outcome of genetic interactions between hosts and pathogens. The GFG paradigm was largely built on the foundations of Flor’s early work on the flax–flax rust interaction and is based on the concept of genetic recognition leading to incompatible disease outcomes, typical of host immune recognition. In contrast, the MA model is based on the assumption that genetic recognition leads to compatible interactions, which can result when pathogens require specific host factors to cause infection. Results from classical MA and GFG models have led to important predictions regarding various coevolutionary phenomena, including the role of fitness costs associated with resistance and infectivity, the distribution of resistance genes in wild populations, patterns of local adaptation and the evolution and maintenance of sexual reproduction. Empirical evidence (which we review briefly here), particularly from recent molecular advances in understanding of the mechanisms that determine the outcome of host–pathogen encounters, suggests considerable variation in specific details of the functioning of interactions between hosts and pathogens, which may contain elements of both models. In this regard, GFG and MA scenarios likely represent endpoints of a continuum of potentially more complex interactions that occur in nature. Increasingly, this has been recognized in theoretical studies of coevolutionary processes in plant host–pathogen and animal host-parasite associations (e.g., departures from strict GFG/MA assumptions, diploid genetics, multi-step infection processes). However, few studies have explored how different genetic assumptions about host resistance and pathogen infectivity might impact on disease epidemiology or pathogen persistence within and among populations. Here, we use spatially explicit simulations of the basic MA and GFG scenarios to highlight

  3. Presentation of Complex Homozygous Allele in ABCA4 Gene in a Patient with Retinitis Pigmentosa.

    PubMed

    Audere, Māreta; Rutka, Katrīna; Šepetiene, Svetlana; Lāce, Baiba

    2015-01-01

    Retinitis pigmentosa is a degenerative retinal disease characterized by progressive photoreceptor damage, which causes loss of peripheral and night vision and the development of tunnel vision and may result in loss of central vision. This study describes a patient with retinitis pigmentosa caused by a mutation in the ABCA4 gene with complex allele c.1622T>C, p.L541P; c.3113C>T, p.A1038V in homozygous state. PMID:26229699

  4. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100.

    PubMed

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-06-15

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

  5. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

    PubMed Central

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-01-01

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231

  6. Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene

    SciTech Connect

    Morrow, J.F.; Rapaport, J.M.; Dryia, T.P.

    1994-09-01

    New germline mutations in the human retinoblastoma gene preferentially arise on a paternally derived allele. In nonhereditary retinoblastoma, the initial somatic mutation seems to have no such bias. The few previous reports of these phenomena included relatively few cases (less than a dozen new germline or initial somatic mutations), so that the magnitude of the paternal allele bias for new germline mutations is not known. Knowledge of the magnitude of the bias is valuable for genetic counseling, since, for example, patients with new germline mutations who reproduce transmit risk for retinoblastoma according to the risk that the transmitted allele has a germline mutation. We sought to quantitate the paternal allele bias and to determine whether paternal age is a factor possibly accounting for it. We studied 311 families with retinoblastoma (261 simplex, 50 multiplex) that underwent clinical genetic testing and 5 informative families recruited from earlier research. Using RFLPs and polymorphic microsatellites in the retinoblastoma gene, we could determine the parental origin of 45 new germline mutations and 44 probable initial somatic mutations. Thirty-seven of the 45 new germline mutations, or 82%, arose on a paternal allele while only 24 of the 44 initial somatic mutations (55%) did so. Increased paternal age does not appear to account for the excess of new paternal germline mutations, since the average age of fathers of children with new germline mutations (29.4 years, n=26, incomplete records on 11) was not significantly different from the average age of fathers of children with maternal germline mutations or somatic initial mutations (29.8 years, n=35, incomplete records on 17).

  7. Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage.

    PubMed

    Kim, H S; Park, Y H; Nam, H; Lee, Y M; Song, K; Choi, C; Ahn, I; Park, S R; Lee, Y H; Hwang, D J

    2014-09-01

    Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important vegetable crop, can succumb to diseases such as bacterial soft rot, resulting in significant loss of crop productivity and quality. Pectobacterium carotovorum ssp. carotovorum (Pcc) causes soft rot disease in various plants, including Chinese cabbage. To overcome crop loss caused by bacterial soft rot, a gene from Chinese cabbage was isolated and characterised in this study. We isolated the BrWRKY12 gene from Chinese cabbage, which is a group II member of the WRKY transcription factor superfamily. The 645-bp coding sequence of BrWRKY12 translates to a protein with a molecular mass of approximately 24.4 kDa, and BrWRKY12 was exclusively localised in the nucleus. Transcripts of BrWRKY12 were induced by Pcc infection in Brassica. Heterologous expression of BrWRKY12 resulted in reduced susceptibility to Pcc but not to Pseudomonas syringae pv. tomato in Arabidopsis. Defence-associated genes, such as AtPDF1.2 and AtPGIP2, were constitutively expressed in transgenic lines overexpressing BrWRKY12. The expression of AtWKRY12, which is the closest orthologue of BrWRKY12, was down-regulated by Pcc in Arabidopsis. However, the Atwrky12-2 mutants did not show any difference in response to Pcc, pointing to a difference in function of WRKY12 in Brassica and Arabidopsis. Furthermore, BrWRKY12 in Chinese cabbage also exhibited enhanced resistance to bacterial soft rot and increased the expression of defence-associated genes. In summary, BrWRKY12 confers enhanced resistance to Pcc through transcriptional activation of defence-related genes.

  8. Hotfoot mouse mutations affect the delta 2 glutamate receptor gene and are allelic to lurcher.

    PubMed

    Lalouette, A; Guénet, J L; Vriz, S

    1998-05-15

    Hotfoot (ho) is a recessive mouse mutation characterized by cerebellar ataxia associated with relatively mild abnormalities of the cerebellum. It has been previously mapped to Chromosome 6, and at least eight independent alleles have been reported. Here we show that the hotfoot phenotype is associated with mutations in the glutamate receptor ionotropic delta2 gene (Grid2). We have identified a 510-bp deletion in the Grid2 coding sequence in the ho4J allele, resulting in a deletion of 170 amino acids of the extracellular domain of the receptor. Analysis of a second allele, hoTgN37INRA, revealed a 4-kb deletion in the Grid2 transcript. The GRID2 protein in these hotfoot mutants probably has a reduced (or null) activity since the phenotype of hotfoot bears similarities with the previously described phenotype of Grid2 knockout mice. The exceptionally high number of independent alleles at the ho locus is an invaluable tool for investigating the function of the glutamate receptor ionotropic delta2 protein, which so far remains largely unknown.

  9. New Alleles of the Yeast MPS1 Gene Reveal Multiple Requirements in Spindle Pole Body Duplication

    PubMed Central

    Schutz, Amy R.; Winey, Mark

    1998-01-01

    In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication. PMID:9529376

  10. Rare Homologous Gene Targeting in Histoplasma capsulatum: Disruption of the URA5Hc Gene by Allelic Replacement

    PubMed Central

    Woods, Jon P.; Retallack, Diane M.; Heinecke, Elizabeth L.; Goldman, William E.

    1998-01-01

    URA5 genes encode orotidine-5′-monophosphate pyrophosphorylase (OMPpase), an enzyme involved in pyrimidine biosynthesis. We cloned the Histoplasma capsulatum URA5 gene (URA5Hc) by using a probe generated by PCR with inosine-rich primers based on relatively conserved sequences in OMPpases from other organisms. Transformation with this gene restored uracil prototrophy and OMPpase activity to UV-mutagenized ura5 strains of H. capsulatum. We attempted to target the genomic URA5 locus in this haploid organism to demonstrate homologous allelic replacement with transforming DNA, which has not been previously done in H. capsulatum and has been challenging in some other pathogenic fungi. Several strategies commonly used in Saccharomyces cerevisiae and other eukaryotes were unsuccessful, due to the frequent occurrence of ectopic integration, linear plasmid formation, and spontaneous resistance to 5-fluoroorotic acid, which is a selective agent for URA5 gene inactivation. Recent development of an efficient electrotransformation system and of a second selectable marker (hph, conferring hygromycin B resistance) for this fungus enabled us to achieve allelic replacement by using transformation with an insertionally inactivated Δura5Hc::hph plasmid, followed by dual selection with hygromycin B and 5-fluoroorotic acid, or by screening hygromycin B-resistant transformants for uracil auxotrophy. The relative frequency of homologous gene targeting was approximately one allelic replacement event per thousand transformants. This work demonstrates the feasibility but also the potential challenge of gene disruption in this organism. To our knowledge, it represents the first example of experimentally directed allelic replacement in H. capsulatum, or in any dimorphic systemic fungal pathogen of humans. PMID:9748447

  11. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups

    PubMed Central

    2013-01-01

    Background WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. Results We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. Conclusions In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have

  12. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    SciTech Connect

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  13. Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene.

    PubMed Central

    Primo-Parmo, S. L.; Bartels, C. F.; Wiersema, B.; van der Spek, A. F.; Innis, J. W.; La Du, B. N.

    1996-01-01

    The silent phenotype of human butyrylcholinesterase (BChE), present in most human populations in frequencies of approximately 1/100,000, is characterized by the complete absence of BChE activity or by activity <10% of the average levels of the usual phenotype. Heterogeneity in this phenotype has been well established at the phenotypic level, but only a few silent BCHE alleles have been characterized at the DNA level. Twelve silent alleles of the human butyrylcholinesterase gene (BCHE) have been identified in 17 apparently unrelated patients who were selected by their increased sensitivity to the muscle relaxant succinylcholine. All of these alleles are characterized by single nucleotide substitutions or deletions leading to distinct changes in the structure of the BChE enzyme molecule. Nine of the nucleotide substitutions result in the replacement of single amino acid residues. Three of these variants, BCHE*33C, BCHE*198G, and BCHE*201T, produce normal amounts of immunoreactive but enzymatically inactive BChE protein in the plasma. The other six amino acid substitutions, encoded by BCHE*37S, BCHE*125F, BCHE*170E, BCHE*471R, and BCHE*518L, seem to cause reduced expression of BChE protein, and their role in determining the silent phenotype was confirmed by expression in cell culture. The other four silent alleles, BCHE*271STOP, BCHE*500STOP, BCHE*FS6, and BCHE*I2E3-8G, encode BChES truncated at their C-terminus because of premature stop codons caused by nucleotide substitutions, a frame shift, or altered splicing. The large number of different silent BCHE alleles found within a relatively small number of patients shows that the heterogeneity of the silent BChE phenotype is high. The characterization of silent BChE variants will be useful in the study of the structure/function relationship for this and other closely related enzymes. Images Figure 2 PMID:8554068

  14. A pseudodeficiency allele (D152N) of the human {beta}-glucuronidase gene

    SciTech Connect

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1995-10-01

    We present evidence that a 480G{r_arrow}A transition in the coding region of the {Beta}glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of {Beta}-glucuronidase activity without apparent deleterious consequences. The 48OG{r_arrow}A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G{r_arrow}A change was also present in an unrelated individual with another MPSVII allele who had unusually low {Beta}-glucuronidase activity, but whose clinical symptoms were probably unrelated to {Beta}-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G{r_arrow}A mutation with a PCR method and detected one carrier. Reduced {Beta}-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in {approximately}50% of the enzyme expressed. 25 refs., 3 figs., 3 tabs.

  15. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes.

    PubMed

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-12-01

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.

  16. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana.

    PubMed

    Machens, Fabian; Becker, Marlies; Umrath, Felix; Hehl, Reinhard

    2014-03-01

    Using a combination of bioinformatics and synthetic promoters, novel elicitor-responsive cis-sequences were discovered in promoters of pathogen-upregulated genes from Arabidopsis thaliana. One group of functional sequences contains the conserved core sequence GACTTTT. This core sequence and adjacent nucleotides are essential for elicitor-responsive gene expression in a parsley protoplast system. By yeast one-hybrid screening, WRKY70 was selected with a cis-sequence harbouring the core sequence GACTTTT but no known WRKY binding site (W-box). Transactivation experiments, mutation analyses, and electrophoretic mobility shift assays demonstrate that the sequence CGACTTTT is the binding site for WRKY70 in the investigated cis-sequence and is required for WRKY70-activated gene expression. Using several cis-sequences in transactivation experiments and binding studies, the CGACTTTT sequence can be extended to propose YGACTTTT as WRKY70 binding site. This binding site, designated WT-box, is enriched in promoters of genes upregulated in a WRKY70 overexpressing line. Interestingly, functional WRKY70 binding sites are present in the promoter of WRKY30, supporting recent evidence that both factors play a role in the same regulatory network. PMID:24104863

  17. Allelic variation at a single gene increases food value in a drought-tolerant staple cereal.

    PubMed

    Gilding, Edward K; Frère, Celine H; Cruickshank, Alan; Rada, Anna K; Prentis, Peter J; Mudge, Agnieszka M; Mace, Emma S; Jordan, David R; Godwin, Ian D

    2013-01-01

    The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.

  18. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi

    PubMed Central

    Kaulich, Manuel; Lee, Yeon J.; Lönn, Peter; Springer, Aaron D.; Meade, Bryan R.; Dowdy, Steven F.

    2015-01-01

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. PMID:25586224

  19. Generation of a conditional knockout allele for the NFAT5 gene in mice.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity enhancer element binding protein (TonEBP) plays a crucial role in protection of renal medullary cells against hyperosmotic stress, urinary concentration, the adaptive immune response, and other physiological systems. Since it is also important for development, conventional homozygous-null mutations result in perinatal death, which hinders the analysis of NFAT5 function in specific tissues in vivo. Here we describe the generation of mice with a conditional-null allele, in which loxP sites are inserted around exon 4. Mice harboring the floxed allele (NFAT5(flx) ) were mated to a strain expressing a tamoxifen-inducible derivative of the Cre-recombinase (Cre (+)) under the control of the ubiqitinC promoter. The resultant homozygous conditional knockout mice (Cre (+) NFAT5 (flx/flx) ) are viable, fertile, and show normal expression of NFAT5 and NFAT5 target genes, indicating that the conditional alleles retain their wild-type function. Induction of Cre-mediated recombination by administration of tamoxifen in 8-week-old mice resulted in a decrease in NFAT5 expression of about 70-90% in all tested tissues (renal cortex, renal outer medulla, renal inner medulla, heart, lung, spleen, skeletal muscle). Accordingly, the expression of the NFAT5 target genes aldose reductase and heat shock protein 70 in the renal medulla was also significantly decreased. Mice harboring this conditional knockout allele should be useful in future studies for gaining a better understanding of tissue and cell-type specific functions of NFAT5 in adult animals under physiological and pathophysiological conditions. PMID:25601839

  20. Analysis of T-DNA alleles of flavonoid biosynthesis genes in Arabidopsis ecotype Columbia

    PubMed Central

    2012-01-01

    Background The flavonoid pathway is a long-standing and important tool for plant genetics, biochemistry, and molecular biology. Numerous flavonoid mutants have been identified in Arabidopsis over the past several decades in a variety of ecotypes. Here we present an analysis of Arabidopsis lines of ecotype Columbia carrying T-DNA insertions in genes encoding enzymes of the central flavonoid pathway. We also provide a comprehensive summary of various mutant alleles for these structural genes that have been described in the literature to date in a wide variety of ecotypes. Findings The confirmed knockout lines present easily-scorable phenotypes due to altered pigmentation of the seed coat (or testa). Knockouts for seven alleles for six flavonoid biosynthetic genes were confirmed by PCR and characterized by UPLC for altered flavonol content. Conclusion Seven mutant lines for six genes of the central flavonoid pathway were characterized in ecotype, Columbia. These lines represent a useful resource for integrating biochemical and physiological studies with genomic, transcriptomic, and proteomic data, much of which has been, and continues to be, generated in the Columbia background. PMID:22947320

  1. Selective Retention of an Inactive Allele of the DKK2 Tumor Suppressor Gene in Hepatocellular Carcinoma

    PubMed Central

    Lin, Yung-Feng; Li, Ling-Hui; Lin, Chih-Hung; Tsou, Mei-Hua; Chuang, Ming-Tai Kiffer; Wu, Keh-Ming; Liao, Tsai-Lien; Li, Jian-Chiuan; Wang, Wei-Jie; Tomita, Angela; Tomita, Beverly; Huang, Shiu-Feng; Tsai, Shih-Feng

    2016-01-01

    In an effort to identify the functional alleles associated with hepatocellular carcinoma (HCC), we investigated 152 genes found in the 4q21-25 region that exhibited loss of heterozygosity (LOH). A total of 2,293 pairs of primers were designed for 1,449 exonic and upstream promoter regions to amplify and sequence 76.8–114 Mb on human chromosome 4. Based on the results from analyzing 12 HCC patients and 12 healthy human controls, we discovered 1,574 sequence variations. Among the 99 variants associated with HCC (p < 0.05), four are from the Dickkopf 2 (DKK2) gene: three in the promoter region (g.-967A>T, g.-923C>A, and g.-441T>G) and one in the 5’UTR (c.550T>C). To verify the results, we expanded the subject cohort to 47 HCC cases and 88 healthy controls for conducting haplotype analysis. Eight haplotypes were detected in the non-tumor liver tissue samples, but one major haplotype (TAGC) was found in the tumor tissue samples. Using a reporter assay, this HCC-associated allele registered the lowest level of promoter activity among all the tested haplotype sequences. Retention of this allele in LOH was associated with reduced DKK2 transcription in the HCC tumor tissues. In HuH-7 cells, DKK2 functioned in the Wnt/β-catenin signaling pathway, as an antagonist of Wnt3a, in a dose-dependent manner that inhibited Wnt3a-induced cell proliferation. Taken together, the genotyping and functional findings are consistent with the hypothesis that DKK2 is a tumor suppressor; by selectively retaining a transcriptionally inactive DKK2 allele, the reduction of DKK2 function results in unchecked Wnt/β-catenin signaling, contributing to HCC oncogenesis. Thus our study reveals a new mechanism through which a tumor suppressor gene in a LOH region loses its function by allelic selection. PMID:27203079

  2. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.

    PubMed

    Arora, D; Gross, T; Brueggeman, R

    2013-11-01

    A highly virulent form of the wheat stem rust pathogen Puccinia graminis f. sp. tritici race TTKSK is virulent on both wheat and barley, presenting a major threat to world food security. The recessive and temperature-sensitive rpg4 gene is the only effective source of resistance identified in barley (Hordeum vulgare) against P. graminis f. sp. tritici race TTKSK. Efforts to position clone rpg4 localized resistance to a small interval on barley chromosome 5HL, tightly linked to the rye stem rust (P. graminis f. sp. secalis) resistance (R) gene Rpg5. High-resolution genetic analysis and post-transcriptional gene silencing of the genes at the rpg4/Rpg5 locus determined that three tightly linked genes (Rpg5, HvRga1, and HvAdf3) are required together for rpg4-mediated wheat stem rust resistance. Alleles of the three genes were analyzed from a diverse set of 14 domesticated barley lines (H. vulgare) and 8 wild barley accessions (H. vulgare subsp. spontaneum) to characterize diversity that may determine incompatibility (resistance). The analysis determined that HvAdf3 and HvRga1 code for predicted functional proteins that do not appear to contain polymorphisms determining the compatible (susceptible) interactions with the wheat stem rust pathogen and were expressed at the transcriptional level from both resistant and susceptible barley lines. The HvAdf3 alleles shared 100% amino acid identity among all 22 genotypes examined. The P. graminis f. sp. tritici race QCCJ-susceptible barley lines with HvRga1 alleles containing the limited amino acid substitutions unique to the susceptible varieties also contained predicted nonfunctional rpg5 alleles. Thus, susceptibility in these lines is likely due to the nonfunctional RPG5 proteins. The Rpg5 allele analysis determined that 9 of the 13 P. graminis f. sp. tritici race QCCJ-susceptible barley lines contain alleles that either code for predicted truncated proteins as the result of a single nucleotide substitution, resulting in a

  3. A note on the change in gene frequency of a selected allele in partial full-sib mating populations

    SciTech Connect

    Caballero, A.

    1996-02-01

    The change in gene frequency of a selected allele in partial full-sib mating populations was analyzed. The implications of these papers is important in terms of the fixation probability of genes because, for the same equilibrium inbreeding coefficient, fixation rates of mutant genes would be larger for partial full-sib mating than for partial selfing. 4 refs.

  4. Structure and expression of wild-type and suppressible alleles of the Drosophila purple gene

    SciTech Connect

    Kim, Nacksung |; Park, Dongkook; Yim, John

    1996-04-01

    Viable mutant alleles of purple (pr), such as pr{sup bw}, exhibit mutant eye colors. This reflects low 6-pyruvoyl tetrahydropterin (PTP) synthase activity required for pigment synthesis. PTP synthase is also required for synthesis of the enzyme cofactor biopterin; presumably this is why some pr alleles are lethal. The pr{sup bw} eye color phenotype is suppressed by suppressor of sable [su(s)] mutations. The pr gene was cloned to explore the mechanism of this suppression. pr produces two PTP synthase mRNAs: one constitutively from a distal promoter and one in late pupae and young adult heads from a proximal promoter. The latter presumably supports eye pigment synthesis. The pr{sup bw} allele has a 412 retrotransposon in an intron spliced from both mRNAs. However, the head-specific mRNA is reduced > 10-fold in pr{sup bw} and is restored by a su(s) mutation, while the constitutive transcript is barely affected. The Su(s) protein probably alters processing of RNA containing 412. Because the intron containing 412 is the first in the head-specific mRNA and the second in the constitutive mRNA, binding of splicing machinery to nascent transcripts before the 412 insertion is transcribed may preclude the effects of Su(s) protein. 43 refs., 9 figs.

  5. Linkage disequilibrium in the insulin gene region: size variation at the 5' flanking polymorphism and bimodality among "class I" alleles.

    PubMed Central

    McGinnis, R. E.; Spielman, R. S.

    1994-01-01

    The 5' flanking polymorphism (5'FP), a hypervariable region at the 5' end of the insulin gene, has "class 1" alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). We report that precise sizing of the 5'FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. We also examined 5'FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5'FP, we found that one allele exhibits near-total association with the upper component of the 5'FP class 1 distribution. Such associations represent a little-known but potentially widespread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. PMID:7915880

  6. [Male reproductive behavior in Drosophila melanogaster strains with different alleles of the flamenco gene].

    PubMed

    Subocheva, E A; Romanova, N I; Karpova, N N; Iuneva, A O; Kim, A I

    2003-05-01

    The allelic state of gene flamenco has been determined in a number of Drosophila melanogaster strains using the ovoD test. The presence of an active copy of gypsy in these strains was detected by restriction analysis. Then male reproduction behavior was studied in the strains carrying a mutation in gene flamenco. In these experiments mating success has been experimentally estimated in groups of flies. It has been demonstrated that the presence of mutant allele flamMS decreases male mating activity irrespective of the presence or absence of mutation white. The active copy of gypsy does not affect mating activity in the absence of the mutation in gene flamenco. Individual analysis has demonstrated that that mutation flamMS results in characteristic changes in courtship: flamMS males exhibit a delay in the transition from the orientation stage to the vibration stage (the so-called vibration delay). The role of locus flamenco in the formation of male mating behavior in Drosophila is discussed. PMID:12838614

  7. Structure and transforming function of transduced mutant alleles of the chicken c-myc gene.

    PubMed Central

    Patschinsky, T; Jansen, H W; Blöcker, H; Frank, R; Bister, K

    1986-01-01

    A small retroviral vector carrying an oncogenic myc allele was isolated as a spontaneous variant (MH2E21) of avian oncovirus MH2. The MH2E21 genome, measuring only 2.3 kilobases, can be replicated like larger retroviral genomes and hence contains all cis-acting sequence elements essential for encapsidation and reverse transcription of retroviral RNA or for integration and transcription of proviral DNA. The MH2E21 genome contains 5' and 3' noncoding retroviral vector elements and a coding region comprising the first six codons of the viral gag gene and 417 v-myc codons. The gag-myc junction corresponds precisely to the presumed splice junction on subgenomic MH2 v-myc mRNA, the possible origin of MH2E21. Among the v-myc codons, the first 5 are derived from the noncoding 5' terminus of the second c-myc exon, and 412 codons correspond to the c-myc coding region. The predicted sequence of the MH2E21 protein product differs from that of the chicken c-myc protein by 11 additional amino-terminal residues and by 25 amino acid substitutions and a deletion of 4 residues within the shared domains. To investigate the functional significance of these structural changes, the MH2E21 genome was modified in vitro. The gag translational initiation codon was inactivated by oligonucleotide-directed mutagenesis. Furthermore, all but two of the missense mutations were reverted, and the deleted sequences were restored by replacing most of the MH2E21 v-myc allele by the corresponding segment of the CMII v-myc allele which is isogenic to c-myc in that region. The remaining two mutations have not been found in the v-myc alleles of avian oncoviruses MC29, CMII, and OK10. Like MH2 and MH2E21, modified MH2E21 (MH2E21m1c1) transforms avian embryo cells. Like c-myc, it encodes a 416-amino-acid protein initiated at the myc translational initiation codon. We conclude that neither major structural changes, such as in-frame fusion with virion genes or internal deletions, nor specific, if any

  8. Genetic influences on bone density: Physiological correlates of vitamin D receptor gene alleles in premonopausal women

    SciTech Connect

    Howard, G.; Nguyen, T.; Morrison, N.

    1995-09-01

    Common vitamin D receptor (VDR) gene alleles have recently been shown to contribute to the genetic variability in bone mass and bone turnover; however, the physiological mechanisms involved are unknown. To examine this, the response to 7 days of 2 {mu}g oral 1,25-dihydroxyvitamin D[1,25-(OH){sub 2}D] (calcitrol) stimulation was assessed in 21 premenopausal women, homozygous for one or other of the common VDR alleles (bb, N = 11; BB, n = 10). Indices of bone turnover and calcium homeostasis were measured during 2 weeks. Baseline osteocalcin, 1,25-(OH){sub 2}D, type I collagen carboxyterminal telopeptide, and inorganic phosphate levels were significantly higher and spinal bone mineral density was significantly lower in the BB allelic group. After calcitrol administration, similar levels of 1,25-(OH){sub 2}D were attained throughout the study in both genotypic groups. The increase in serum osteocalcin levels in the BB group was significantly less than that in the bb group (11% vs. 32%, P = 0.01). The genotype-related baseline difference in osteocalcin levels was not apparent at the similar serum 1,25-(OH){sub 2}D levels. By contrast, the baseline differences in phosphate and type I collagen carboxyterminal telopeptide persisted throughout the study. Serum ionized calcium levels did not differ between genotypes, nor did it move out of normal range values. However, parathyroid hormone was less suppressed in the low bone density group (38% vs. 11%, P = 0.01). These data indicate that the VDR alleles are associated with differences in the vitamin D endocrine system and may have important implications in relation to the pathophysiology of osteoporosis. 35 refs., 2 figs., 1 tab.

  9. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  10. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids1[OPEN

    PubMed Central

    2016-01-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  11. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes.

    PubMed

    Brady, Brenna L; Oropallo, Michael A; Yang-Iott, Katherine S; Serwold, Thomas; Hochedlinger, Konrad; Jaenisch, Rudolf; Weissman, Irving L; Bassing, Craig H

    2010-09-15

    The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.

  12. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  13. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola.

    PubMed

    Merz, Patrick R; Moser, Tina; Höll, Janine; Kortekamp, Andreas; Buchholz, Günther; Zyprian, Eva; Bogs, Jochen

    2015-03-01

    Grapevine (Vitis vinifera ssp. vinifera) is one of the most important fruit species; however, it is highly susceptible to various pathogens, which can cause severe crop losses in viticulture. It has been shown that several WRKY class transcription factors (TFs) are part of the signal transduction cascade, which leads to the activation of plant defense reactions against various pathogens. In the present investigation, a full-length cDNA was isolated from V. vinifera leaf tissue encoding a predicted protein, designated VvWRKY33, which shows the characteristics of group I WRKY protein family. VvWRKY33 induction correlates with the expression of VvPR10.1 (pathogenesis-related 10.1) gene in the leaves of the resistant cultivar 'Regent' after infection with Plasmopara viticola, whereas in the susceptible cultivar 'Lemberger' VvWRKY33 and VvPR10.1 are not induced. Corresponding expression of the TF and VvPR10.1 was even obtained in uninfected ripening berries. In planta, analysis of VvWRKY33 has been performed by ectopic expression of VvWRKY33 in grapevine leaves of greenhouse plants mediated via Agrobacterium tumefaciens transformation. In consequence, VvWRKY33 strongly increases resistance to P. viticola in the susceptible cultivar 'Shiraz' and reduces pathogen sporulation of about 50-70%, indicating a functional role for resistance in grapevine. Complementation of the resistance-deficient Arabidopsis thaliana Columbia-0 (Col-0) mutant line wrky33-1 by constitutive expression of VvWRKY33 restores resistance against Botrytis cinerea to wild-type level and in some complemented mutant lines even exceeds the resistance level of the parental line Col-0. Our results support the involvement of VvWRKY33 in the defense reaction of grapevine against different pathogens.

  14. In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

    PubMed Central

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD. PMID:25101598

  15. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro.

    PubMed

    Park, Sang-Wook; Kim, Jihoon; Park, Jong-Lyul; Ko, Ji-Yun; Im, Ilkyun; Do, Hyo-Sang; Kim, Hyemin; Tran, Ngoc-Tung; Lee, Sang-Hun; Kim, Yong Sung; Cho, Yee Sook; Lee, Dong Ryul; Han, Yong-Mahn

    2014-04-01

    Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.

  16. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  17. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    PubMed

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  18. Analysis of a Larger SNP Dataset from the HapMap Project Confirmed That the Modern Human A Allele of the ABO Blood Group Genes Is a Descendant of a Recombinant between B and O Alleles.

    PubMed

    Itou, Masaya; Sato, Mitsuharu; Kitano, Takashi

    2013-01-01

    The human ABO blood group gene consists of three main alleles (A, B, and O) that encode a glycosyltransferase. The A and B alleles differ by two critical amino acids in exon 7, and the major O allele has a single nucleotide deletion (Δ261) in exon 6. Previous evolutionary studies have revealed that the A allele is the most ancient, B allele diverged from the A allele with two critical amino acid substitutions in exon 7, and the major O allele diverged from the A allele with Δ261 in exon 6. However, a recent phylogenetic network analysis study showed that the A allele of humans emerged through a recombination between the B and O alleles. In the previous study, a restricted dataset from only two populations was used. In this study, therefore, we used a large single nucleotide polymorphism (SNP) dataset from the HapMap Project. The results indicated that the A101-A201-O09 haplogroup was a recombinant lineage between the B and O haplotypes, containing the intact exon 6 from the B allele and the two critical A type sites in exon 7 from the major O allele. Its recombination point was assumed to be located just behind Δ261 in exon 6.

  19. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants.

    PubMed

    Wang, Fang; Chen, Hao-Wei; Li, Qing-Tian; Wei, Wei; Li, Wei; Zhang, Wan-Ke; Ma, Biao; Bi, Ying-Dong; Lai, Yong-Cai; Liu, Xin-Lei; Man, Wei-Qun; Zhang, Jin-Song; Chen, Shou-Yi

    2015-07-01

    Soybean (Glycine max) is an important crop for oil and protein resources worldwide. The molecular mechanism of the abiotic stress response in soybean is largely unclear. We previously identified multiple stress-responsive WRKY genes from soybean. Here, we further characterized the roles of one of these genes, GmWRKY27, in abiotic stress tolerance using a transgenic hairy root assay. GmWRKY27 expression was increased by various abiotic stresses. Over-expression and RNAi analysis demonstrated that GmWRKY27 improves salt and drought tolerance in transgenic soybean hairy roots. Measurement of physiological parameters, including reactive oxygen species and proline contents, supported this conclusion. GmWRKY27 inhibits expression of a downstream gene GmNAC29 by binding to the W-boxes in its promoter region. The GmNAC29 is a negative factor of stress tolerance as indicated by the performance of transgenic hairy roots under stress. GmWRKY27 interacts with GmMYB174, which also suppresses GmNAC29 expression and enhances drought stress tolerance. The GmWRKY27 and GmMYB174 may have evolved to bind to neighbouring cis elements in the GmNAC29 promoter to co-reduce promoter activity and gene expression. Our study discloses a valuable mechanism in soybean for regulation of the stress response by two associated transcription factors. Manipulation of these genes should facilitate improvements in stress tolerance in soybean and other crops.

  20. A hypervariable STR polymorphism in the CFI gene: southern origin of East Asian-specific group H alleles.

    PubMed

    Yuasa, Isao; Jin, Feng; Harihara, Shinji; Matsusue, Aya; Fujihara, Junko; Takeshita, Haruo; Akane, Atsushi; Umetsu, Kazuo; Saitou, Naruya; Chattopadhyay, Prasanta K

    2013-09-01

    Previous studies of four populations revealed that a hypervariable short tandem repeat (iSTR) in intron 7 of the human complement factor I (CFI) gene on chromosome 4q was unique, with 17 possible East Asian-specific group H alleles observed at relatively high frequencies. To develop a deeper anthropological and forensic understanding of iSTR, 1161 additional individuals from 11 Asian populations were investigated. Group H alleles of iSTR and c.1217A allele of a SNP in exon 11 of the CFI gene were associated with each other and were almost entirely confined to East Asian populations. Han Chinese in Changsha, southern China, showed the highest frequency for East Asian-specific group H alleles (0.201) among 15 populations. Group H alleles were observed to decrease gradually from south to north in 11 East Asian populations. This expansion of group H alleles provides evidence that southern China and Southeast Asia are a hotspot of Asian diversity and a genetic reservoir of Asians after they entered East Asia. The expected heterozygosity values of iSTR ranged from 0.927 in Thais to 0.874 in Oroqens, higher than those of an STR in the fibrinogen alpha chain (FGA) gene on chromosome 4q. Thus, iSTR is a useful marker for anthropological and forensic genetics.

  1. Polymorphism analysis of Chinese Theileria sergenti using allele-specific polymerase chain reaction of the major piroplasm surface protein gene.

    PubMed

    Liu, Ai Hong; Guan, Gui Quan; Liu, Jun Long; Liu, Zhi Jie; Leblanc, Neil; Li, You Quan; Gao, Jin Liang; Ma, Mi Ling; Niu, Qing Li; Ren, Qiao Yun; Bai, Qi; Yin, Hong; Luo, Jian Xun

    2011-02-01

    Theileria sergenti is a tick-borne parasite found in many parts of the world. The major piroplasm surface protein (MPSP), a conserved protein in all Theileria species, has been used as a marker for epidemiological and phylogenetic studies of benign Theileria species. In this study, Chinese species of T. sergenti were characterized by allele-specific polymerase chain reaction (PCR) and DNA sequence analysis of the MPSP gene. Using universal or allele-specific primer sets for PCR amplification of the MPSP gene, 98 of 288 cattle blood samples, collected from 6 provinces in China, were found to be positive. Among the positive samples, only 3 allelic MPSP gene types (Chitose [C]-, Ikeda [I]-, and buffeli [B]-type) were successfully amplified. Moreover, the results revealed that the majority of the parasites sampled in this study were C- and I-type (prevalence of 84 and 69%, respectively), whereas the B-type was less common (prevalence of 36%). Co-infections with C-, I-, and B-type T. sergenti also were found. An additional known allele, Thai-type, was not detected. Phylogenetic analysis based on the MPSP gene sequences, including 3 standard stocks generated in the laboratory ( T. sergenti Wenchuan, T. sergenti Ningxian, and T. sergenti Liaoyang), revealed that the isolates of Chinese sergenti were comprised of at least 4 allelic MPSP gene types, i.e., C-, I-, B1-, and B2-type, and these parasites with 6 MPSP types 1-5 and 7 were present in China.

  2. High Producing Tumor Necrosis Factor Alpha Gene Alleles in Protection against Severe Manifestations of Dengue

    PubMed Central

    Sam, Sing-Sin; Teoh, Boon-Teong; Chinna, Karuthan; AbuBakar, Sazaly

    2015-01-01

    Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated. Methods: A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods. Results: A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3'UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study. Conclusion: The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS. PMID:25589894

  3. Distribution of VP4 gene alleles in human rotaviruses by using probes to the hyperdivergent region of the VP4 gene.

    PubMed Central

    Steele, A D; Garcia, D; Sears, J; Gerna, G; Nakagomi, O; Flores, J

    1993-01-01

    The rotavirus VP4 protein elicits the production of neutralizing antibodies and is known to play a role in inducing resistance to disease. At least five human rotavirus VP4 gene alleles have been described on the basis of antigenic polymorphism and/or nucleotide sequence differences. In the present study, we developed cDNA probes directed at the hyperdivergent region of the VP4 gene of the five described human rotavirus VP4 alleles (Wa, DS1, M37, AU228, and 69M) and used them in hybridization assays with human rotavirus strains from Latin America and Europe to determine the distribution of the VP4 gene alleles in nature. The Wa-like allele was detected most frequently, occurring in 57% of the 402 rotavirus strains tested, and the DS1-like allele was the next most common, occurring in 14% of the strains tested. The M37- and AU228-like alleles were detected in only 4 and 3% of the rotavirus strains tested, respectively, whereas the 69M-like VP4 gene allele was not detected. Several rotavirus strains from Europe did not react with any of the VP4 gene probes, although they did hybridize to a probe generated from a representative strain from the group. These data indicate the global distribution of various VP4 gene alleles and raise the possibility that other, unrecognized human VP4 alleles exist in nature because almost one-fourth of the strains could not be classified into any of the established VP4 groups. Images PMID:8394374

  4. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements.

    PubMed Central

    Chopra, S; Athma, P; Peterson, T

    1996-01-01

    The maize P gene is a transcriptional regulator of genes encoding enzymes for flavonoid biosynthesis in the pathway leading to the production of a red phlobaphene pigment. Multiple alleles of the P gene confer distinct patterns of pigmentation to specific floral organs, such as the kernel pericarp and cob tissues. To determine the basis of allele-specific pigmentation, we have characterized the gene products and transcript accumulation patterns of the P-wr allele, which specifies colorless pericarps and red cob tissues. RNA transcripts of P-wr are present in colorless pericarps as well as in the colored cob tissues; however, the expression of P-wr in pericarp does not induce the accumulation of transcripts from the C2 and A1 genes, which encode enzymes for flavonoid pigment biosynthesis. The coding sequences of P-wr were compared with the P-rr allele, which specifies red pericarp and red cob. The P-wr and P-rr cDNA sequences are very similar in their 5' regions. There are only two nucleotide changes that result in amino acid differences; both are outside of the Myb-homologous DNA binding domain. In contrast, the 3' coding region of P-rr is replaced by a unique 210-bp sequence in P-wr. The predicted P-wr protein has a C-terminal sequence resembling a cysteine-containing metal binding domain that is not present in the P-rr protein. These results indicate that the differential pericarp pigmentation specified by the P-rr and P-wr alleles does not result from an absence of P-wr transcripts in pericarps. Rather, the allele-specific patterns of P-rr and P-wr pigmentation may be associated with structural differences in the proteins encoded by each allele. PMID:8768374

  5. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele

    PubMed Central

    Faruque, Omar M.; Miwa, Hiroki; Yasuda, Michiko; Fujii, Yoshiharu; Kaneko, Takakazu; Sato, Shusei

    2015-01-01

    Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity. PMID:26187957

  6. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele.

    PubMed

    Faruque, Omar M; Miwa, Hiroki; Yasuda, Michiko; Fujii, Yoshiharu; Kaneko, Takakazu; Sato, Shusei; Okazaki, Shin

    2015-10-01

    Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity. PMID:26187957

  7. Genome-wide identification of soybean WRKY transcription factors in response to salt stress.

    PubMed

    Yu, Yanchong; Wang, Nan; Hu, Ruibo; Xiang, Fengning

    2016-01-01

    Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance. PMID:27386364

  8. Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt ( Triticum spelta L.).

    PubMed

    Blatter, Robert H. E.; Jacomet, Stefanie; Schlumbaum, Angela

    2002-02-01

    A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt ( Triticum spelta L.) and an approximately 250 year-old bread wheat ( Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta'Oberkulmer.' The alleles from the historical bread wheat were most similar to those of modern T. aestivumcultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt.

  9. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea.

    PubMed

    Kujur, Alice; Upadhyaya, Hari D; Bajaj, Deepak; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-06-20

    In the present study, molecular mapping of high-resolution plant height QTLs was performed by integrating 3625 desi genome-derived GBS (genotyping-by-sequencing)-SNPs on an ultra-high resolution intra-specific chickpea genetic linkage map (dwarf/semi-dwarf desi cv. ICC12299 x tall kabuli cv. ICC8261). The identified six major genomic regions harboring six robust QTLs (11.5-21.3 PVE), associated with plant height, were mapped within <0.5 cM average marker intervals on six chromosomes. Five SNPs-containing genes tightly linked to the five plant height QTLs, were validated based upon their high potential for target trait association (12.9-20.8 PVE) in 65 desi and kabuli chickpea accessions. The vegetative tissue-specific expression, including higher differential up-regulation (>5-fold) of five genes especially in shoot, young leaf, shoot apical meristem of tall mapping parental accession (ICC8261) as compared to that of dwarf/semi-dwarf parent (ICC12299) was apparent. Overall, combining high-resolution QTL mapping with genetic association analysis and differential expression profiling, delineated natural allelic variants in five candidate genes (encoding cytochrome-c-biosynthesis protein, malic oxidoreductase, NADH dehydrogenase iron-sulfur protein, expressed protein and bZIP transcription factor) regulating plant height in chickpea. These molecular tags have potential to dissect complex plant height trait and accelerate marker-assisted genetic enhancement for developing cultivars with desirable plant height ideotypes in chickpea.

  10. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea.

    PubMed

    Kujur, Alice; Upadhyaya, Hari D; Bajaj, Deepak; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-01-01

    In the present study, molecular mapping of high-resolution plant height QTLs was performed by integrating 3625 desi genome-derived GBS (genotyping-by-sequencing)-SNPs on an ultra-high resolution intra-specific chickpea genetic linkage map (dwarf/semi-dwarf desi cv. ICC12299 x tall kabuli cv. ICC8261). The identified six major genomic regions harboring six robust QTLs (11.5-21.3 PVE), associated with plant height, were mapped within <0.5 cM average marker intervals on six chromosomes. Five SNPs-containing genes tightly linked to the five plant height QTLs, were validated based upon their high potential for target trait association (12.9-20.8 PVE) in 65 desi and kabuli chickpea accessions. The vegetative tissue-specific expression, including higher differential up-regulation (>5-fold) of five genes especially in shoot, young leaf, shoot apical meristem of tall mapping parental accession (ICC8261) as compared to that of dwarf/semi-dwarf parent (ICC12299) was apparent. Overall, combining high-resolution QTL mapping with genetic association analysis and differential expression profiling, delineated natural allelic variants in five candidate genes (encoding cytochrome-c-biosynthesis protein, malic oxidoreductase, NADH dehydrogenase iron-sulfur protein, expressed protein and bZIP transcription factor) regulating plant height in chickpea. These molecular tags have potential to dissect complex plant height trait and accelerate marker-assisted genetic enhancement for developing cultivars with desirable plant height ideotypes in chickpea. PMID:27319304

  11. Vitamin D receptor alleles: Cloning and characterization of the VDR gene and RT-PCR of VDR cDNA

    SciTech Connect

    Javed, A.A.; Huang, Y.; Bombard, A.T.

    1994-09-01

    Vitamin D{sub 3} receptors (VDR) function as regulators through the action of the ligand 1{alpha}, 25-dihydroxy vitamin D{sub 3}. The receptor specifically finds its ligand and exerts it effect on the regulation of the expression of target genes. It has been shown that mutations in the VDR gene affect the function of the receptors and cause a corresponding disorder state. Recently, it has been reported that common allelic variations found normally in the Caucasian (Australian) population pose varying degrees of risk for osteoporosis. We present here the cloning of the VDR gene and RT-PCR of VDR cDNA. Studies are in progress to establish allele frequency in the Black, Hispanic and Caucasian populations to systematically study the influence of allele types and to develop a risk profile for osteoporosis. The present method for detection of various alleles is based on RFLP analysis. We are developing PCR-based methods for the rapid detection and typing of alleles.

  12. The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus1[W][OA

    PubMed Central

    Suttipanta, Nitima; Pattanaik, Sitakanta; Kulshrestha, Manish; Patra, Barunava; Singh, Sanjay K.; Yuan, Ling

    2011-01-01

    Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants. PMID:21988879

  13. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

    PubMed Central

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-01-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines. PMID:25925176

  14. Phylogenetic analysis of six WRKY transcription factor loci across the spiny cocosoid palm subtribes Bactridinae and Elaeidinae (Areceaceae, Cocoseae),and comparison of several gene tree/species tree reconciliation approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cocoseae is one of 13 tribes of Arecaceae subfamily Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera, the coconut, and African oil palm (Elaeis guineensis). Using seven single copy WRKY transcription factor g...

  15. Environmental Stability of Seed Carbohydrate Profiles in Soybeans Containing Different Alleles of the Raffinose Synthase 2 (RS2) Gene.

    PubMed

    Bilyeu, Kristin D; Wiebold, William J

    2016-02-10

    Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.

  16. Suppression of gene expression of a recessive SP11/SCR allele by an untranscribed SP11/SCR allele in Brassica self-incompatibility.

    PubMed

    Fujimoto, Ryo; Sugimura, Tetsu; Fukai, Eigo; Nishio, Takeshi

    2006-07-01

    Mutations in the S locus of a self-compatible cultivar Yellow Sarson in Brassica rapa, which has a self-compatible class-I S haplotype, S-f2, were investigated. S-28 in Brassica oleracea was found to be a member of an interspecific pair with S-f2 in B. rapa. The original S haplotype of S-f2 was identified to be S-54 in B. rapa. Sequence comparison of alleles in S-f2 with those in S-54 and B. oleracea S-28 revealed insertion of a retrotransposon-like sequence in the first intron of SRK and 89-bp deletion in the promoter region of SP11. No transcripts of SRK and SP11 were detected in S-f2 homozygotes, suggesting that the insertion and the deletion in SRK and SP11, respectively, caused the loss of the function of these genes. Promoter assay using transgenic plants indicated that the SP11 promoter of S-f2 has no activity. Heterozygotes of S-f2 and a normal class-II S haplotype, S-60, in B. rapa were found to be self-compatible. Interestingly, transcription of SP11-60 was revealed to be suppressed in the S-f2/S-60 heterozygotes, suggesting that an untranscribed class-I SP11 allele suppresses the expression of a recessive class-II SP11 allele in the anthers of S heterozygotes. Similar phenomenon was observed in heterozygotes of a self-compatible class-I S haplotype and a self-incompatible class-II S haplotype in B. oleracea.

  17. Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene

    PubMed Central

    Ludes-Meyers, John H.; Kil, Hyunsuk; Parker-Thornburg, Jan; Kusewitt, Donna F.; Bedford, Mark T.; Aldaz, C. Marcelo

    2009-01-01

    WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues. PMID:19936220

  18. Differential allelic expression of IL13 and CSF2 genes associated with asthma

    PubMed Central

    Burkhardt, Jana; Kirsten, Holger; Wolfram, Grit; Quente, Elfi; Ahnert, Peter

    2012-01-01

    An important area of genetic research is the identification of functional mechanisms in polymorphisms associated with diseases. A highly relevant functional mechanism is the influence of polymorphisms on gene expression levels (differential allelic expression, DAE). The coding single nucleotide polymorphisms (SNPs) CSF2rs25882 and IL13rs20541 have been associated with asthma. In this work, we investigated whether the mRNA expression levels of CSF2 or IL13 were correlated with these SNPs. Samples were analyzed by mass spectrometry-based quantification of gene expression. Both SNPs influenced gene expression levels (CSF2rs25882: poverall = 0.008 and pDAE samples = 0.00006; IL13rs20541: poverall = 0.059 and pDAE samples = 0.036). For CSF2, the expression level was increased by 27.4% (95% CI: 18.5%–35.4%) in samples with significant DAE in the presence of one copy of risk variant CSF2rs25882-T. The average expression level of IL13 was increased by 29.8% (95% CI: 3.1%–63.4%) in samples with significant DAE in the presence of one copy of risk variant IL13rs20541-A. Enhanced expression of CSF2 could stimulate macrophages and neutrophils during inflammation and may be related to the etiology of asthma. For IL-13, higher expression could enhance the functional activity of the asthma-associated isoform. Overall, the analysis of DAE provides an efficient approach for identifying possible functional mechanisms that link disease-associated variants with altered gene expression levels. PMID:23055793

  19. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

    PubMed

    Klengel, Torsten; Mehta, Divya; Anacker, Christoph; Rex-Haffner, Monika; Pruessner, Jens C; Pariante, Carmine M; Pace, Thaddeus W W; Mercer, Kristina B; Mayberg, Helen S; Bradley, Bekh; Nemeroff, Charles B; Holsboer, Florian; Heim, Christine M; Ressler, Kerry J; Rein, Theo; Binder, Elisabeth B

    2013-01-01

    Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders. PMID:23201972

  20. Allele and genotype frequencies of metabolic genes in Native Americans from Argentina and Paraguay.

    PubMed

    Bailliet, G; Santos, M R; Alfaro, E L; Dipierri, J E; Demarchi, D A; Carnese, F R; Bianchi, N O

    2007-03-01

    Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers. PMID:17194620

  1. Assortative human pair-bonding for partner ancestry and allelic variation of the dopamine receptor D4 (DRD4) gene

    PubMed Central

    Apicella, Coren L.; Campbell, Benjamin C.; Dreber, Anna; Garcia, Justin R.; Lum, J. Koji

    2010-01-01

    The 7 repeat (7R) allele of the dopamine receptor D4 gene has been associated with attention deficit hyperactivity disorder and risk taking. On the cross-population scale, 7R allele frequencies have been shown to be higher in populations with more of a history of long-term migrations. It has also been shown that the 7R allele is associated with individuals having multiple ancestries. Here, we conduct a replication of this latter finding with two independent samples. Measures of subjects’ ancestry are used to examine past reproductive bonds. The individuals’ history of interracial/ancestral dating and their feelings about this are also assessed. Tentative support for an association between multiple ancestries and the 7R allele was found. These results are dependent upon the method of questioning subjects about their ancestries, with only finer-scale measures of ancestry being associated with 7R. Interracial dating and feelings about interracial pairing were not related to the presence of the 7R allele. This study provides continued support for a role for the 7R allele in migration and/or mate choice patterns. However, replications and extensions of this study are needed and the way ancestry/race is assessed must be carefully considered. PMID:19713452

  2. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.

    PubMed Central

    Nickoloff, J A; Sweetser, D B; Clikeman, J A; Khalsa, G J; Wheeler, S L

    1999-01-01

    Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair. PMID:10511547

  3. Single strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the reliability of capillary array electrophoresis-SSCP to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160 bp, 245 pb and 437 bp) that differed by one or more nucleotides in sequen...

  4. The 2-repeat allele of the MAOA gene confers an increased risk for shooting and stabbing behaviors.

    PubMed

    Beaver, Kevin M; Barnes, J C; Boutwell, Brian B

    2014-09-01

    There has been a great deal of research examining the link between a polymorphism in the promoter region of the MAOA gene and antisocial phenotypes. The results of these studies have consistently revealed that low activity MAOA alleles are related to antisocial behaviors for males who were maltreated as children. Recently, though, some evidence has emerged indicating that a rare allele of the MAOA gene-that is, the 2-repeat allele-may have effects on violence that are independent of the environment. The current study builds on this research and examines the association between the 2-repeat allele and shooting and stabbing behaviors in a sample of males drawn from the National Longitudinal Study of Adolescent Health. Analyses revealed that African-American males who carry the 2-repeat allele are significantly more likely than all other genotypes to engage in shooting and stabbing behaviors and to report having multiple shooting and stabbing victims. The limitations of the study are discussed and suggestions for future research are offered.

  5. Molecular Evolution of Typical Enteropathogenic Escherichia coli: Clonal Analysis by Multilocus Sequence Typing and Virulence Gene Allelic Profiling▿ †

    PubMed Central

    Lacher, David W.; Steinsland, Hans; Blank, T. Eric; Donnenberg, Michael S.; Whittam, Thomas S.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid. PMID:17098897

  6. Characterization and allelic variation of the transporters associated with antigen processing (TAP) genes in the domestic dog (Canis lupus familiaris).

    PubMed

    Gojanovich, Gregory S; Ross, Peter; Holmer, Savannah G; Holmes, Jennifer C; Hess, Paul R

    2013-12-01

    The function of the transporters associated with antigen processing (TAP) complex is to shuttle antigenic peptides from the cytosol to the endoplasmic reticulum to load MHC class I molecules for CD8(+) T-cell immunosurveillance. Here we report the promoter and coding regions of the canine TAP1 and TAP2 genes, which encode the homologous subunits forming the TAP heterodimer. By sampling genetically divergent breeds, polymorphisms in both genes were identified, although there were few amino acid differences between alleles. Splice variants were also found. When aligned to TAP genes of other species, functional regions appeared conserved, and upon phylogenetic analysis, canine sequences segregated appropriately with their orthologs. Transfer of the canine TAP2 gene into a murine TAP2-defective cell line rescued surface MHC class I expression, confirming exporter function. This data should prove useful in investigating the association of specific TAP defects or alleles with immunity to intracellular pathogens and cancer in dogs. PMID:23892057

  7. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress.

    PubMed

    Meng, Dong; Li, Yuanyuan; Bai, Yang; Li, Mingjun; Cheng, Lailiang

    2016-06-01

    As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple. PMID:26970718

  8. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea

    PubMed Central

    Kujur, Alice; Upadhyaya, Hari D.; Bajaj, Deepak; Gowda, C. L. L.; Sharma, Shivali; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    In the present study, molecular mapping of high-resolution plant height QTLs was performed by integrating 3625 desi genome-derived GBS (genotyping-by-sequencing)-SNPs on an ultra-high resolution intra-specific chickpea genetic linkage map (dwarf/semi-dwarf desi cv. ICC12299 x tall kabuli cv. ICC8261). The identified six major genomic regions harboring six robust QTLs (11.5–21.3 PVE), associated with plant height, were mapped within <0.5 cM average marker intervals on six chromosomes. Five SNPs-containing genes tightly linked to the five plant height QTLs, were validated based upon their high potential for target trait association (12.9–20.8 PVE) in 65 desi and kabuli chickpea accessions. The vegetative tissue-specific expression, including higher differential up-regulation (>5-fold) of five genes especially in shoot, young leaf, shoot apical meristem of tall mapping parental accession (ICC8261) as compared to that of dwarf/semi-dwarf parent (ICC12299) was apparent. Overall, combining high-resolution QTL mapping with genetic association analysis and differential expression profiling, delineated natural allelic variants in five candidate genes (encoding cytochrome-c-biosynthesis protein, malic oxidoreductase, NADH dehydrogenase iron-sulfur protein, expressed protein and bZIP transcription factor) regulating plant height in chickpea. These molecular tags have potential to dissect complex plant height trait and accelerate marker-assisted genetic enhancement for developing cultivars with desirable plant height ideotypes in chickpea. PMID:27319304

  9. Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes.

    PubMed

    de Las Rivas, Blanca; Marcobal, Angela; Muñoz, Rosario

    2004-12-01

    Oenococcus oeni is the organism of choice for promoting malolactic fermentation in wine. The population biology of O. oeni is poorly understood and remains unclear. For a better understanding of the mode of genetic variation within this species, we investigated by using multilocus sequence typing (MLST) with the gyrB, pgm, ddl, recP, and mleA genes the genetic diversity and genetic relationships among 18 O. oeni strains isolated in various years from wines of the United States, France, Germany, Spain, and Italy. These strains have also been characterized by ribotyping and restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S-23S rRNA gene intergenic spacer region (ISR). Ribotyping grouped the strains into two groups; however, the RFLP analysis of the ISRs showed no differences in the strains analyzed. In contrast, MLST in oenococci had a good discriminatory ability, and we have found a higher genetic diversity than indicated by ribotyping analysis. All sequence types were represented by a single strain, and all the strains could be distinguished from each other because they had unique combinations of alleles. Strains assumed to be identical showed the same sequence type. Phylogenetic analyses indicated a panmictic population structure in O. oeni. Sequences were analyzed for evidence of recombination by split decomposition analysis and analysis of clustered polymorphisms. All results indicated that recombination plays a major role in creating the genetic heterogeneity of O. oeni. A low standardized index of association value indicated that the O. oeni genes analyzed are close to linkage equilibrium. This study constitutes the first step in the development of an MLST method for O. oeni and the first example of the application of MLST to a nonpathogenic food production bacteria. PMID:15574919

  10. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    PubMed

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  11. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families

    SciTech Connect

    Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Gaskell, P.C.; Roses, A.D.; Petricak-Vance, M.A. ); Schmechel, D.E. Durham VA Medical Center, CA ); Small, G.W. ); Haines, J.L. )

    1993-08-13

    The apolipoprotein E type 4 allele (APOE-[epsilon]4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-[epsilon]4 alleles in 42 families with late onset AD. Thus APOE-[epsilon]4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-[epsilon]4 was virtually sufficient to cause AD by age 80.

  12. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling

    PubMed Central

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K.; Joshi, Priyanka S.; Agarwal, Pradeep K.

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H2O2 and O2•-) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K+/Na+ ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes (CAT and SOD) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants. PMID:27799936

  13. Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata.

    PubMed

    Wang, X; Hughes, A L; Tsukamoto, T; Ando, T; Kao, T

    2001-02-01

    For Solanaceae type self-incompatibility, discrimination between self and nonself pollen by the pistil is controlled by the highly polymorphic S-RNase gene. To date, the mechanism generating the allelic diversity of this gene is largely unknown. Natural populations offer a good opportunity to address this question because they likely contain different alleles that share recent common progenitors. We identified 19 S haplotypes from a natural population of Petunia inflata in Argentina, used reverse transcriptase-polymerase chain reaction to obtain cDNAs for 15 alleles of the S-RNase gene, and sequenced all the cDNAs. Phylogenetic studies revealed that five of these alleles and two previously identified alleles form a major clade, and that the 5' region of S(19) allele was derived from an ancestor allele closely related to S(2), whereas its 3' region was derived from an ancestor allele closely related to S(8). A similar evolutionary relationship was found among S(3), S(12), and S(15) alleles. These findings suggest that intragenic recombination contributed to the generation of the allelic diversity of the S-RNase gene. Two additional findings emerged from the sequence comparisons. First, the nucleotide sequence of the S(1) allele identified in this work is completely identical to that of the previously identified S(1) allele of a different origin. Second, in the two hypervariable regions HVa and HVb, thought to be involved in determining S allele specificity, S(6) and S(9) alleles differ only by four nucleotides, all in HVb, resulting in two amino acid differences. The implications of these findings are discussed. PMID:11161057

  14. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    PubMed

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  15. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain.

    PubMed

    Zhang, W; Dubcovsky, J

    2008-03-01

    A better understanding of the genetic factors controlling grain yellow pigment content (GYPC) is important for both pasta (high GYPC) and bread wheat (low GYPC) quality improvement. Quantitative trait loci (QTL) for GYPC have been mapped repeatedly on the distal regions of chromosome arms 7AL and 7BL in wheat, and the Phytoene synthase 1 (PSY-1) gene located in this region has been proposed as a candidate gene. We show here that PSY-E1, the tall wheatgrass orthologue, is completely linked to differences in GYPC, and that selection for white endosperm mutants in recombinant lines carrying this gene resulted in the identification of a mutation in a conserved amino acid of PSY-E1. These results, together with the association between GYPC and allelic differences in PSY-1 in hexaploid wheat, suggest that this gene plays an important role in the determination of GYPC. However, a second white endosperm mutant previously mapped to chromosome arm 7EL showed no mutations in PSY-E1 suggesting the existence of additional gene(s) affecting GYPC in this chromosome region. This hypothesis was further supported by the mapping of QTL for GYPC on 7AL proximal to PSY-1 in a cross between pasta wheat varieties UC1113 and Kofa. Interestingly, the Kofa PSY-B1 allele showed unusually high levels of polymorphisms as a result of a conversion event involving the PSY-A1 allele. In summary, our results support the hypothesis that allelic differences in PSY-1 and at least one additional gene in the distal region of the long arm of homoeologous group 7L are associated with differences in GYPC. PMID:18193186

  16. Tobacco Transcription Factor NtWRKY12 Interacts with TGA2.2 in vitro and in vivo

    PubMed Central

    van Verk, Marcel C.; Neeleman, Lyda; Bol, John F.; Linthorst, Huub J. M.

    2011-01-01

    The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position −564) and TGA factors (as-1-like element at position −592). Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256, and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::β-glucuronidase (GUS) reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2, or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein–CFP and protein–YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed. PMID:22639590

  17. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease.

    PubMed

    Yu, H; Anderson, P J; Freedman, B I; Rich, S S; Bowden, D W

    2000-10-15

    Kallikreins are serine proteases that catalyze the release of kinins and other vasoactive peptides. Previously, we have studied one tissue-specific (H. Yu et al., 1996, J. Am. Soc. Nephrol. 7: 2559-2564) and one plasma-specific (H. Yu et al., 1998, Hypertension 31: 906-911) human kallikrein gene in end-stage renal disease (ESRD). Short sequence repeat polymorphisms for the human plasma kallikrein gene (KLKB1; previously known as KLK3) on chromosome 4 were associated with ESRD in an African American study population. This study of KLKB1 in ESRD has been extended by determining the genomic structure of KLKB1 and searching for allelic variants that may be associated with ESRD. Exon-spanning PCR primer sets were identified by serial testing of primer pairs designed from KLKB1 cDNA sequence and DNA sequencing of PCR products. Like the rat plasma kallikrein gene and the closely related human factor XI gene, the human KLKB1 gene contains 15 exons and 14 introns. The longest intron, F, is almost 12 kb long. The total length of the gene is approximately 30 kb. Sequence of the 5'-proximal promoter region of KLKB1 was obtained by shotgun cloning of genomic fragments from a bacterial artificial clone containing the KLKB1 gene, followed by screening of the clones using exon 1-specific probes. Primers flanking the exons and 5'-proximal promoter region were used to screen for allelic variants in the genomic DNA from ESRD patients and controls using the single-strand conformation polymorphism technique. We identified 12 allelic variants in the 5'-proximal promoter and 7 exons. Of note were a common polymorphism (30% of the population) at position 521 of KLKB1 cDNA, which leads to the replacement of asparagine with a serine at position 124 in the heavy chain of the A2 domain of the protein. In addition, an A716C polymorphism in exon 7 resulting in the amino acid change H189P in the A3 domain of the heavy chain was observed in 5 patients belonging to 3 ESRD families. A third

  18. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease.

    PubMed

    Yu, H; Anderson, P J; Freedman, B I; Rich, S S; Bowden, D W

    2000-10-15

    Kallikreins are serine proteases that catalyze the release of kinins and other vasoactive peptides. Previously, we have studied one tissue-specific (H. Yu et al., 1996, J. Am. Soc. Nephrol. 7: 2559-2564) and one plasma-specific (H. Yu et al., 1998, Hypertension 31: 906-911) human kallikrein gene in end-stage renal disease (ESRD). Short sequence repeat polymorphisms for the human plasma kallikrein gene (KLKB1; previously known as KLK3) on chromosome 4 were associated with ESRD in an African American study population. This study of KLKB1 in ESRD has been extended by determining the genomic structure of KLKB1 and searching for allelic variants that may be associated with ESRD. Exon-spanning PCR primer sets were identified by serial testing of primer pairs designed from KLKB1 cDNA sequence and DNA sequencing of PCR products. Like the rat plasma kallikrein gene and the closely related human factor XI gene, the human KLKB1 gene contains 15 exons and 14 introns. The longest intron, F, is almost 12 kb long. The total length of the gene is approximately 30 kb. Sequence of the 5'-proximal promoter region of KLKB1 was obtained by shotgun cloning of genomic fragments from a bacterial artificial clone containing the KLKB1 gene, followed by screening of the clones using exon 1-specific probes. Primers flanking the exons and 5'-proximal promoter region were used to screen for allelic variants in the genomic DNA from ESRD patients and controls using the single-strand conformation polymorphism technique. We identified 12 allelic variants in the 5'-proximal promoter and 7 exons. Of note were a common polymorphism (30% of the population) at position 521 of KLKB1 cDNA, which leads to the replacement of asparagine with a serine at position 124 in the heavy chain of the A2 domain of the protein. In addition, an A716C polymorphism in exon 7 resulting in the amino acid change H189P in the A3 domain of the heavy chain was observed in 5 patients belonging to 3 ESRD families. A third

  19. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    PubMed

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects.

  20. Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene

    PubMed Central

    John, Alisha V.; Sramkoski, Lisa L.; Walker, Elizabeth A.; Cooley, Arielle M.; Wittkopp, Patricia J.

    2016-01-01

    To identify genetic variants underlying changes in phenotypes within and between species, researchers often utilize transgenic animals to compare the function of alleles in different genetic backgrounds. In Drosophila, targeted integration mediated by the ΦC31 integrase allows activity of alternative alleles to be compared at the same genomic location. By using the same insertion site for each transgene, position effects are generally assumed to be controlled for because both alleles are surrounded by the same genomic context. Here, we test this assumption by comparing the activity of tan alleles from two Drosophila species, D. americana and D. novamexicana, at five different genomic locations in D. melanogaster. We found that the relative effects of these alleles varied among insertion sites, with no difference in activity observed between them at two sites. One of these sites simply silenced both transgenes, but the other allowed expression of both alleles that was sufficient to rescue a mutant phenotype yet failed to reveal the functional differences between the two alleles. These results suggest that more than one insertion site should be used when comparing the activity of transgenes because failing to do so could cause functional differences between alleles to go undetected. PMID:27449514

  1. Allele Summation of Diabetes Risk Genes Predicts Impaired Glucose Tolerance in Female and Obese Individuals

    PubMed Central

    Hatziagelaki, Erifili; Ketterer, Caroline; Heni, Martin; Machicao, Fausto; Stefan, Norbert; Staiger, Harald; Häring, Hans-Ulrich; Fritsche, Andreas

    2012-01-01

    Introduction Single nucleotide polymorphisms (SNPs) in approximately 40 genes have been associated with an increased risk for type 2 diabetes (T2D) in genome-wide association studies. It is not known whether a similar genetic impact on the risk of prediabetes (impaired glucose tolerance [IGT] or impaired fasting glycemia [IFG]) exists. Methods In our cohort of 1442 non-diabetic subjects of European origin (normal glucose tolerance [NGT] n = 1046, isolated IFG n = 142, isolated IGT n = 140, IFG+IGT n = 114), an impact on glucose homeostasis has been shown for 9 SNPs in previous studies in this specific cohort. We analyzed these SNPs (within or in the vicinity of the genes TCF7L2, KCNJ11, HHEX, SLC30A8, WFS1, KCNQ1, MTNR1B, FTO, PPARG) for association with prediabetes. Results The genetic risk load was significantly associated with the risk for IGT (p = 0.0006) in a model including gender, age, BMI and insulin sensitivity. To further evaluate potential confounding effects, we stratified the population on gender, BMI and insulin sensitivity. The association of the risk score with IGT was present in female participants (p = 0.008), but not in male participants. The risk score was significantly associated with IGT (p = 0.008) in subjects with a body mass index higher than 30 kg/m2 but not in non-obese individuals. Furthermore, only in insulin resistant subjects a significant association between the genetic load and the risk for IGT (p = 0.01) was found. Discussion We found that T2D genetic risk alleles cause an increased risk for IGT. This effect was not present in male, lean and insulin sensitive subjects, suggesting a protective role of beneficial environmental factors on the genetic risk. PMID:22768041

  2. RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens.

    PubMed

    Thavamanikumar, Saravanan; Southerton, Simon; Thumma, Bala

    2014-01-01

    Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY) is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH) in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65%) were down-regulated and 1402 (35%) were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes) and of these 640 SNPs (30%) occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth.

  3. RNA-Seq Using Two Populations Reveals Genes and Alleles Controlling Wood Traits and Growth in Eucalyptus nitens

    PubMed Central

    Thavamanikumar, Saravanan; Southerton, Simon; Thumma, Bala

    2014-01-01

    Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY) is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH) in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65%) were down-regulated and 1402 (35%) were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes) and of these 640 SNPs (30%) occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth. PMID:24967893

  4. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains.

    PubMed

    Grogan, Sarah M; Brown-Guedira, Gina; Haley, Scott D; McMaster, Gregory S; Reid, Scott D; Smith, Jared; Byrne, Patrick F

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011-2012 and 2012-2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains.

  5. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  6. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains.

    PubMed

    Grogan, Sarah M; Brown-Guedira, Gina; Haley, Scott D; McMaster, Gregory S; Reid, Scott D; Smith, Jared; Byrne, Patrick F

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011-2012 and 2012-2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  7. Wide allelic heterogeneity with predominance of large IDS gene complex rearrangements in a sample of Mexican patients with Hunter syndrome.

    PubMed

    Alcántara-Ortigoza, M A; García-de Teresa, B; González-Del Angel, A; Berumen, J; Guardado-Estrada, M; Fernández-Hernández, L; Navarrete-Martínez, J I; Maza-Morales, M; Rius-Domínguez, R

    2016-05-01

    Hunter syndrome or mucopolysaccharidosis type II (MPSII) is caused by pathogenic variants in the IDS gene. This is the first study that examines the mutational spectrum in 25 unrelated Mexican MPSII families. The responsible genotype was identified in 96% of the families (24/25) with 10 novel pathogenic variants: c.133G>C, c.1003C>T, c.1025A>C, c.463_464delinsCCGTATAGCTGG, c.754_767del, c.1132_1133del, c.1463del, c.508-1G>C, c.1006+1G>T and c.(-217_103del). Extensive IDS gene deletions were identified in four patients; using DNA microarray analysis two patients showed the loss of the entire AFF2 gene, and epilepsy developed in only one of them. Wide allelic heterogeneity was noted, with large gene alterations (e.g. IDS/IDSP1 gene inversions, partial to extensive IDS deletions, and one chimeric IDS-IDSP1 allele) that occurred at higher frequencies than previously reported (36% vs 18.9-29%). The frequency of carrier mothers (80%) is consistent with previous descriptions (>70%). Carrier assignment allowed molecular prenatal diagnoses. Notably, somatic and germline mosaicism was identified in one family, and two patients presented thrombocytopenic purpura and pancytopenia after idursulfase enzyme replacement treatment. Our findings suggest a wide allelic heterogeneity in Mexican MPSII patients; DNA microarray analysis contributes to further delineation of the resulting phenotype for IDS and neighboring loci deletions.

  8. Allelic frequencies and association with carcass traits of six genes in local subpopulations of Japanese Black cattle.

    PubMed

    Nishimaki, Takahiro; Ibi, Takayuki; Siqintuya; Kobayashi, Naohiko; Matsuhashi, Tamako; Akiyama, Takayuki; Yoshida, Emi; Imai, Kazumi; Matsui, Mayu; Uemura, Keiichi; Eto, Hisayoshi; Watanabe, Naoto; Fujita, Tatsuo; Saito, Yosuke; Komatsu, Tomohiko; Hoshiba, Hiroshi; Mannen, Hideyuki; Sasazaki, Shinji; Kunieda, Tetsuo

    2016-04-01

    Marker-assisted selection (MAS) is expected to accelerate the genetic improvement of Japanese Black cattle. However, verification of the effects of the genes for MAS in different subpopulations is required prior to the application of MAS. In this study, we investigated the allelic frequencies and genotypic effects for carcass traits of six genes, which can be used in MAS, in eight local subpopulations. These genes are SCD, FASN and SREBP1, which are associated with the fatty acid composition of meat, and NCAPG, MC1R and F11, which are associated with carcass weight, coat color and blood coagulation abnormality, respectively. The frequencies of desirable alleles of SCD and FASN were relatively high and that of NCAPG was relatively low, and NCAPG was significantly associated with several carcass traits, including carcass weight. The proportions of genotypic variance explained by NCAPG to phenotypic variance were 4.83 for carcass weight. We thus confirmed that NCAPG is a useful marker for selection of carcass traits in these subpopulations. In addition, we found that the desirable alleles of six genes showed no negative effects on carcass traits. Therefore, selection using these genes to improve target traits should not have negative impacts on carcass traits.

  9. Wide allelic heterogeneity with predominance of large IDS gene complex rearrangements in a sample of Mexican patients with Hunter syndrome.

    PubMed

    Alcántara-Ortigoza, M A; García-de Teresa, B; González-Del Angel, A; Berumen, J; Guardado-Estrada, M; Fernández-Hernández, L; Navarrete-Martínez, J I; Maza-Morales, M; Rius-Domínguez, R

    2016-05-01

    Hunter syndrome or mucopolysaccharidosis type II (MPSII) is caused by pathogenic variants in the IDS gene. This is the first study that examines the mutational spectrum in 25 unrelated Mexican MPSII families. The responsible genotype was identified in 96% of the families (24/25) with 10 novel pathogenic variants: c.133G>C, c.1003C>T, c.1025A>C, c.463_464delinsCCGTATAGCTGG, c.754_767del, c.1132_1133del, c.1463del, c.508-1G>C, c.1006+1G>T and c.(-217_103del). Extensive IDS gene deletions were identified in four patients; using DNA microarray analysis two patients showed the loss of the entire AFF2 gene, and epilepsy developed in only one of them. Wide allelic heterogeneity was noted, with large gene alterations (e.g. IDS/IDSP1 gene inversions, partial to extensive IDS deletions, and one chimeric IDS-IDSP1 allele) that occurred at higher frequencies than previously reported (36% vs 18.9-29%). The frequency of carrier mothers (80%) is consistent with previous descriptions (>70%). Carrier assignment allowed molecular prenatal diagnoses. Notably, somatic and germline mosaicism was identified in one family, and two patients presented thrombocytopenic purpura and pancytopenia after idursulfase enzyme replacement treatment. Our findings suggest a wide allelic heterogeneity in Mexican MPSII patients; DNA microarray analysis contributes to further delineation of the resulting phenotype for IDS and neighboring loci deletions. PMID:26762690

  10. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  11. Allelic imbalance of tissue-type plasminogen activator (t-PA) gene expression in human brain tissue.

    PubMed

    Tjarnlund-Wolf, A; Hultman, K; Curtis, M A; Faull, R L M; Medcalf, R L; Jern, C

    2011-06-01

    We have identified a single-nucleotide polymorphism (SNP) in the t-PA enhancer (-7351C>T), which is associated with endothelial t-PA release in vivo. In vitro studies demonstrated that this SNP is functional at the level of transcription. In the brain, t-PA has been implicated in both physiologic and pathophysiologic processes. The aim of the present study was to examine the effect of the t-PA -7351C>T SNP on t-PA gene expression in human brain tissue. Allelic mRNA expression was measured in heterozygous post-mortem brain tissues using quantitative TaqMan genotyping assay. Protein-DNA interactions were assessed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Significantly higher levels of t-PA mRNA were generated from chromosomes that harboured the wild-type -7351C allele, as compared to those generated from the mutant T allele (for the hippocampus, C to T allelic ratio of ~1.3, p=0.010, n=12; and for the cortex, C to T allelic ratio of ~1.2, p=0.017, n=12). EMSA showed reduced neuronal and astrocytic nuclear protein binding affinity to the T allele, and identified Sp1 and Sp3 as the major transcription factors that bound to the -7351 site. ChIP analyses confirmed that Sp1 recognises this site in intact cells. In conclusion, the t-PA -7351C>T SNP affects t-PA gene expression in human brain tissue. This finding might have clinical implications for neurological conditions associated with enhanced t-PA levels, such as in the acute phase of cerebral ischaemia, and also for stroke recovery.

  12. Serum lipid levels and M/L55 allele distribution of HDL paraoxonase gene in Saami and Finnish men.

    PubMed

    Malin, R; Lehtinen, S; Luoma, P; Näyhä, S; Hassi, J; Koivula, T; Lehtimäki, T

    2001-01-01

    Paraoxonase (PON) is an antioxidative enzyme, which eliminates lipid peroxides. The mutation in codon 55 of PON1 gene causes a change of methionine (M-allele) to leucine (L-allele) and influences PON activity. The Saami are a population living in the northern part of Fennoscandia. In previous studies their death rate from coronary artery disease (CAD) was found to be low. We compared PON M/L55 allele frequencies of 68 Saami and 68 Finnish men and related the PON genotypes to plasma lipid levels and to the levels of autoantibodies against oxidized LDL. The M/L55 genotypes were determined by PCR and restriction enzyme digestion. ELISA was used to measure antibodies against oxidized LDL. The L- and M-allele frequencies were 64% and 36% in Saami population and 64% and 36% in Finnish men, respectively (p = NS, Fisher's exact test). There were also no significant differences in plasma lipid levels or in antibody levels against oxidized LDL between PON genotypes or between Saami and Finnish men. Our results indicate that the PON M/L55 genotype is not associated with plasma lipid levels or the levels of autoantibodies against oxidized LDL in these populations. The Saami men have the same PON M/L55 allele distribution as the Finnish men and the PON genotype might thus not be one factor protecting Saami against CAD.

  13. Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency.

    PubMed

    Cui, Y; Dinman, J D; Peltz, S W

    1996-10-15

    The mof4-1 (maintenance of frame) allele in the yeast Saccharomyces cerevisiae was isolated as a chromosomal mutation that increased the efficiency of -1 ribosomal frameshifting at the L-A virus frameshift site and caused loss of M1, the satellite virus of L-A. Here, we demonstrate that strains harboring the mof4-1 allele inactivated the nonsense-mediated mRNA decay pathway. The MOF4 gene was shown to be allelic to UPF1, a gene whose product is involved in the nonsense-mediated mRNA decay pathway. Although cells harboring the mof4-1 allele of the UPF1 gene lose the M1 virus, mutations in other UPF genes involved in nonsense-mediated mRNA decay maintain the M1 virus. The mof4-1 strain is more sensitive to the aminoglycoside antibiotic paromomycin than a upf1 delta strain, and frameshifting efficiency increases in a mof4-1 strain grown in the presence of this drug. Further, the ifs1 and ifs2 alleles previously identified as mutations that enhance frameshifting were shown to be allelic to the UPF2 and UPF1 genes, respectively, and both ifs strains maintained M1. These results indicate that mof4-1 is a unique allele of the UPF1 gene and that the gene product of the mof4-1 allele affects both -1 ribosomal frameshifting and mRNA turnover. PMID:8896465

  14. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    PubMed

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  15. Mosaicism for FMR1 gene full mutation and intermediate allele in a female foetus: a postzygotic retraction event.

    PubMed

    Ferreira, Susana Isabel; Pires, Luís Miguel; Ferrão, José; Sá, Joaquim; Serra, Armando; Carreira, Isabel Marques

    2013-09-15

    Fragile X syndrome is caused by the expansion of an unstable CGG repeat in the 5'UTR of FMR1 gene. The occurrence of mosaicism is not uncommon, especially in male patients, whereas in females it is not so often reported. Here we report a female foetus that was subject to prenatal diagnosis, because of her mother being a premutation carrier. The foetus was identified as being a mosaic for an intermediate allele and a full mutation of FMR1 gene, in the presence of a normal allele. The mosaic status was confirmed in three different tissues of the foetus--amniotic fluid, skin biopsy and blood--the last two obtained after pregnancy termination. Karyotype analysis and X-chromosome STR markers analysis do not support the mosaicism as inheritance of both maternal alleles. Oligonucleotide array-CGH excluded an imbalance that could contain the primer binding site with a different repeat size. The obtained results give compelling evidence for a postzygotic expansion mechanism where the foetus mosaic pattern originated from expansion of the mother's premutation into a full mutation and consequent regression to an intermediate allele in a proportion of cells. These events occurred in early embryogenesis before the commitment of cells into the different tissues, as the three tested tissues of the foetus have the same mosaic pattern. The couple has a son with Fragile X mental retardation syndrome and choose to terminate this pregnancy after genetic counselling.

  16. Mosaicism for FMR1 gene full mutation and intermediate allele in a female foetus: a postzygotic retraction event.

    PubMed

    Ferreira, Susana Isabel; Pires, Luís Miguel; Ferrão, José; Sá, Joaquim; Serra, Armando; Carreira, Isabel Marques

    2013-09-15

    Fragile X syndrome is caused by the expansion of an unstable CGG repeat in the 5'UTR of FMR1 gene. The occurrence of mosaicism is not uncommon, especially in male patients, whereas in females it is not so often reported. Here we report a female foetus that was subject to prenatal diagnosis, because of her mother being a premutation carrier. The foetus was identified as being a mosaic for an intermediate allele and a full mutation of FMR1 gene, in the presence of a normal allele. The mosaic status was confirmed in three different tissues of the foetus--amniotic fluid, skin biopsy and blood--the last two obtained after pregnancy termination. Karyotype analysis and X-chromosome STR markers analysis do not support the mosaicism as inheritance of both maternal alleles. Oligonucleotide array-CGH excluded an imbalance that could contain the primer binding site with a different repeat size. The obtained results give compelling evidence for a postzygotic expansion mechanism where the foetus mosaic pattern originated from expansion of the mother's premutation into a full mutation and consequent regression to an intermediate allele in a proportion of cells. These events occurred in early embryogenesis before the commitment of cells into the different tissues, as the three tested tissues of the foetus have the same mosaic pattern. The couple has a son with Fragile X mental retardation syndrome and choose to terminate this pregnancy after genetic counselling. PMID:23792063

  17. A novel HBA2 gene conversion in cis or trans: "α12 allele" in a Saudi population.

    PubMed

    Borgio, J Francis; AbdulAzeez, S; Al-Nafie, Awatif N; Naserullah, Zaki A; Al-Jarrash, Sana; Al-Madan, Mohammed S; Al-Muhanna, Fahad; Steinberg, Martin H; Al-Ali, Amein K

    2014-12-01

    Thalassemia and sickle cell disease are the most prevalent hemoglobin disorders in the populations of Dammam, Al-Qatif and Al-Ahsa regions in the Eastern Province of Saudi Arabia where our study cases originated. Increased HbF can modify these disorders. Direct sequencing of the HBA2 and HBA1 genes from 157 Saudi subjects revealed a new HBA2 gene conversion in cis or trans in 5.7% of the total. We refer to this new HBA2 gene convert as an α12 (HBA12) allele due to its combination of α1 (HBA1) and α2 (HBA2) sequences. Three genotypes, homozygous (-α12(3.7)/α1α12), heterozygous (α1α2/α1α12) and hemizygous (α1- (4.2)/α1α12) for the α12 allele were observed. The majority of individuals who were positive for the α12 allele had a reduction in the percentage of HbA2. Further studies are necessary to evaluate the possible effect of these changes on globin gene expression.

  18. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana.

    PubMed

    Adachi, Hiroaki; Nakano, Takaaki; Miyagawa, Noriko; Ishihama, Nobuaki; Yoshioka, Miki; Katou, Yuri; Yaeno, Takashi; Shirasu, Ken; Yoshioka, Hirofumi

    2015-09-01

    Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB. PMID:26373453

  19. Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa.

    PubMed

    Jiang, Yanjuan; Qiu, Yuping; Hu, Yanru; Yu, Diqiu

    2016-01-01

    Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic rice was resulted from the lower water loss rates, cell death, malondialdehyde contents and relative electrolyte leakage while a higher proline content and reactive oxygen species-scavenging enzyme activities was observed during stress conditions. Moreover, further investigation revealed that the expression levels of several stress-responsive genes were up-regulated in drought-tolerant transgenic rice plants, compared with those in wild-type plants. In addition to the drought tolerance, the AtWRKY57 over-expressing plants also had enhanced salt and PEG stress tolerances. Taken together, our study indicates that over-expressing AtWRKY57 in rice improved not only drought tolerance but also salt and PEG tolerance, demonstrating its potential role in crop improvement. PMID:26904091

  20. Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa

    PubMed Central

    Jiang, Yanjuan; Qiu, Yuping; Hu, Yanru; Yu, Diqiu

    2016-01-01

    Drought stress is a severe environmental factor that greatly restricts plant distribution and crop production. Recently, we have found that overexpressing AtWRKY57 enhanced drought tolerance in Arabidopsis thaliana. In this study, we further reported that the Arabidopsis WRKY57 transcription factor was able to confer drought tolerance to transgenic rice (Oryza sativa) plants. The enhanced drought tolerance of transgenic rice was resulted from the lower water loss rates, cell death, malondialdehyde contents and relative electrolyte leakage while a higher proline content and reactive oxygen species-scavenging enzyme activities was observed during stress conditions. Moreover, further investigation revealed that the expression levels of several stress-responsive genes were up-regulated in drought-tolerant transgenic rice plants, compared with those in wild-type plants. In addition to the drought tolerance, the AtWRKY57 over-expressing plants also had enhanced salt and PEG stress tolerances. Taken together, our study indicates that over-expressing AtWRKY57 in rice improved not only drought tolerance but also salt and PEG tolerance, demonstrating its potential role in crop improvement. PMID:26904091

  1. Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder

    SciTech Connect

    Lim, L.C.C.; Sham, P.; Castle, D.

    1995-08-14

    We present evidence of a genetic association between bipolar disorder and alleles at 3 monoamine oxidase A (MAOA) markers, but not with alleles of a monoamine oxidase B (MAOB) polymorphism. The 3 MAOA markers, including one associated with low MAOA activity, show strong allelic association with each other but surprisingly not with MAOB. Our results are significantly only for females, though the number of males in our sample is too small to draw any definite conclusions. Our data is consistent with recent reports of reduced MAOA activity in patients with abnormal behavioral phenotypes. The strength of the association is weak, but significant, which suggests that alleles at the MAOA locus contribute to susceptibility to bipolar disorder rather than being a major determinant. 58 refs., 1 fig., 3 tabs.

  2. Algorithms for MDC-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles.

    PubMed

    Yu, Yun; Warnow, Tandy; Nakhleh, Luay

    2011-11-01

    One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.

  3. Gene Behavior Interaction of Depressive Symptoms and the Apolipoprotein E ε4 Allele on Cognitive Decline

    PubMed Central

    Rajan, Kumar B.; Wilson, Robert S.; Skarupski, Kimberly A.; de Leon, Carlos Mendes; Evans, Denis A.

    2014-01-01

    Objective Depressive symptoms and the APOE ε4 allele are independent risk factors for cognitive decline. However, it is not clear whether the presence of both depressive symptoms and the APOE ε4 allele increases cognitive decline. Methods A prospective study of a population-based sample of 4,150 (70% African American and 63% women) participants, aged 65 years and older, who were interviewed at 3-year intervals. Depressive symptoms were measured using the 10-item version of the Center for Epidemiologic Studies Depression scale, with each item coded as presence or absence of a symptom. The APOE genotype was ascertained by DNA samples collected during follow-up. Cognitive function was assessed at the initial and follow-up interviews (average follow-up of 9.2 years), using a standardized global cognitive score. Results There were 1405 (34%) participants with one or more copies of the APOE ε4 allele. In participants with no depressive symptoms, cognitive function decreased by 0.0412-unit per year among those with no copies and 0.0704-unit per year among those with one or more copies of the APOE ε4 allele. For each additional symptom of depression, cognitive decline increased by 0.0021-unit per year among those with no copies and 0.0051-unit per year among those with one or more copies of the APOE ε4 allele. The three-way interaction of depressive symptoms, APOE ε4 allele, and time was significant (p=0.021). Conclusions The association of depressive symptoms on cognitive decline was increased among participants with one or more copies of the APOE ε4 allele compared to those without the allele. PMID:24434953

  4. [Expression of new mutant alleles of AS1 and AS2 genes controlling leaf morphogenesis in Arabidopsis thaliana].

    PubMed

    Vu, Kh Ch; Ondar, U N; Soldatova, O P

    2008-01-01

    We have studied the morphology and vein branching of rosette leaves in Arabidopsis thaliana mutants as and sa, which proved to be alleles of the A. thaliana AS1 and AS2 genes, respectively. We have also analyzed the localization of bioactive auxin, as measured by the expression of the DR5::GUS transgene, as well as the expression patterns of BP, as measured by the expression of the BP::GUS transgene in leaves of the mutants. In mature leaves of the mutants, BP was expressed ectopically. Furthermore, the mutants showed some defects in the localization and concentration of free auxin compared to the wild type. Our results of studying new alleles of AS1 and AS2 support their role in control of class I KNOX genes and auxin transport. PMID:18409376

  5. [Functional annotation of rice WRKY transcription factors based on their transcriptional features].

    PubMed

    Liyun, Li; Jianan, Shi; Shuo, Yang; Caiqiang, Sun; Guozhen, Liu

    2016-02-01

    Transcription factors regulate alteration of transcription levels. Recently, huge amount of transcriptomic data are accumulated via the application of high throughput sequencing technology, and it is reasonable to postulate that in-depth analysis of transcription data could be used to enhance gene annotation. In this study, we chose the gene family of rice WRKY transcription factors. Based on literature search, the transcriptional data under different biological processes, including biotic and abiotic stress, development, and nutrient absorption and hormone treatments were analyzed systematically. To the end, we summarize the list of differentially expressed WRKY genes. We also expect that such information will enrich their functional annotation and also provide direct clues for subsequent functional studies. PMID:26907776

  6. Using standard nomenclature to adequately name transgenes, knockout gene alleles and any mutation associated to a genetically modified mouse strain.

    PubMed

    Montoliu, Lluís; Whitelaw, C Bruce A

    2011-04-01

    Mice provide an unlimited source of animal models to study mammalian gene function and human diseases. The powerful genetic modification toolbox existing for the mouse genome enables the creation of, literally, thousands of genetically modified mouse strains, carrying spontaneous or induced mutations, transgenes or knock-out/knock-in alleles which, in addition, can exist in hundreds of different genetic backgrounds. Such an immense diversity of individuals needs to be adequately annotated, to ensure that the most relevant information is kept associated with the name of each mouse line, and hence, the scientific community can correctly interpret and benefit from the reported animal model. Therefore, rules and guidelines for correctly naming genes, alleles and mouse strains are required. The Mouse Genome Informatics Database is the authoritative source of official names for mouse genes, alleles, and strains. Nomenclature follows the rules and guidelines established by the International Committee on Standardized Genetic Nomenclature for Mice. Herewith, both from the International Society for Transgenic Technologies (ISTT) and from the scientific journal Transgenic Research, we would like to encourage all our colleagues to adhere and follow adequately the standard nomenclature rules when describing mouse models. The entire scientific community using genetically modified mice in experiments will benefit.

  7. Characterization of opsin gene alleles affecting color vision in a wild population of titi monkeys (Callicebus brunneus).

    PubMed

    Bunce, John A; Isbell, Lynne A; Neitz, Maureen; Bonci, Daniela; Surridge, Alison K; Jacobs, Gerald H; Smith, David Glenn

    2011-02-01

    The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. PMID:20938927

  8. Allele-specific transcription factor binding to common and rare variants associated with disease and gene expression.

    PubMed

    Cavalli, Marco; Pan, Gang; Nord, Helena; Wallerman, Ola; Wallén Arzt, Emelie; Berggren, Olof; Elvers, Ingegerd; Eloranta, Maija-Leena; Rönnblom, Lars; Lindblad Toh, Kerstin; Wadelius, Claes

    2016-05-01

    Genome-wide association studies (GWAS) have identified a large number of disease-associated SNPs, but in few cases the functional variant and the gene it controls have been identified. To systematically identify candidate regulatory variants, we sequenced ENCODE cell lines and used public ChIP-seq data to look for transcription factors binding preferentially to one allele. We found 9962 candidate regulatory SNPs, of which 16 % were rare and showed evidence of larger functional effect than common ones. Functionally rare variants may explain divergent GWAS results between populations and are candidates for a partial explanation of the missing heritability. The majority of allele-specific variants (96 %) were specific to a cell type. Furthermore, by examining GWAS loci we found >400 allele-specific candidate SNPs, 141 of which were highly relevant in our cell types. Functionally validated SNPs support identification of an SNP in SYNGR1 which may expose to the risk of rheumatoid arthritis and primary biliary cirrhosis, as well as an SNP in the last intron of COG6 exposing to the risk of psoriasis. We propose that by repeating the ChIP-seq experiments of 20 selected transcription factors in three to ten people, the most common polymorphisms can be interrogated for allele-specific binding. Our strategy may help to remove the current bottleneck in functional annotation of the genome. PMID:26993500

  9. Allele-related variation in minisatellite repeats involved in the transcription of the blood group ABO gene.

    PubMed

    Irshaid, N M; Chester, M A; Olsson, M L

    1999-09-01

    Since the cloning in 1990 of cDNA corresponding to mRNA transcribed at the blood group ABO locus, polymorphisms at the ABO locus and phenotype-genotype correlation have been analysed by several investigators. An enhancer-active minisatellite motif reported to contain four 43-bp repeats has been analysed by PCR in blood samples from 160 random Swedish blood donors. Different sizes of the DNA fragments obtained led to further analysis by direct sequencing. Fragments with either one or four 43-bp repeats were identified. A nucleotide substitution (G-->A) at nt. 41 of 43 was found in all alleles with only one repeat. Correlation with the ABO genotypes of the samples, as determined by a panel of ABO genotyping techniques, revealed an allele-related variable number of tandem repeats (VNTR). The A1 and the infrequent O2 allele had only one repeat whilst A2, B, O1 and O1v had four repeats and thus generated longer (by 129 bp) fragments. A further 74 samples obtained from various geographical areas/ethnic groups indicated a widespread correlation with few exceptions. In conclusion, a novel ABO polymorphism located in the 5'-nontranslated region involved in transcriptional regulation of the ABO gene is reported and its relationship to common alleles at this locus defined.

  10. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity.

    PubMed

    Heidrich, Katharina; Tsuda, Kenichi; Blanvillain-Baufumé, Servane; Wirthmueller, Lennart; Bautor, Jaqueline; Parker, Jane E

    2013-01-01

    In plant effector-triggered immunity (ETI), intracellular nucleotide binding-leucine rich repeat (NLR) receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll-Interleukin-1 receptor domain)-NLR (denoted TNL) gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst) strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4, and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal "WRKY" transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4(Ws) /RRS1(Ws) allelic pair governs resistance to Pst/AvrRps4 accompanied by host programed cell death (pcd). In accession Col-0, RPS4(Col) /RRS1(Col) effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4(Col) (in a 35S:RPS4-HS line) confers temperature-conditioned EDS1-dependent auto-immunity. Here we show that a high (28°C, non-permissive) to moderate (19°C, permissive) temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4(Col) auto-immunity depends entirely on EDS1 and partially on RRS1(Col) . Examination of gene expression microarray data over 24 h after temperature shift reveals a mainly quantitative RRS1(Col) contribution to up- or down-regulation of a small subset of RPS4(Col) -reprogramed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1(Col) contributes to temperature-conditioned RPS4(Col) auto-immunity and are consistent with activated RPS4(Col) engaging RRS1(Col) for resistance

  11. Allelic distribution of CCR5 and CCR2 genes in an Italian population sample.

    PubMed

    Romano-Spica, V; Ianni, A; Arzani, D; Cattarini, L; Majore, S; Dean, M

    2000-01-20

    Genetic polymorphisms of CCR5 and CCR2 human chemokine receptors have been associated with resistance during HIV-1 infection and disease progression. The protective effect of mutant alleles at these loci has important implications in AIDS pathogenesis. Chemokine receptors have a role in viral entry into target cells as well as in immune response modulation. In the present report, we studied the frequency of CCR5delta32 and CCR264I allelic variants among a representative sample of the Italian population. Observed allelic frequencies were 0.0454 and 0.0655, respectively. In both cases, genotype distribution was in equilibrium as predicted by the Hardy-Weinberg equation. Taken as a whole, about 21% of the population sample was found to be heterozygous for one or another of those two mutated alleles. Distribution of CCR5delta32 and CCR264I allelic variants within a population can be considered as a measure of genetic susceptibility to HIV infection and disease progression. PMID:10659048

  12. Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato.

    PubMed

    Li, Li; Paulo, Maria-João; van Eeuwijk, Fred; Gebhardt, Christiane

    2010-11-01

    Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed.

  13. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions

    PubMed Central

    Anlauf, M; Perren, A; Henopp, T; Rudolph, T; Garbrecht, N; Schmitt, A; Raffel, A; Gimm, O; Weihe, E; Knoefel, W T; Dralle, H; Heitz, Ph U; Komminoth, P; Klöppel, G

    2007-01-01

    Background Patients with a multiple endocrine neoplasia type 1 (MEN1)‐associated Zollinger–Ellison syndrome (ZES) show multifocal duodenal gastrinomas and precursor lesions. Aims To test these lesions for loss of heterozygosity (LOH) of the MEN1 gene locus on chromosome 11q13, and to investigate whether the MEN1‐related endocrine cell changes also involved somatostatin cells. Material and methods Tissue specimens from six patients with MEN1 and ZES were analysed by immunohistochemistry and immunofluorescence. LOH analysis was performed by fluorescence in situ hybridisation (FISH), using probes containing the MEN1 gene locus and the centromere 11 (C11) region. For simultaneous analysis of hormones and allelic deletions, a combined FISH/immunofluorescence protocol was established. Results 28 of a total of 33 duodenal neuroendocrine tumours (NETs) were gastrin‐producing tumours; 13/28 (46.4%) revealed LOH on 11q13 and/or C11. Five of the NETs were somatostatin‐expressing tumours, two revealing LOH. Allelic loss was detected in tumours as small as 300 μm (gastrin) and 400 μm (somatostatin) in diameter. The gastrin‐producing tumours showed different deletion/retention patterns. Hyperplastic somatostatin cell lesions, similar to those of the gastrin cells, were present in all patients. The hyperplastic lesions of both cell lines consistently retained both 11q13 alleles. Conclusions Allelic deletion of the MEN1 gene may reflect a pivotal event in the development of multifocal gastrin and somatostatin cell neoplasms in the duodenum of patients with MEN1. The observation of distinct deletion patterns in small synchronous tumours supports the concept that each gastrin‐producing tumour in an individual MEN1 patient arises from an independent cell clone. PMID:17135306

  14. Regulation of specialized metabolism by WRKY transcription factors.

    PubMed

    Schluttenhofer, Craig; Yuan, Ling

    2015-02-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years.

  15. Regulation of specialized metabolism by WRKY transcription factors.

    PubMed

    Schluttenhofer, Craig; Yuan, Ling

    2015-02-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  16. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  17. Several different lactase persistence associated alleles and high diversity of the lactase gene in the admixed Brazilian population.

    PubMed

    Friedrich, Deise C; Santos, Sidney E B; Ribeiro-dos-Santos, Ândrea K C; Hutz, Mara H

    2012-01-01

    Adult-type hypolactasia is a common phenotype caused by the lactase enzyme deficiency. The -13910 C>T polymorphism, located 14 Kb upstream of the lactase gene (LCT) in the MCM6 gene was associated with lactase persistence (LP) in Europeans. This polymorphism is rare in Africa but several other variants associated with lactase persistence were observed in Africans. The aims of this study were to identify polymorphisms in the MCM6 region associated with the lactase persistence phenotype and to determine the distribution of LCT gene haplotypes in 981 individuals from North, Northeast and South Brazil. These polymorphisms were genotyped by PCR based methods and sequencing. The -13779*C,-13910*T, -13937*A, -14010*C, -14011*T LP alleles previously described in the MCM6 gene region that acts as an enhancer for the LCT gene were identified in Brazilians. The most common LP allele was -13910*T. Its frequency was highly correlated with European ancestry in the Brazilian populations investigated. The -13910*T was higher (0.295) in southern Brazilians of European ancestry and lower (0.175) in the Northern admixed population. LCT haplotypes were derived from the 10 LCT SNPs genotyped. Overall twenty six haplotypes previously described were identified in the four Brazilian populations studied. The Multidimensional Scaling analysis showed that Belém, in the north, was closer to Amerindians. Northeastern and southern Afro-descendants were more related with Bantu-speaking South Africans whereas the Southern population with European ancestry grouped with Southern and Northern Europeans. This study shows a high variability considering the number of LCT haplotypes observed. Due to the highly admixed nature of the Brazilian populations, the diagnosis of hypolactasia in Brazil, based only in the investigation of the -13910*T allele is an oversimplification. PMID:23029545

  18. Several different lactase persistence associated alleles and high diversity of the lactase gene in the admixed Brazilian population.

    PubMed

    Friedrich, Deise C; Santos, Sidney E B; Ribeiro-dos-Santos, Ândrea K C; Hutz, Mara H

    2012-01-01

    Adult-type hypolactasia is a common phenotype caused by the lactase enzyme deficiency. The -13910 C>T polymorphism, located 14 Kb upstream of the lactase gene (LCT) in the MCM6 gene was associated with lactase persistence (LP) in Europeans. This polymorphism is rare in Africa but several other variants associated with lactase persistence were observed in Africans. The aims of this study were to identify polymorphisms in the MCM6 region associated with the lactase persistence phenotype and to determine the distribution of LCT gene haplotypes in 981 individuals from North, Northeast and South Brazil. These polymorphisms were genotyped by PCR based methods and sequencing. The -13779*C,-13910*T, -13937*A, -14010*C, -14011*T LP alleles previously described in the MCM6 gene region that acts as an enhancer for the LCT gene were identified in Brazilians. The most common LP allele was -13910*T. Its frequency was highly correlated with European ancestry in the Brazilian populations investigated. The -13910*T was higher (0.295) in southern Brazilians of European ancestry and lower (0.175) in the Northern admixed population. LCT haplotypes were derived from the 10 LCT SNPs genotyped. Overall twenty six haplotypes previously described were identified in the four Brazilian populations studied. The Multidimensional Scaling analysis showed that Belém, in the north, was closer to Amerindians. Northeastern and southern Afro-descendants were more related with Bantu-speaking South Africans whereas the Southern population with European ancestry grouped with Southern and Northern Europeans. This study shows a high variability considering the number of LCT haplotypes observed. Due to the highly admixed nature of the Brazilian populations, the diagnosis of hypolactasia in Brazil, based only in the investigation of the -13910*T allele is an oversimplification.

  19. WRKY6 Transcription Factor Restricts Arsenate Uptake and Transposon Activation in Arabidopsis[W

    PubMed Central

    Castrillo, Gabriel; Sánchez-Bermejo, Eduardo; de Lorenzo, Laura; Crevillén, Pedro; Fraile-Escanciano, Ana; TC, Mohan; Mouriz, Alfonso; Catarecha, Pablo; Sobrino-Plata, Juan; Olsson, Sanna; Leo del Puerto, Yolanda; Mateos, Isabel; Rojo, Enrique; Hernández, Luis E.; Jarillo, Jose A.; Piñeiro, Manuel; Paz-Ares, Javier; Leyva, Antonio

    2013-01-01

    Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here, we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing. PMID:23922208

  20. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline

    PubMed Central

    Schwarz, Flavio; Springer, Stevan A.; Altheide, Tasha K.; Varki, Nissi M.; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer’s dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer’s disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  1. What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-five microsatellite alleles from three Simple Sequence Repeat (SSR) loci (cAGG9, CCT01 and GT03) of various Citrus, Fortunella or Poncirus accessions were cloned and sequenced to determine their mode of evolution. This data was used to assess sequence variation by calculating the average numb...

  2. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline.

    PubMed

    Schwarz, Flavio; Springer, Stevan A; Altheide, Tasha K; Varki, Nissi M; Gagneux, Pascal; Varki, Ajit

    2016-01-01

    The individuals of most vertebrate species die when they can no longer reproduce. Humans are a rare exception, having evolved a prolonged postreproductive lifespan. Elders contribute to cooperative offspring care, assist in foraging, and communicate important ecological and cultural knowledge, increasing the survival of younger individuals. Age-related deterioration of cognitive capacity in humans compromises these benefits and also burdens the group with socially costly members. We investigated the contribution of the immunoregulatory receptor CD33 to a uniquely human postreproductive disease, Alzheimer's dementia. Surprisingly, even though selection at advanced age is expected to be weak, a CD33 allele protective against Alzheimer's disease is derived and unique to humans and favors a functional molecular state of CD33 resembling that of the chimpanzee. Thus, derived alleles may be compensatory and restore interactions altered as a consequence of human-specific brain evolution. We found several other examples of derived alleles at other human loci that protect against age-related cognitive deterioration arising from neurodegenerative disease or cerebrovascular insufficiency. Selection by inclusive fitness may be strong enough to favor alleles protecting specifically against cognitive decline in postreproductive humans. Such selection would operate by maximizing the contributions of postreproductive individuals to the fitness of younger kin. PMID:26621708

  3. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum.

    PubMed

    Mishra, Sonal; Triptahi, Vineeta; Singh, Seema; Phukan, Ujjal J; Gupta, M M; Shanker, Karuna; Shukla, Rakesh Kumar

    2013-01-01

    Wounding is required to be made in the walls of the green seed pod of Opium poppy prior exudation of latex. To withstand this kind of trauma plants regulate expression of some metabolites through an induced transcript level. 167 unique wound-inducible ESTs were identified by a repetitive round of cDNA subtraction after 5 hours of wounding in Papaver somniferum seedlings. Further repetitive reverse northern analysis of these ESTs revealed 80 transcripts showing more than two fold induction, validated through semi-quantitative RT-PCR & real time expression analysis. One of the major classified categories among identified ESTs belonged to benzylisoquinoline transcripts. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to wounding revealed increased accumulation of narcotine and papaverine. Promoter analysis of seven transcripts of BIAs pathway showed the presence of W-box cis-element with the consensus sequence of TGAC, which is the proposed binding site for WRKY type transcription factors. One of the Wound inducible 'WRKY' EST isolated from our subtracted library was made full-length and named as 'PsWRKY'. Bacterially expressed PsWRKY interacted with the W-box element having consensus sequence TTGACT/C present in the promoter region of BIAs biosynthetic pathway genes. PsWRKY further activated the TYDC promoter in yeast and transiently in tobacco BY2 cells. Preferential expression of PsWRKY in straw and capsule and its interaction with consensus W-box element present in BIAs pathway gene transcripts suggest its possible involvement in the wound induced regulation of BIAs pathway.

  4. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana

    PubMed Central

    Gao, Ruimin; Liu, Peng; Yong, Yuhan; Wong, Sek-Man

    2016-01-01

    Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection, and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways. PMID:27086702

  5. [Allelic Composition in the VRN-A1, VRN-B1, and VRN-B3 Genes of Double Haploid Lines of Hexaploid Triticale].

    PubMed

    Zaitseva, O I; Lemesh, V A

    2015-07-01

    Vernalization genes are associated with the adaptation capability, heading dates, and yield potential of grain crops. The allelic composition in the Vrn-A1, Vrn-B1, and Vrn-B3 genes was defined in 42 lines of double haploids of hexaploid triticale, which were produced through in vitro anther culture. Two alleles (Vrn-A1a and vrn-A1) were found at the Vrn-A1[ital] locus and three alleles (Vrn-B1a, Vrn-B1c, and vrn-B1) were found at the Vrn-B1 locus. All double haploids carried the recessive allele at the Vrn-B3[ital] locus. Twelve lines of spring triticale were selected, and they were characterized by an allelic composition associated with early maturity and high potential of grain yield. PMID:26410930

  6. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel. PMID:26580967

  7. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel.

  8. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  9. Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: An example from Rosa in North America.

    PubMed

    Joly, Simon; Bruneau, Anne

    2006-08-01

    Allelic variation within individuals holds information regarding the relationships of organisms, which is expected to be particularly important for reconstructing the evolutionary history of closely related taxa. However, little effort has been committed to incorporate such information for reconstructing the phylogeny of organisms. Haplotype trees represent a solution when one nonrecombinant marker is considered, but there is no satisfying method when multiple genes are to be combined. In this paper, we propose an algorithm that converts a distance matrix of alleles to a distance matrix among organisms. This algorithm allows the incorporation of allelic variation for reconstructing the phylogeny of organisms from one or more genes. The method is applied to reconstruct the phylogeny of the seven native diploid species of Rosa sect. Cinnamomeae in North America. The glyceralgehyde 3-phosphate dehydrogenase (GAPDH), the triose phosphate isomerase (TPI), and the malate synthase (MS) genes were sequenced for 40 individuals from these species. The three genes had little genetic variation, and most species showed incomplete lineage sorting, suggesting these species have a recent origin. Despite these difficulties, the networks (NeighborNet) of organisms reconstructed from the matrix obtained with the algorithm recovered groups that more closely match taxonomic boundaries than did the haplotype trees. The combined network of individuals shows that species west of the Rocky Mountains, Rosa gymnocarpa and R. pisocarpa, form exclusive groups and that together they are distinct from eastern species. In the east, three groups were found to be exclusive: R. nitida-R. palustris, R. foliolosa, and R. blanda-R. woodsii. These groups are congruent with the morphology and the ecology of species. The method is also useful for representing hybrid individuals when the relationships are reconstructed using a phylogenetic network. PMID:16969938

  10. Advancing allele group-specific amplification of the complete HLA-C gene--isolation of novel alleles from three allele groups (C*04, C*07 and C*08).

    PubMed

    Cisneros, E; Martínez-Pomar, N; Vilches, M; Martín, P; de Pablo, R; Nuñez Del Prado, N; Nieto, A; Matamoros, N; Moraru, M; Vilches, C

    2013-10-01

    A variety of strategies have been designed for sequence-based HLA typing (SBT) and for the isolation of new human leucocyte antigen (HLA) alleles, but unambiguous characterization of complete genomic sequences remains a challenge. We recently reported a simple method for the group-specific amplification (GSA) and sequencing of a full-length C*04 genomic sequence in isolation from the accompanying allele. Here we build on this strategy and present homologous methods that enable the isolation of HLA-C alleles belonging to another two allele groups. Using this approach, which can be applied to sequence-based typing in some clinical settings, we have successfully characterized three novel HLA-C alleles (C*04:128, C*07:01:01:02, and C*08:62).

  11. SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.).

    PubMed

    Feng, Hui; Wei, Peng; Piao, Zhong-Yun; Liu, Zhi-Yong; Li, Cheng-Yu; Wang, Yu-Gang; Ji, Rui-Qin; Ji, Shu-Juan; Zou, Ting; Choi, Su-Ryun; Lim, Yong-Pyo

    2009-07-01

    The genic multiple-allele inherited male-sterile gene Ms in Chinese cabbage (Brassica rapa L.) was identified as a spontaneous mutation. Applying this gene to hybrid seed production, several B. rapa cultivars have been successfully bred in China. A BC(1) population (244 plants) was constructed for mapping the Ms gene. Screening 268 simple sequence repeat (SSR) markers which cover the entire genome of Chinese cabbage was performed with bulked segregant analysis (BSA). On the basis of linkage analysis, the Ms gene was located on linkage group R07. In addition, through the amplified fragment length polymorphism (AFLP) and the sequence-characterized amplified region (SCAR) techniques combining BSA, two SCAR markers which were converted from corresponding AFLP markers flanked the Ms gene. Finally, a genetic map of the Ms gene was constructed covering a total interval of 9.0 cM. Two SCAR markers, syau_scr01 and syau_scr04, flanked the Ms gene at distances of 0.8 and 2.5 cM, respectively. All the SSR markers (cnu_m273, cnu_m030, cnu_m295, and syau_m13) were mapped on the same side of the gene as syau_scr04, the nearest one of which, syau_m13, was mapped at a distance of 3.3 cM. These SSR and SCAR markers may be useful in marker-assisted selection and map-based cloning.

  12. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1.

    PubMed

    Minocha, Shilpi; Sung, Tzu-Ling; Villeneuve, Dominic; Lammers, Fabienne; Herr, Winship

    2016-04-01

    Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

  13. Allelic variation in the dihydrofolate reductase gene at amino acid position 95 contributes to antifolate resistance in Chinese hamster cells.

    PubMed

    Yu, M; Melera, P W

    1993-12-15

    The Chinese hamster lung cell line DC-3F contains two polymorphic dihydrofolate reductase (DHFR) alleles that are defined by an Asp-Asn amino acid sequence difference at position 95 in protein. Previously, we reported that the antifolate-resistant subline DC-3F/A3 overexpressed a Leu22-->Phe mutant of the Asp95 (21k) allele and that this was the basis of its resistance to methotrexate (MTX) and methasquin [P. W. Melera, J. P. Davide, C. A. Hession, and K. W. Scotto, Mol. Cell. Biol., 4: 38-48, 1984]. We now show that another independently selected antifolate-resistant subline of DC-3F, DC-3F8/A55, in addition to being severely compromised in its ability to accumulate MTX, overexpresses a Leu22-->Phe mutant form of the Asn95 (20k) allele. Characterization of purified DHFR from these cells showed that the enzyme displayed a 6-fold higher Kd for MTX (3.92 +/- 0.17 pM) than the wild type (0.58 +/- 0.10 pM), thus explaining its lowered sensitivity to drug. Unexpectedly, however, this value was 4-fold lower than that displayed by the DC-3F/A3 enzyme even though both contain the same (Leu22-->Phe) mutation and differ only at position 95. Indeed, we have also shown that the 21k and 20k wild type enzymes, both containing Leu at position 22, in fact differ by 3-fold (1.58 +/- 0.08 and 0.58 +/- 0.10 pM, respectively) in their Kd's for MTX. This demonstrates that the amino acid at position 95 has an effect on the ability of DHFR to bind MTX. On the other hand, these allelic variants are indistinguishable from each other in their catalytic properties and in their respective Kd's for dihydrofolate. Taken together, these characteristics are consistent with the observation that it is the wild type 21k allele which is preferentially overexpressed at a frequency of 3:1 in MTX-resistant Chinese hamster lung sublines derived by long-term selection in MTX. The results of these studies are novel in that they establish a role for allelic variation in the DHFR gene as a contributor to

  14. First report on HLA-DPA1 gene allelic distribution in the general Lebanese population

    PubMed Central

    Haddad, Joseph; Shammaa, Dina; Abbas, Fatmeh; Mahfouz, Rami A.R.

    2016-01-01

    Aims HLA-DPA1 is an important marker in bone marrow and organ transplantation and a highly emerging screening parameter in histocompatibility laboratories. Being highly polymorphic, it has another significant value in detecting population origins and migrations. This is the first study to assess DPA1 allele frequencies in an Arab population. Methods The HLA DPA1 alleles were identified using the One-Lambda assays on a Luminex reverse SSO DNA typing system. Our study included 101 individuals coming from different Lebanese geographical areas representing the different communities and religious sects of the country. Results We compared the results of this study to 16 different populations and found very interesting similarities and differences between Lebanese people and individuals of European ancestry. Conclusion This study is the first to describe the different allelic frequencies of HLA-DPA1 in the Lebanese population and will serve as a template that can be later used for disease association studies both at the level of the country and internationally. PMID:27014585

  15. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    SciTech Connect

    McGinnis, R.E.; Spielman, R.S.

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  16. Detection of new HLA-DPB1 alleles generated by interallelic gene conversion using PCR amplification of DPB1 second exon sequences from sperm

    SciTech Connect

    Erlich, H.; Zangenberg, G.; Bugawan, T.

    1994-09-01

    The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified from pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.

  17. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene

    PubMed Central

    Yan, Rengna; Lai, Shanshan; Yang, Yang; Shi, Hongfei; Cai, Zhenming; Sorrentino, Vincenzo; Du, Hong; Chen, Huimei

    2016-01-01

    Genome-wide association studies have identified Ankyrin-1 (ANK1) as a common type 2 diabetes (T2D) susceptibility locus. However, the underlying causal variants and functional mechanisms remain unknown. We screened for 8 tag single nucleotide polymorphisms (SNPs) in ANK1 between 2 case-control studies. Genotype analysis revealed significant associations of 3 SNPs, rs508419 (first identified here), rs515071, and rs516946 with T2D (P < 0.001). These SNPs were in linkage disequilibrium (r2 > 0.80); subsequent analysis indicated that the CCC haplotype associated with increased T2D susceptibility (OR 1.447, P < 0.001). Further mapping showed that rs508419 resides in the muscle-specific ANK1 gene promoter. Allele-specific mRNA and protein level measurements confirmed association of the C allele with increased small ANK1 (sAnk1) expression in human skeletal muscle (P = 0.018 and P < 0.001, respectively). Luciferase assays showed increased rs508419-C allele transcriptional activity in murine skeletal muscle C2C12 myoblasts, and electrophoretic mobility-shift assays demonstrated altered rs508419 DNA-protein complex formation. Glucose uptake was decreased with excess sAnk1 expression upon insulin stimulation. Thus, the ANK1 rs508419-C T2D-risk allele alters DNA-protein complex binding leading to increased promoter activity and sAnk1 expression; thus, increased sAnk1 expression in skeletal muscle might contribute to T2D susceptibility. PMID:27121283

  18. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection.

    PubMed

    Matsye, Prachi D; Lawrence, Gary W; Youssef, Reham M; Kim, Kyung-Hwan; Lawrence, Katheryn S; Matthews, Benjamin F; Klink, Vincent P

    2012-09-01

    Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.

  19. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.

    PubMed

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  20. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    PubMed Central

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  1. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain.

    PubMed

    Sittig, Laura J; Redei, Eva E

    2014-01-01

    The gene encoding the thyroid hormone (TH)-metabolizing enzyme, deiodinase type III (Dio3), exhibits a preferential paternal expression in most tissues. Dio3 is part of the Dlk1-Dio3 imprinted locus, so named according to its ancestral genes, Delta-like homolog 1 (Dlk1) and Dio3, which among other important functions control metabolic programming in the developing embryo and fetus. Here, we describe the aspects of the genomic imprinting patterns exhibited by Dio3 across brain regions and development. The corresponding local changes in the dosage of the Dio3 enzyme are inversely related to TH levels that vary from one brain region to another, and affect social and cognitive behaviors. We show that this regional tuning of brain region-specific expression is dependent on parent of origin-specific genetic polymorphisms in the rat, is sexually dimorphic, and is affected by the early environmental challenge of fetal exposure to alcohol, opening the possibility that the potential for variant expression patterns of the Dio3 gene is quite large. The multiple regulatory genomic features within the Dlk1-Dio3 locus, and other imprinted loci, allow mammals to specifically modulate parent-of-origin allelic gene expression brain region. These regulatory structures seem to have evolved as a possible mechanism of adaptation in response to the simultaneous need for highly regulated expression in some tissues during development, but variable expression across specific regions of the brain over the complete life span. Here, we use Dio3 as a single gene example of the epigenetic parent-of-origin allelic expression in specific brain regions and discuss the potential of this general phenomenon to shape evolutionarily relevant social and cognitive behavior in eutherian mammals.

  2. Genetics of unstable alleles of the X chromosome genes isolated from natural populations of Drosophila melanogaster during the outburst of mutation yellow in 1982 to 1991 in Uman`

    SciTech Connect

    Zakharov, I.K.; Skibitskii, E.E.

    1995-08-01

    In 1982, a local increase of frequency of mutation yellow-2, which lasted for a decade, occurred in a population of Drosophila melanogaster from Uman` (Ukraine). Genetic properties (phenotypic difference, mutability, and pecularities of complementation) of alleles yellow-2, isolated from the population during the mutation outburst, and of their revertants, were studied. Allelic diversity, which reflected molecular differences in allele structure, was shown to appear. In addition to mutation yellow, isolated in 1990 from the Uman` population, mutational properties of other sex-linked genes (dusky, miniature, rudimentary, singed, and vermilion) isolated from natural populations in 1986 to 1990, were analyzed. Based on these data, the conclusion was drawn that the presence of unstable alleles in populations is not a sufficient condition for mutation outbursts. Comparative analysis of properties of yellow alleles obtained in different periods of the outburst continues. 17 refs., 4 tabs.

  3. Allele Distributions at Hybrid Incompatibility Loci Facilitate the Potential for Gene Flow between Cultivated and Weedy Rice in the US

    PubMed Central

    Craig, Stephanie M.; Reagon, Michael; Resnick, Lauren E.; Caicedo, Ana L.

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds. PMID:24489758

  4. Allele mining in the pepper gene pool provided new complementation effects between pvr2-eIF4E and pvr6-eIF(iso)4E alleles for resistance to pepper veinal mottle virus.

    PubMed

    Rubio, Manuel; Nicolaï, Maryse; Caranta, Carole; Palloix, Alain

    2009-11-01

    Molecular cloning of recessive resistance genes to potyviruses in a large range of host species identified the eukaryotic translation initiation factor 4E (eIF4E) as an essential determinant in the outcome of potyvirus infection. Resistance results from a few amino acid changes in the eIF4E protein encoded by the recessive resistance allele that disrupt the direct interaction with the potyviral protein VPg. In plants, several loci encode two protein subfamilies, eIF4E and eIF(iso)4E. While most eIF4E-mediated resistance to potyviruses depends on mutations in a single eIF4E protein, simultaneous mutations in eIF4E (corresponding to the pvr2 locus) and eIF(iso)4E (corresponding to the pvr6 locus) are required to prevent pepper veinal mottle virus (PVMV) infection in pepper. We used this model to look for additional alleles at the pvr2-eIF4E locus that result in resistance when combined with the pvr6-eIF(iso)4E resistant allele. Among the 12 pvr2-eIF4E resistance alleles sequenced in the pepper gene pool, three were shown to have a complementary effect with pvr6-eIF(iso)4E for resistance. Two amino acid changes were exclusively shared by these three alleles and were systematically associated with a second amino acid change, suggesting that these substitutions are associated with resistance expression. The availability of new resistant allele combinations increases the possibility for the durable deployment of resistance against this pepper virus which is prevalent in Africa.

  5. Association between suicide attempt and a tri-allelic functional polymorphism in serotonin transporter gene promoter in Chinese patients with schizophrenia.

    PubMed

    Hung, Chi-Fa; Lung, For-Wey; Chen, Chien-Hsiun; O'Nions, Elizabeth; Hung, Tai-Hsin; Chong, Mian-Yoon; Wu, Ching-Kuan; Wen, Jung-Kwang; Lin, Pao-Yen

    2011-10-31

    Mounting evidence supports the association between a polymorphism in the serotonin transporter gene promoter region (5-HTTLPR) and suicidal behaviour. Recently, a novel variant of the 5-HTTLPR L allele was identified. The previously unknown L(G) allele produced similar levels of gene expression to the S allele and might have been misclassified as a "high-expression" allele in previous association studies. In this study, we aimed to compare the genotype distribution of the tri-allelic 5-HTTLPR polymorphism in 168 Chinese patients with schizophrenia, including 60 suicide attempters and 108 non-suicide attempters. In our analysis, which used the L(A) dominant model, it was found that the L(A) allele carriers were significantly more likely to have attempted suicide (p=0.035). Further analysis showed this association existed only in male patients (p=0.012). A similar association between the L(A) allele and violent suicide attempt was also found (p=0.028). In addition, logistic regression confirmed our findings that male L(A) allele carriers were at a higher risk of suicide, although the lack of a significant association in females may reflect insufficient power due to small sample size. However, no association was found when we examined the traditional bi-allelic 5-HTTLPR. These findings differ from those reported in Caucasian subjects, where no associations have been reported. Different genetic backgrounds may give rise to different allelic distribution, causing differential effects on the expression of endophenotypes of suicide behaviours. Although the potential influence of multiple comparisons might weaken our findings, our study provides preliminary evidence for a potentially gender-specific role of a "high-expression" 5-HTTLPR polymorphism in susceptibility to suicide in Chinese patients with schizophrenia.

  6. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    PubMed

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  7. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes

    PubMed Central

    Boitet, Evan R.; Turner, Ashley N.; Johnson, Larry W.; Kennedy, Daniel; Downs, Ethan R.; Hymel, Katherine M.; Gross, Alecia K.; Kesterson, Robert A.

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  8. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    PubMed

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  9. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    PubMed

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  10. Rapid Evolution of Major Histocompatibility Complex Class I Genes in Primates Generates New Disease Alleles in Humans via Hitchhiking Diversity

    PubMed Central

    Shiina, Takashi; Ota, Masao; Shimizu, Sayoko; Katsuyama, Yoshihiko; Hashimoto, Nami; Takasu, Miwa; Anzai, Tatsuya; Kulski, Jerzy K.; Kikkawa, Eri; Naruse, Taeko; Kimura, Natsuki; Yanagiya, Kazuyo; Watanabe, Atsushi; Hosomichi, Kazuyoshi; Kohara, Sakae; Iwamoto, Chie; Umehara, Yumi; Meyer, Alice; Wanner, Valérie; Sano, Kazumi; Macquin, Cécile; Ikeo, Kazuho; Tokunaga, Katsushi; Gojobori, Takashi; Inoko, Hidetoshi; Bahram, Seiamak

    2006-01-01

    A plausible explanation for many MHC-linked diseases is lacking. Sequencing of the MHC class I region (coding units or full contigs) in several human and nonhuman primate haplotypes allowed an analysis of single nucleotide variations (SNV) across this entire segment. This diversity was not evenly distributed. It was rather concentrated within two gene-rich clusters. These were each centered, but importantly not limited to, the antigen-presenting HLA-A and HLA-B/-C loci. Rapid evolution of MHC-I alleles, as evidenced by an unusually high number of haplotype-specific (hs) and hypervariable (hv) (which could not be traced to a single species or haplotype) SNVs within the classical MHC-I, seems to have not only hitchhiked alleles within nearby genes, but also hitchhiked deleterious mutations in these same unrelated loci. The overrepresentation of a fraction of these hvSNV (hv1SNV) along with hsSNV, as compared to those that appear to have been maintained throughout primate evolution (trans-species diversity; tsSNV; included within hv2SNV) tends to establish that the majority of the MHC polymorphism is de novo (species specific). This is most likely reminiscent of the fact that these hsSNV and hv1SNV have been selected in adaptation to the constantly evolving microbial antigenic repertoire. PMID:16702430

  11. Allelic variants of the Melanocortin 4 receptor (MC4R) gene in a South African study group.

    PubMed

    Logan, Murray; Van der Merwe, Maria-Teresa; Dodgen, Tyren M; Myburgh, Renier; Eloff, Arinda; Alessandrini, Marco; Pepper, Michael S

    2016-01-01

    Obesity is a global epidemic that results in significant morbidity and mortality. Mutations in the melanocortin 4 receptor (MC4R) gene, which codes for a G-protein-coupled receptor responsible for postprandial satiety signaling, have been associated with monogenic obesity. The prevalence of obesity is on the increase in South Africa, and it is hypothesized that mutations in MC4R are a contributing factor. The aim of this study was to perform a retrospective assessment of the relationship between allelic variants of MC4R and BMI in a South African study cohort. DNA was isolated from a demographically representative cohort of 297 individuals and the entire MC4R gene sequenced by Sanger sequencing. Eight previously reported MC4R variants were identified in 42 of the 297 (14.1%) study participants. The most frequently observed MC4R alleles were V103I (4.0%), I170V (1.5%), and I198I (1.2%), while the remaining five variants together constituted 1.18%. Five compound heterozygotes were also detected. Although MC4R variants were rare, the majority of variation was observed in individuals of Black African ancestry. No statistically significant associations with BMI were reported. Given that lifestyle interventions have limited success in decreasing obesity, there is an urgent need to perform large-scale population studies to further elucidate the molecular underpinnings of this disease.

  12. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  13. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

    PubMed Central

    Salzberg, A.; Prokopenko, S. N.; He, Y.; Tsai, P.; Pal, M.; Maroy, P.; Glover, D. M.; Deak, P.; Bellen, H. J.

    1997-01-01

    To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens. PMID:9409832

  14. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology

    PubMed Central

    Fazli, Mustafa; Harrison, Joe J.; Gambino, Michela; Givskov, Michael

    2015-01-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. PMID:25795676

  15. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  16. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation

    PubMed Central

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  17. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.).

    PubMed

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, Josef; Bříza, Jindřich; Siglová, Kristýna; Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Ono, Eiichiro; Krofta, Karel

    2016-10-01

    Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds. PMID:27392499

  18. Characterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genes.

    PubMed

    Nguyen, Doan C; Scinicariello, Franco; Attanasio, Roberta

    2011-06-01

    Macaque models are invaluable for AIDS research. Indeed, initial development of HIV-1 vaccines relies heavily on simian immunodeficiency virus-infected rhesus macaques. Neutralizing antibodies, a major component of anti-HIV protective responses, ultimately interact with Fc receptors on phagocytic and natural killer cells to eliminate the pathogen. Despite the major role that Fc receptors play in protective responses, there is very limited information available on these molecules in rhesus macaques. Therefore, in this study, rhesus macaque CD32 (FcγRII) and CD64 (FcγRI) homologues were genetically characterized. In addition, presence of CD16 (FcγRIII), CD32, and CD64 allelic polymorphisms were determined in a group of nine animals. Results from this study show that the predicted structures of macaque CD32 and CD64 are highly similar to their human counterparts. Macaque and human CD32 and CD64 extracellular domains are 88-90% and 94-95% homologous, respectively. Although all cysteines are conserved between the two species, macaque CD32 exhibits two additional N-linked glycosylation sites, whereas CD64 lacks three of them when compared to humans. Five CD32, three CD64, and three CD16 distinct allelic sequences were indentified in the nine animals examined, indicating a relatively high level of polymorphism in macaque Fcγ receptors. Together, these results validate rhesus macaques as models for vaccine development and antibody responses, while at the same time, underscoring the need to take into account the high degree of genetic heterogeneity present in this species when designing experimental protocols.

  19. [Identification and analysis of the rare HLA-A/B/DRB1 allele genes of 10165 bone marrow registry donors in Shaanxi region].

    PubMed

    Liu, Meng-Li; Qi, Jun; Wang, Xiao-Fang; Liu, Sheng; Wang, Tian-Ju; Chen, Li-Ping

    2013-12-01

    This study was purposed to analyze the detected status of rare alleles from HLA-A/B/DRB1 typing of 10165 unrelated hematopoietic stem cell donors in Shaanxi region during 2009-2012. The rare allele distributions of HLA-A/B/DRB1 gene typing of 10165 unrelated-donors from Shaanxi sub-registry of Chinese National Marrow Donor Project (CMDP) were detected and analyzed by PCR-SBT. The results showed that there were 40 rare alleles from 48 donors identified by PCR-SBT in 10165 unrelated-donors of Shaanxi sub-registry. Among them, 10 rare alleles of A*02:04, B*07:10, B*27:09, B*35:11, B*44:29, DRB1*03:04, DRB1*08:18, DRB1*13:05, DRB1*13:14 and DRB1*14:11 from 15 donors were not included in the common alleles and well documented alleles (CWD) of China, but were included in the CWD of American Society for Histocompatibility and Immunogenetics (ASHI). The alleles of A*68:24, B*35:11, B*44:29, DRB1*03:04, DRB1*08:18 and DRB1*13:05 were confirmed in more than two samples. There were totally 21 novel HLA alleles identified by our laboratory and officially assigned by the WHO Nomenclature Committee from 2005 to 2012, and some of them were also detected from multiple donors in other HLA typing laboratories of China. Now the novel alleles of HLA-A*02:90, HLA-B*48:14 and HLA-DRB1*01:14 were added into the Chinese CWD list. It is concluded that to ensure the polymorphism integrity and accurate population distribution of HLA genes and its constant accumulations on CMDP, it is necessary to recognize and submit timely the potential novel alleles in our practical work, as well as to record and statistics the identified rare alleles, which can provide the basis for the modification of Chinese CWD. When CWD list is referred, it should be careful for ambiguous results containing the identified rare alleles in order to avoid the occurrence of false or undiscovered detection, and ensure that the patients carrying rare alleles could find a matching donor with the maximum opportunity.

  20. The homeologous Zea mays gigantea genes: characterization of expression and novel mutant alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two homeologous Zea mays gigantea (gi) genes, gi1 and gi2, arose from the last genome duplication event in the maize lineage. Homologs of these genes in other species are required for correct circadian rhythms and proper regulation of growth and development. Here we characterized the expression ...

  1. [Distribution of allelic variants of promotor sites of cytokine genes and endothelial growth factor gene among healthy subjects and patients with rheumatoid arthritis in a Russian Europeoid population].

    PubMed

    Konenkov, V I; Golovanova, O V; Prokof'ev, V F; Shevchenko, A V; Zonova, E V; Korolev, M A; Leonova, Iu B; Khalaĭdzhi, N A; Lapsina, S A

    2010-01-01

    The article reports results of the first study of cytokine gene polymorphic sites and analysis of distribution of their complexes among healthy subjects and patients with rheumatoid arthritis (RA) representative of the Russian Europeoid population; their possible prognostic significance is evaluated. Comprehensive analysis of the frequency of allelic variants of cytokine genes IL1B C-31T, IL6 G-174C, TNFA A-238G, TNFA A-308G, TNFA A-863C, IL4 C-590T, IL10 A-592C and VEGF C-2578A was performed for 513 residents of the Novosibirsk region showing no obvious signs of any diseases and 125 RA patients. The results suggest association of RA with certain alleles of pro- and anti-inflammatory cytokine genes. Complex indices reflecting combinations of genotypes of two, three, four, five, six and seven loci of the explored cytokine genes found in individual patient demonstrate their high specificity for RA. It is supposed that these findings can be used in further clinical studies for the development of algorithm designed to detect risk groups among clinically healthy subjects.

  2. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.

    PubMed

    Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.

  3. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism.

    PubMed

    Hammond, John A; Guethlein, Lisbeth A; Norman, Paul J; Parham, Peter

    2012-12-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals' classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  4. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  5. Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis.

    PubMed

    Purdie, Karin J; Lambert, Sally R; Teh, Muy-Teck; Chaplin, Tracy; Molloy, Gael; Raghavan, Manoj; Kelsell, David P; Leigh, Irene M; Harwood, Catherine A; Proby, Charlotte M; Young, Bryan D

    2007-07-01

    Cutaneous squamous cell carcinomas (SCC) are the second most commonly diagnosed cancers in fair-skinned people; yet the genetic mechanisms involved in SCC tumorigenesis remain poorly understood. We have used single nucleotide polymorphism (SNP) microarray analysis to examine genome-wide allelic imbalance in 16 primary and 2 lymph node metastatic SCC using paired non-tumour samples to counteract normal copy number variation. The most common genetic change was loss of heterozygosity (LOH) on 9p, observed in 13 of 16 primary SCC. Other recurrent events included LOH on 3p (9 tumors), 2q, 8p, and 13 (each in 8 SCC) and allelic gain on 3q and 8q (each in 6 tumors). Copy number-neutral LOH was observed in a proportion of samples, implying that somatic recombination had led to acquired uniparental disomy, an event not previously demonstrated in SCC. As well as recurrent patterns of gross chromosomal changes, SNP microarray analysis revealed, in 2 primary SCC, a homozygous microdeletion on 9p23 within the protein tyrosine phosphatase receptor type D (PTPRD) locus, an emerging frequent target of homozygous deletion in lung cancer and neuroblastoma. A third sample was heterozygously deleted within this locus and PTPRD expression was aberrant. Two of the 3 primary SCC with PTPRD deletion had demonstrated metastatic potential. Our data identify PTPRD as a candidate tumor suppressor gene in cutaneous SCC with a possible association with metastasis.

  6. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function

    PubMed Central

    Tost, Heike; Kolachana, Bhaskar; Hakimi, Shabnam; Lemaitre, Herve; Verchinski, Beth A.; Mattay, Venkata S.; Weinberger, Daniel R.; Meyer–Lindenberg, Andreas

    2010-01-01

    The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance. PMID:20647384

  7. Allelic variation at the interleukin 1β gene is associated with decreased bone mass in patients with inflammatory bowel diseases

    PubMed Central

    Nemetz, A; Toth, M; Garcia-Gonzalez, M; Zagoni, T; Feher, J; Pena, A; Tulassay, Z

    2001-01-01

    BACKGROUND—Interleukin 1β (IL-1β) and its natural antagonist have been implicated in the pathogenesis of inflammatory bowel disease (IBD). Both cytokines influence bone formation. IL-1β stimulates osteoclast activity while interleukin 1 receptor antagonist (IL-1ra) enhances bone formation.
AIMS—To determine whether the decreased bone mass in IBD is related to gene polymorphisms coding for IL-1β and IL-1ra, and thus identify patients with an increased risk.
METHODS—Bone mineral densitometry was performed at the femoral neck, lumbar spine, and the distal third of the radius in 75 IBD patients (34 men/41 women; 40.3 (1.6) years) and in 58 healthy controls (HC; 28 men/30 women; 32.4 (1.2) years). Values were correlated with the TaqI and AvaI gene polymorphisms in the IL1B and the variable number of tandem repeats gene polymorphism in the IL1RN gene.
RESULTS—In IBD patients, but not in HC, carriers of allele 2 at the AvaI gene polymorphism (IL1B-511*2) had significantly lower Z scores at the lumbar spine (−0.82 (0.13) v −0.29 (0.21) p=0.03) and the femoral neck (−0.59 (0.14) v 0.15 (0.19); p=0.003) than non-carriers. These patients also had a higher risk for osteopenia or osteoporosis at the femoral neck (odds ratio 3.63 (95% confidence interval 0.95-13.93)). No association was found between bone mass and the other gene polymorphisms analysed in IBD patients or in HC.
CONCLUSIONS—Our results suggest that genetic variability may be a major determinant of bone loss in IBD. Carriers of IL1B-511*2, who are hypersecretors of IL-1β, have a higher risk of presenting with low bone mass in IBD. Screening for this allele may contribute to determination of the risk of bone loss at the time of disease onset.


Keywords: inflammatory bowel diseases; ulcerative colitis; Crohn's disease; osteoporosis; bone density; genetic polymorphisms; interleukin 1 PMID:11600466

  8. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana[OPEN

    PubMed Central

    Adachi, Hiroaki; Nakano, Takaaki; Miyagawa, Noriko; Ishihama, Nobuaki; Yoshioka, Miki; Katou, Yuri; Yaeno, Takashi

    2015-01-01

    Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB. PMID:26373453

  9. Assay for Detecting the I1307K Susceptibility Allele within the Adenomatous Polyposis ColiGene.

    PubMed

    Gruber, S B

    2001-01-01

    Most germline mutations of the adenomatous polyposis coli (APC) tumor suppressor gene result in a classic inherited cancer syndrome called familial adenomatous polyposis (FAP). FAP is characterized by thousands of colonic polyps, well-defined extracolonic manifestations that may include pigmented lesions of the ocular fundus, supernumerary teeth, osteomas, odontomas, desmoid tumors and epidermoid cysts, and a 100% lifetime risk of developing colorectal cancer. Shortly after the APC gene was cloned in 1991 (1,2) the molecular basis of an attenuated form of FAP was recognized to be related to germline mutations within APC that were most likely to be found in the 5' and 3' ends of the gene (3,4). The truncating mutations leading to classic FAP and attenuated FAP are quite rare, but recently a polymorphism of the APC gene was found among 6 to 7% of Ashkenazi Jews that approximately doubles the risk of colorectal cancer (5). PMID:21370146

  10. Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens.

    PubMed

    Beck-Engeser, G B; Monach, P A; Mumberg, D; Yang, F; Wanderling, S; Schreiber, K; Espinosa, R; Le Beau, M M; Meredith, S C; Schreiber, H

    2001-08-01

    Antigens that are tumor specific yet retained by tumor cells despite tumor progression offer stable and specific targets for immunologic and possibly other therapeutic interventions. Therefore, we have studied two CD4(+) T cell-recognized tumor-specific antigens that were retained during evolution of two ultraviolet-light-induced murine cancers to more aggressive growth. The antigens are ribosomal proteins altered by somatic tumor-specific point mutations, and the progressor (PRO) variants lack the corresponding normal alleles. In the first tumor, 6132A-PRO, the antigen is encoded by a point-mutated L9 ribosomal protein gene. The tumor lacks the normal L9 allele because of an interstitial deletion from chromosome 5. In the second tumor, 6139B-PRO, both alleles of the L26 gene have point mutations, and each encodes a different tumor-specific CD4(+) T cell-recognized antigen. Thus, for both L9 and L26 genes, we observe "two hit" kinetics commonly observed in genes suppressing tumor growth. Indeed, reintroduction of the lost wild-type L9 allele into the 6132A-PRO variant suppressed the growth of the tumor cells in vivo. Since both L9 and L26 encode proteins essential for ribosomal biogenesis, complete loss of the tumor-specific target antigens in the absence of a normal allele would abrogate tumor growth.

  11. EcoTILLING-Based Association Mapping Efficiently Delineates Functionally Relevant Natural Allelic Variants of Candidate Genes Governing Agronomic Traits in Chickpea

    PubMed Central

    Bajaj, Deepak; Srivastava, Rishi; Nath, Manoj; Tripathi, Shailesh; Bharadwaj, Chellapilla; Upadhyaya, Hari D.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    The large-scale mining and high-throughput genotyping of novel gene-based allelic variants in natural mapping population are essential for association mapping to identify functionally relevant molecular tags governing useful agronomic traits in chickpea. The present study employs an alternative time-saving, non-laborious and economical pool-based EcoTILLING approach coupled with agarose gel detection assay to discover 1133 novel SNP allelic variants from diverse coding and regulatory sequence components of 1133 transcription factor (TF) genes by genotyping in 192 diverse desi and kabuli chickpea accessions constituting a seed weight association panel. Integrating these SNP genotyping data with seed weight field phenotypic information of 192 structured association panel identified eight SNP alleles in the eight TF genes regulating seed weight of chickpea. The associated individual and combination of all SNPs explained 10–15 and 31% phenotypic variation for seed weight, respectively. The EcoTILLING-based large-scale allele mining and genotyping strategy implemented for association mapping is found much effective for a diploid genome crop species like chickpea with narrow genetic base and low genetic polymorphism. This optimized approach thus can be deployed for various genomics-assisted breeding applications with optimal expense of resources in domesticated chickpea. The seed weight-associated natural allelic variants and candidate TF genes delineated have potential to accelerate marker-assisted genetic improvement of chickpea. PMID:27148286

  12. EcoTILLING-Based Association Mapping Efficiently Delineates Functionally Relevant Natural Allelic Variants of Candidate Genes Governing Agronomic Traits in Chickpea.

    PubMed

    Bajaj, Deepak; Srivastava, Rishi; Nath, Manoj; Tripathi, Shailesh; Bharadwaj, Chellapilla; Upadhyaya, Hari D; Tyagi, Akhilesh K; Parida, Swarup K

    2016-01-01

    The large-scale mining and high-throughput genotyping of novel gene-based allelic variants in natural mapping population are essential for association mapping to identify functionally relevant molecular tags governing useful agronomic traits in chickpea. The present study employs an alternative time-saving, non-laborious and economical pool-based EcoTILLING approach coupled with agarose gel detection assay to discover 1133 novel SNP allelic variants from diverse coding and regulatory sequence components of 1133 transcription factor (TF) genes by genotyping in 192 diverse desi and kabuli chickpea accessions constituting a seed weight association panel. Integrating these SNP genotyping data with seed weight field phenotypic information of 192 structured association panel identified eight SNP alleles in the eight TF genes regulating seed weight of chickpea. The associated individual and combination of all SNPs explained 10-15 and 31% phenotypic variation for seed weight, respectively. The EcoTILLING-based large-scale allele mining and genotyping strategy implemented for association mapping is found much effective for a diploid genome crop species like chickpea with narrow genetic base and low genetic polymorphism. This optimized approach thus can be deployed for various genomics-assisted breeding applications with optimal expense of resources in domesticated chickpea. The seed weight-associated natural allelic variants and candidate TF genes delineated have potential to accelerate marker-assisted genetic improvement of chickpea. PMID:27148286

  13. No allelic association between Parkinson`s disease and dopamine D2, D3, and D4 receptor gene polymorphisms

    SciTech Connect

    Nanko, S.; Hattori, M.; Dai, X.Y.

    1994-12-15

    Parkinson`s disease is thought to be caused by a combination of unknown environmental, genetic, and degenerative factors. Evidence from necropsy brain samples and pharmacokinetics suggests involvement of dopamine receptors in the pathogenesis or pathophysiology of Parkinson`s disease. Genetic association studies between Parkinson`s disease and dopamine D2, D3 and D4 receptor gene polymorphisms were conducted. The polymorphism was examined in 71 patients with Parkinson`s disease and 90 controls. There were no significant differences between two groups in allele frequencies at the D2, D3, and D4 dopamine receptor loci. Our findings do not support the hypothesis that susceptibility to Parkinson`s disease is associated with the dopamine receptor polymorphisms examined. 35 refs., 2 tabs.

  14. Divergence and gene flow among Darwin's finches: a genome-wide view of adaptive radiation driven by interspecies allele sharing

    PubMed Central

    Palmer, Daniela H.; Kronforst, Marcus R.

    2015-01-01

    A recent analysis of the genomes of Darwin's finches revealed extensive interspecies allele sharing throughout the history of the radiation and identified a key locus responsible for morphological evolution in this group. The radiation of Darwin's finches on the Galápagos archipelago has long been regarded as an iconic study system for field ecology and evolutionary biology. Coupled with an extensive history of field work, these latest findings affirm the increasing acceptance of introgressive hybridization, or gene flow between species, as a significant contributor to adaptive evolution. Here we review and discuss these findings in relation to both classical work on Darwin's finches and contemporary work showing similar evolutionary signatures in other biological systems. The continued unification of genomic data with field biology promises to further elucidate the molecular basis of adaptation in Darwin's finches and well beyond. PMID:26200327

  15. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  16. Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles.

    PubMed Central

    Mortensen, R M; Zubiaur, M; Neer, E J; Seidman, J G

    1991-01-01

    The alpha i2 subunit of the inhibitory heterotrimeric guanine nucleotide-binding proteins is highly conserved in mammals and is expressed in all cell types, but its exact function is not yet defined. We have investigated the role of this protein by producing embryonic stem (ES) cells lacking a functional alpha i2 gene. These alpha i2-null cell lines regulate adenylyl cyclase and grow and differentiate in vitro the same as wild-type ES cells. Homologous recombination was used to sequentially inactivate both copies of the alpha i2 gene. The first allele was inactivated by insertion of a neomycin-resistance gene. We modified the hygromycin B-resistance gene for improved expression in ES cells and used this gene to inactivate the remaining normal allele. The techniques used should be generally applicable to other genes whether or not they are expressed in ES cells. Images PMID:1908087

  17. Lack of association between TaqI A1 Allele of dopamine D2 receptor gene and alcohol-use disorders in Atayal natives of Taiwan

    SciTech Connect

    Chia-Hsiang Chen; Shih-Hsiang Chien; Hai-Gwo Hwu

    1996-09-20

    Association studies between the A1 allele of the dopamine D2 receptor (DRD2) gene TaqI A polymorphism and alcoholism remain controversial. A recent study from Japan demonstrated that the A1 allele is associated with severe alcoholism in the Japanese population. We were interested in knowing if this association also exists in the Atayals of Taiwan, who were found to have a higher prevalence of alcohol-use disorders than the Han Chinese in Taiwan. Genotype and allele frequencies were determined in alcohol-abusing, alcohol-dependent, and nonalcoholic control Atayal natives in Taiwan. A1 allele frequencies in alcohol-dependent, alcohol-abusing, and normal control Atayals were 0.39, 0.42, and 0.39, respectively. No difference in A1 allele frequency was found among these three groups. Our data do not support the hypothesis that the A1 allele of the TaqI A polymorphism of the DRD2 gene increases susceptibility to alcohol-use disorders in the Atayals of Taiwan. 18 refs., 1 tab.

  18. Ho15J: a new hotfoot allele in a hot spot in the gene encoding the delta2 glutamate receptor.

    PubMed

    Motohashi, Junko; Kakegawa, Wataru; Yuzaki, Michisuke

    2007-04-01

    Hotfoot, a recessive mouse mutation characterized by ataxia and jerky movements of the hindlimbs, is caused by various mutations in the gene (Grid2) encoding the delta2 glutamate receptor (GluRdelta2). So far, at least 20 alleles, arising either spontaneously or through the random insertion of transgenes, have been described. Interestingly, most hotfoot mutants have deletions of one or more exons coding for portions of the most amino-terminal domain of GluRdelta2. However, because live mice colonies are no longer available for most hotfoot mutants, the possibility that the loss of a part of an intron might affect the splicing of other exons or the general efficiency of transcription could not be ruled out. Here, we report that a newly identified hotfoot mutant, ho15J, was caused by an intragenic deletion of the Grid2 gene, which indeed resulted in a new type of 52-amino-acid deletion in the most amino-terminal domain of GluRdelta2. Like GluRdelta2 proteins in ho4J mutants, GluRdelta2 proteins in ho15J mice were retained in the soma of Purkinje cells, where they were degraded. Long-term depression, a form of synaptic plasticity underlying information storage in the cerebellum, was abrogated, and ho15J mice showed severe motor discoordination on rotarod tests. The agreement between the PCR results for genomic DNA and the RT-PCR results for the ho15J allele supports the view that PCR analyses of grid2 genomic DNA can predict alterations in mRNA and protein. In addition, the present findings underscore the importance of the most amino-terminal domain in GluRdelta2 signaling and cerebellar functions.

  19. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    PubMed

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  20. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    PubMed

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  1. Screens for Extragenic Mutations That Fail to Complement Act1 Alleles Identify Genes That Are Important for Actin Function in Saccharomyces Cerevisiae

    PubMed Central

    Welch, M. D.; Vinh, DBN.; Okamura, H. H.; Drubin, D. G.

    1993-01-01

    Null mutations in SAC6 and ABP1, genes that encode actin-binding proteins, failed to complement the temperature-sensitive phenotype caused by a mutation in the ACT1 gene. To identify novel genes whose protein products interact with actin, mutations that fail to complement act1-1 or act1-4, two temperature-sensitive alleles of ACT1, were isolated. A total of 14 extragenic noncomplementing mutations and 12 new alleles of ACT1 were identified in two independent screens. The 14 extragenic noncomplementing mutations represent alleles of at least four different genes, ANC1, ANC2, ANC3 and ANC4 (Actin NonComplementing). Mutations in the ANC1 gene were shown to cause osmosensitivity and defects in actin organization; phenotypes that are similar to those caused by act1 mutations. We conclude that the ANC1 gene product plays an important role in actin cytoskeletal function. The 12 new alleles of ACT1 will be useful for further elucidation of the functions of actin in yeast. PMID:8243992

  2. No association between an allele at the D sub 2 dopamine receptor gene (DRD2) and alcoholism

    SciTech Connect

    Gelernter, J.; Krystal, J.; Kennedy, J.L. West Haven Dept. of Veterans Affairs Medical Center, CT ); O'Malley, S.; Risch, N.; Merikangas, K.; Kidd, K.K. ); Kranzler, H.R. )

    1991-10-02

    The author attempted to replicate a positive allelic association between the A1 allele of DRD2 (the D{sub 2} dopamine receptor locus) and alcoholism that has been reported. They compared allele frequencies at the previously described Taq I restriction fragment length polymorphism system of DRD2 in alcoholics and random population controls.

  3. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco.

    PubMed

    Li, Jing-bin; Luan, Yu-shi; Liu, Zhen

    2015-11-01

    WRKY transcription factors are key regulatory components of plant responses to biotic and abiotic stresses. SpWRKY1, a pathogen-induced WRKY gene, was isolated from tomato (Solanum pimpinellifolium L3708) using in silico cloning and reverse transcriptase-polymerase chain reaction (RT-PCR) methods. SpWRKY1 expression was significantly induced following oomycete pathogen infection and treatment with salt, drought, salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA). Overexpression of SpWRKY1 in tobacco conferred greater resistance to Phytophthora nicotianae infection, as evidenced by lower malondialdehyde (MDA) content; relative electrolyte leakage (REL); higher chlorophyll content; and higher peroxidase (POD, EC 1.11.1.7), superoxide dismutase (SOD, EC 1.15.1.1) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) activities. This resistance was also coupled with enhanced expression of SA- and JA-associated genes (NtPR1, NtPR2, NtPR4, NtPR5 and NtPDF1.2), as well as of various defense-related genes (NtPOD, NtSOD and NtPAL). In addition, transgenic tobacco plants also displayed an enhanced tolerance to salt and drought stresses, mainly demonstrated by the transgenic lines exhibiting lower accumulation of MDA content and higher POD (EC 1.11.1.7), SOD (EC 1.15.1.1) activities, chlorophyll content, photosynthetic rate and stomatal conductance, accompanied by enhanced expression of defense-related genes (NtPOD, NtSOD, NtLEA5, NtP5CS and NtNCED1) under salt and drought stresses. Overall, these findings suggest that SpWRKY1 acts as a positive regulator involved in tobacco defense responses to biotic and abiotic stresses. PMID:25496091

  4. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco.

    PubMed

    Li, Jing-bin; Luan, Yu-shi; Liu, Zhen

    2015-11-01

    WRKY transcription factors are key regulatory components of plant responses to biotic and abiotic stresses. SpWRKY1, a pathogen-induced WRKY gene, was isolated from tomato (Solanum pimpinellifolium L3708) using in silico cloning and reverse transcriptase-polymerase chain reaction (RT-PCR) methods. SpWRKY1 expression was significantly induced following oomycete pathogen infection and treatment with salt, drought, salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA). Overexpression of SpWRKY1 in tobacco conferred greater resistance to Phytophthora nicotianae infection, as evidenced by lower malondialdehyde (MDA) content; relative electrolyte leakage (REL); higher chlorophyll content; and higher peroxidase (POD, EC 1.11.1.7), superoxide dismutase (SOD, EC 1.15.1.1) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) activities. This resistance was also coupled with enhanced expression of SA- and JA-associated genes (NtPR1, NtPR2, NtPR4, NtPR5 and NtPDF1.2), as well as of various defense-related genes (NtPOD, NtSOD and NtPAL). In addition, transgenic tobacco plants also displayed an enhanced tolerance to salt and drought stresses, mainly demonstrated by the transgenic lines exhibiting lower accumulation of MDA content and higher POD (EC 1.11.1.7), SOD (EC 1.15.1.1) activities, chlorophyll content, photosynthetic rate and stomatal conductance, accompanied by enhanced expression of defense-related genes (NtPOD, NtSOD, NtLEA5, NtP5CS and NtNCED1) under salt and drought stresses. Overall, these findings suggest that SpWRKY1 acts as a positive regulator involved in tobacco defense responses to biotic and abiotic stresses.

  5. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA. PMID:20209990

  6. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA.

  7. A two allele DNA polymorphism of the human phenylethanolamine N-methyltransferase (hPNMT) gene identified by HGIA I

    SciTech Connect

    Hoehe, M.R.; Berrettini, W.H. ); Baetge, E.E. )

    1989-01-25

    An 8 kb DNA fragment (Eco RI) of the human phenylethanolamine N-methyltransferase gene (hPNMT), selected from a 14 kb Eco RI fragment isolated from a lambda Charon 3A human lymphocyte genomic library and subcloned into pUC18, was used as a probe. This human genomic fragment contained the first 1,923 bp of 5{prime} flanking DNA, the hPNMT structural gene spanning 2,070 bp in total (composed of three exons (225, 208, 524 bp) and two introns (1,000 and 113 bp)), and 3.8 kb of 3{prime} flanking DNA (1). Hybridization of human genomic DNA digested with HgiA I identifies a two allele polymorphism with bands at 3.0 kb (A) and 2.5 kb (B). The hPNMT gene has been assigned to chromosome 17. Co-dominant segregation in two families with two generations was observed. The number of meioses scorred was 18.

  8. Allele-specific marker development and selection efficiencies for both flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes in soybean subgenus soja.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-06-01

    Color is one of the phenotypic markers mostly used to study soybean (Glycine max L. Merr.) genetic, molecular and biochemical processes. Two P450-dependent mono-oxygenases, flavonoid 3'-hydroxylase (F3'H; EC1.14.3.21) and flavonoid 3',5'-hydroxylase (F3'5'H, EC1.14.13.88), both catalyzing the hydroxylation of the B-ring in flavonoids, play an important role in coloration. Previous studies showed that the T locus was a gene encoding F3'H and the W1 locus co-segregated with a gene encoding F3'5'H in soybean. These two genetic loci have identified to control seed coat, flower and pubescence colors. However, the allelic distributions of both F3'H and F3'5'H genes in soybean were unknown. In this study, three novel alleles were identified (two of four alleles for GmF3'H and one of three alleles for GmF3'5'H). A set of gene-tagged markers was developed and verified based on the sequence diversity of all seven alleles. Furthermore, the markers were used to analyze soybean accessions including 170 cultivated soybeans (G. max) from a mini core collection and 102 wild soybeans (G. soja). For both F3'H and F3'5'H, the marker selection efficiencies for pubescence color and flower color were determined. The results showed that one GmF3'H allele explained 92.2 % of the variation in tawny and two gmf3'h alleles explained 63.8 % of the variation in gray pubescence colors. In addition, two GmF3'5'H alleles and one gmF3'5'h allele explained 94.0 % of the variation in purple and 75.3 % in white flowers, respectively. By the combination of the two loci, seed coat color was determined. In total, 90.9 % of accessions possessing both the gmf3'h-b and gmf3'5'h alleles had yellow seed coats. Therefore, seed coat colors are controlled by more than two loci.

  9. Single-gene speciation with pleiotropy: effects of allele dominance, population size, and delayed inheritance.

    PubMed

    Yamamichi, Masato; Sasaki, Akira

    2013-07-01

    Single-gene speciation is considered to be unlikely, but an excellent example is found in land snails, in which a gene for left-right reversal has given rise to new species multiple times. This reversal might be facilitated by their small population sizes and maternal effect (i.e., "delayed inheritance," in which an individual's phenotype is determined by the genotype of its mother). Recent evidence suggests that a pleiotropic effect of the speciation gene on antipredator survival may also promote speciation. Here we theoretically demonstrate that, without a pleiotropic effect, in small populations the fixation probability of a recessive mutant is higher than a dominant mutant, but they are identical for large populations and sufficiently weak selection. With a pleiotropic effect that increases mutant viability, a dominant mutant has a higher fixation probability if the strength of viability selection is sufficiently greater than that of reproductive incompatibility, whereas a recessive mutant has a higher fixation probability otherwise. Delayed inheritance increases the fixation probability of a mutant if viability selection is sufficiently weaker than reproductive incompatibility. Our results clarify the conflicting effects of viability selection and positive frequency-dependent selection due to reproductive incompatibility and provide a new perspective to single-gene speciation theory. PMID:23815656

  10. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome

    PubMed Central

    Trombetta, Beniamino; Fantini, Gloria; D’Atanasio, Eugenia; Sellitto, Daniele; Cruciani, Fulvio

    2016-01-01

    Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes. PMID:27346230

  11. [Analysis of FOXO1A and FOXO3A Gene Allele Association with Human Longevity].

    PubMed

    Erdman, V V; Nasibullin, T R; Tuktarova, I A; Somova, R Sh; Mustafina, O E

    2016-04-01

    Seeking human longevity association with gene polymorphisms in transcription factors in the Tatar ethnic group, we conducted an analysis for age-related genotype, frequencies in polymorphic sites of FOXO1A (rs4943794, 72327C>G) and FOXO3A (rs3800231, 35-2764A>G) genes. Genotyping was conducted by using the PCR-RFLP approach. According to the results of logistic regression analysis, during maturity and old age periods, a decrease in the number of FOXO1A*G/*G (OR = 0.984, P = 0.004) genotype carriers occurs and an increase in the number of FOXO1A*C/*G (OR = 1.035, P = 0.014) and FOXO1A*C/*C (OR = 1.024, P = 0.033) genotype carriers occurs in the sample of subjects before gender adjustments. In the sample of long-livers, the number of FOXO1A*C/*C (OR = 0.772, P = 0.028) genotype carriers decreased among women, while the number of FOXO3A*G/*G (OR = 1.008, P = 0.0001) genotype carriers increased among both men and women. Therefore, the FOXO1A gene polymorphic site rs4943794 is associated with an acquisition of old and senescent age in a sample before gender adjustments and with women's longevity. FOXO3A gene polymorphic site rs3800231 is associated with longevity in both women and men. PMID:27529982

  12. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome.

    PubMed

    Trombetta, Beniamino; Fantini, Gloria; D'Atanasio, Eugenia; Sellitto, Daniele; Cruciani, Fulvio

    2016-01-01

    Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes. PMID:27346230

  13. Gene Expression Variation in Drosophila melanogaster Due to Rare Transposable Element Insertion Alleles of Large Effect

    PubMed Central

    Cridland, Julie M.; Thornton, Kevin R.; Long, Anthony D.

    2015-01-01

    Transposable elements are a common source of genetic variation that may play a substantial role in contributing to gene expression variation. However, the contribution of transposable elements to expression variation thus far consists of a handful of examples. We used previously published gene expression data from 37 inbred Drosophila melanogaster lines from the Drosophila Genetic Reference Panel to perform a genome-wide assessment of the effects of transposable elements on gene expression. We found thousands of transcripts with transposable element insertions in or near the transcript and that the presence of a transposable element in or near a transcript is significantly associated with reductions in expression. We estimate that within this example population, ∼2.2% of transcripts have a transposable element insertion, which significantly reduces expression in the line containing the transposable element. We also find that transcripts with insertions within 500 bp of the transcript show on average a 0.67 standard deviation decrease in expression level. These large decreases in expression level are most pronounced for transposable element insertions close to transcripts and the effect diminishes for more distant insertions. This work represents the first genome-wide analysis of gene expression variation due to transposable elements and suggests that transposable elements are an important class of mutation underlying expression variation in Drosophila and likely in other systems, given the ubiquity of these mobile elements in eukaryotic genomes. PMID:25335504

  14. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome.

    PubMed

    Trombetta, Beniamino; Fantini, Gloria; D'Atanasio, Eugenia; Sellitto, Daniele; Cruciani, Fulvio

    2016-01-01

    Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.

  15. Allelic and haplotypic diversity of 5'promoter region of the MICA gene.

    PubMed

    Luo, Jia; Tian, Wei; Pan, FengHua; Liu, XueXiang; Li, LiXin

    2014-04-01

    In this study, the 5'promoter region of MHC class I chain-related gene A (MICA) was investigated in 104 healthy, unrelated Han individuals recruited from northern China, using PCR-sequencing method. Twelve variable sites were detected, which were in very strong linkage disequilibrium with each other. Twelve different MICA 5'promoter haplotypes were identified, among which Promoter-7 predominated (0.5529). Twenty-six extended haplotypes incorporating MICA 5'promoter and MICA exons 2-5 were observed in this population, 9 of which were in significant linkage disequilibrium (LD). Phylogenetic analysis of 5'promoter refined MICA sub-lineage structure previously constructed according to MICA coding and 3'untranslated regions. Ewens-Watterson homozygosity statistics at MICA 5'promoter region were consistent with neutral expectations. None of the five variable sites detected within the minimal promoter of MICA gene was located in the putative binding sites for transcription factor. Our study provided for the first time the sequence information about 5'promoter of MICA gene at a human population level. The data will facilitate the understanding of regulation of MICA gene expression, which represents a promising pathway for immune intervention against cancer, autoimmune disorders and infections.

  16. Gene frequencies of ABO and Rh (D) blood group alleles in a healthy infant population in Ibadan, Nigeria.

    PubMed

    Omotade, O O; Adeyemo, A A; Kayode, C M; Falade, S L; Ikpeme, S

    1999-01-01

    The ABO and Rhesus blood group systems remain the most important blood group systems clinically. In order to provide gene frequency values for the ABO and Rh (D) alleles in a healthy infant population in south west Nigeria, 4748 healthy infants were typed for ABO and Rh (D) blood groups over a five year period (1988-1992). Overall, 2575 (54.2%) were blood group O, 1023 (21.6%) were blood group A, 1017 (21.4%) were blood group B and 133 (2.8%) were blood group AB. The distribution of the ABO blood groups did not differ significantly from those expected under the Hardy Weinberg equilibrium (Goodness-of-fit X2 = 6.09, df = 3, p = 0.1075). The proportions of the infants belonging to the various ABO blood groups did not vary significantly over the period of the study (X2 = 14.53, df = 12, p = 0.268). Overall gene frequencies for the O, A and B genes were 0.7398, 0.1305 and 0.1298 respectively. For the Rh (D) gene, 4520 (95.2%) were Rh-positive while 228 (4.8%) were Rh-negative. However, the proportions of Rh (D) negative infants varied significantly over the period of the study, with a particular year (1991) having nearly twice the usual frequency of Rh-negative individuals (X2 = 31.17, df =, p < 0.001). The frequency of the Rh (D) gene was 0.7809. These figures are reported in the hope that they may find some use as reference for studies of ABO blood groups in health and disease, especially since they were obtained in an infant population in which it is expected that selection pressures should not have started to act to any significant extent.

  17. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; French, Amy J; Fogarty, Zach; Cheville, John; Middha, Sumit; Riska, Shaun; Baheti, Saurabh; Nair, Asha A; Wang, Liang; Schaid, Daniel J; Thibodeau, Stephen N

    2015-06-01

    The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.

  18. Pathway Analysis Using Information from Allele-Specific Gene Methylation in Genome-Wide Association Studies for Bipolar Disorder

    PubMed Central

    Chuang, Li-Chung; Kao, Chung-Feng; Shih, Wei-Liang; Kuo, Po-Hsiu

    2013-01-01

    Bipolar disorder (BPD) is a complex psychiatric trait with high heritability. Despite efforts through conducting genome-wide association (GWA) studies, the success of identifying susceptibility loci for BPD has been limited, which is partially attributed to the complex nature of its pathogenesis. Pathway-based analytic strategy is a powerful tool to explore joint effects of gene sets within specific biological pathways. Additionally, to incorporate other aspects of genomic data into pathway analysis may further enhance our understanding for the underlying mechanisms for BPD. Patterns of DNA methylation play important roles in regulating gene expression and function. A commonly observed phenomenon, allele-specific methylation (ASM) describes the associations between genetic variants and DNA methylation patterns. The present study aimed to identify biological pathways that are involve in the pathogenesis of BPD while incorporating brain specific ASM information in pathway analysis using two large-scale GWA datasets in Caucasian populations. A weighting scheme was adopted to take ASM information into consideration for each pathway. After multiple testing corrections, we identified 88 and 15 enriched pathways for their biological relevance for BPD in the Genetic Association Information Network (GAIN) and the Wellcome Trust Case Control Consortium dataset, respectively. Many of these pathways were significant only when applying the weighting scheme. Three ion channel related pathways were consistently identified in both datasets. Results in the GAIN dataset also suggest for the roles of extracellular matrix in brain for BPD. Findings from Gene Ontology (GO) analysis exhibited functional enrichment among genes of non-GO pathways in activity of gated channel, transporter, and neurotransmitter receptor. We demonstrated that integrating different data sources with pathway analysis provides an avenue to identify promising and novel biological pathways for exploring the

  19. The Glu727 Allele of Thyroid Stimulating Hormone Receptor Gene is Associated with Osteoporosis

    PubMed Central

    Liu, Ren-De; Chen, Rui-Xiong; Li, Wen-Rui; Huang, Yu-Liang; Li, Wen-Hu; Cai, Guang-Rong; Zhang, Heng

    2012-01-01

    Background: Published data indicate that thyroid stimulating hormone receptor (TSHR) activities are associated with osteoporosis in some patients. Aim: This study aimed to elucidate whether a given polymorphism of the TSHR gene is associated with osteoporosis. Materials and Methods: One hundred and fifty subjects with osteoporosis were recruited in this study. The diagnosis of osteoporosis was performed with quantitative ultrasound system. The TSHR gene polymorphism was examined by polymerase chain reaction–restriction fragment length polymorphism. Results: The results showed a nucleotide substitution in the first position of codon 36 of the TSHR gene. The nucleotide substitution was from G to C, leading to a 36D → 36H change (D36H) in the predicted amino acid sequence of the receptor. The change did not show significance between healthy subjects and patients with osteoporosis (P > 0.05). On the other hand, we identified another single nucleotide polymorphism that is a C-to-G substitution at codon 727 (GAC to GAG); its frequency was significantly higher in patients with osteoporosis than that in healthy subjects. Using logistic regression analysis, significant correlation was revealed between the genotype D727E and the serum levels of TSH, or the quantitative ultrasound value of the calcaneal bone. Conclusions: The present study suggests that the genotype D727E of the TSHR, but not the genotype D36H, may be a genetic risk factor for osteoporosis. PMID:22866266

  20. The Trithorax-mimic allele of Enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster.

    PubMed Central

    Bajusz, I; Sipos, L; Györgypál, Z; Carrington, E A; Jones, R S; Gausz, J; Gyurkovics, H

    2001-01-01

    Two antagonistic groups of genes, the trithorax- and the Polycomb-group, are proposed to maintain the appropriate active or inactive state of homeotic genes set up earlier by transiently expressed segmentation genes. Although some details about the mechanism of maintenance are available, it is still unclear how the initially active or inactive chromatin domains are recognized by either the trithorax-group or the Polycomb-group proteins. We describe an unusual dominant allele of a Polycomb-group gene, Enhancer of zeste, which mimics the phenotype of loss-of-function mutations in trithorax-group genes. This mutation, named E(z)(Trithorax mimic) [E(z)(Trm)], contains a single-amino-acid substitution in the conserved SET domain. The strong dominant trithorax-like phenotypes elicited by this E(z) allele suggest that the mutated arginine-741 plays a critical role in distinguishing between active and inactive chromatin domains of the homeotic gene complexes. We have examined the modification of E(z)(Trm) phenotypes by mutant alleles of PcG and trxG genes and other mutations that alter the phosphorylation of nuclear proteins, covalent modifications of histones, or histone dosage. These data implicate some trxG genes in transcriptional repression as well as activation and provide genetic evidence for involvement of histone modifications in PcG/trxG-dependent transcriptional regulation. PMID:11729158

  1. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.

    PubMed

    Schön, Moritz; Töller, Armin; Diezel, Celia; Roth, Charlotte; Westphal, Lore; Wiermer, Marcel; Somssich, Imre E

    2013-07-01

    Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40-mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40-mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.

  2. Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids☆

    PubMed Central

    Shen, Yingjia; Catchen, Julian; Garcia, Tzintzuni; Amores, Angel; Beldroth, Ion; Wagner, Jonathon R; Zhang, Ziping; Postlethwait, John; Warren, Wes; Schartl, Manfred; Walter, Ronald B.

    2011-01-01

    Variations in gene expression are essential for the evolution of novel phenotypes and for speciation. Studying allelic specific gene expression (ASGE) within interspecies hybrids provides a unique opportunity to reveal underlying mechanisms of genetic variation. Using Xiphophorus interspecies hybrid fishes and high-throughput next generation sequencing technology, we were able to assess variations between two closely related vertebrate species, X. maculatus and X. couchianus, and their F1 interspecies hybrids. We constructed transcriptome-wide SNP polymorphism sets between two highly inbred X. maculatus lines (JP 163 A and B), and between X. maculatus and a second species, X. couchianus. The X. maculatus JP 163 A and B parental lines have been separated in the laboratory for ≈ 70 years and we were able to identify SNPs at a resolution of 1 SNP per 49 kb of transcriptome. In contrast, SNP polymorphisms between X. couchianus and X. maculatus species, which diverged ≈ 5–10 million years ago, were identified about every 700 bp. Using 6,524 transcripts with identified SNPs between the two parental species (X. maculatus and X. couchianus), we mapped RNA-seq reads to determine ASGE within F1 interspecies hybrids. We developed an in silico X. couchianus transcriptome by replacing 90,788 SNP bases for X. maculatus transcriptome with the consensus X. couchianus SNP bases and provide evidence that this procedure overcomes read mapping biases. Employment of the insilico reference transcriptome and tolerating 5 mismatches during read mapping allow direct assessment of ASGE in the F1 interspecies hybrids. Overall, these results show that Xiphophorus is a tractable vertebrate experimental model to investigate how genetic variations that occur during speciation may affect gene interactions and the regulation of gene expression. PMID:21466860

  3. Detection of Favorable QTL Alleles and Candidate Genes for Lint Percentage by GWAS in Chinese Upland Cotton

    PubMed Central

    Su, Junji; Fan, Shuli; Li, Libei; Wei, Hengling; Wang, Caixiang; Wang, Hantao; Song, Meizhen; Zhang, Chi; Gu, Lijiao; Zhao, Shuqi; Mao, Guangzhi; Wang, Chengshe; Pang, Chaoyou; Yu, Shuxun

    2016-01-01

    Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs.

  4. Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene.

    PubMed

    Ishtiaq Ahmed, A S; Bose, Gracelyn C; Huang, Li; Azhar, Mohamad

    2014-09-01

    Transforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesis

  5. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese

    PubMed Central

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-01-01

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5’ end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels. PMID:26568273

  6. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese.

    PubMed

    Zhang, Yunzhi; Liu, Haiyan; Zhang, Chen; Zhang, Tianxiao; Zhang, Bo; Li, Lu; Chen, Gang; Fu, Dongke; Wang, KunZheng

    2015-11-16

    Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5' end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels.

  7. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

    PubMed Central

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature–high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63 (pCabZIP63) and CaWRKY40 (pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper’s response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper’s response to RSI and HTHH. PMID:26936828

  8. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. PMID:26936828

  9. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.

  10. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  11. The Dopamine Receptor D4 7-Repeat Allele and Prenatal Smoking in ADHD-Affected Children and Their Unaffected Siblings: No Gene-Environment Interaction

    ERIC Educational Resources Information Center

    Altink, Marieke E.; Arias-Vasquez, Alejandro; Franke, Barbara; Slaats-Willemse, Dorine I. E.; Buschgens, Cathelijne J. M.; Rommelse, Nanda N. J.; Fliers, Ellen A.; Anney, Richard; Brookes, Keeley-Joanne; Chen, Wai; Gill, Michael; Mulligan, Aisling; Sonuga-Barke, Edmund; Thompson, Margaret; Sergeant, Joseph A.; Faraone, Stephen V.; Asherson, Philip; Buitelaar, Jan K.

    2008-01-01

    Background: The dopamine receptor D4 ("DRD4") 7-repeat allele and maternal smoking during pregnancy are both considered as risk factors in the aetiology of attention deficit hyperactivity disorder (ADHD), but few studies have been conducted on their interactive effects in causing ADHD. The purpose of this study is to examine the gene by…

  12. Microsatellite allele 5 of MHC class I chain-related gene a increases the risk for insulin-dependent diabetes mellitus in latvians.

    PubMed

    Shtauvere-Brameus, A; Ghaderi, M; Rumba, I; Sanjeevi, C B

    2002-04-01

    Insulin-dependent diabetes mellitus (IDDM) is one of the most common chronic diseases. It is an autoimmune, polygenic disease, associated with several genes on different chromosomes. The most important gene is human leukocyte antigen (HLA), also known as major histocompatibility complex (MHC), which is located on chromosome 6p21.3. HLA-DQ8/DR4 and DQ2/DR3 are positively associated with IDDM and DQ6 is negatively associated with IDDM in most Caucasian populations. The MICA gene is located in the MHC class I region and is expressed by monocytes, keratinocytes, and endothelial cells. Sequence determination of the MICA gene identifies 5 alleles with 4, 5, 6, and 9 repetitions of GCT or 5 repetitions of GCT with 1 additional insertion (GGCT), and the alleles are referred to as A4, A5, A5.1, A6, and A9. Analysis of allele distribution among 93 Latvian IDDM patients and 108 healthy controls showed that allele A5 of MICA is significantly increased in IDDM patients [33/93 (35%)] compared to healthy controls [22/108 (20%)] (OR = 2.15; P = 0.016). In conclusion, we believe that MICA may play an important role in the etiopathogenesis of IDDM.

  13. Radiosensitivity of Human Fibroblasts is Associated With Amino Acid Substitution Variants in Susceptible Genes And Correlates With The Number of Risk Alleles

    SciTech Connect

    Alsbeih, Ghazi . E-mail: galsbeih@kfshrc.edu.sa; El-Sebaie, Medhat; Al-Harbi, Najla; Al-Buhairi, Muneera; Al-Hadyan, Khaled; Al-Rajhi, Nasser

    2007-05-01

    Purpose: Genetic predictive markers of radiosensitivity are being sought for stratifying radiotherapy for cancer patients and risk assessment of radiation exposure. We hypothesized that single nucleotide polymorphisms in susceptible genes are associated with, and the number of risk alleles has incremental effect on, individual radiosensitivity. Methods and Materials: Six amino acid substitution variants (ATM 1853 Asp/Asn G>A, p53 72 Arg/Pro G>C, p21 31 Ser/Arg C>A, XRCC1 399 Arg/Gln G>A, XRCC3 241 Thr/Met C>T, and TGF{beta}1 10 Leu/Pro T>C) were genotyped by direct sequencing in 54 fibroblast strains of different radiosensitivity. Results: The clonogenic survival fraction at 2 Gy range was 0.15-0.50 (mean, 0.34, standard deviation, 0.08). The mean survival fraction at 2 Gy divided the cell strains into radiosensitive (26 cases) and normal (28 controls). A significant association was observed between the survival fraction at 2 Gy and ATM 1853 Asn, XRCC3 241 Met, and TGF{beta}1 10 Leu alleles (p = 0.05, p = 0.02, and p = 0.02, respectively). The p53 72 Arg allele showed a borderline association (p = 0.07). The number of risk alleles increased with increasing radiosensitivity, and the group comparison showed a statistically significant difference between the radiosensitive and control groups (p {<=}0.001). Conclusion: The results of our study have shown that single nucleotide polymorphisms in susceptible genes influence cellular radiation response and that the number of risk alleles has a combined effect on radiosensitivity. Individuals with multiple risk alleles could be more susceptible to radiation effects than those with fewer risk alleles. These results may have implications in predicting normal tissue reactions to radiotherapy and risk assessment of radiation exposure.

  14. Association between allelic variation due to short tandem repeats in tRNA gene of Entamoeba histolytica and clinical phenotypes of amoebiasis.

    PubMed

    Jaiswal, Virendra; Ghoshal, Ujjala; Mittal, Balraj; Dhole, Tapan N; Ghoshal, Uday C

    2014-05-01

    Genotypes of Entamoeba histolytica (E. histolytica) may contribute clinical phenotypes of amoebiasis such as amoebic liver abscess (ALA), dysentery and asymptomatic cyst passers state. Hence, we evaluated allelic variation due to short tandem repeats (STRs) in tRNA gene of E. histolytica and clinical phenotypes of amoebiasis. Asymptomatic cyst passers (n=24), patients with dysentery (n=56) and ALA (n=107) were included. Extracted DNA from stool (dysentery, asymptomatic cyst passers) and liver aspirate was amplified using 6 E. histolytica specific tRNA-linked STRs (D-A, A-L, N-K2, R-R, S-Q, and S(TGA)-D) primers. PCR products were subjected to sequencing. Association between allelic variation and clinical phenotypes was analyzed. A total of 9 allelic variations were found in D-A, 8 in A-L, 4 in N-K2, 5 in R-R, 10 in S(TAG)-D and 7 in S-Q loci. A significant association was found between allelic variants and clinical phenotypes of amoebiasis. This study reveals that allelic variation due to short tandem repeats (STRs) in tRNA gene of E. histolytica is associated different clinical outcome of amoebiasis.

  15. Genealogical analyses of rabies virus strains from Brazil based on N gene alleles.

    PubMed

    Heinemann, M B; Fernandes-Matioli, F M C; Cortez, A; Soares, R M; Sakamoto, S M; Bernardi, F; Ito, F H; Madeira, A M B N; Richtzenhain, L J

    2002-06-01

    Thirty rabies virus isolates from cows and vampire bats from different regions of São Paulo State, Southeastern Brazil and three rabies vaccines were studied genetically. The analysis was based on direct sequencing of PCR-amplified products of 600 nucleotides coding for the amino terminus of nucleoprotein gene. The sequences were checked to verify their genealogical and evolutionary relationships and possible implication for health programmes. Statistical data indicated that there were no significant genetic differences between samples isolated from distinct hosts, from different geographical regions and between samples collected in the last two decades. According to the HKA test, the variability observed in the sequences is probably due to genetic drift. Since changes in genetic material may produce modifications in the protein responsible for immunogenicity of virus, which may eventually cause vaccine failure in herds, we suggest that continuous efforts in monitoring genetic diversity in rabies virus field strains, in relation to vaccine strains, must be conducted. PMID:12113496

  16. Genealogical analyses of rabies virus strains from Brazil based on N gene alleles.

    PubMed Central

    Heinemann, M. B.; Fernandes-Matioli, F. M. C.; Cortez, A.; Soares, R. M.; Sakamoto, S. M.; Bernardi, F.; Ito, F. H.; Madeira, A. M. B. N.; Richtzenhain, L. J.

    2002-01-01

    Thirty rabies virus isolates from cows and vampire bats from different regions of São Paulo State, Southeastern Brazil and three rabies vaccines were studied genetically. The analysis was based on direct sequencing of PCR-amplified products of 600 nucleotides coding for the amino terminus of nucleoprotein gene. The sequences were checked to verify their genealogical and evolutionary relationships and possible implication for health programmes. Statistical data indicated that there were no significant genetic differences between samples isolated from distinct hosts, from different geographical regions and between samples collected in the last two decades. According to the HKA test, the variability observed in the sequences is probably due to genetic drift. Since changes in genetic material may produce modifications in the protein responsible for immunogenicity of virus, which may eventually cause vaccine failure in herds, we suggest that continuous efforts in monitoring genetic diversity in rabies virus field strains, in relation to vaccine strains, must be conducted. PMID:12113496

  17. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  18. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  19. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure.

  20. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure. PMID:25515665

  1. A cladistic measure of gene flow inferred from the phylogenies of alleles.

    PubMed

    Slatkin, M; Maddison, W P

    1989-11-01

    A method for estimating the average level of gene flow among populations is introduced. The method provides an estimate of Nm, where N is the size of each local population in an island model and m is the migration rate. This method depends on knowing the phylogeny of the nonrecombining segments of DNA that are sampled. Given the phylogeny, the geographic location from which each sample is drawn is treated as multistate character with one state for each geographic location. A parsimony criterion applied to the evolution of this character on the phylogeny provides the minimum number of migration events consistent with the phylogeny. Extensive simulations show that the distribution of this minimum number is a simple function of Nm. Assuming the phylogeny is accurately estimated, this method provides an estimate of Nm that is as nearly as accurate as estimates obtained using FST and other statistics when Nm is moderate. Two examples of the use of this method with mitochondrial DNA data are presented.

  2. A Cladistic Measure of Gene Flow Inferred from the Phylogenies of Alleles

    PubMed Central

    Slatkin, M.; Maddison, W. P.

    1989-01-01

    A method for estimating the average level of gene flow among populations is introduced. The method provides an estimate of Nm, where N is the size of each local population in an island model and m is the migration rate. This method depends on knowing the phylogeny of the nonrecombining segments of DNA that are sampled. Given the phylogeny, the geographic location from which each sample is drawn is treated as multistate character with one state for each geographic location. A parsimony criterion applied to the evolution of this character on the phylogeny provides the minimum number of migration events consistent with the phylogeny. Extensive simulations show that the distribution of this minimum number is a simple function of Nm. Assuming the phylogeny is accurately estimated, this method provides an estimate of Nm that is as nearly as accurate as estimates obtained using F(ST) and other statistics when Nm is moderate. Two examples of the use of this method with mitochondrial DNA data are presented. PMID:2599370

  3. Studies on metatherian sex chromosomes. I. Inheritance and inactivation of sex-linked allelic genes determining glucose-6-phosphate dehydrogenase variation in kangaroos.

    PubMed

    Johnston, P G; Sharman, G B

    1975-12-01

    Wallaroos (Macropus robustus robustus), which have the G6PD-F electrophoretic phenotype, crossed with euros (M.r.erubescens), of G6PD-S phenotype, produced F1 animals which had only the maternal G6PD type regardless of the direction of the cross. When F1 hybrids were backcrossed to wallaroos or euros, backcross progeny of either perental phenotype resulted. Sex-linked inheritance of allelic G6PD genes is shown to occur in wallaroos, euros and red kangaroos (M. rufus). Dose compensation for X chromosomes at the G6PD locus in kangaroow is achieved by inactivation of the allele of male parental origin.

  4. Identification of Expanded Alleles of the "FMR1" Gene in the CHildhood Autism Risks from Genes and Environment (CHARGE) Study

    ERIC Educational Resources Information Center

    Tassone, Flora; Choudhary, Nimrah S.; Tassone, Federica; Durbin-Johnson, Blythe; Hansen, Robin; Hertz-Picciotto, Irva; Pessah, Isaac

    2013-01-01

    Fragile X syndrome (FXS) is a neuro-developmental disorder characterized by intellectual disabilities and autism spectrum disorders (ASD). Expansion of a CGG trinucleotide repeat (greater than 200 repeats) in the 5'UTR of the fragile X mental retardation gene, is the single most prevalent cause of cognitive disabilities. Several screening studies…

  5. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    PubMed

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  6. Different scrapie-associated fibril proteins (PrP) are encoded by lines of sheep selected for different alleles of the Sip gene.

    PubMed

    Goldmann, W; Hunter, N; Benson, G; Foster, J D; Hope, J

    1991-10-01

    The incubation period of scrapie in sheep is controlled by the Sip gene which has two alleles (sA and pA). Following experimental challenge with SSBP/1 scrapie, a short incubation period is conferred by the partially dominant sA allele. Restriction fragment length polymorphisms of the scrapie-associated fibril protein (PrP) gene are associated with the Sip alleles. By sequencing the protein coding region of the PrP gene in Cheviot sheep selected for differing Sip genotypes, we have found four PrP protein variants which differ at three positions: amino acid 112 (Ala/Val), amino acid 130 (Arg/His) and amino acid 147 (Arg/Gln). The Val 112 variant can be distinguished at the DNA level by an RspXI restriction site which is not present in the Ala 112 form. Val 112 appears to be linked to a short incubation period of experimentally induced scrapie in the Cheviot sheep and therefore with the Sip sA allele. These results provide new evidence that the PrP protein may be a product of the Sip locus.

  7. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.