Science.gov

Sample records for allen belt protons

  1. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    SciTech Connect

    Jordanova, Vania K; Miyoshi, Y; Sakaguchi, K; Shiokawa, K; Evans, D S; Connors, M

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  2. Effect of the orbital debris environment on the high-energy Van Allen proton belt

    NASA Technical Reports Server (NTRS)

    Konradi, Andrei

    1988-01-01

    The lifetimes of high-energy (greater than 55 MeV) protons in the Van Allen radiation belt are calculated, assuming that in time the protons will collide with and be absorbed by particulate orbiting material. The calculations are based on the NASA/DoD Civil Needs Database for orbital debris (Gaines, 1966) and moderate assumptions of future space traffic. It is found that the lifetimes of high-energy protons below 1500 km will decrease, leading to a noticeable redution in their fluxes.

  3. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  4. Variability of the Inner Proton Radiation Belt Observed by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2015-12-01

    Inner radiation belt protons with kinetic energy above 10 MeV are known to be highly stable, with a maximum intensity near L = 1.5 that varies little evenon solar-cycle time scales. However, for L = 2 and above, more rapid changes occur: (1) protons are trapped during solar particle events, (2) steady intensity changes near L = 2 may result from radial diffusion, (3) for L > 2 there are rapid losses during magnetic storms, and (4) the losses are replenished by albedo neutron decay. New measurements from Van Allen Probes describe each of the last three processes in detail (the first has not yet been observed). These data provide new constraints on theories of trapped proton dynamics and improved empirical estimates of transport coefficients for radiation belt modeling.

  5. Remarkable new results for high-energy protons and electrons in the inner Van Allen belt regions

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location.. Recent Van Allen Probes observations have revealed an unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than several megaelectronvolts). The data show an exceedingly sharp inner boundary for the ultrarelativistic electrons right at L=2.8. Additional, concurrently measured data reveal that this barrier to inward electron radial transport is likely due to scattering by powerful human electromagnetic transmitter (VLF) wave fields. We show that weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere due to manmade signals can act to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. Inside of this distance, the Van Allen Probes data show that high energy (20 -100 MeV) protons have a double belt structure with a stable peak of flux at L~1.5 and a much more variable belt peaking at L~2.3.

  6. The Flux and Energy Spectra of the Protons in the Inner Van Allen Belt

    NASA Technical Reports Server (NTRS)

    Naugle, John E.; Kniffen, Donald A.

    1961-01-01

    A cylindrical stack of G-5 nuclear emulsions housed in the payload section of a four-stage research rocket was flown into the northern edge of the inner Van Allen belt on September 19, 1960. The experimental design permitted, for the first time, measurements of the particle fluxes and energy spectra as functions of position along the rocket trajectory. Eight points along the trajectory have been selected for analysis. Results are presented herein for three of these points, and they are discussed in the light of various theories on the trapped radiation.

  7. Effect of the orbital debris environment on the high-energy van allen proton belt.

    PubMed

    Konradi, A

    1988-12-01

    Orbital debris in the near-Earth environment has reached a number density sufficient for a significant collisional interaction with some of the long-lived high-energy protons in the radiation belt. As a result of a continuing buildup of a shell of man-made debris, the lifetimes of high-energy protons whose trajectories remain below 1500 kilometers will decrease to the point where in the next decades we can expect a noticeable reduction in their fluxes.

  8. New Results About the Earth’s Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Baker, Daniel

    2015-01-01

    The first great scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or 'belts', of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons in the energy range 100 keV < E< 1 MeV often populated both the inner and outer zones with a pronounced 'slot' region relatively devoid of energetic electrons existing between them. This two-belt structure for the Van Allen moderate-energy electron component was explained as being due to strong interactions of electrons with electromagnetic waves just inside the cold plasma (plasmapause) boundary. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed wholly unexpected properties of the radiation belts, especially at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the Relativistic Electron-Proton Telescope (REPT) experiment on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are not due to a physical boundary within Earth's intrinsic magnetic field. Neither is it likely that human-generated electromagnetic transmitter wave fields might produce such effects. Rather, we conclude from these unique measurements that slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle

  9. Radition belt dynamics : Recent results from van Allen Probes and future observations from CeREs

    NASA Astrophysics Data System (ADS)

    Kanekal, Shrikanth; O'Brien, Paul; Baker, Daniel N.; Ogasawara, Keiichi; Fennell, Joseph; Christian, Eric; Claudepierre, Seth; Livi, Stefano; Desai, Mihir; Li, Xinlin; Jaynes, Allison; Turner, Drew; Jones, Ashley; Schiller, Quintin

    2016-07-01

    We describe recent observations of the Earth's radiation belts made by instruments on board the Van Allen Probes mission, particularly the Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron Ion spectrometer (MagEIS). These observations have significantly advanced our understanding of terrestrial radiation belt dynamics. The Van Allen Probes mission comprises two identically instrumented spacecraft which were launched 31 August, 2012 into low-inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigees and apogees of of ~600 km and 5.8 RE respectively. We discuss the new scientific findings of the Van Allen Probes mission regarding the physics of energization and loss of relativistic electrons and their implications for future low-cost missions, especially CubeSats. We describe the CeREs (a Compact Radiation belt Explorer) CubeSat mission currently being built at the Goddard Space Flight Center, and carrying on board, an innovative instrument, the Miniaturized Electron Proton Telescope (MERiT). The MERiT is a compact low-mass low-power instrument measuring electrons from a few keV to tens of MeV in multiple differential channels. MERiT is optimized to measure electron microbursts with a high time resolution of a few milliseconds. We present and discuss possible future scientific contributions from CeREs.

  10. An Impenetrable Barrier to Ultra-Relativistic Electrons in the Van Allen Radiation Belt

    NASA Astrophysics Data System (ADS)

    Baker, Daniel

    2015-04-01

    Early observations indicated that the Earth's Van Allen belts could be delineated into an inner zone dominated by high energy protons and an outer zone dominated by high energy electrons. Subsequent studies showed that moderate-energy electrons (E≲1 MeV) often populate both zones with a deep "slot" region between them. This two-belt structure was explained as being due to strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer zone corresponding to the minimum plasmapause location. Recent Van Allen Probes observations have revealed unexpected radiation belt morphology, especially at ultra-relativistic (E > 5 MeV) kinetic energies. Here we discuss an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Concurrent data reveal that this barrier for inward electron radial transport is not due to a physical boundary within Earth's intrinsic magnetic field nor is it likely that scattering by human-generated electromagnetic transmitter wave fields would inhibit inward radial diffusion. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can conspire to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

  11. Calculated limits for particle fluxes in Jupiter's Van Allen belts

    NASA Technical Reports Server (NTRS)

    Haffner, J.

    1972-01-01

    Electron and proton fluxes in Jupiter's radiation belts are calculated, along with the envelopes of dose rates. The following assumptions are made: the particles in the Jupiter belts are influenced only by the magnetic field of the planet; the particles act correspondingly to the particles in the Earth's belts and the Earth's belts can be used as a model; the magnetic field of Jupiter is essentially a dipole; the radiation of a decimetric nature received from Jupiter is synchrotron radiation due to the electrons, and to a first approximation it is emitted isotropically; and the strength of the emission in the decimetric wavelength range gives an upper bound considering how strong the field can be and how many electrons there are. The point dose rates for tissue and 0.1 gram/cm aluminum shielding at about 3 Jupiter radii are 10000 rads/hr for electrons and 1000 rads/hr for protons.

  12. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts.

    PubMed

    Baker, D N; Jaynes, A N; Hoxie, V C; Thorne, R M; Foster, J C; Li, X; Fennell, J F; Wygant, J R; Kanekal, S G; Erickson, P J; Kurth, W; Li, W; Ma, Q; Schiller, Q; Blum, L; Malaspina, D M; Gerrard, A; Lanzerotti, L J

    2014-11-27

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location. Recent observations have revealed unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth's intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

  13. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts.

    PubMed

    Baker, D N; Jaynes, A N; Hoxie, V C; Thorne, R M; Foster, J C; Li, X; Fennell, J F; Wygant, J R; Kanekal, S G; Erickson, P J; Kurth, W; Li, W; Ma, Q; Schiller, Q; Blum, L; Malaspina, D M; Gerrard, A; Lanzerotti, L J

    2014-11-27

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location. Recent observations have revealed unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth's intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. PMID:25428500

  14. Wave acceleration of electrons in the Van Allen radiation belts.

    PubMed

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-01

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  15. From the IGY to the IHY: A Changing View of the Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.

    2006-12-01

    Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as static inner and outer zones of energetic particles with different sources, a double-doughnut encircling the Earth, became iconic to the point that their dynamic behavior and solar connection receded from public awareness and apparent scientific import. Then the Cycle 23 maximum in solar activity arrived in 1989-1991, the first approaching the activity level of the International Geophysical Year of 1957-58, when the Van Allen belts were first discovered. Delay in launch of the NASA-Air Force Combined Radiation Release and Effects Satellite, following the Challenger accident in 1986, led to having the right instruments in the right orbit at the right time to detect prompt injection of outer belt electrons and solar energetic protons into the `slot region' between the inner and outer belts, forming new trapped populations which lasted for years in an otherwise benign location. This event in March 1991, along with the great geomagnetic storm of March 1989, and our increased dependence on space technology since the early Explorer days, led to a resurgence of interest in the Van Allen radiation belts and understanding of their connectivity to the Sun. Additional instrumentation from NASA's International Solar Terrestrial Physics Program, the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) and IMAGE spacecraft from the Explorer program, NOAA and DOD spacecraft, and improved worldwide linkages of groundbased measurements have contributed much since 1991 to our understanding of the dynamic characteristics of the Van Allen belts. Further, the presence of continuous solar wind measurements beginning with the launch of WIND in 1994, and SOHO images of Coronal Mass Ejections and coronal hole sources of high speed solar wind flow have filled in the connection with solar activity qualitatively anticipated

  16. Estimates of trapped radiation encountered on low-thrust trajectories through the Van Allen belts

    NASA Technical Reports Server (NTRS)

    Karp, I. M.

    1973-01-01

    Estimates were made of the number of trapped protons and electrons encountered by vehicles on low-thrust trajectories through the Van Allen belts. The estimates serve as a first step in assessing whether these radiations present a problem to on-board sensitive components and payload. The integrated proton spectra and electron spectra are presented for the case of a trajectory described by a vehicle with a constant-thrust acceleration A sub c equal to 0.001 meter/sq sec. This value of acceleration corresponds to a trip time of about 54 days from low earth orbit to synchronous orbit. It is shown that the time spent in the belts and hence the radiation encountered vary nearly inversely with the value of thrust acceleration. Thus, the integrated spectral values presented for the case of A sub c = 0.001 meter/sq sec can be generalized for any other value of thrust acceleration by multiplying them by the factor 0.001/A sub c.

  17. Electron acceleration in the heart of the Van Allen radiation belts.

    PubMed

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  18. A Century after Van Allen's Birth: Conclusion of Reconnaissance of Radiation Belts in the Solar System

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.

    2014-12-01

    On May 1, 1958 in the Great Hall of the US National Academy of Sciences, James A. Van Allen, having instrumented Explorer-1 and follow-on satellites with radiation detectors, announced the discovery of intense radiation at high altitudes above Earth. The press dubbed the doughnut-shaped structures "Van Allen Belts" (VAB). Soon thereafter, the search began for VAB at nearby planets. Mariner 2 flew by Venus in 1962 at a distance of 41,000 km, but no radiation was detected. The Mariner 4 mission to Mars did not observe planet-associated increase in radiation, but scaling arguments with Earth's magnetosphere yielded an upper limit to the ratio of magnetic moments of MM/ME < 0.001 (Van Allen et al, 1965). Similarly, the Mariner 5 flyby closer to Venus resulted in a ratio of magnetic moments < 0.001 (Van Allen et al, 1967), dealing a blow to the expectation that all planetary bodies must possess significant VAB. The flyby of Mercury in 1974 by Mariner 10 revealed a weak magnetic field, but the presence of durably trapped higher energy particles remained controversial until MESSENGER in 2011.The first flybys of Jupiter by Pioneers 10, 11 in 1973 and 1974, respectively, measured a plethora of energetic particles in Jupiter's magnetosphere and established the fact that their intensities were rotationally modulated. Later flybys of Jupiter and Saturn by the two Voyagers in 1979 and 1981 revealed that those magnetospheres possessed their own internal plasma source(s) and radiation belts. Subsequent discoveries of Van Allen belts at Uranus and Neptune by Voyager 2 demonstrated that VAB are the rule rather than the exception in planetary environments. We now know from the Voyagers and through Energetic Neutral Atom images from Cassini and IBEX that an immense energetic particle population surrounds the heliosphere itself. Thus, the reconnaissance of radiation belts of our solar system has been completed, some 56 years after the discovery of the Van Allen Belts at Earth.

  19. Correlation of dose rate and spectral measurements in the Inner Van Allen Belt.

    PubMed

    Thede, A L; Radke, G E

    1968-01-01

    Dose rate measurements and the charged particle environment of the Inner Van Allen Belt have been correlated using recent data obtained from the radiation research satellite, OV3-4. Six tissue equivalent ionization chambers, constructed of a material which simulates the muscle tissue response to ionizing radiation, measured the dose rate behind various types and thicknesses of material. The specific shields used for several of the chambers were 0.192 g/cm2 aluminum, 0.797 g/cm2 Lucite and 4.485 g/cm2 brass. The proton and electron spectra were determined with an omnidirectional spectrometer using solid state detectors. The spectral measurements discussed here include geomagnetically trapped protons with energies in the range of 15 to 200 MeV. The proton spectra and dose rates are presented as profiles in terms of the McIlwain parameters of L (1.5, 2.0 and 2.5 earth radii) and the magnetic field B (0.050 to 0.250 gauss). The excellent agreement between the measured dose rate and the theoretically predicted dose rate based on the measured spectra provides justification for the radiation transport techniques now being employed to predict the doses to be encountered during future manned space missions. It was found, however, that a more adequate description of the proton fluxes for energies greater than 50 MeV will be necessary to predict dose rate accurately behind shields of 2.5 g/cm2 thickness or greater.

  20. What have we learned about the energetic particle dynamics in the inner belt and slot region from Van Allen Probes and CSSWE missions?

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Baker, Daniel N.; Kanekal, Shrikanth; Fennell, Joseph; Selesnick, Richard; Claudepierre, Seth; Blake, Bernard; Zhao, Hong; Jaynes, Allison

    2016-07-01

    Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (2Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of these energetic protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron-Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  1. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    DOE PAGES

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; et al

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less

  2. A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt.

    PubMed

    Baker, D N; Kanekal, S G; Hoxie, V C; Henderson, M G; Li, X; Spence, H E; Elkington, S R; Friedel, R H W; Goldstein, J; Hudson, M K; Reeves, G D; Thorne, R M; Kletzing, C A; Claudepierre, S G

    2013-04-12

    Since their discovery more than 50 years ago, Earth's Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  3. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    SciTech Connect

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; Reeves, G. D.; Thorne, R. M.; Kletzing, C. A.; Claudepierre, S. G.

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  4. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  5. Prospects of Comparing Van Allen Probes Data with Recent Nonlinear Radiation Belt Theory

    NASA Astrophysics Data System (ADS)

    Summers, D.; Omura, Y.; Tang, R.

    2013-12-01

    We consider the prospects of comparing recently developed theory and simulations of nonlinear wave processes with Van Allen Probes observational data. Electron gyro-resonant interaction with whistler-mode chorus waves is considered to be a prime mechanism for generating relativistic electrons in Earth's outer radiation belt. Resonant pitch angle scattering by chorus can also cause significant electron precipitation loss from the inner magnetosphere. Whistler-mode waves can as well act to suppress radiation belt electron fluxes below a theoretical (Kennel-Petschek) limit. Nonlinear cyclotron resonance theory is required to analyze the nonlinear characteristics of whistler-mode wave generation and the interaction of chorus with radiation belt electrons. We discuss recently developed nonlinear theory that involves wave trapping of resonant electrons near the equator and the formation of an electron hole in the phase space. The resulting formation of a resonant current causes nonlinear growth of a wave with rising frequency. Nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. A fraction of radiation belt electrons can be energized extremely efficiently by special wave trapping mechanisms called "relativistic turning acceleration" and "ultra-relativistic acceleration". In this presentation we summarize the salient features of whistler-mode wave generation and these associated acceleration processes,and discuss how they can be compared with particle and wave data from the Van Allen Probes mission.

  6. Enhancements and Losses of Radiation Belt Particles: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2015-12-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into megaelectron Volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different time scales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. Analysis of multi-MeV electron flux and phase space density (PSD) changes during key intervals in March 2013 and March 2015 are presented in the context of the first three years of Van Allen Probes operation. These March periods demonstrate the classic signatures both of inward radial diffusive energization as well as abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0±0.5). Such results reveal graphically that both "competing" mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in very rapid succession. They also show in remarkable ways how the coldest plasmas in the magnetosphere intimately control the most highly energetic particles.

  7. Very energetic protons in Saturn's radiation belt

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Mcilwain, C.

    1980-01-01

    Very energetic protons are trapped in the inner Saturnian radiation belt. The University of California at San Diego instrument on Pioneer 11 has definitely identified protons of energy greater than 80 MeV on channel M3 and has tentatively detected protons of energy greater than 600 MeV on channel C3. The spatial distribution of the protons is distinct from that of the trapped electrons, the main difference being that the protons are strongly absorbed by the innermost moons and that the electrons are not. The source strength for injecting protons by the decay of cosmic ray albedo neutrons generated in the rings of Saturn has been estimated. The required proton lifetime is approximately 20 years.

  8. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A.; Milling, D. K.; Boyd, A. J.; Spence, H. E.; Reeves, G. D.; Singer, H. J.; Dimitrakoudis, S.; Daglis, I. A.; Honary, F.

    2016-10-01

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave-particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave-particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

  9. Impacts of intense inward and outward ULF wave radial diffusion on the Van Allen belts

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Ozeke, Louis; Rae, I. Jonathan; Murphy, Kyle

    2016-07-01

    During geomagnetic storms, the power in ultra-low frequency (ULF) waves can be orders of magnitude larger than that predicted by statistics determined from an entire solar cycle. This is especially true during the main phase and early recovery phase. These periods of enhanced storm-time ULF wave power can have significant impacts on the morphology and structure of the Van Allen belts. Either fast inward or outward radial diffusion can result, depending on the profiles of the electron phase space density and the outer boundary condition at the edge of the belts. Small changes in the time sequence of powerful ULF waves, and the time sequence of any magnetopause shadowing or the recovery of plamasheet sources relative to the ULF wave occurrence, have a remarkable impact on the resulting structure of the belts. The overall impact of the enhanced ULF wave power is profound, but the response can be very different depending on the available source flux in the plasmasheet. We review these impacts by examining ultra-relativistic electron dynamics during seemingly different storms during the Van Allen Probe era, including during the Baker et al. third radiation belt, and show the observed behaviour can be largely explained by differences in the time sequence of events described above.

  10. An extreme distortion of the Van Allen belt arising from the 'Hallowe'en' solar storm in 2003.

    PubMed

    Baker, D N; Kanekal, S G; Li, X; Monk, S P; Goldstein, J; Burch, J L

    2004-12-16

    The Earth's radiation belts--also known as the Van Allen belts--contain high-energy electrons trapped on magnetic field lines. The centre of the outer belt is usually 20,000-25,000 km from Earth. The region between the belts is normally devoid of particles, and is accordingly favoured as a location for spacecraft operation because of the benign environment. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the 'Hallowe'en storm' of 2003. From 1 to 10 November, the outer belt had its centre only approximately 10,000 km from Earth's equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire magnetosphere implies surprisingly powerful acceleration and loss processes deep within the magnetosphere.

  11. Van Allen Probes: Successful launch campaign and early operations exploring Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Stratton, J.

    The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA's Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes are operating in a challenging high radiation environment, and at the same time they are designed to make an insubstantial electric and magnetic field contribution to their surroundings. This paper will describe the challenges associated with observatory integration and test activities and observatory on-orbit checkout and commissioning. The lessons learned can be applied to other observatories and payloads that will be exposed to similar environments.

  12. Recent radiation belt discoveries from the Van Allen Probes mission, outstanding questions, and future opportunities

    NASA Astrophysics Data System (ADS)

    Reeves, Geoffrey; Spence, Harlan

    The twin NASA Van Allen Probes satellites (formerly called Radiation Belt Storm Probes) were launched August 30, 2012 into geosynchronous transfer type orbits. The Van Allen Probes satellites host an extensive package of fields and particle instruments that provide unprecedented resolution and insensitivity to penetrating backgrounds needed to resolve among competing physical processes. The satellites were launched with an apogee near dawn. The apogee precesses Eastward taking two years to pass through all local times. The two satellites have slightly different orbital periods allowing the satellites to lap one another. This lapping provides a variety of configurations with the satellites sometimes closely separated in space and time and sometimes measuring two parts of the inner magnetosphere simultaneously. In this paper we will present some highlights of discoveries from the Van Allen Probes mission to date. Among those are: observations of the acceleration of relativistic electrons by VLF chorus waves; some unexpected occurrence of chorus waves; resonant pitch angle scattering of relativistic electrons both in those events that lead to loss and those that don’t; observations of drift resonant interactions of relativistic and sub-relativistic electrons with global ULF waves; the critical role that the sub-relativistic seed population plays in controlling radiation belt response and how substorm injections produce those seed populations; and the remarkable advances that have been made in 3D modeling of radiation belt structure and dynamics. We will also discuss the many outstanding questions that remain (as well as new questions that have arisen) and consider the remarkable opportunities that will be available thanks to new missions anticipated in the near future.

  13. Observations of the inner radiation belt: CRAND and trapped solar protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2014-08-01

    Measurements of inner radiation belt protons have been made by the Van Allen Probes Relativistic Electron-Proton Telescopes as a function of kinetic energy (24 to 76 MeV), equatorial pitch angle, and magnetic L shell, during late 2013 and early 2014. A probabilistic data analysis method reduces background from contamination by higher-energy protons. Resulting proton intensities are compared to predictions of a theoretical radiation belt model. Then trapped protons originating both from cosmic ray albedo neutron decay (CRAND) and from trapping of solar protons are evident in the measured distributions. An observed double-peaked distribution in L is attributed, based on the model comparison, to a gap in the occurrence of solar proton events during the 2007 to 2011 solar minimum. Equatorial pitch angle distributions show that trapped solar protons are confined near the magnetic equator but that CRAND protons can reach low altitudes. Narrow pitch angle distributions near the outer edge of the inner belt are characteristic of proton trapping limits.

  14. Observation of plasma depletions in outer radiation belt by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, K.; Lee, E.; Kim, Y.; Park, Y.; Parks, G. K.; Sibeck, D. G.

    2013-12-01

    Van Allen Probes (RBSP) observed plasma fine structures in the outer radiation belt during storm time on 14 November 2012. Five plasma depletion regions are clearly identified by VAP_A and VAP_B from 02:00UT to 04:45UT by particle instrument suite that can measure electrons and ions in a wide energy range, from 20 eV to 10 MeV. The plasma flux density dramatically decreases about 2 - 3 orders of magnitude in the depletion regions regardless of energy and particle species. Our analysis shows the plasma cavities are formed at the boundary of trapped and injected particle current. The total plasma pressures inside the depletion regions are much smaller than outside, implying unstable structures. It seems that this structures appear unusually only for storm main phase. During strong storm event, geomagnetic field is stretched and low plasma density region (lobe) moves to low latitude, this event could be analyzed by lobe region crossing of spacecraft. However, to explain temporal sequences of this event, we should assume large fluctuation of lobe boundary. Another possible analysis is plasma bubble generated in the tail region. The bubble model proposed to explain plasma transportation form tail to near Earth region in 1980s. While the bubble model reasonably explain the spatial and temporal structures observed by Van Allen probes, we cannot completely rule out the lobe region crossing model. In this presentation, we shall discuss about the characteristics of the plasma density cavities first observed by Van Allen Probes.

  15. On the generation of large amplitude spiky solitons by ultralow frequency earthquake emission in the Van Allen radiation belt

    SciTech Connect

    Mofiz, U. A.

    2006-08-15

    The parametric coupling between earthquake emitted circularly polarized electromagnetic radiation and ponderomotively driven ion-acoustic perturbations in the Van Allen radiation belt is considered. A cubic nonlinear Schroedinger equation for the modulated radiation envelope is derived, and then solved analytically. For ultralow frequency earthquake emissions large amplitude spiky supersonic bright solitons or subsonic dark solitons are found to be generated in the Van Allen radiation belt, detection of which can be a tool for the prediction of a massive earthquake may be followed later.

  16. Differentiating Sudden Loss Mechanisms of Inner-belt Protons from Multisatellite Observations

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Henderson, M. G.; Reeves, G. D.; Baker, D. N.; Lanzerotti, L. J.; Blake, J. B.; Mazur, J. E.; Spence, H.; Mitchell, D. G.

    2013-12-01

    Energetic protons (with kinetic energy from several to ~100 MeV) residing in the inner Van Allen belt region are usually stable except when disturbed by transient events such as interplanetary (IP) shocks. When a strong IP shock accompanied by a large population of solar energetic protons impinges the Earth's magnetosphere, it is often observed that a new proton belt emerges at L-shells ~2.5-3.5. One plausible explanation for these new protons is that, after the penetrating solar protons load a seed population at medium L-shells, those protons are promptly transported inward to low L-shells by impulsive shock-induced electric fields and adiabatically accelerated to higher energies. However, the mechanism for the sudden loss--i.e., the new proton belt may disappear with another impinging IP shock--it is still an open question, and three hypotheses currently exist. The first is the loss due to strengthened scattering from the build-up of the ring current. Another mechanism is that the shock-induced electric field will further move preexisting protons toward the Earth, causing the apparent sudden losses at some L-shells. The third loss process is that shock-induced ULF waves may outward diffuse protons along the direction of radial gradient in the proton distribution. A systematic examination of particle and field observations is required to differentiate among these three loss hypotheses. Here we analyze two sets of satellite observations: One is from past missions including HEO-3 (measuring at low-latitude), Polar (mid-latitude), and SAMPEX (high-latitude); the other set is from the operating Van Allen Probes mission. The first data set covers a long time interval (1998-2007), including a list of loss events, and the multi-point measurements enable us to investigate the pitch-angle- and energy- dependences of losses in the inner belt region. The second data set has the most comprehensive coverage of energy and pitch-angle as well as very high time resolutions, which

  17. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    PubMed Central

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  18. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    SciTech Connect

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  19. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  20. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  1. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  2. Variation of energetic electron flux in Earth's radiation belts based on Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Tang, Rongxin; Zhong, Zhihong; Yu, Deyin

    2016-04-01

    The Earth's radiation belts have been an important research topic of solar-terrestrial physics from 1958. In 2012, Van Allen Probes (VAP) were launched into near-equatorial orbit and provide very good in-situ observations of energetic particles in inner magnetosphere. Since magnetospheric substorm can cause the severe disturbance of the Earth's megnetospheric environment, here we focus on the characteristics of energetic electron fluxes in the radiation belts during substorm time and non-storm time. Energetic electron data observed by the Magnetic Electron Ion Spectrometer (MagEIS) and Energetic Particle Composition and Thermal Plasma Suite (ECT) of VAP during 2012 to 2014 are carefully analyzed. We select portions of energetic electron data from substorm onset phase, growth phase, recovery phase, and quiet time, and make a comparisons with theoretical computations. We find that the electron differential fluxes present E-1 shape at lower energies (<1MeV), and have a sharp transition with steeper slopes at high energies for large L-shells, which are in coincidence with Mauk's model [Mauk et al., 2010].

  3. How quickly, how deeply, and how strongly can dynamical outer boundary conditions impact Van Allen radiation belt morphology?

    NASA Astrophysics Data System (ADS)

    Mann, Ian R.; Ozeke, Louis G.

    2016-06-01

    Here we examine the speed, strength, and depth of the coupling between dynamical variations of ultrarelativistic electron flux at the outer boundary and that in the heart of the outer radiation belt. Using ULF wave radial diffusion as an exemplar, we show how changing boundary conditions can completely change belt morphology even under conditions of identical wave power. In the case of ULF wave radial diffusion, the temporal dynamics of a new source population or a sink of electron flux at the outer plasma sheet boundary can generate a completely opposite response which reaches deep into the belt under identical ULF wave conditions. Very significantly, here we show that such coupling can occur on timescales much faster than previously thought. We show that even on timescales ~1 h, changes in the outer boundary electron population can dramatically alter the radiation belt flux in the heart of the belt. Importantly, these flux changes can at times occur on timescales much faster than the L shell revisit time obtained from elliptically orbiting satellites such as the Van Allen Probes. We underline the importance of such boundary condition effects when seeking to identify the physical processes which explain the dominant behavior of the Van Allen belts. Overall, we argue in general that the importance of temporal changes in the boundary conditions is sometimes overlooked in comparison to the pursuit of (ever) increasingly accurate estimates of wave power and other wave properties used in empirical representations of wave transport and diffusion rates.

  4. An Observational Test of the Stability of Inner Belt Protons Above 60 Mev Using Measurements Separated By 41 Years

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; O'Brien, T. P., III; Looper, M. D.; Blake, J. B.; George, J. S.

    2014-12-01

    The relative stability of protons trapped in the inner Van Allen radiation belt is a unique signature of the near-Earth radiation environment. While the outer electron belt changes its topography and intensity on timescales of less than a day, calculations indicate that protons in the deepest portions of the inner belt can remain on drift shells for centuries. The long lifetimes for equatorially mirroring protons have never been experimentally verified because few missions traverse this challenging environment, and those that have attempted to quantify the proton flux there have faced potentially large backgrounds from penetrating protons outside the instrument field of view. Today, the Relativistic Proton Spectrometer (RPS) investigation on board the Van Allen Probes offers a background-free reference and hence a unique opportunity to compare the present state of inner belt protons with prior measurements. In this study we revisit one relatively clean, and possibly the most accurate historical dataset: a Cherenkov proton spectrometer that operated in a highly inclined 132x1932 km orbit in 1971. The OV1-20P proton spectrometer covered the energy range of ~65-550 MeV (completely within the RPS energy range), had good background rejection because of a fast scintillator coincidence requirement, but operated off of a flight battery for only 10 days. The short lifetime of the OV1-20P mission is the primary reason it did not have significant impact on subsequent studies of the inner belt. At the meeting we will report on a comparison of OV1-20P and RPS fluxes at the same magnetic field coordinates. Our 41-year measurement baseline is not anywhere near a continuous record of course, but it is rare in space science that we have the opportunity to measure a trapped radiation environment on the timescale of decades.

  5. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    DOE PAGES

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28more » June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.« less

  6. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  7. Visualization of Radiation Belts from REPT Data

    NASA Video Gallery

    This visualization, created using actual data from the Relativistic Electron-Proton Telescopes (REPT) on NASA’s Van Allen Probes, clearly shows the emergence of new third belt and second slot reg...

  8. Investigation of solar wind driver effects on electron acceleration and loss in the outer Van Allen belt

    NASA Astrophysics Data System (ADS)

    Katsavrias, Christos; Li, Wen; Daglis, Ioannis A.; Papadimitriou, Constantinos; Georgiou, Marina; Dimitrakoudis, Stavros

    2016-07-01

    We have investigated the response of the outer Van Allen belt electrons to various types of solar wind and internal magnetospheric forcing - in particular to Interplanetary Coronal Mass Ejections (ICMEs), to High Speed Streams (HSS), to geospace magnetic storms of different intensities and to intense magnetospheric substorms. We have employed multi-point particle and field observations in the inner magnetosphere (both in-situ and through ground-based remote sensing), including the Cluster, THEMIS, Van Allen Probes and GOES constellations, the XMM and INTEGRAL spacecraft, and the CARISMA and IMAGE ground magnetometer arrays. The data provide a broad range of particle energies and a wide radial and azimuthal spatial coverage. Observations show that losses of equatorially mirroring electrons are primarily caused by magnetopause shadowing which in turn is achieved by outward diffusion driven by Pc5 ULF waves. Chorus wave activity, on the other hand, seems to be responsible for electron enhancements in the outer radiation belt even in the presence of pronounced outward diffusion.

  9. A plan to clear energetic protons from the radiation belt

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-11-01

    The Earth's radiation belts have been a known hazard to satellites since at least 1962, when an American high-altitude nuclear weapons test named Starfish Prime produced an artificial belt that disabled the first commercial communications satellite, TelStar 1. In the years since the Cold War, thousands of satellites have been put into orbit, and surface charging, high-energy protons, high-energy electrons known as "killer electrons," and other hazards of the inner magnetosphere have continued to take their toll. Satellites can be hardened against these radiation hazards, but some researchers have recently floated a more radical idea: If specially designed transmitters are put into space and set to emit tightly tuned waves, known as electromagnetic ion cyclotron (EMIC) waves, they could potentially push the highly energetic protons out of the Earth's inner radiation belt, clearing the satellite's path.

  10. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  11. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-09-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  12. Physics-based ULF Wave Radial Diffusion Coefficients in the Van Allen Belts

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Rae, Jonathan; Murphy, Kyle; Ozeke, Louis; Milling, David; Chan, Anthony; Elkington, Scot; Angelopoulos, Vassilis

    Power in the Pc5 ULF wave band is believed to have strong impact on the acceleration and transport of MeV energy electrons in the outer radiation belt. Typically, radial belt diffusion coefficients are defined from empirical approaches, based on observed flux variations and param-eterised by geomagnetic indices. We report the results of new ULF wave diffusion coefficients derived from statistical analyses of ULF wave power from ground-based magnetometers from the CARISMA chain, as well as from in-situ data from GOES and THEMIS. These results are compared to previous empirical results, and the dependence of the wave-driven coefficients on energy and solar wind speed presented. The ULF wave physics model illustrates the importance of global measurements for identifying dominant or active acceleration mechanisms. Future in-situ radiation belt missions such as the Canadian Space Agency Outer Radiation Belt Injec-tion, Transport, Acceleration and Loss Satellite (ORBITALS) will enable these physics-based models to be tested and the relative importance of various ULF and VLF wave acceleration and loss processes established. In combination with the approved NASA LWS RBSP mission, and the proposed Japanese ERG satellite, the ORBITALS-RBSP-ERG three petal constella-tion together with supporting ground-based and geosynchronous measurements will resolve the spatio-temporal ambiguities and global dynamics and morphology of the Earths radiation belts.

  13. Intense Low-frequency Chorus Waves Observed by Van Allen Probes: Fine Structures and Potential Effect on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Su, Z.; Zhu, H.

    2015-12-01

    Whistler-mode chorus emission in the low-density plasmatrough contributes significantly to the radiation belt electron dynamics. Chorus was usually considered to occur in the frequency range 0.1-0.8 fce (with the equatorial electron gyrofrequency fce ). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 fce observed by the Van Allen Probes on 27 August 2014. This emission exhibited little discrete rising tones but mainly the hiss-like signatures, had the high ellipticity of ˜1 and propagated quasi-parallel to the magnetic field. Compared with the typical chorus, the low-frequency chorus can produce weaker (2 times at ~ MeV and even up to several orders of magnitude at ~0.1MeV) momentum diffusion of the near-equatorially trapped electrons, but much stronger (1-2 orders of magnitude) pitch-angle diffusion near the loss cone. The acceleration and particularly loss effect of such intense low-frequency chorus may need to be taken into account in future radiation belt models.

  14. Processes forming and sustaining Saturn's proton radiation belts

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Paranicas, C.; Krupp, N.; Haggerty, D. K.

    2013-01-01

    Saturn's proton radiation belts extend over the orbits of several moons that split this region of intense radiation into several distinct belts. Understanding their distribution requires to understand how their particles are created and evolve. High-energy protons are thought to be dominantly produced by cosmic ray albedo neutron decay (CRAND). The source of the lower energies and the role of other effects such as charge exchange with the gas originating from Enceladus is still an open question. There is also no certainty so far if the belts exist independently from each other and the rest of the magnetosphere or if and how particles are exchanged between these regions. We approach these problems by using measurements acquired by the MIMI/LEMMS instrument onboard the Cassini spacecraft. Protons in the range from 500 keV to 40 MeV are considered. Their intensities are averaged over 7 years of the mission and converted to phase space densities at constant first and second adiabatic invariant. We reproduce the resulting radial profiles with a numerical model that includes radial diffusion, losses from moons and interactions with gas, and a phenomenological source. Our results show that the dominating effects away from the moon sweeping corridors are diffusion and the source, while interactions with gas are secondary. Based on a GEANT4 simulation of the interaction of cosmic rays with Saturn's rings, we conclude that secondary particles produced within the rings can only account for the high-energy part of the source. A comparison with the equivalent processes within Earth's atmosphere shows that Saturn's atmosphere can contribute to the production of the lower energies and might be even dominating at the higher energies. Other possibilities to supply the belts and exchange particles between them, as diffusion and injections from outside the belts, or stripping of ENAs, can be excluded.

  15. Investigation of solar wind and magnetospheric forcing effects on the outer Van Allen belt through multi-point measurements in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Katsavrias, C.; Georgiou, M.; Turner, D. L.; Sandberg, I.; Balasis, G.; Papadimitriou, K.

    2014-12-01

    We have investigated the response of the outer Van Allen belt electrons to various types of solar wind and internal magnetospheric forcing - in particular to Interplanetary Coronal Mass Ejections (ICMEs), to geospace magnetic storms of different intensities and to intense magnetospheric substorms. We have employed multi-point particle and field observations in the inner magnetosphere (both in-situ and through ground-based remote sensing), including the Cluster, THEMIS, Van Allen Probes and GOES constellations, the XMM and INTEGRAL spacecraft, and the CARISMA and IMAGE ground magnetometer arrays. The data provide a broad range of particle energies and a wide radial and azimuthal spatial coverage. This work has received support from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analysing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  16. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  17. Storm-time response of the Van Allen radiation belts organized by the large-scale solar wind drivers, energy and distance

    NASA Astrophysics Data System (ADS)

    Hietala, Heli; Kilpua, Emilia; Turner, Drew

    2016-04-01

    We study the response of the Van Allen radiation belts during geomagnetic storms. A combination of the long-term geosynchronous observations from GOES (> 2.5 MeV) and energy (tens of keV to 2 MeV) and L-shell (2.5 < L < 6.0) resolved Van Allen Probe observations are used. We demonstrate that the radiation belt response (depletion, no-change, increase) is organized by the large-scale solar wind driver (coronal mass ejection ejecta/sheath, slow-fast stream interface region, fast stream) and that the response is highly dependent on both the electron energy and the L-shell. In addition, we show detailed Van Allen Probe observations from two geomagnetic storms that occurred during two consecutive Carrington rotations of the solar maximum year 2015. Both of these storms involved a slow-fast stream interaction region and a fast stream originating from the same coronal hole. However, the first storm also included a large-scale coronal mass ejection. We study in particular how the added presence of this coronal mass ejection affected the dynamics of the radiation belts.

  18. Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Gao, Zhonglei; Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Wang, Shui

    2016-02-01

    Frequency distribution is a vital factor in determining the contribution of whistler mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1-0.8fce_eq (with the equatorial electron gyrofrequency fce_eq). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1fce_eq observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (˜0.1 MeV) electrons, different from the normal chorus. For high-energy (≥0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to that of the normal chorus but much stronger (up to 2 orders of magnitude) pitch angle diffusion near the loss cone.

  19. Direct observation of the CRAND proton radiation belt source

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Hudson, M. K.; Kress, B. T.

    2013-12-01

    Observations of geomagnetically trapped 27-45 MeV protons following the November 2003 magnetic storm show a gradual intensity rise that is interpreted as a direct measurement of the cosmic ray albedo neutron decay (CRAND) source strength. The intensity rise is simulated by combining the detector response function with a model CRAND source, obtained by drift-averaging neutron intensity from Monte Carlo simulation of cosmic ray interactions in the atmosphere. The simulation, for 2.4proton trapping and other known radiation belt processes. It further shows that the CRAND source was predominant, while radial diffusion and magnetic storm losses effected minor corrections in certain L ranges.

  20. On the Control of Van Allen Radiation Belt Morphology by Coupling to the Plasmasheet: How Quickly, How Deeply, and How Strongly?

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Ozeke, Louis

    2016-07-01

    Here we examine the speed, strength and depth of the coupling between dynamical variations of the electron flux at the outer boundary and that in the heart of the radiation belts. Using ULF wave radial diffusion as an exemplar, we show how changing boundary conditions can completely change belt morphology even under conditions of identical wave power. In the case of ULF wave radial diffusion, whether there is a new source population or a sink of electron flux at the outer plasmasheet boundary can generate a completely opposite response which reaches deep into the belt even under identical ULF wave conditions. Very significantly, here we show that such coupling can occur on timescales much faster than previously thought, being as short as one hour or less between the outer boundary and L-shells in the heart of the belts at L˜4 and significantly less than the L-shell revisit time obtained from elliptically orbiting satellites such as the Van Allen Probes. We underline the importance of such boundary condition effects when seeking to identify the physical processes which explain the dominant behaviour of the Van Allen belts. We further examine implications for reaching science closure in identifying causality in radiation belt wave-particle dynamics, and in relation to observational requirements for accurate radiation belt forecasting. Overall we argue in general that the importance of boundary conditions is sometimes overlooked in comparison to the pursuit of (ever) increasingly accurate estimates of wave power and other wave properties used in empirical representations of wave transport and diffusion rates.

  1. NASA's Van Allen Probes RBSP-ECT Data Products and Access to Them: An Insider's Outlook on the Inner and Outer Belts (and We Don't Mean the Nation's Beltway...)

    NASA Astrophysics Data System (ADS)

    Smith, S. S.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B.; Reeves, G. D.; Spence, H. E.

    2014-12-01

    In this poster, we present a summary of access to the data products of the Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 1-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a summary of past publications, current studies, and opportunities for your future participation in RBSP-ECT science analyses.

  2. Deeper and earlier penetrations of oxygen ions than protons into the inner magnetosphere Observed by Van Allen probes.

    NASA Astrophysics Data System (ADS)

    Mitani, K.; Seki, K.; Keika, K.; Lanzerotti, L. J.; Gkioulidou, M.; Mitchell, D. G.; Kletzing, C.

    2015-12-01

    It is observationally known that proton and oxygen ions are main components of the ring current during magnetic storms and that the proton and oxygen ions are considered to have different source and supply mechanisms. However, detailed properties of the ion supply and their dependence on ion species is far from well understood. To characterize the ion supply to the ring current during magnetic storms, we report studies of the properties of energetic proton and oxygen ion phase space densities (PSDs) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We used energetic ion (~50 - ~600keV protons, ~140 - ~1100keV oxygen) and magnetic field data obtained by the RBSPICE and EMFISIS, respectively, on the Van Allen Probes. We calculated ion PSDs for the specific first adiabatic invariant, mu (0.3 < mu < 12 keV/nT), and ion pitch angles near 90 degrees as a function of L for each spacecraft orbit. The results show that both proton and oxygen ions penetrated directly to L<5 during the main phase of the magnetic storm. Protons with smaller mu values (mu = 0.3 and 0.5 keV/nT) penetrated earlier than those with larger mu values (mu = 1.0 keV/nT). This result appears consistent with the energy dependence of the Alfven layer. The timing of oxygen ion penetration is approximately the same for all mu values (mu = 0.8, 1.0 and 1.2 keV/nT). The observations also show that oxygen ions penetrated more deeply in L and earlier in time than protons for the same mu value (mu = 1.0keV/nT). These results suggest that the source of the transported oxygen ions is located closer to the Earth than the inner edge of protons. The results imply the importance of the contribution from subauroral oxygen ions to the storm-time ring current. We will also discuss the possibility of non-adiabatic acceleration of oxygen ions in the inner magnetosphere.

  3. Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons

    NASA Technical Reports Server (NTRS)

    Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.

    1972-01-01

    Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.

  4. Field-Aligned Electron Events Observed in the Radiation Belts by the HOPE Instruments aboard the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lejosne, S.; Agapitov, O. V.; Mozer, F.

    2015-12-01

    Field-aligned electron events (FAEs) are defined as events having the ratio of field-aligned to perpendicular flux greater than three. Time Domain Structures (TDS) are known to produce FAEs. Whistler and ECH waves are other possible candidates. Our objective is to derive the general features of the FAEs, to identify their driving mechanisms and to evaluate the importance of the different mechanisms. More than two years of measurements by the Helium Oxygen Proton Electron mass spectrometer and the Electric Field and Waves experiment are analyzed to identify low-energy (100eV-50keV) FAEs and to quantify the concurrent electric and magnetic wave components. We also peek at the observable waveforms with bursts of high-time resolution measurements. From statistical analysis and case studies, we suggest in particular that TDS cause field-alignment of ~300eV electrons in the pre-midnight sector while chorus waves cause field-alignment of electrons of ~10keV in the morning sector of the outer belt.

  5. A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment

    NASA Astrophysics Data System (ADS)

    Shi, Run; Summers, Danny; Ni, Binbin; Manweiler, Jerry W.; Mitchell, Donald G.; Lanzerotti, Louis J.

    2016-06-01

    A statistical study of ring current-energy proton pitch angle distributions (PADs) in Earth's inner magnetosphere is reported here. The data are from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probe B spacecraft from 1 January 2013 to 15 April 2015. By fitting the data to the functional form sinnα, where α is the proton pitch angle, we examine proton PADs at the energies 50, 100, 180, 328, and 488 keV in the L shell range from L = 2.5 to L = 6. Three PAD types are classified: trapped (90° peaked), butterfly, and isotropic. The proton PAD dependence on the particle energy, magnetic local time (MLT), L shell, and geomagnetic activity are analyzed in detail. The results show a strong dependence of the proton PADs on MLT. On the nightside, the n values outside the plasmapause are clearly lower than those inside the plasmapause. At higher energies and during intense magnetic activity, nightside butterfly PADs can be observed at L shells down to the vicinity of the plasmapause. The averaged n values on the dayside are larger than on the nightside. A maximum of the averaged n values occurs around L = 4.5 in the postnoon sector (12-16 MLT). The averaged n values show a dawn-dusk asymmetry with lower values on the dawnside at high L shells, which is consistent with previous studies of butterfly PADs. The MLT dependence of the proton PADs becomes more distinct with increasing particle energy. These features suggest that drift shell splitting coupled with a radial flux gradient play an important role in the formation of PADs, particularly at L > ~ 4.5.

  6. Upcoming observations of whistler-mode waves in the outer Van Allen belt: multicomponent wave analyzer ELMAVAN for the Resonance mission

    NASA Astrophysics Data System (ADS)

    Santolik, Ondrej; Korepanov, Valery; Chugunin, Dmitriy; Kolmasova, Ivana; Uhlir, Ludek; Pronenko, Vira; Mogilevsky, Mikhail; Lan, Radek; Boychev, Boycho

    The instrument ELMAVAN is being prepared at the Institute of Atmospheric Physics, Prague in the frame of the Russian Resonance project with international participation. The aim of this four-spacecraft mission is to investigate properties of wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth with the focus on phenomena occurring within the same flux tube of the Earth's magnetic field. The wave emissions attract increasing attention because of their influence on the dynamics of the Earth’s radiation belts. The Resonance project therefore represents an excellent opportunity for the magnetospheric research, and together with the recently launched two-spacecraft US mission Van Allen Probes, it will contribute to our understanding of the Earth’s Van Allen radiation belts and the inner magnetosphere. ELMAVAN will measure intensity, polarization, coherence, and propagation properties of waves in magnetospheric plasmas. Three orthogonal magnetic search coil antennas and four electric monopoles will be used for the measurements. The instrument will measure fluctuations of the electric and magnetic field in the frequency range 10 Hz - 20 kHz. The scientific motivation is to investigate properties of whistler-mode chorus and hiss, and both equatorial and auroral emissions. Nonlinear wave-particle interactions will be the main target of these measurements. The input signals of ELMAVAN will consist of 3 analog signals from orthogonal magnetic search coil antennas and 4 analog signals from electric monopoles. The instrument ELMAVAN uses the state of the art electronics and mechanical design taking into account specific requirements for the orbit inside the radiation belts. From this point of view this instrument will also be important as a technological experiment. Engineering model of the analyzer was developed and tested in 2012-2013. Qualification model and the flight models are under preparation.

  7. Effect of Low Frequency Waves on the Lifetime of Protons in the Earth's Inner Radiation Belt

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Shao, X.; Sharma, A. S.; Demekhov, A.

    2008-12-01

    Commercial electronics on LEO satellites are affected by protons in the 30-100 MeV range trapped in the inner radiation belt mainly when transiting the South Atlantic Anomaly (SAA). As the feature size of commercial electronic components shrinks to 65 nm, the probability of single event upsets increases by two to three orders of magnitude, reducing the utility of LEO orbiting satellites and making micro-satellites obsolete. Reduction of the flux of energetic protons in the inner belts,in the range of 1.5-1.8 becomes national priority. The paper examines the physics requirements for reducing the lifetime of the energetic protons in the inner belts from 10-20 years to 1-2 years. In reviewing the current understanding of the proton lifetimes we note that the lifetime of the outer belt protons is by more than four orders of magnitude shorter than in the inner belts. The reason for this sharp lifetime gradient is that the lifetime in the outer belts is controlled by fast pitch angle scattering of the protons into the loss cone by resonant interaction with naturally generated Alfven waves. Since these waves are constrained to regions with L>2, the inner belt lifetimes are controlled by slowing down of the protons exciting and ionizing oxygen atoms in the thermosphere. Results, obtained using a global plasma code indicate that injection of Alfven waves, from the ground or satellites, in the frequency range of 1-5 Hz with average amplitude 20-30 pT can reduce the energetic proton lifetime in the inner belts to 1- 2 years. The paper concludes by presenting the energy and power requirements for achieving such lifetime reduction as well as brief discussion.

  8. Non-Resonant Scattering of Inner Belt Protons by Oblique Emic Waves from a Space-Borne Antenna

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz Pich, M.; Martinez-Sanchez, M.; Shprits, Y.

    2013-12-01

    The radiation of Electromagnetic Ion Cyclotron (EMIC) waves from a space-borne antenna has been proposed as a way to remediate the inner Van Allen proton belt. These energetic protons represent an obstacle to development of space technologies. Man-made EMIC waves, however, may induce pitch-angle scattering of the hazardous particles and precipitate them into the atmosphere, thus reducing the risk to spacecraft. EMIC waves from in-situ transmitters propagate mostly with perpendicular wave number vectors and field aligned group velocity. The spreading of these waves across field lines is therefore very small, i.e. the antenna illuminates a very narrow region of space that is confined along geomagnetic field lines. Additionally, the drift period of energetic protons is very fast, between 10 to 100 seconds at L=1.5 depending on their energy. Particles, therefore, drift through the illuminated region in a fraction of a second, where they are instantly scattered by the waves. The interaction time is more than one order of magnitude shorter than the proton gyroperiod, and occurs approximately once per particle drift orbit. In this study we analyze the nature of this interaction by solving the non-gyroaveraged equations of motion of energetic test protons interacting with man-made EMIC waves. The study shows that non-resonant wave-particle interactions dominate the scattering compared to resonant ones. Most theories on wave-particle interactions, like quasi-linear diffusion or the gyroaveraged approach, emphasize the resonant interaction but neglect the non-resonant effect. We show, however, that the latter is the dominant contribution to the scattering for wave-particle encounters shorter than a gyroperiod. From this non-gyroaveraged test particle solution, we next calculate the corresponding diffusion rates due to the non-resonant scattering. These diffusion rates are more than two orders of magnitude larger than the ones from quasi-linear theory or the gyroaveraged

  9. Control of the energetic proton flux in the inner radiation belt by artificial means

    NASA Astrophysics Data System (ADS)

    Shao, X.; Papadopoulos, K.; Sharma, A. S.

    2009-07-01

    Earth's inner radiation belt located inside L = 2 is dominated by a relatively stable flux of trapped protons with energy from a few to over 100 MeV. Radiation effects in spacecraft electronics caused by the inner radiation belt protons are the major cause of performance anomalies and lifetime of Low Earth Orbit satellites. For electronic components with large feature size, of the order of a micron, anomalies occur mainly when crossing the South Atlantic Anomaly. However, current and future commercial electronic systems are incorporating components with submicron size features. Such systems cannot function in the presence of the trapped 30-100 MeV protons, as hardening against such high-energy protons is essentially impractical. The paper discusses the basic physics of the interaction of high-energy protons with low-frequency Shear Alfven Wave (SAW) under conditions prevailing in the radiation belts. Such waves are observed mainly in the outer belt, and it is believed that they are excited by an Alfven Ion Cyclotron instability driven by anisotropic equatorially trapped energetic protons. The paper derives the bounce and drift-averaged diffusion coefficients and uses them to determine the proton lifetime as a function of the spectrum and amplitude of the volume-averaged SAW resonant with the trapped energetic protons. The theory is applied to the outer and inner radiation belts. It is found that the resonant interaction of observed SAW with nT amplitude in the outer belt results in low flux of trapped protons by restricting their lifetime to periods shorter than days. A similar analysis for the inner radiation belt indicates that broadband SAW in the 1-10 Hz frequency range and average amplitude of 25 pT would reduce the trapped energetic proton flux by more than an order of magnitude within 2 to 3 years. In the absence of naturally occurring SAW waves, such reduction can be achieved by injecting such waves from ground-based transmitters. The analysis indicates

  10. The Formation and Evolution of Energetic Transient Proton Belts Near L = 3

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Roeder, J. L.; Blake, J. B.; Fennell, J. F.

    2011-12-01

    Solar energetic particle (SEP) events are one of many space weather events that can be hazardous to spacecraft operating in the near-Earth plasma environment. During an SEP, energetic protons (~20 MeV) can penetrate deep into the magnetosphere, at times to very low L shells (L~3). Under some circumstances, these injected protons can become stably trapped and persist for many days, thus forming a new proton belt in a region that is typically devoid of energetic protons. This can serve as a potential unforeseen hazard for spacecraft operating in this region of geospace. We use recent observations from the Polar-CEPPAD investigation and HEO spacecraft to examine the formation and evolution of energetic transient proton belts near L = 3. We consider several events where transient proton belts are associated with storm-sudden commencements driven by interplanetary shocks. Angular distributions obtained from the CEPPAD-HIST sensor on-board the Polar spacecraft reveal features that are difficult to reconcile with standard trapped particle theory. For example, the pitch-angle distributions are observed to vary substantially on timescales faster than what would be expected for a diffusive mechanism. We compare the HIST observations with simultaneous measurements in HEO and explore possible explanations for the rapid changes observed in the angular distributions.

  11. Non-Linear Model for the Disturbance of Electronics in by High Energy Electron Plasmas in the Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Atkinson, William

    2009-11-01

    A model is presented that models the disturbance of electrical components by high energy electrons trapped in the Van Allen radiation belts; the model components consists of module computing the electron fluence rate given the altitude, the time of the year, and the sunspot number, a module that transports the electrons through the materials of the electrical component, and a module that computes the charge and electrical fields of the insulating materials as a function of time. A non-linear relationship (the Adameic-Calderwood equation) for the variation of the electrical conductivity with the electrical field strength is used as the field intensities can be quite high due to the small size of the electrical components and the high fluence rate of the electrons. The results show that the electric fields can often be as high as 10 MV/m in materials commonly used in cables such as Teflon and that the field can stay at high levels as long as an hour after the irradiation ends.

  12. Characteristics of ring current protons and oxygen ions during the 7 January 2015 and 17 March 2015 storms: Van Allen Probes/RBSPICE observations

    NASA Astrophysics Data System (ADS)

    Keika, K.; Seki, K.; Nose, M.; Machida, S.; Miyoshi, Y.; Lanzerotti, L. J.; Mitchell, D. G.; Gkioulidou, M.; Gerrard, A. J.; Manweiler, J. W.

    2015-12-01

    We investigate enhancements and losses of energetic (~50-~500 keV) protons and oxygen ions during two intense storms on January 7 and March 17 in 2015. We use proton and oxygen ion data from RBSPICE onboard Van Allen Probes. During the January 7 storm (Dstmin = -99 nT), Van Allen Probes explored the inner magnetosphere on the night side, with both spacecraft located around midnight at apogee. Their orbits were in opposite phase. RBSPICE data are available from both spacecraft during the rapid recovery of the storm. We analyze energy spectra of both species to identify whether the ring current is symmetric or not, and determine the dominant loss process. During the March 17 storm (Dstmin = -223 nT), Van Allen Probes traveled in the pre-midnight sector during the outbound paths and around midnight during the inbound path. The orbits of the two spacecraft were in opposite phase. The Dst index during the storm showed a two-step decrease with the first minimum at 9 UT and the second at 22 UT. Enhancements of ring current ions began at RBSPICE-B at ~7 UT, and RBSPICE-A entered the ring current region at ~9 UT. The RBSPICE data show penetration of energetic protons (μ~0.1 keV/nT) down to L~4 during the first storm development. Protons penetrated more deeply (as low as L~3) during the second enhancement. The protons, which we confirmed made a dominant contribution to energy density at L = 3-4, are more enhanced in flux around the storm maximum. The flux of 200-400 keV oxygen ions was enhanced and localized around midnight near the end of the first storm development. Oxygen ion enhancements during the second development were seen in a wide range of MLT (pre-midnight to midnight). We examine the evolution of ion energy spectra to identify whether each phase of the multi-step storm development was due to deep penetration of transport/injections, density enhancements, or/and non-adiabatic acceleration of protons and oxygen ions.

  13. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  14. Simplified Solar Modulation Model of Inner Trapped Belt Proton Flux As a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.

  15. Space Earthquake Perturbation Simulation (SEPS) an application based on Geant4 tools to model and simulate the interaction between the Earthquake and the particle trapped on the Van Allen belt

    NASA Astrophysics Data System (ADS)

    Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu

    2014-05-01

    During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).

  16. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  17. Decay rate of the second radiation belt.

    PubMed

    Badhwar, G D; Robbins, D E

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  18. The Radiation Belt Storm Probes

    NASA Video Gallery

    The Radiation Belt Storm Probe mission (RBSP) will explore the Van Allen Radiation Belts in the Earth's magnetosphere. The charge particles in these regions can be hazardous to both spacecraft and ...

  19. Science Highlights from the RBSP-ECT Particle Instrument Suite on NASA's Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Spence, Harlan

    2014-05-01

    The NASA Van Allen Probes mission includes an instrument suite known as the Radiation Belt Storm Probes (RBSP) - Energetic Particle, Composition, and Thermal Plasma (ECT) suite. RBSP-ECT contains a well-proven complement of particle instruments to ensure the highest quality measurements ever made in the radiation belts and the inner magnetosphere. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state of-the-art theory and modeling, provide new understanding on the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Helium Oxygen Proton Electron (HOPE) spectrometer, the Magnetic Electron Ion Spectrometer (MagEIS), and the Relativistic Electron Proton Telescope (REPT). Collectively these three instrument types cover comprehensively the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts, then optimized to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. In this presentation, we summarize overall ECT science goals and then show scientific results derived from the ECT suite on the dual Van Allen Probes spacecraft to date. Mission operations began only in late October 2012, and we have now achieved significant results. Results presented here will include substantial progress toward resolving primary Van Allen Probes science targets, such as: the relative role of localized acceleration versus transport-generated particle acceleration

  20. Early Science Results From the NASA Van Allen Probes Mission RBSP-ECT Instrument Suite

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoff; Rbspect Team

    2013-04-01

    The NASA Van Allen Probes mission includes an instrument suite known as the Radiation Belt Storm Probes (RBSP) - Energetic Particle, Composition, and Thermal Plasma (ECT) suite. RBSP-ECT contains a well-proven complement of particle instruments to ensure the highest quality measurements ever made in the radiation belts and the inner magnetosphere. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state of-the-art theory and modeling, provide new understanding on the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Helium Oxygen Proton Electron (HOPE) spectrometer, the Magnetic Electron Ion Spectrometer (MagEIS), and the Relativistic Electron Proton Telescope (REPT). Collectively these three instrument types cover comprehensively the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts, then optimized to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. In this presentation, we summarize overall ECT science goals and then show early scientific results derived from the ECT suite on the dual Van Allen Probes spacecraft. Mission operations began only in late October 2012, but we have already achieved significant early results. Results presented here will include substantial progress toward resolving primary Van Allen Probes science targets, such as: the relative role of localized acceleration versus transport-generated particle

  1. Wave-wave and wave-particle interactions in the inner magnetosphere measured with Van Allen Probes: cross coupling between wave modes and its effect on radiation belt dynamics

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.; Broughton, M.; Engebretson, M. J.

    2015-12-01

    We will show observations of waveform bursts using the Electric Field and Waves (EFW) burst data on the Van Allen Probes satellites with intermediate frequency waves such as whistler mode, magnetosonic and lower hybrid. These observations show very strong modulation of these waves by lower frequency waves such as EMIC or ULF. We are analyzing the burst data and cross coupling between wave modes to determine how prevalent the cross coupling between wave modes is and under what conditions it occurs. To supplement the EFW data, each satellite is also equipped with a full complement of particle instruments, including the HOPE instrument measuring lower energy (1 eV - 50 keV) particles and MagEIS instruments measuring higher energy (20 keV - 5 MeV) particles. The energy and angular resolution of these detectors are sufficient to resolve the scattering and energization arising from the distinct wave modes, using the signatures in the trapped electron populations predicted by theory for the various mechanisms. Comparison of the burst waveform data with the electron data from HOPE and MagEIS, for times with and without coupling between the wave modes, will allow us to identify how the cross coupling affects electron dynamics in the radiation belts. The significance of wave-particle interactions in the formation and depletion of the radiation belts has long been established, but is still not completely understood. Specifically, pitch angle scattering from waves such as plasmaspheric hiss and electromagnetic ion cyclotron [EMIC] waves near the duskside plasmapause is known to contribute to electron loss from the radiation belts, primarily through precipitation into the atmosphere. Higher frequency waves such as whistler mode chorus and magnetosonic waves observed near the equator in the lower hybrid frequency range are widely believed to be primary means for electron energization. However, these and other competing processes often occur simultaneously, and an accurate model

  2. Three dimensional data-assimilative VERB-code simulations of the Earth's radiation belts: Reanalysis during the Van Allen Probe era, and operational forecasting

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Shprits, Yuri; Podladchikova, Tatiana; Kondrashov, Dmitri

    2016-04-01

    The Versatile Electron Radiation Belt (VERB) code 2.0 models the dynamics of radiation-belt electron phase space density (PSD) in Earth's magnetosphere. Recently, a data-assimilative version of this code has been developed, which utilizes a split-operator Kalman-filtering approach to solve for electron PSD in terms of adiabatic invariants. A new dataset based on the TS07d magnetic field model is presented, which may be utilized for analysis of past geomagnetic storms, and for initial and boundary conditions in running simulations. Further, a data-assimilative forecast model is introduced, which has the capability to forecast electron PSD several days into the future, given a forecast Kp index. The model assimilates an empirical model capable of forecasting the conditions at geosynchronous orbit. The model currently runs in real time and a forecast is available to view online http://rbm.epss.ucla.edu.

  3. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Cayton, Thomas E.; Denton, Michael H.; Belian, Richard D.; Christensen, Roderick A.; Ingraham, J. Charles

    2016-06-01

    The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8-satellite 2-solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high-speed stream-driven storms in 1976-1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early-storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a "strong stretching phase" of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.

  4. Resonant scattering of radiation belt electrons and ring current protons by EMIC waves in a hot plasma

    NASA Astrophysics Data System (ADS)

    Cao, X.; Ni, B.; Xiang, Z.; Zou, Z.; Gu, X.; Fu, S.; Zhou, C.; Zhao, Z.

    2015-12-01

    The full kinetic linear dispersion relation in a warm, multi-ion plasma with hot ring current protons is used to calculate the linear growth rate of parallel propagating electromagnetic ion cyclotron (EMIC) waves. Significant wave growth at relatively small wave numbers occurs for both H+-band and He+-band EMIC waves at the magnetic equator. We find that the growth of H+-band and He+-band EMIC waves remains strong when they propagate to higher latitudes (< 30 degrees). The full hot plasma dispersion relation and cold plasma dispersion relation are used individually to quantify the quasi-linear bounce-averaged pitch angle diffusion rates for radiation belt electrons and ring current protons due to H+-band and He+-band EMIC waves. The results demonstrate considerable differences in the rates of pitch angle scattering caused by He+-band EMIC waves between the use of hot and cold plasma dispersion relation. He+-band EMIC waves can also resonate with lower energies particles (electrons and protons) when the impact of hot plasma is included. In contrast, much smaller differences are seen in the resonant scattering rates for H+-band EMIC waves. Our study strongly suggests that the effect of hot plasmas should be carefully taken into account to approach improved understanding of the exact role that EMIC waves plays in driving the dynamical evolution of radiation belt electrons and ring current protons.

  5. Radiation Belt Storm Probe Mission Trailer

    NASA Video Gallery

    With launch scheduled for 2012, the Radiation Belt Storm Probe (RBSP) are two identical spacecraft that will investigate the doughnut shaped Van Allen radiation belts, the first discovery of the sp...

  6. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1973-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended durations to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine spore-forming and three non-spore-forming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2, 12, and 25 MeV electrons at different doses with simultaneous exposure to a vacuum of 1.3 x 10(-4) N m-2 at 20 and -20 degrees C. The radioresistance of the subpopulation was dependent on the isolate, dose and energy of electrons. Temperature affected the radioresistance of only the spore-forming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J kg-1 (10 J kg-1=1 krad), while non-spore-forming isolates (micrococci) were reduced 1.5-2 logs/1500 J kg-1 with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons. The bacterial isolates were exposed to 3 keV protons under the same conditions as the electrons with a total fluence of 1.5 x 10(13) p cm-2 and a dose rate of 8.6 x 10(9) p cm-2 s-1. The results showed that only 20% of S. epidermidis and 45% of B. subtilis populations survived exposure to the 3 keV protons, while the mean survival of the spacecraft subpopulation was 45% with a range from 31.8% (non-spore-former) to 64.8% (non-spore-former). No significant difference existed between spore-forming and non-spore-forming isolates.

  7. "Nonempty" Gap Between Radiation Belts: The First Observations

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail

    2013-12-01

    The first space experiments carried out in 1958 by the scientific groups of James Van Allen (United States) on board the first Explorer satellites and Sergey Vernov (Soviet Union) on board the satellite Sputnik 3 led to the discovery of the Earth's radiation belts—the particles (mainly protons and electrons) captured by the magnetic field of the Earth. Two scientific groups independently came to the conclusion that the electrons in the geomagnetic trapping region fill two areas, inner and outer radiation belts, unlike the protons, which fill the whole trapping region [see, e.g., Lemaire, 2000].

  8. A neural network approach for identifying particle pitch angle distributions in Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; Rockenbach, M.; Dal Lago, A.; Silveira, M. V. D.; Marchezi, J. P.; Mendes, O.; Gonzalez, W. D.; Baker, D. N.

    2016-04-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90° peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  9. A long-lived refilling event of the slot region between the Van Allen radiation belts from Nov 2004 to Jan 2005

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2015-12-01

    A powerful relativistic electron enhancement in the slot region between the inner and outer radiation belts is investigated by multi-satellites measurements. The measurement from Space Particle Component Detectors (SPCDs) aboard Fengyun-1 indicates that the relativistic electron (>1.6MeV) flux began to enhance obviously on early 10 November with the flux peak fixed at L~3.0. In the next day, the relativistic electron populations increased dramatically. Subsequently, the flux had been enhancing slowly, but unceasingly, until 17 November, and the maximum flux reached up to 7.8×104 cm-2·sr-1·s-1 at last. The flux peak fixed at L~3.0 and the very slow decay rate in this event make it to be an unusual long-lived slot region refilling event. We trace the cause of the event back to the interplanetary environment and find that there were two evident magnetic cloud constructions: dramatically enhanced magnetic field strength and long and smooth rotation of field vector from late 7 to 8 November and from late 9 to 10 November, respectively; solar wind speed increased in 'step-like' fashion on late 7 November and persisted the level of high speed >560 km·s-1 for about 124 hours. Owed to the interplanetary disturbances, very strong magnetic storms and substorms occurred in the magnetosphere. Responding to the extraordinarily magnetic perturbations, the plasmasphere shrank sharply. The location of plasmapause inferred from Dst indicates that the plasmapause shrank inward to as low as L~2.5. On account of these magnetospheric conditions, strong chorus emissions are expected near the earth. In fact, the STAFF on Cluster mission measured intensive whistler mode chorus emissions on 10 and 12 November, corresponding to the period of the remarkable enhancement of relativistic electron. Furthermore, we investigate the radial profile of phase space density (PSD) by electron flux from multi-satellites, and the evolution of the phase space density profile reveals that the local

  10. Previously Undetected Radiation Belt Revealed

    NASA Video Gallery

    Since their discovery over 50 years ago, the Earth'€™s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. Observations f...

  11. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  12. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  13. Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region

    NASA Astrophysics Data System (ADS)

    Li, X.

    2015-12-01

    Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  14. Evolution of relativistic outer belt electrons during extended quiescent period

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Li, X.; Schiller, Q.; Blum, L. W.; Tu, W.; Malaspina, D.; Turner, D.; Baker, D. N.; Kanekal, S. G.; Blake, J. B.; Wygant, J. R.

    2013-12-01

    To effectively study loss due to precipitation of relativistic electron fluxes in the radiation belt, it is necessary to isolate this loss from the Dst effect and magnetopause shadowing by studying loss during a time of relatively quiet geomagnetic activity. We present a study of the slow decay of 200 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 Dec 2012 - 10 Jan 2013, wherein Dst never extended below -25 nT. We incorporate particle measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat with measurements from the Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) on the Van Allen Probes twin spacecraft to understand the evolution of the electron populations across pitch angle and energy. First, we present REPTile measurements of the precipitating populations (along with trapped & quasi-trapped) at a low-earth orbit, offering a view into the loss cone that is not as easily resolved using only the Van Allen Probes. Electron loss to the atmosphere during this event is quantified through use of a precipitation loss model, using the REPTile measurements. Additionally, phase space densities are derived using pitch-angle-resolved flux data from the REPT and MagEIS instruments, as well as from THEMIS SST data. Finally, we present the net loss effect on the outer radiation belt content during this time, by incorporating the modeled precipitation loss (from REPTile measurements) with Van Allen Probes electron flux data. Hiss and chorus wave data, along with approximate plasmapause location, from Van Allen Probes' Electric Field and Waves Suite (EFW) completes the picture by suggesting mechanisms for the precipitation loss of relativistic electrons during quiet time.

  15. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.

    1994-01-01

    Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.

  16. Van Allen Probes, NOAA, and Ground Observations of an Intense Pc 1 Wave Event Extending 12 Hours in MLT

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Horne, R. B.; Reeves, G. D.; Gkioulidou, M.; Fennell, J.; Oksavik, K.; Raita, T.

    2014-12-01

    On February 23, 2014 a Pc 1 wave event extending 8 hours in UT and 12 hours in MLT was observed at Halley, Antarctica and Ivalo, Finland in the dawn sector, and by both Van Allen Probes spacecraft from late morning through local noon. The wave activity was stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Intense hydrogen band, linearly polarized Pc 1 wave activity (up to 25 nT p-p) with very similar time variations also appeared for over 4 hours at both Van Allen Probes, located ~8 and ~9 hours east of Halley. Waves appeared when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Ten passes of NOAA-POES and METOP satellites near the northern hemisphere footpoint of the Van Allen Probes (over Siberia) show the presence of 30-80 keV subauroral proton precipitation. This is the longest-duration and most intense Pc1 event we have yet observed with the Van Allen Probes. The combination of its duration, intensity, and large local time extent (from before 02 to nearly 14 hours MLT) suggests that it might have a significant effect on the ring current, and possibly even electrons in the outer radiation belt.

  17. Ultra-fast Electrons Explain Third Radiation Belt

    NASA Video Gallery

    In September 2012, NASA's Van Allen Probes observed the radiation belts around Earth had settled into a new configuration, separating into three belts instead of two. Scientists think the unusual p...

  18. On spatial distribution of proton radiation belt from solar cell degradation of Akebono satellite

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Miyoshi, Y.; Matsuoka, A.

    2013-12-01

    Solar cells on any satellite degrade gradually due to severe space radiation environment. We found a fair correlation between the decrease rate of solar cell output current of Akebono satellite orbiting in the inner magnetosphere and trapped proton flux from AP8 model between 1989 and 1992. After 1993, presumably as a result of long-term degradation, variation of solar cell output seems more susceptible to other causes such as high temperature effect, and simple monthly averaged data show no significant relation between them. One of possible causes for the temperature variation of the solar cells is terrestrial heat radiation with changing orientation of solar cell panels towards the earth and another is solar radiation varied with eccentric earth's orbit around the sun. In order to remove the possible temperature effect, we sort the data expected to be least affected by the terrestrial heat radiation from the orbit conditions, and also analyze difference of the output current for a month from that for the same month in the previous year. The analysis method leads us to successfully track a continuous correlation between the decease rate of solar cell output and energetic trapped proton flux up to 1996. We also discuss the best-fitted spatial distribution of energetic protons from comparison with model calculations.

  19. New results from the Colorado CubeSat and comparison with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the NSF, launched into a highly inclined (650) low-Earth (490km x 790km) orbit on 09/13/12 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a simplified and miniaturized version of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP) of University of Colorado for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched on 08/30/12, that traverse the heart of the radiation belts in a low inclination (100) orbit. REPTile is designed to measure the directional differential flux of protons ranging from 9 to 40 MeV and electrons from 0.5 to >3.3 MeV. Three-month science mission (full success) was completed on 1/05/13. We are now into the extended mission phase, focusing on data analysis and modeling. REPTile measures a fraction of the total population that has small enough equatorial pitch angles to reach the altitude of CSSWE, thus measuring the precipitating population as well as the trapped population. These measurements are critical for understanding the loss of outer radiation belt electrons. New results from CSSWE and comparison with Van Allen Probes data will be presented. The CSSWE is also an ideal class project, involving over 65 graduate and undergraduate students and providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  20. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  1. Electron Flux of Radiation Belts Animation

    NASA Video Gallery

    This animation shows meridional (from north-south) plane projections of the REPT-A and REPT-B electron flux values. The animation first shows the expected two-belt Van Allen zone structure; from Se...

  2. Time variations of proton flux in Earth inner radiation belt during 23/24 solar cycles based on the PAMELA and the ARINA data

    NASA Astrophysics Data System (ADS)

    Malakhov, V. V.; Koldashov, S. V.; Mayorov, A. G.; Mayorova, M. A.; Mikhailov, V. V.; Aleksandrin, S. Yu; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Krutkov, S. Yu; Kvashnin, A. A.; Kvashnin, A. N.; Leonov, A. A.; Marcelli, L.; Martucci, M.; Menn, W.; Merge, M.; Mocchuuitti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Vacci, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Yu T.; Zampa, G.; Zampa, N.

    2015-08-01

    The PAMELA and the ARINA experiments are carried out on the board of satellite RESURS-DK1 since 2006 up to now. Main goal of the PAMELA instrument is measurements of high energy antiparticles in cosmic rays while the ARINA instrument is intended studying high energy charged particle bursts in the magnetosphere. Both of these experiments have a possibility to study trapped particles in the inner radiation belt. Complex of these two instruments covers proton energy range from 30 MeV up to trapping limit (E= ∼2 GeV). Continuous measurements with the PAMELA and the ARINA spectrometers include falling and rising phases of 23/24 solar cycles and maximum of 24th one. In this report we present temporal profiles of proton flux in the inner zone of the radiation belt (1.11 < L < 1.18, 0.18 < B < 0.22G). Dependence of proton fluxes on a magnitude of the solar activity was studied for various phases of 23/24 solar cycles. At that it was shown that proton fluxes at the solar minimum are several times greater than at the solar maximum.

  3. H. Julian Allen

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen stands beside the observation window of the 8 x 7 foot test section of the NACA Ames Unitary Plan Wind Tunnel. H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  4. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-04-01

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

  5. Radiation Belt Electron Enhancements: History and Prospects for RBSP

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Kanekal, Shrikanth; Elkington, Scot

    2012-07-01

    Energetic electron data from low-altitude Earth-orbiting spacecraft show both a long historical record of the Van Allen radiation belts and the specific effects of powerful storms such as the 2003 Halloween storms. The fluxes of 2-6 MeV electrons measured by the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) from July 1992 to the current time are presented in this talk. Data demonstrate intense electron acceleration events (associated with high-speed solar wind), for example, in 1993-95 for 3belt created during a large March 1991 storm. The SAMPEX electron data for 2003 and throughout 2004 and 2005 show the shifted position of the outer Van Allen zone and the filling of the slot region (L<3). A persistent new belt of electrons was produced in the wake of the Halloween storms and this was clearly seen for L<2 for several years. We note that recent SAMPEX data demonstrate that in 2008 and 2009, the radiation belts virtually disappeared due to very weak solar wind driving conditions associated with the recent profound solar activity minimum period. Building on this historical record, we describe the expected results from the Relativistic Electron-Proton Telescope (REPT) instrument that will be launched onboard the Radiation Belt Storm Probes mission. Key areas of likely scientific progress using REPT will be addressed.

  6. The Evolving Space Weather System—Van Allen Probes Contribution

    NASA Astrophysics Data System (ADS)

    Zanetti, L. J.; Mauk, B. H.; Fox, N. J.; Barnes, R. J.; Weiss, M.; Sotirelis, T. S.; Raouafi, N.-E.; Kessel, R. L.; Becker, H. N.

    2014-10-01

    The overarching goal and purpose of the study of space weather is clear—to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA's Van Allen Probes' twin pair of satellites, launched in August of 2012 and orbiting directly through Earth's severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP), was renamed soon after launch to honor the discoverer of Earth's radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes are one part of NASA's Living With a Star program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions, and their effects on the geospace and Earth environment.

  7. Van Allen Probes RBSPICE Observations of the March 2015 Solar Storm

    NASA Astrophysics Data System (ADS)

    Manweiler, J. W.; Patterson, J. D.; Gerrard, A. J.; Gkioulidou, M.; Mitchell, D. G.; Lanzerotti, L. J.

    2015-12-01

    The Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument provides the ability to measure the energetic particle composition of the Earth's ring current from 20 KeV to approximately 1 MeV. On March 17, 2015 a solar storm impacted the Earth with a maximum negative Dst of -232. The onset of the storm was directly observed by the RBSPICE B instrument. The RBSPICE A instrument observed the development of the storm prior to onset in one orbit and a few hours after onset on the subsequent orbit. These observations displayed a number of interesting features of the storm including an Oxygen beam, high beta plasma conditions, and multiple injections of protons, helium, and oxygen into the inner magnetosphere. Our presentation will report on the observations made from each RBSPICE instrument coupled with observations from other Van Allen Probes instruments (EMFISIS, ECT, and EFW) to provide a complete picture of the impact of this storm on the Earth's inner magnetosphere.

  8. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  9. EPICS: Allen-Bradley hardware reference manual

    SciTech Connect

    Nawrocki, G.

    1993-04-05

    This manual covers the following hardware: Allen-Bradley 6008 -- SV VMEbus I/O scanner; Allen-Bradley universal I/O chassis 1771-A1B, -A2B, -A3B, and -A4B; Allen-Bradley power supply module 1771-P4S; Allen-Bradley 1771-ASB remote I/O adapter module; Allen-Bradley 1771-IFE analog input module; Allen-Bradley 1771-OFE analog output module; Allen-Bradley 1771-IG(D) TTL input module; Allen-Bradley 1771-OG(d) TTL output; Allen-Bradley 1771-IQ DC selectable input module; Allen-Bradley 1771-OW contact output module; Allen-Bradley 1771-IBD DC (10--30V) input module; Allen-Bradley 1771-OBD DC (10--60V) output module; Allen-Bradley 1771-IXE thermocouple/millivolt input module; and the Allen-Bradley 2705 RediPANEL push button module.

  10. The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-01

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, we use a combination of four distributions that together capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a "gold standard," we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 "St. Patrick's Day" geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

  11. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGES

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  12. Analysis of a non-storm time enhancement in outer belt electrons

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Godinez, H. C.; Sarris, T. E.; Tu, W.; Malaspina, D.; Turner, D. L.; Blake, J. B.; Koller, J.

    2014-12-01

    A high-speed solar wind stream impacted Earth's magnetosphere on January 13th, 2013, and is associated with a large enhancement (>2.5 orders) of outer radiation belt electron fluxes despite a small Dst signature (-30 nT). Fortunately, the outer belt was well sampled by a variety of missions during the event, including the Van Allen Probes, THEMIS, and the Colorado Student Space Weather Experiment (CSSWE). In-situ flux and phase space density observations are used from MagEIS (Magnetic Electron Ion Spectrometer) onboard the Van Allen Probes, REPTile (Relativistic Electron and Proton Telescope integrated little experiment) onboard CSSWE, and SST onboard THEMIS. The observations show a rapid increase in 100's keV electron fluxes, followed by a more gradual enhancement of the MeV energies. The 100's keV enhancement is associated with a substorm injection, and the futher energization to MeV energies is associated with wave activity as measured by the Van Allen Probes and THEMIS. Furthermore, the phase space density radial profiles show an acceleration region occurring between 5

  13. A non-storm time enhancement of outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Blum, L. W.; Jaynes, A. N.; Malaspina, D.; Tu, W.; Turner, D. L.; Blake, J. B.

    2013-12-01

    On January 13th, 2013, a high-speed solar wind stream impacted Earth's magnetosphere, resulting in low geomagnetic activity (Real-Time Dst minimum of -30 nT). However, the relativistic electron population was enhanced by over two orders of magnitude in the outer radiation belt. Fortunately, during the event, the outer belt was well sampled by a variety of missions, including the Van Allen Probes, THEMIS, GOES, and the Colorado Student Space Weather Experiment (CSSWE). The energetic electrons are measured in-situ using flux and phase space density observations from the Magnetic Electron Ion Spectrometer (MagEIS) onboard the Van Allen Probes, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard CSSWE, and SST onboard THEMIS. These measured electron populations are the net result of the balance between concurrent loss and acceleration processes. Precipitation loss is quantified using REPTile measurements at low altitudes, while the energization mechanisms, namely interactions with whistler-mode chorus and Pc5 ULF waves, are investigated using Van Allen Probes' MagEIS and Electric Fields and Waves Suite (EFW), THEMIS' EFI and SCM instrument suites, and GOES magnetometers. The quantity and quality of measurements during this event provide a rare opportunity to address outstanding science questions; such as, whether the energetic electrons originate from inward injections associated with substorms or are accelerated via local heating, as well as what the energy dependence of the enhancement is during a period of such low geomagnetic activity.

  14. Van Allen Probes: Resolving Fundamental Physics with Practical Consequences

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr; Sibeck, David; Fox, Nicola; Mauk, Barry; Kessel, Ramona

    The Van Allen Probes twin spacecraft were launched on 30 August 2012 into nearly identical, 1.1 x 5.8 Re elliptical, low inclination (10°) Earth orbits with one of the two spacecraft lapping the other about every 2.5 months. The goal of the mission is to provide understanding of how populations of relativistic electrons and penetrating ions in space form or change in response to variable inputs of energy from the Sun. In this paper we overview the new understanding and discoveries of the Van Allen Probes science investigations since the operational mission began on 1 November 2012, which include formation of multiple coherently ordered structures within the outer electron belt and new persistent “zebra stripes” in the inner electron belt.

  15. UK-5 Van Allen belt radiation exposure: A special study to determine the trapped particle intensities on the UK-5 satellite with spatial mapping of the ambient flux environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1972-01-01

    Vehicle encountered electron and proton fluxes were calculated for a set of nominal UK-5 trajectories with new computational methods and new electron environment models. Temporal variations in the electron data were considered and partially accounted for. Field strength calculations were performed with an extrapolated model on the basis of linear secular variation predictions. Tabular maps for selected electron and proton energies were constructed as functions of latitude and longitude for specified altitudes. Orbital flux integration results are presented in graphical and tabular form; they are analyzed, explained, and discussed.

  16. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  17. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  18. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGES

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  19. Intramolecular ketene-allene cycloadditions.

    PubMed

    McCaleb, K L; Halcomb, R L

    2000-08-24

    [reaction: see text]This report describes intramolecular thermal [2 + 2] cycloadditions between ketenes and allenes. The formation of ketenes and the subsequent cycloadditions occurred under a variety of conditions, affording 7-methylidinebicyclo[3.2.0]heptanones and 7-methylidinebicyclo[3.1.1]heptanones in 45-78% yields. The regioselectivity of the cycloaddition varied with the substitution of the allene, and the yield of cyclized products varied with reaction conditions.

  20. Orion GNC Mitigation Efforts for Van Allen Radiation

    NASA Technical Reports Server (NTRS)

    King, Ellis T.; Jackson, Mark

    2013-01-01

    The Orion Crew Module (CM) is NASA's next generation manned space vehicle, scheduled to return humans to lunar orbit in the coming decade. The Orion avionics and GN&C architectures have progressed through a number of project phases and are nearing completion of a major milestone. The first unmanned test mission, dubbed "Exploration Flight Test One" (EFT-1) is scheduled to launch from NASA Kennedy Space Center late next year and provides the first integrated test of all the vehicle systems, avionics and software. The EFT-1 mission will be an unmanned test flight that includes a high speed re-entry from an elliptical orbit, which will be launched on an expendable launch vehicle (ELV). The ELV will place CM and the ELV upper stage into a low Earth orbit (LEO) for one revolution. After the first LEO, the ELV upper stage will re-ignite and place the combined upper stage/CM into an elliptical orbit whose perigee results in a high energy entry to test CM response in a relatively high velocity, high heating environment. While not producing entry velocities as high as those experienced in returning from a lunar orbit, the trajectory was chosen to provide higher stresses on the thermal protection and guided entry systems, as compared against a lower energy LEO entry. However the required entry geometry with constraints on inclination and landing site result in a trajectory that lingers for many hours in the Van Allen radiation belts. This exposes the vehicle and avionics to much higher levels of high energy proton radiation than a typical LEO or lunar trajectory would encounter. As a result, Van Allen radiation poses a significant risk to the Orion avionics system, and particularly the Flight Control Module (FCM) computers that house the GN&C flight software. The measures taken by the Orion GN&C, Flight Software and Avionics teams to mitigate the risks associated with the Van Allen radiation on EFT-1 are covered in the paper. Background on the Orion avionics subsystem is

  1. Radiation Belts of Antiparticles in Planetary Magnetospheres

    NASA Astrophysics Data System (ADS)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  2. CubeSat-Associated Radiation Belt Research: Recent and Upcoming Observations

    NASA Astrophysics Data System (ADS)

    Blum, Lauren; Li, Xinlin; Schiller, Quintin

    2016-07-01

    Interest in CubeSats has grown dramatically in the past decade within the space physics community. While CubeSats are generally accepted now to be useful tools for education and technology development/demonstration, their ability to provide scientific value is often still questioned. Radiation belt physics, however, is one area in which the scientific utility of these small platforms has been demonstrated and continues to offer great promise. The Colorado Student Space Weather Experiment (CSSWE) CubeSat, designed, built, tested, and operated by students at University of Colorado with mentoring from LASP professionals, was one of the first of now a long line of CubeSats designed to study radiation belt dynamics. Launched in September 2012, just a few weeks after NASA's Van Allen Probes, CSSWE provided valuable measurements of energetic electrons and protons from low-Earth orbit for two years, well beyond its nominal 3-month mission lifetime. The status of and results from CSSWE will be presented, with an emphasis on how these measurements have been combined with those from balloons and larger satellite missions to better understand radiation belt electron acceleration and loss processes. Some highlights from other radiation belt-related CubeSats will also be presented, along with upcoming missions. Radiation belt studies are a prime example of how small inexpensive CubeSats can be used to provide valuable scientific measurements and complement larger missions.

  3. Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Wygant, J. R.; Kletzing, C. A.; Lessard, M. R.; Huang, C.-L.; Spence, H. E.; Smith, C. W.; Singer, H. J.; Omura, Y.; Horne, R. B.; Reeves, G. D.; Baker, D. N.; Gkioulidou, M.; Oksavik, K.; Mann, I. R.; Raita, T.; Shiokawa, K.

    2015-07-01

    Although most studies of the effects of electromagnetic ion cyclotron (EMIC) waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on 23 February 2014 that extended over 8 h in UT and over 12 h in local time, stimulated by a gradual 4 h rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 h at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern foot point of the Van Allen Probes observed 30-80 keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event.

  4. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  5. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  6. Obituary: James Alfred Van Allen, 1914-2006

    NASA Astrophysics Data System (ADS)

    Ludwig, George H.; McIlwain, Carl Edwin

    2006-12-01

    successful field expeditions from 1952 through 1957. As the prospect for launching Earth satellites began to materialize, Van Allen became an enthusiastic participant in planning and executing the U.S. program. After gaining a spot on the short list of initial experiments for the Vanguard satellite program, development of the cosmic ray instrument that he had proposed became a high laboratory priority. That instrument was launched in abbreviated form by an Army Jupiter C vehicle as Explorer I on 31 January 1958, and the full version was launched less than two months later as Explorer III. The two satellites resulted in what Van Allen considered the crowning event of his long and distinguished career — the discovery, with his university associates, of the bands of intense radiation that surround the Earth, now known as the "Van Allen Radiation Belts." Van Allen continued to take a leading role in extending space research beyond Earth's orbit. His group sent instruments to the Moon, Venus, Mars, Jupiter, Saturn, and throughout interplanetary space. During his outstandingly productive career, Van Allen served as principal investigator on more than twenty-five space science missions. James Van Allen was the consummate teacher and mentor. Years ago, when asked how he would most like to be remembered, he replied simply, "As a teacher." He supervised the preparation of forty-eight master's and thirty-four doctor's theses by sixty different individuals. He gave those graduate students extraordinary freedom and responsibility in the conduct of their projects. He always treated his students, both undergraduate and graduate, with respect, listening to them, learning from them, and guiding them with wisdom and kindness. The folksy, pipe-smoking scientist worked from 1951 until 1964 in a modest office on the second floor of the old Physics and Mathematics building. He maintained his own private laboratory, where he continued to spend many hours with hands-on work at the bench. When the

  7. Observations of Whistler-Mode Chorus with Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Kurth, William; Hospodarsky, George; Santolik, Ondrej; Kletzing, Craig; Bounds, Scott

    2014-10-01

    The Van Allen Probes mission provides an excellent opportunity to observe whistler-mode chorus and its role in the radiation belts. The plasma wave instrument on the two probes, called Waves, includes six identical waveform receivers covering the frequency range from 10 Hz to 12 kHz. The instrument measures three orthogonal magnetic field components and three orthogonal electric field components of waves. This complement supports wave-normal and Poynting flux analyses of chorus as well as other wave modes that interact with radiation belt particles. Extensive use of burst modes provides multicomponent waveforms enabling the study of individual chorus elements, including their substructure. The early-mission publications confirm the importance of chorus to the local acceleration of electrons in the outer radiation belts. The orbital precession of the twin Van Allen Probes through a complete range of local times now allows for a new survey of the distribution of chorus emissions. Hence, we now have the tools to study chorus from the nonlinear growth in chorus element substructures through synoptic studies of the near-equatorial occurrence of chorus out to a distance of approximately 5.8 Earth radii.

  8. Dynamics of high-energy protons in the inner radiation belt during the 24th solar cycle on the data of the ARINA and VSPLESK low-orbit experiments.

    NASA Astrophysics Data System (ADS)

    Aleksandrin, Sergey; Mayorova, Marina; Koldashov, Sergey; Galper, Arkady; Zharaspayev, Temir

    2016-07-01

    Results of analysis of the inner radiation belt proton fluxes obtained in ARINA and VSPLESK satellite experiments are presented in this report The ARINA experiment is carried out on board the Russian low-orbit spacecraft Resurs-DK1 (altitude ˜600 km, inclination 70°, since 2006 till 2016). The VSPLESK experiment was fulfilled on board the International Space Station (altitude ~400 km, inclination 52°, since 2008 till 2013). The instruments register high-energy electrons and protons with energy range 3-30 MeV for electrons and 30-100 MeV for protons. The spectrometers allow measuring the particle energy with resolution 10% and angular resolution 7°. In this work the distribution of proton flux in the inner radiation belt (1.15proton intensity depends on the solar cycle phase (the minimum intensity value is in the solar maximum and vice versa) and varies 2-7 times for different L-shells.

  9. ACE EPAM and Van Allen Probes RBSPICE measurements of interplanetary oxygen injection to the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Patterson, J. D.; Manweiler, J. W.; Gerrard, A. J.; Lanzerotti, L. J.

    2015-12-01

    On March 17, 2015, a significant oxygen-rich interplanetary event was measure by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument. At the same time the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument recorded significant enhancements of oxygen in the inner magnetosphere. We present a detailed analysis of this event utilizing a new method of exploiting the EPAM Pulse Height Analyzer (PHA) data to precisely resolve helium and oxygen spectra within the 0.5 to 5 MeV/nuc range. We also present the flux, partial particle pressures, and pitch angle distributions of the ion measurements from RBSPICE. During this event, both EPAM and RBSPICE measured O:He ratios greater than 10:1. The pitch angle distributions from RBSPICE-B show a strong beam of oxygen at an L ~ 5.8 early on March 17th during orbit. The timing between the observations of the oxygen peak at ACE and the beam observed at RBSPICE-B is consistent with the travel-time required for energetic particle transport from L1 to Earth and access to the magnetosphere. We assert that the oxygen seen by RBSPICE during the initial phase of this event is the result of direct injection from the interplanetary medium of energetic ions. This poster contains the observations and detailed calculations to support this assertion.

  10. Van Allen Probes observations of EMIC events triggered by solar wind dynamic pressure enhancements

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Cho, J.; Roh, S. J.; Shin, D. K.; Hwang, J.; Kim, K. C.; Choi, C.; Kletzing, C.; Wygant, J. R.; Thaller, S. A.; Larsen, B.; Skoug, R. M.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves are one of the key plasma waves that can affect charged particle dynamics in the Earth's inner magnetosphere. One of the generation mechanisms of EMIC waves has long been known to be due to magnetospheric compression due to impact by enhanced solar wind dynamic pressure Pdyn. With the Van Allen Probes observations, we have identified 4 EMIC wave events that are triggered by Pdyn enhancements under northward IMF, prolonged quiet time conditions. We find the following features of the EMIC events. (1) They are triggered immediately at the Pdyn impact and remain active during the same period as the enhanced Pdyn duration. (2) They occur in either H band or He band or both. (3) Two events occur inside the plasmasphere and the other two outside the plasmasphere. (4) The wave polarization, either R or L, are highly elliptical, being close to be linear. (5) The wave normal angles are quite large, well away from being field-aligned. (6) About 10 - 50 keV proton fluxes indicate enhanced flux state with ~90 deg-peaked anisotropy in velocity distribution after the Pdyn impact. (7) From low altitude NOAA POES satellite observations of particles we find no obvious evidence for relativistic electron precipitation due to these Pdyn-triggered EMIC events. We will discuss implications of these observations on wave generation mechanism and interaction with radiation belt electrons.

  11. The Van Allen Probes first year of discovery and understanding (Invited)

    NASA Astrophysics Data System (ADS)

    Mauk, B.; Fox, N. J.; Sibeck, D. G.; Kanekal, S. G.; Kessel, R.

    2013-12-01

    The Van Allen Probes twin spacecraft were launched on 30 August 2012 and inserted into nearly identical, 1.1 x 5.8 RE elliptical, low inclination (10°), 9-hour period Earth orbits with one of the two spacecraft lapping the other about every 2.5 months. The discoveries and understandings achieved by the Van Allen Probes science investigations since the operational mission began on 1 November 2012 are all that we had hoped. The probes are discovering new and unanticipated behaviors of the radiation belts, for example coherently ordered multiple structures, and are revealing quantitatively how and why those behaviors occur. The probes are answering definitely outstanding important questions regarding Earth's inner magnetosphere, for example, the extent to which and the processes by which local acceleration contributes to creation of the belts. With its close 2-month coordination with the BARREL mission of opportunity array of Antarctic balloons, the Probes are contributing greatly to our understanding of the causes of radiation belt loss and the relationship between high and low altitude radiation belt phenomena. In this overview presentation we assess the discoveries and findings of the Van Allen Probes mission following its first year of operation, and provide a guide to the activities and achievements anticipated over the next year.

  12. "Inner electron" radiation belt: problems of model creation

    NASA Astrophysics Data System (ADS)

    Temnyi, V.

    The contents of intensive fluxes of trapped electrons J_e with energies E_e>40 keV in center of the inner terrestrial radiation belt is remains uncertain in model Vette AE-8, 1991. It is explained by methodical difficulties of discrete measurements of electrons by narrow-angle spectrometers with background from omnidirectional penetrating protons with energies E_p>40 MeV and electrons with E_e>1 MeV after STARFISH burst. The results of integral measurements of trapped electrons by 2 groups: Krassovsky V.I. on III Soviet satellite (May 1958) and J. Van Allen on EXPLORER-IV (July-August 1958) and on INJUN-1 (1961) heave given a performances concerning electron energy fluxes I_e(E_e>20 keV) ˜ (20-100) erg cm-2 c-1 into inner radiation belt. Improved integral measurements of electrons by Krassovsky group on satellites KOSMOS-3,-5 and ELECTRON-1,-3 (1962-1964) allow to determine the distributions of their intensities in the whole inner belt. They can add the central part of inner belt of AE-8 model (see report Bolunova et al., COSPAR-1965, publ. in SPACE RESEARCH VI, 1967, p. 649-661). From these data a maximum of trapped electrons J_e(E_e>40 keV)=2\\cdot10^9 cm-2 c-1 is placed on L=1,6, B/B_0=1. Intensities up to 2\\cdot10^7 cm-2 c-1 are determined only by coordinates (L, B). For smaller intensities become essential dependence from longitude along a drift shell. So, in the center of the inner radiation belt the energy fluxes I_e(E_e>40 keV) reach 500 erg cm-2 c-1 and density n_e=0,2 cm-3 while for trapped protons I_p(E_p>40 MeV) is less than 3 erg cm-2 c-1 and n_p< 5\\cdot10-6 cm-3. It forces to search a more powerful sources trapped electron than beta-decay of neutrons albedo of cosmic rays.

  13. Recent Advances in the Reactions of 1,2-Allenic Ketones and α-Allenic Alcohols.

    PubMed

    Fan, Xuesen; He, Yan; Zhang, Xinying

    2016-06-01

    This Personal Account summarizes our recent efforts in searching for novel synthetic strategies for a number of organic molecules by using allene derivatives as valuable substrates. It starts with a concise description of the background of allene-related synthetic chemistry. The second part deals with the reactions of 1,2-allenic ketones, including the reactions of 1,2-allenic ketones with various nucleophiles to afford functionalized benzenes, heterocycles, and fluoroenones, and those of allenic ketones as nucleophiles under the promotion of bases to provide 1,3,4'-triones or functionalized furans. The third part of this account focuses on the reactions of α-allenic alcohols. In this section, multicomponent reactions involving α-allenic alcohols, and cascade reactions of α-allenic alcohols promoted by Brønsted acid or iodine, are presented. PMID:27230525

  14. Belt-driven conveyor belts

    SciTech Connect

    Not Available

    1984-01-01

    An intermediate belt drive system offers a number of advantages over conventional systems, including lower power requirements and the ability to use lower quality, cheaper, conveyor belts. The advantages of a correctly designed belt conveyor with end pulley drives are included.

  15. The Foundations of Radiation Belt Research

    NASA Astrophysics Data System (ADS)

    Ludwig, G. H.

    2008-12-01

    The United States undertook the launching of an artificial Earth satellite as part of its contribution to the International Geophysical Year. The Vanguard program was established to meet that commitment, and it developed a launch vehicle, ground station network, and suite of scientific payloads, including the cosmic ray experiment proposed by James A. Van Allen. Although Vanguard eventually exceeded all of its pre-stated goals, the preemptive launches of Sputniks I and II by the Soviets in October and November 1957 spurred the U.S. into a frenzy of activity, resulting in the launches of Explorers I and III in January and March of 1958. The data from those two satellites quickly revealed the lower boundary of an unexpected region of high intensity radiation trapped in the Earth's magnetic field. The original announcement in May 1958 stated that the radiation was probably composed of either protons or electrons, and that, if electrons, it was probably bremsstrahlung formed in the satellite shell. Immediately following that announcement, approval was received for what became Explorer IV, whose announced purpose was to follow up on the new discovery. Another reason for the satellite, unmentioned at the time, was its inclusion as a component of the highly classified Argos program, a covert military program to test whether the detonation of nuclear devices at high altitude would inject measurable numbers of charged particles into durable trajectories in the Earth's magnetic field. Our team at Iowa produced the satellites under the oversight of, and with assistance by, the Army Ballistic Missile Agency in Huntsville, and with the contributions of key hardware from several other government laboratories. The project was completed in the unbelievably short period of seventy-seven days from approval to launch. Launched into a higher-inclination orbit than the earlier Explorers, Explorer IV confirmed the discovery and greatly expanded our understanding of the natural

  16. Spacecraft-level verification of the Van Allen Probes' RF communication system

    NASA Astrophysics Data System (ADS)

    Crowne, M. J.; Srinivasan, D.; Royster, D.; Weaver, G.; Matlin, D.; Mosavi, N.

    This paper presents the verification process, lessons learned, and selected test results of the radio frequency (RF) communication system of the Van Allen Probes, formerly known as the Radiation Belt Storm Probes (RBSP). The Van Allen Probes mission is investigating the doughnut-shaped regions of space known as the Van Allen radiation belts where the Sun interacts with charged particles trapped in Earth's magnetic field. Understanding this dynamic area that surrounds our planet is important to improving our ability to design spacecraft and missions for reliability and astronaut safety. The Van Allen Probes mission features two nearly identical spacecraft designed, built, and operated by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) for the National Aeronautics and Space Administration (NASA). The RF communication system features the JHU/APL Frontier Radio. The Frontier Radio is a software-defined radio (SDR) designed for spaceborne communications, navigation, radio science, and sensor applications. This mission marks the first spaceflight usage of the Frontier Radio. RF ground support equipment (RF GSE) was developed using a ground station receiver similar to what will be used in flight and whose capabilities provided clarity into RF system performance that was previously not obtained until compatibility testing with the ground segments. The Van Allen Probes underwent EMC, acoustic, vibration, and thermal vacuum testing at the environmental test facilities at APL. During this time the RF communication system was rigorously tested to ensure optimal performance, including system-level testing down to threshold power levels. Compatibility tests were performed with the JHU/APL Satellite Communication Facility (SCF), the Universal Space Network (USN), and the Tracking and Data Relay Satellite System (TDRSS). Successful completion of this program as described in this paper validated the design of the system and demonstrated that it will be able to me

  17. Applications of radiation belt research

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2011-10-01

    When Arthur Clark and John Pierce proposed geosynchronous and low-Earth-orbiting (GEO and LEO) communications satellites, respectively, they did not envision that the environment in which their concepts would fly would be anything but benign. Discovery of the Van Allen radiation belts in 1958 fundamentally altered understanding of Earth's near-space environment and its impacts on technologies. Indeed, the first commercial telecommunications satellite, Telstar 1, in LEO, failed some 6 months after launch (10 July 1962) due to trapped radiation that had been enhanced from the Starfish Prime high-altitude nuclear test on the day prior to launch. Today radiation trapped in the geomagnetic field, as well as solar energetic particles that can access the magnetosphere, forms critical constraints on the design and operations of satellite systems. These considerations were important factors in the planning of the AGU Chapman Conference on radiation belts that was hosted in July 2011 by the Memorial University of Newfoundland in St. John's, Canada (see "Chapman Conference on Radiation Belts and the Inner Magnetosphere," page 4). The conference presentations, discussions, and hallway conversations illuminated current understanding of Earth's radiation belts and critical issues remaining. Certainly, fundamental understanding of radiation belt origins remains elusive. The relative roles of adiabatic processes, geomagnetic storm injections, and wave heating, among other considerations, are central topics of intense debate and of competing modeling regimes by numerous active groups.

  18. Water resources of Allen Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, approximately 29.2 million gallons per day (Mgal/d) of water were withdrawn in Allen Parish, Louisiana, including about 26.8 Mgal/d from groundwater sources and 2.45 Mgal/d from surface-water sources. Rice irrigation accounted for 74 percent (21.7 Mgal/d) of the total water withdrawn. Other categories of use included public supply, industrial, rural domestic, livestock, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish were greatest in 1960 (119 Mgal/d) and 1980 (98.7 Mgal/d). The substantial decrease in surface-water use between 1960 and 1965 is primarily attributable to rice-irrigation withdrawals declining from 61.2 to 6.74 Mgal/d. This fact sheet summarizes information on the water resources of Allen Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  19. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  20. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    SciTech Connect

    Woods, D.H.; Hardy, K.A.; Cox, A.B.; Salmon, Y.L.; Yochmowitz, M.G.; Cordts, R.E. )

    1989-05-15

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  1. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    NASA Astrophysics Data System (ADS)

    Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.

    1989-05-01

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  2. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  3. Low-harmonic magnetosonic waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Posch, J. L.; Engebretson, M. J.; Olson, C. N.; Thaller, S. A.; Breneman, A. W.; Wygant, J. R.; Boardsen, S. A.; Kletzing, C. A.; Smith, C. W.; Reeves, G. D.

    2015-08-01

    Purely compressional electromagnetic waves (fast magnetosonic waves), generated at multiple harmonics of the local proton gyrofrequency, have been observed by various types of satellite instruments (fluxgate and search coil magnetometers and electric field sensors), but most recent studies have used data from search coil sensors, and many have been restricted to high harmonics. We report here on a survey of low-harmonic waves, based on electric and magnetic field data from the Electric Fields and Waves double probe and Electric and Magnetic Field Instrument Suite and Integrated Science fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first full precession through all local times, from 1 October 2012 to 13 July 2014. These waves were observed both inside and outside the plasmapause (PP), at L shells from 2.4 to ~6 (the spacecraft apogee), and in regions with plasma number densities ranging from 10 to >1000 cm-3. Consistent with earlier studies, wave occurrence was sharply peaked near the magnetic equator. Waves appeared at all local times but were more common from noon to dusk, and often occurred within 3 h after substorm injections. Outside the PP occurrence maximized broadly across noon, and inside the PP occurrence maximized in the dusk sector, in an extended plasmasphere. We confirm recent ray-tracing studies showing wave refraction and/or reflection at PP-like boundaries. Comparison with waveform receiver data indicates that in some cases these low-harmonic magnetosonic wave events occurred independently of higher-harmonic waves; this indicates the importance of including this population in future studies of radiation belt dynamics.

  4. Phosphine Catalysis of Allenes with Electrophiles

    PubMed Central

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-01-01

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles. PMID:24663290

  5. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Zhou, Q.; He, Y.; Yang, C.; Liu, S.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.

    2015-12-01

    During the small storm on 14-15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along their orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate towards lower L-shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. Then they gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with aid of the continuous proton ring distributions during weak geomagnetic activities.

  6. Van Allen Discovery Most Important

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1959-01-01

    The first step toward the exploration of space occurred approximately 22 months ago as a part of the International Geophysical Year. In the short interval since October, 1957, the new tools of research, the satellite and the space rocket, have produced two unexpected results of fundamental scientific importance. First, instruments placed in the Explorer satellites by James A. Van Allen have revealed the existence of layers of energetic particles in the outer atmosphere. This discovery constitutes the most significant research achievement of the IGY satellite program. The layers may provide the explanation for the aurora and other geophysical phenomena, and they will also influence the design of vehicles for manned space flight, whose occupants must be shielded against their harmful biological effects. Second, the shape of the earth has been determined very accurately with the aid of data from the first Vanguard. As a result of this investigation, we have found that our planet tends toward the shape of a pear, with its stem at the North Pole. This discovery may produce major changes in our ideas on the interior structure of the earth.

  7. Looking Forward to Cassini's Proximal Orbits: the Innermost Radiation Belt of Saturn

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Hedman, M. M.; Edgington, S. G.; Sittler, E. C.; Hartle, R. E.; Johnson, R. E.; Sturner, S. J.; Cassini Proximal Hazard Working Group

    2013-10-01

    The Cassini mission to Saturn will conclude with over twenty flybys of the equatorial gap region between Saturn's upper atmosphere and the inner D ring. This region at 62,000 - 65,000 kilometers from the center of Saturn is of comparable width to the inner Van Allen radiation belt of Earth and could contain Saturn's innermost belt of presently uncertain intensity and impact on the Cassini spacecraft. As first proposed by Cooper [BAAS 40(3), 460, 2008] this innermost belt could be populated to potentially very high intensities by protons and electrons from cosmic ray albedo neutron decay. The primary neutron source at high energies above 10 MeV would be from galactic cosmic ray interactions with the main rings of Saturn, but more recent work suggests a secondary source at lower energies from similar interactions with Saturn's upper atmosphere. At keV energies a third source from magnetospheric energetic neutral atom interactions with the exospheric gas extending through the gap region could be effective as observed earlier by Cassini. A fourth source includes eV - keV ions from low-energy neutral atom ejection out of the ring atmosphere. Ions from the ring ionosphere were also observed by Cassini. Since trapping lifetimes of keV - GeV protons due to radial diffusion in the gap region are projected to be extremely long, correspondingly high intensities could arise unless there was sufficient exospheric gas and ring material to reduce lifetimes far below the diffusion limit. Limits from new modeling are presented for the potential range of trapped particle intensities at MeV - GeV energies. Apart from the potential radiation and other hazards, this first exploration of the gap region will provide a fascinating conclusion to the Cassini mission.

  8. Convection Electric Field Observations by THEMIS and the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Califf, S.; Li, X.; Bonnell, J. W.; Wygant, J. R.; Malaspina, D.; Hartinger, M.; Thaller, S. A.

    2013-12-01

    We present direct electric field measurements made by THEMIS and the Van Allen Probes in the inner magnetosphere, focusing on the large-scale, near-DC convection electric field. The convection electric field drives plasma Earthward from the tail into the inner magnetosphere, playing a critical role in forming the ring current. Although it is normally shielded deep inside the magnetosphere, during storm times this large-scale electric field can penetrate to low L values (L < 3), eroding the plasmasphere and also providing a mechanism for ~100 keV electron injection into the slot region and inner radiation belt. The relationship of the convection electric field with the plasmasphere is also important for understanding the dynamic outer radiation belt, as the plasmapause boundary has been strongly correlated with the dynamic variation of the outer radiation belt electrons.

  9. New Insight Into the Nightside Magnetosphere Ion Plasma Regimes With the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Jahn, J.; Goldstein, J.; Reeves, G. D.; Spence, H.; Skoug, R. M.; Funsten, H. O.

    2013-12-01

    The recent successful launch of the twin Van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting Van Allen spacecraft are returning clean, high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both Van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we present initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focusing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere. We detect frequent occurrences of multiple peak energy distributions in this energy range occurring in ring current, plasmasphere and plasma sheet. We observe distinct differences between the three ion species in these spectra. Energy spectra with 5 peaks for a single species have been observed repeatedly. We discuss possible explanations for these observations, and possible ramifications for the evolution of the outer radiation belt.

  10. Storm- Time Dynamics of Ring Current Protons: Implications for the Long-Term Energy Budget in the Inner Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.

    2015-12-01

    The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (< 80 keV) is governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.

  11. Radiation Belt Analysis and Modeling

    NASA Astrophysics Data System (ADS)

    Bass, J. N.; Dasgupta, U.; Hein, C. A.; Griffin, J. M.; Reynolds, D. S.

    1995-04-01

    Efforts have been conducted in modeling of radiation belts, and cosmic radiation, principally in connection with the CRRES mission. Statistical studies of solar particle events have been conducted in a search for predictors of the occurrence of geomagnetic storms. Certain spectral and temporal properties of protons and electrons were found to correlate with the occurrence of storms. Comparative studies of solar proton fluxes observed at locations inside (using CRRES and GOES-7) and outside (using INP-8) the inner magnetosphere were performed in an attempt to measure penetration of solar protons to various L shells as functions of time during a proton event and the subsequent magnetic storm. The failure to observe large increases in proton fluxes at the sudden commencement of the great magnetic storm of March, 1991, indicates a magnetospheric process was involved. An attempt was made to model the acceleration of radiation belt protons by magnetospheric compression during this event. The access of Helium into the inner magnetosphere was studied during this event. Modeling of instrument contamination and dosage were performed to enhance interpretation of measurements by the Proton Telescope and the Space Radiation Dosimeter. Support software packages developed include a science summary data base, a data processing system for the microelectronics package, and software to analyze measurements by the Low Energy Plasma Analyzer to produce a three dimensional plasma distribution function.

  12. Van Allen Probe Spacecraft Potential Fluctuations and Electromagnetic Waves: A Parameter Space Survey

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Ergun, R.; Malaspina, D.

    2013-12-01

    The study of chorus waves, an important mechanism for the energization and loss of particles in the radiation belts and inner magnetosphere, has been significantly aided by observations of fluctuations in a spacecraft's potential, which have been shown to be correlated with plasma density structures. However, recent analysis of Van Allen Probe data suggests that the oscillatory electromagnetic fields of chorus waves may also induce spacecraft potential fluctuations via enhanced photoelectron escape, calling into question our understanding of chorus waves. We use a fully 3D particle tracing simulation to study the equilibrium potential of a model Van Allen Probe spacecraft under various plasma conditions, varying thermal temperature, electric and magnetic field strength, plasma density, etc., to better understand the parameter space under which enhanced photoelectron escape becomes important.

  13. Electrophilic addition and cyclization reactions of allenes.

    PubMed

    Ma, Shengming

    2009-10-20

    Modern organic synthesis depends on the development of highly selective methods for the efficient construction of potentially useful target molecules. A primary goal in our laboratory is the discovery of new reactions that convert readily available starting materials to complex products with complete control of regio- and stereoselectivity. Allenes are one underused moiety in organic synthesis, because these groups are often thought to be highly reactive. However, many compounds containing the allene group, including natural products and pharmaceuticals, are fairly stable. The chemistry of allenes has been shown to have significant potential in organic synthesis. Electrophilic additions to allenes have often been considered to be synthetically less attractive due to the lack of efficient control of the regio- and stereoselectivity. However, this Account describes electrophilic reactions of allenes with defined regio- and stereoselectivity developed in our laboratory. Many substituted allenes are readily available from propargylic alcohols. Our work has involved an exploration of the reactions of these allenes with many different electrophiles: the E- or Z-halo- or seleno-hydroxylations of allenyl sulfoxides, sulfones, phosphine oxides, carboxylates, sulfides or selenides, butenolides, and arenes, and the halo- or selenolactonization reactions of allenoic acids and allenoates. These reactions have produced a host of new compounds such as stereodefined allylic alcohols, ethers, amides, thiiranes, and lactones. In all these reactions, water acts as a reactant and plays an important role in determining the reaction pathway and the stereoselectivity. The differing electronic properties of the two C=C bonds in these allenes determine the regioselectivity of these reactions. Through mechanistic studies of chirality transfer, isolation and reactivity of cyclic intermediates, (18)O-labeling, and substituent effects, we discovered that the E-stereoselectivity of some

  14. NASA's RBSP-ECT Science Investigation of the Van Allen Probes Mission: Highlights of the Prime Mission Phase, Data Access Overview, and Opportunities to Collaborate in the Extended Mission Phase

    NASA Astrophysics Data System (ADS)

    Smith, S. S.; Friedel, R. H.; Larsen, B.; Reeves, G.; Spence, H. E.

    2015-12-01

    In this poster, we present a summary of access to the data products of the Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 2-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a summary of past publications, current studies, and opportunities for your future participation in RBSP-ECT extended mission phase science.

  15. Van Allen Probe Charging During the St. Patrick's Day Event

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Minow, J. I.

    2015-01-01

    The geomagnetic storms on and around March 17, 2015 marked the largest storms seen in the declining phase of the solar cycle to date. We use the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probe - A and B satellites to study in detail the charging effects seen on these spacecraft during this time. Ion particle flux data provides information on the magnitude of the charging events using the ion line charging signature due to low energy ions accelerated by the spacecraft potential. Electron flux observations are used to correlate the charging environment with variations in spacecraft potential through the event. We also investigate the density and temperature of ions and electrons during the time of the charging event.

  16. Preparation of allenic sulfones and allenes from the selenosulfonation of acetylenes

    SciTech Connect

    Back, T.G.; Krishna, M.V.; Muralidharan, K.R. )

    1989-08-18

    {beta}-(phenylseleno)vinyl sulfones 2 are readily obtained from the free-radical selenosulfonation of acetylenes. Compounds 2 isomerize to allyl sulfones 4 under base-catalyzed conditions in nearly quantitative yield, with high stereoselectivity favoring the Z configuration. Allyl sulfones 4 afford generally high yields of allenic sulfones 1 when subjected to oxidation with m-chloroperbenzoic acid or tert-butyl hydroperoxide, followed by selenoxide syn-elimination. The sulfone-stabilized anion intermediates in the isomerizations of 2 to 4 can be alkylated, deuterated, or silylated in the {alpha}-position prior to oxidation, providing allenic sulfones with an additional {alpha}-substituent. In some cases, spontaneous elimination of the phenylseleno group occurred, producing the allenic sulfone without the need for an oxidation step. Desulfonylation of allyl sulfones 4f, 4c, and 25 with sodium amalgam afforded vinyl selenides that were converted to allenes in moderate to good yields by oxidation-elimination. The copper-catalyzed coupling of allyl sulfones 4 with Grignard reagents comprises an alternative route to vinyl selenide precursors of allenes. These procedures permit the synthesis of various {alpha}- and {gamma}-substituted allenic sulfones and allenes from acetylenes.

  17. Mechanisms of allene stereoinversion by imidozirconium complexes.

    PubMed

    Michael, Forrest E; Duncan, Andrew P; Sweeney, Zachary K; Bergman, Robert G

    2003-06-18

    The zirconium-mediated stereoinversion of allenes has been investigated by studying the stereochemical behavior of metallacycles derived from [2 + 2] cycloaddition of enantioenriched allenes with chiral and achiral imidozirconocene complexes. Relative rates of metallacycle racemization were measured by circular dichroism, and intermediates in the selective stereoinversion of diphenylallene with a chiral imidozirconium complex were observed by NMR spectroscopy. Metallacycles derived from dialkylallenes are proposed to racemize via reversible beta-hydride elimination. Stereoinversion of diarylallene-derived metallacycles proceeds much more slowly and is thought to proceed through an eta4-azatrimethylenemethane transition state.

  18. Geomagnetic Storms and EMIC waves: Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yuan, Z.; Yu, X.; Deng, X.; Zhou, M.; Huang, S.; Li, H.

    2015-12-01

    EMIC waves are believed to play an important role in the dynamics of ring current ions and radiation belt electrons, especially during geomagnetic storms. But, in which phase of the storm do the EMIC waves occur more is still under debate. Ground and some low altitude satellite observations demonstrate that EMIC waves are observed more frequently during the recovery phase, rather than during the main phase. Halford et al. 2010 looked at the occurrences of EMIC waves during 119 storms occurring throughout the CRRES mission. They found that 49 of the 119 (41%) storms observed EMIC waves and the majority, 56.25%, of storm time EMIC waves occurring during the main phase, while 35.57% in the recovery phase. One shortcoming of the CRRES mission is that the apogee of it did not covered the dawn to noon sector during its life time. Therefore, some dayside EMIC waves caused by the compression of magnetosphere may not be included in Halford et al 2010, as they mentioned. The apogee of Van Allen Probes covered all the MLT sectors from their launch to April 2014. Utilizing the data from magnetometer instrument on board the Van Allen Probe A, Wang et al. 2015 studied the occurrence rate of H-band and He-band EMIC waves in different MLT sectors, and Yu et al 2015 reported the O-band EMIC wave observations. In this work, we analysis the occurrence of EMIC waves during storms. According to the criteria of storm in Halford et al. 2010, we find 76 storms in our interested period, 8 September 2012 to 30 April 2014, when the apogee of Van Allen Probe A covered all the MLT sectors. To identify the onset of geomagnetic storm more accurately, we corrected the Sym-H index referred to Zhao and Zong (2011), which is helpful to demonstrate the activity of ring current. 50 of the 76 storms (66%) observed 124 EMIC wave events, in which 80 (64.5%) EMIC wave events are found in the recovery phase, more than the EMIC wave events in the main phase (35, 28.2%). The remaining 9 (7.3%) EMIC wave

  19. EMIC Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Usanova, M.; Mann, I. R.; Drozdov, A.; Orlova, K.; Shprits, Y.; Darrouzet, F.; Ergun, R.

    2014-12-01

    Electromagnetic ion cyclotron (EMIC) waves are believed to be important for influencing the dynamics of energetic particles in the inner magnetosphere - both ring current ions and radiation belt electrons - causing particle precipitation into the atmosphere. EMIC waves are generated from unstable ion distributions as a result of ion temperature anisotropy, with the ion dynamics being modified self-consistently by the growth of the EMIC instability. EMIC waves are also thought to influence higher energy electrons in the Van Allen belts through a Doppler shifted cyclotron resonance, including changes in electron pitch-angle distributions and electron scattering loss into the atmosphere. We will present some of the latest results addressing EMIC wave distribution, solar wind and magnetospheric conditions favorable for their generation and their role in energetic particle loss in the inner magnetosphere. We will focus on results from recent satellite missions including THEMIS and Cluster, as well as some of the latest results from the Van Allen Probes. We will also highlight the value of data from networks of modern ground-based magnetometers in providing continuous monitoring over global scales, especially in conjunction with in-situ measurements from satellites. Such coordinated ground-satellite conjunction studies represent a powerful tool for understanding the self-consistent and cross-energy coupling in the inner magnetosphere between ring current ions and radiation belt electrons via the intermediary of EMIC waves.

  20. Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

    NASA Astrophysics Data System (ADS)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-08-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300-2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  1. Recent developments in allene-based synthetic methods.

    PubMed

    Kim, Hiyun; Williams, Lawrence J

    2008-11-01

    Presented is a review of the advances in synthetic methodology that make use of the allene functional group, with emphasis on catalytic asymmetric transformations and new mechanistic insights. The review covers the period from January 2007 to May 2008 and focuses on intra- and intermolecular cycloaddition, carbocycle cycloisomerization, heterocycle synthesis, epoxidation, addition and miscellaneous transformations. A brief discussion of allenes as transition metal ligands, the use of allenes in total synthesis and potential medicinal agents that contain the allene functionality is also presented.

  2. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  3. Van Allen Probes Multipoint Measurements of the Spatial and Coherence Scales of EMIC Waves

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; Bonnell, J. W.; Agapitov, O. V.; Bortnik, J.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves are able to resonate with MeV electrons and cause precipitation loss of radiation belt electrons. EMIC waves can provide a strong source of electron pitch angle diffusion, but the waves are often quite localized - thus the spatial extents of these waves can have a large effect on their overall scattering efficiency. Using measurements from the Van Allen Probes, we characterize the spatial extents of EMIC wave active regions, and how these depend on local time, radial distance, and driver. As the separation between the spacecraft along the orbital track varies in time, with one spacecraft lapping the other every ~70 days, we can determine the correlation between EMIC wave measurements at varying spacecraft separations. During individual events at close approaches (Jan 17 2013, for example - see attached figure), analysis of the detailed wave properties and coherence is performed. These studies provide important information on parameters relevant for determining resonance of EMIC waves with radiation belt electrons.

  4. Systematic conveyor belt cleaning

    SciTech Connect

    Rappen, A.

    1984-01-01

    The currently available conveyor belt cleaning devices are enumerated. Recent investigations have confirmed the belt scraping devices based on intermittent linear contact by means of individually adjustable and spring-loaded scraper blades, usually of metallic construction as the most advanced type of belt cleaner. The system also allows application on reversing belts. Criteria are presented for assessing the performance of a belt cleaner.

  5. New Insight into the Inner Magnetosphere Plasma Regimes with the van Allen Probes (RBSP)

    NASA Astrophysics Data System (ADS)

    Jahn, Joerg-Micha; Denton, Richard E.; Funsten, Herbert O.; Reeves, Geoff; Spence, Harlan E.

    2013-04-01

    The recent successful launch of the twin van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting van Allen spacecraft are returning clean high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we are presenting initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focussing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results do not only indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere, they also show frequent occurrences of multiple peak energy distributions in this energy range. Multi-peaked energy distributions with several peaks occurring in ring current, plasmasphere and (less often) plasma sheet are frequently observed, with distinct differences between the three ion species. Energy spectra with 5-6 peaks for a single species have been observed repeatedly.

  6. H. Julian Allen with Blunt Body Theory

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  7. Jupiters radiation belts and their effects on spacecraft

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Divita, E. L.; Gigas, G.

    1974-01-01

    The effects of electron and proton radiation on spacecraft which will operate in the trapped radiation belts of the planet Jupiter are described, and the techniques and results of the testing and simulation used in the radiation effects program are discussed. Available data from the Pioneer 10 encounter of Jupiter are compared with pre-encounter models of the Jupiter radiation belts. The implications that the measured Jovian radiation belts have for future missions are considered.

  8. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1982-09-24

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  9. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1985-07-02

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making laterial turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rolles which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  10. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  11. Maximal tractable subclasses of Allen`s interval algebra: Preliminary report

    SciTech Connect

    Drakengren, T.; Jonsson, P.

    1996-12-31

    This paper continues Nebel and Burckert`s investigation of Allen`s interval algebra by presenting nine more maximal tractable subclasses of the algebra (provided that P {ne} NP), in addition to their previously reported ORD-Horn subclass. Furthermore, twelve tractable subclasses are identified, whose maximality is riot decided. Four of these can express the notion of sequentiality between intervals, which is not possible in the ORD-Horn algebra. The satisfiability algorithm, which is common for all the algebras, is shown to be linear.

  12. Cross-coupling/cyclization reactions of two different allenic moieties.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Martínez del Campo, Teresa

    2010-05-25

    The allene moiety represents an excellent building block for allene cross-coupling cyclization reactions, affording heterocyclic skeletons in a single step. This strategy is of particular interest when two different allene derivatives are involved in a series of metal-catalyzed cross-coupling heterocyclization processes. This Concept article is focused on the Pd-catalyzed union of two different allenic moieties, with cyclization of at least one of them by intramolecular cyclometalation. These new, versatile, and highly effective transformations are complex multistep processes leading to potential privileged structures that could find wide applications in related medicinal chemistry.

  13. 5. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 ICONOSTASIS AND CHANDELIER - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  14. 4. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 SANCTUARY FROM ENTRANCE - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  15. Multi-Spacecraft Data Assimilation and Reanalysis During the THEMIS and Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.

    2013-12-01

    consideration of the innovation vector may lead to a new physical understanding of the radiation belt system, which can later be used to improve our model forecasts. In the current study, we explore the radiation belt dynamics of the current era including data from the THEMIS, Van Allen Probes, GPS satellites, Akebono, NOAA and Cluster spacecraft. Intercalibration is performed between spacecraft on an individual energy channel basis, and in invariant coordinates. The global reanalysis allows an unprecedented analysis of the source-acceleration-transport-loss relationship in Earth's radiation belts. This analysis is used to refine our model capabilities, and to prepare the 3-D reanalysis for real-time data. The global 3-D reanalysis is an important step towards full-scale modeling and operational forecasting of this dynamic region of space.

  16. Using orbital tethers to remediate geomagnetic radiation belts

    NASA Astrophysics Data System (ADS)

    Hudoba de Badyn, Mathias; Marchand, Richard; Sydora, Richard D.

    2016-02-01

    The Van Allen radiation belts pose a hazard to spacecraft and astronauts, and similar radiation belts around other planets pose a hazard to interplanetary probes. We discuss a method of remediating these radiation belts first proposed by Danilov and Vasilyev, and recently improved by Hoyt, Minor, and Cash, where a long, charged tether is placed in orbit inside a radiation belt. In this approach, an electric field of the tether scatters the belt particles into a pitch angle loss cone leading to absorption of the particles in the atmosphere. A test particle calculation is presented which computes the scattered pitch angle of belt particles as a function of initial pitch angle and gyrophase for different particle energies. The moments of the resulting distribution of scattered angle versus initial pitch angle are used to compute the number density of the belt as a function of time using a Fokker-Planck diffusion approximation. Finally, we use the characteristic timescales of scattering for particles of different energies to discuss the feasibility of using such a system of tethers as a long and short-term remediation solution.

  17. Radiation Belt Storm Probes—Observatory and Environments

    NASA Astrophysics Data System (ADS)

    Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce

    2013-11-01

    The National Aeronautics and Space Administration's (NASA's) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA's Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth's environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10∘ inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

  18. Belt attachment and system

    DOEpatents

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  19. 33 CFR 165.T08-0432 - Safety Zone; Waterway Closure, Morgan City-Port Allen Route from Mile Marker 0 to Port Allen Lock.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone; Waterway Closure, Morgan City-Port Allen Route from Mile Marker 0 to Port Allen Lock. 165.T08-0432 Section 165.T08-0432...-Port Allen Route from Mile Marker 0 to Port Allen Lock. (a) Location. Waters of the Gulf...

  20. SETI Surveys on the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Kilsdonk, T. N.; ATA Team

    2009-01-01

    The Allen Telescope Array (ATA-42) is a centimeter-wave array of 42 six-meter dishes that allows simultaneous SETI and other radio astronomy projects. In this paper we report on initial SETI observations using several observation and RFI mitigation strategies. We conducted both "targeted” observations of selected stars and "sky survey” observations of areas of the sky. Some observations were done with the SETI project directing the pointing of the array and others were "commensal,” in a direction selected by another project. In both modes, SETI observations used an independent RF tuning and two synthesized beams pointing at stars or positions in the field of view and tuned to the same frequency band. Results of the two SETI observations were compared and used to excise interference. In some observations, each beam had a null positioned at the center of the other beam. In the long term, we plan to observe one million target stars and survey large sections of the galactic plane over the frequency range from 1 GHz to 10 GHz. Much of this work may be done in parallel with other large-scale surveys. The first phase of the ATA was funded through generous grants from the Paul G. Allen Family Foundation. UC Berkeley, the SETI Institute, the National Science Foundation (Grant No. 0540599), Sun Microsystems, Xilinx, Nathan Myhrvold, Greg Papadopoulos, and other corporations and individual donors contributed additional funding.

  1. Macular pseudohaemorrhage secondary to Allen Dot artefact.

    PubMed

    Michaels, Luke; Alexander, Philip; Newsom, Richard

    2015-01-01

    A 34-year-old highly myopic (-11.00 D) woman presented to eye clinic with a 3 day history of right eye paracentral blurring. Visual acuities were 6/6 bilaterally. Clinical examination was normal. Fundus photography showed the classic appearance of a macular haemorrhage. This is a recognised complication of high myopia and would have accounted for the patient's symptoms. However, further photography showed that the haemorrhage seemed to 'jump' around the fundus and was even present in the fellow eye. The apparent haemorrhage was revealed to be an imaging artefact. The 'Allen Dot' is a 6 mm black mask incorporated into retinal cameras to reduce reflection. Rarely, in highly myopic eyes, optical artefact can result. To the best of our knowledge, we are the first in the literature to report artefacts from the Allen Dot masquerading as ophthalmic disease. This case re-iterates the importance of clinical examination, especially in high myopes, given the current trend towards virtual clinics. PMID:25564595

  2. Electron Radiation Belt Dropouts in the Absence of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Steinberg, J. T.; Turner, D. L.; Li, W.

    2015-12-01

    Most observational studies of electron radiation belt dropouts have presented losses occurring during geomagnetic storms. Some statistical analyses of flux dropouts have included non-storm time events, but examples of non-storm time dropouts are still rarities in the literature. A small, but growing, body of work has led to the current understanding that radiation belt dynamics are not always coupled with geomagnetic storms, and that a number of key features are associated with dropouts: solar wind dynamic pressure tends to be high; the interplanetary magnetic field tends to be southward. We present three case studies of dropouts that occurred under quiet geomagnetic conditions and examine the dynamics of the electron phase spece density, and flux, over a wide range of L using Van Allen Probes and other satellites. The solar wind driving each dropout is shown to have a different categorization, and we investigate the role of substorms in non-storm time radiation belt dynamics.

  3. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  4. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  5. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  6. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  7. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  8. Mission Specialist (MS) Allen experiments with beverage on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mission Specialist (MS) Allen, using beverage container and drinking straw, experiments with microgravity chararcteristics of orange juice on middeck in front of the Development Flight Instrument (DFI) unit and forward lockers. Allen laughes as he watches the results of his experimentation.

  9. Bi(OTf)3-catalyzed cycloisomerization of aryl-allenes.

    PubMed

    Lemière, Gilles; Cacciuttolo, Bastien; Belhassen, Emilie; Duñach, Elisabet

    2012-06-01

    Intramolecular hydroarylation of allenes was achieved under very mild conditions using bismuth(III) triflate as the catalyst. Efficient functionalization of activated and nonactivated aromatic nuclei led to C-C bond formation through a formal Ar-H activation. A tandem bis-hydroarylation of the allene moiety was also developed giving access to various interesting polycyclic structures. PMID:22578075

  10. Conveyor belt plow for ideal belt cleaning

    SciTech Connect

    Michaelsen, W.J.

    1982-05-01

    The accumulation of excess material around the return drum of a conveyor arises from an inefficient belt plow. The frequency with which this problem occurs would indicate a design problem rather than faulty installation or negligent maintenance. The reasons for the poor operation of the plow become obvious after applying basic physical principles. Simple and cheap improvements can be implemented to improve plow performance. To be effective, a plow should be installed either near the tail end, to protect the return drum, or ahead of the automatic belt tensioning device, to prevent spillage from falling onto the take-up pulley. In order to perform well, the scraping blade of the plow must be in continuous contact with the belt across its full width, having contact pressure as uniform as possible. It has been proven, though, that uniform contact pressure cannot be achieved under operating conditions with the standard arrangement shown in Figure 1. There are two solutions to this problem which can be carried out in most mine workshops and help reduce belt downtime. All too often an ineffective plow allows material to be needlessly trapped against the belt, causing excessive wear and, ultimately, tearing the belt. Even with highly experienced belt crews, a short stoppage in the main belt can have serious effects throughout the mine. An efficient plow means a cleaner running belt.

  11. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  12. Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.

    2015-08-01

    Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.

  13. Freeman Allen: Boston's pioneering physician anesthetist.

    PubMed

    Morris, Samuel D; Morris, Alina J; Rockoff, Mark A

    2014-11-01

    On October 16, 1846 dentist William T. G. Morton successfully demonstrated at the Massachusetts General Hospital that ether could prevent the pain of surgery. For decades afterwards, the administration of anesthesia in the United States was generally relegated to dentists, medical students, junior surgical trainees, or even nonmedical personnel. It was not until the end of the 19th century that a few pioneering physicians began devoting their careers to administering anesthesia to patients, studying ways to make it safer and more effective, and teaching others about its use. One of these individuals was Freeman Allen, who was appointed the first physician anesthetist to the medical staff at the Massachusetts General Hospital and several other major hospitals in Boston. We describe this remarkable man, his contributions to the early development of anesthesiology as a medical specialty, and the true cause of his untimely death. PMID:25329027

  14. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    PubMed Central

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  15. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  16. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    SciTech Connect

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  17. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; et al

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  18. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  19. Simultaneous Observation of Plasma Waves Detected by the Van Allen Probes Spacecraft During Close Spacecraft Separations

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George; Santolik, Ondrej; Averkamp, Terrance; Bounds, Scott; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John

    2014-05-01

    The twin Van Allen Probe spacecraft launched in August 2012 includes the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Wave instrument that simultaneously measures three orthogonal components of the wave magnetic field and, with the support of the Electric Fields and Waves (EFW) instrument sensors, three components of the wave electric field at two locations in Earth's magnetosphere. Measuring all six wave components simultaneously allows the wave propagation parameters, such as the wave normal angle and Poynting vector, of the plasma wave emissions to be obtained. The orbit of the spacecraft are designed such that they "lap" each other roughly every 69 days, allowing observations over a range of spacecraft separations, with the closest separations on the order of 100 km. Simultaneous measurements at a range of distances between the two spacecraft provide an opportunity to investigate the scale, size and propagation characteristics of a number of plasma wave emissions associated with the Van Allen radiation belts, including whistler mode chorus. We examine these characteristics of the emissions detected by both spacecraft during separation distance of < 1000 km. Very similar small scale chorus wave packets were detected by both spacecraft when separation distances were the smallest. The similarities and differences detected by both spacecraft and their relation to separation distances will be discussed.

  20. Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M. E.; Malaspina, D. M.; Jaynes, A. N.; Bruder, R. J.; Mann, I. R.; Wygant, J. R.; Ergun, R. E.

    2016-09-01

    Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

  1. Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James

    2016-07-01

    Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.

  2. Combined Effect of EMIC Waves and Magnetosonic Waves on Rapid Loss of MeV Electrons in Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Chen, L.; Xie, L.; Pu, Z.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves can cause rapid loss of relativistic electrons in the outer radiation belt by pitch angle scattering, especially for >2 MeV electrons. The rapid pitch angle scattering is limited to the low pitch angle electrons and cannot affect ~90 degree electrons. However, normal pitch angle distribution (PAD) of electron flux with peaks at 90 degree pitch angle is generally observed in the outer radiation belt. Magnetosonic (MS) waves in the outer radiation belt can scatter ~90 degree pitch angle electrons to lower pitch angles and lead to the formation of electron's butterfly PAD. This paper studies the combined effect of EMIC waves and MS waves on the loss of the outer belt relativistic electrons during a minor storm on 16 November 2013 by combining Van Allen Probe measurements with test particle simulations. During the pre-storm period strong MS waves were observed by Probe A. Meanwhile normal PAD of 2.1 MeV electrons was measured by relativistic electron and proton telescope (REPT) on Probe A. When Probe B orbit was passing through the same area during the storm main phase, MS waves still existed but with weak intensity, while strong EMIC wave with ~1 nT amplitude were observed. Butterfly pitch angle distribution of 2.1 MeV electrons was seen to be formed at L = ~5-6. Four hours later, stronger EMIC waves were measured by Probe A and the fluxes of 2.1 MeV electrons at L=~5-6 showed great losses at all pitch angle sectors. The computed pitch angle diffusion rates show that the MS waves can produce the observed butterfly pitch angle distributions (flux peaks at 50-60 degree) for 2.1 MeV electrons. This indicates that ~90 degree pitch angle electrons are scattered to lower pitch angle by MS waves to form the butterfly PAD, and the observed strong EMIC waves then can resonate effectively with these butterfly distributed electrons and cause the electron loss in ~hours. Therefore, we suggest that although MS waves themselves cannot

  3. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  4. The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Ukhorskiy, A. Y.; Mitchell, D. G.; Sotirelis, T.; Mauk, B. H.; Lanzerotti, L. J.

    2014-09-01

    Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on 17 March 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 - 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: (i) associated pressure enhancement, (ii) the time duration of this enhancement, and (iii) the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm time inner magnetosphere.

  5. NASA's Radiation Belt Storm Probe Mission

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2011-01-01

    NASA's Radiation Belt Storm Probe (RBSP) mission, comprising two identically-instrumented spacecraft, is scheduled for launch in May 2012. In addition to identifying and quantifying the processes responsible for energizing, transporting, and removing energetic particles from the Earth's Van Allen radiation, the mission will determine the characteristics of the ring current and its effect upon the magnetosphere as a whole. The distances separating the two RBSP spacecraft will vary as they move along their 1000 km altitude x 5.8 RE geocentric orbits in order to enable the spacecraft to separate spatial from temporal effects, measure gradients that help identify particle sources, and determine the spatial extent of a wide array of phenomena. This talk explores the scientific objectives of the mission and the manner by which the mission has been tailored to achieve them.

  6. 2. Historic American Buildings Survey Harold Allen, Photographer 24 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Harold Allen, Photographer 24 June 1964 HALL AND MAIN STAIR, LOOKING NORTHWEST FROM ENTRANCE VESTIBULE - Edward E. Ayer House, 2 East Banks Street, Chicago, Cook County, IL

  7. 10. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 DINING ROOM 1ST FLOOR (west wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  8. 9. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 NORTHEAST ROOM (1st floor south wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  9. 8. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 NORTHEAST ROOM (west wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  10. 6. Historic American Buildings Survey Harold Allen, Photographer June 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey Harold Allen, Photographer June 1964 STAINED GLASS WINDOW, WEST WINDOW IN SOUTH WALL, FROM BALCONY - Kehilath Anshe Ma'ariv Synagogue, 3301 South Indiana Avenue, Chicago, Cook County, IL

  11. 8. Historic American Buildings Survey Harold Allen, Photographer 24 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic American Buildings Survey Harold Allen, Photographer 24 June 1964 GRAND STAIRWAY, FROM SECOND FLOOR HALL, SHOWING STAINED GLASS WINDOW IN WEST WALL ABOVE LANDING - Francis J. Dewes House, 503 West Wrightwood Avenue, Chicago, Cook County, IL

  12. 3. Historic American Buildings Survey Harold Allen, Photographer 3 May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Harold Allen, Photographer 3 May 1965 ENTRANCE CANOPY FROM SOUTHWEST - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  13. 1. Historic American Buildings Survey Harold Allen, Photographer 31 May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Harold Allen, Photographer 31 May 1964 WEST (NORMAL AVE.) AND SOUTHEAST (CANALPORT AVE.) ELEVATIONS - Schoenhofen Brewing Company, Powerhouse, 1770 Canalport Avenue, Chicago, Cook County, IL

  14. Extreme enhancements and depletions of relativistic electrons in Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Claudepierre, S. G.; O'Brien, T. P., III; Fennell, J. F.; Blake, J. B.; Baker, D. N.; Jaynes, A. N.; Morley, S.; Geoffrey, R.

    2015-12-01

    Earth's electron radiation belts consist of toroidal zones in near-Earth space characterized by intense levels of relativistic electrons with distinct energy-dependent boundaries. It has been known for decades that the outer electron radiation belt is highly variable, with electron intensities varying by orders of magnitude on timescales ranging from minutes to years. Now, we are gaining much insight into the nature of this extreme variability thanks to the unprecedented number of observatories capable of measuring radiation belt electrons, the most recent of which is NASA's Van Allen Probes mission. In this presentation, we analyze and review several of the most extreme events observed in Earth's outer radiation belt. We begin with very sudden and strong enhancements of the outer radiation belt that can result in several orders of magnitude enhancements of electron intensities up to several MeV that sometimes occur in less than one day. We compare and contrast two of the most extreme cases of sudden and strong enhancements from the Van Allen Probes era, 08-09 October 2012 and 17-18 March 2015, and review evidence of the dominant acceleration mechanism in each event. Sudden enhancements of the radiation belts can also occur from injections by interplanetary shocks impacting the magnetosphere, such as occurred on 24 March 1991. We compare shock characteristics from previous injection events to those from the Van Allen Probes era to investigate why none of the interplanetary shocks since September 2012 have caused MeV electron injections into the slot region and inner radiation belt, which has surprisingly been devoid of measurable quantities of >~1 MeV electrons throughout the Van Allen Probes era. Our last topic concerns loss processes. We discuss drastic loss events, known as "flux dropouts", and present evidence that these loss events can eliminate the vast majority of relativistic electrons in the outer radiation belt on time scales of only a few hours. We

  15. Synthesis and biological evaluation of 12 allenic aromatic ethers.

    PubMed

    Wang, San-Yong; Mao, Wei-Wei; She, Zhi-Gang; Li, Chun-Rong; Yang, Ding-Qiao; Lin, Yong-Cheng; Fu, Li-Wu

    2007-05-15

    Twelve allenic aromatic ethers, some of them are natural products isolated from the mangrove fungus Xylaria sp. 2508 in the South China Sea, were synthesized. Their antitumor activities against KB and KBv200 cells were determined. All these compounds demonstrated cytotoxic potential, ranging from weak to strong activity. The analysis of structure-activity relationships suggested that the introduction of allenic moiety could generate or enhance cytotoxicity of these phenol compounds.

  16. Voices: A Conversation with Allen J. Wilcox.

    PubMed

    Jukic, Anne Marie Z

    2016-09-01

    Allen James Wilcox was born on 30 September 1946 in Columbus, OH. He studied medicine at the University of Michigan, graduated in 1973, and after a rotating internship, he completed a master's degree in maternal and child health (1976) and a PhD in epidemiology (1979) at the University of North Carolina in Chapel Hill. After graduation, he went to work at the National Institute of Environmental Health Sciences (NIEHS, one of the US National Institutes of Health) in Durham, NC, where he has spent his career. He developed a research program in reproductive and perinatal epidemiology, a relatively unexplored area at the time. His studies include the early pregnancy study, which documented the extent of subclinical pregnancy loss in humans and established the fertile days of a woman's menstrual cycle. He served as the Chief of the Epidemiology Branch from 1991 to 2001, and as Editor-in-Chief of the journal EPIDEMIOLOGY from 2001 to 2014. His textbook, Fertility and Pregnancy-An Epidemiologic Perspective, was published by Oxford University Press in 2010. He was elected to the American Epidemiological Society in 1989, and served as its president in 2003. He also served as president of the Society of Pediatric and Perinatal Epidemiological Research (1996) and the president of the Society of Epidemiological Research (1998). He holds adjunct teaching appointments at the University of North Carolina, Harvard University, and the University of Bergen (Norway), which awarded him an honorary doctoral degree in 2008. PMID:27482869

  17. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d−π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  18. Reactivity and chemoselectivity of allenes in Rh(I)-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes: allene-mediated rhodacycle formation can poison Rh(I)-catalyzed cycloadditions.

    PubMed

    Hong, Xin; Stevens, Matthew C; Liu, Peng; Wender, Paul A; Houk, K N

    2014-12-10

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.

  19. Belt conveyor apparatus

    SciTech Connect

    Oakley, D.J.; Bogart, R.L.

    1987-05-05

    A belt conveyor apparatus is described comprising: means defining a conveyance path including a first pulley and at least a second pulley, an endless belt member adapted for continuous travel about the pulleys defining thereby an upper and lower reach, the endless belt member having a lower portion which engages the pulleys and an integral upper portion adapted to receive objects at a first location on the conveyance path and transport the objects to and then discharge the objects at a second location on the conveyance path; and motive means in communication with the means defining a conveyance path, for effecting the travel of the endless belt member about the conveyance path.

  20. BARREL observations of a solar energetic electron and solar energetic proton event

    NASA Astrophysics Data System (ADS)

    Halford, A. J.; McGregor, S. L.; Hudson, M. K.; Millan, R. M.; Kress, B. T.

    2016-05-01

    During the second Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) campaign two solar energetic proton (SEP) events were observed. Although BARREL was designed to observe X-rays created during electron precipitation events, it is sensitive to X-rays from other sources. The gamma lines produced when energetic protons hit the upper atmosphere are used in this paper to study SEP events. During the second SEP event starting on 7 January 2014 and lasting ˜3 days, which also had a solar energetic electron (SEE) event occurring simultaneously, BARREL had six payloads afloat spanning all magnetic local time (MLT) sectors and L values. Three payloads were in a tight array (˜2 h in MLT and ˜2 ΔL) inside the inner magnetosphere and at times conjugate in both L and MLT with the Van Allen Probes (approximately once per day). The other three payloads mapped to higher L values with one payload on open field lines for the entire event, while the other two appear to be crossing from open to closed field lines. Using the observations of the SEE and SEP events, we are able to map the open-closed boundary. Halford et al. (2015) demonstrated how BARREL can monitor electron precipitation following an interplanetary shock created by a coronal mass ejection (ICME-shock) arrival at Earth, while in this study we look at the SEP event precursor to the arrival of the ICME-Shock in our cradle-to-grave view: from flare, to SEE and SEP events, to radiation belt electron precipitation.

  1. Statistical properties of the radiation belt seed population

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Spence, H. E.; Huang, C.-L.; Reeves, G. D.; Baker, D. N.; Turner, D. L.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Shprits, Y. Y.

    2016-08-01

    We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10-15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.

  2. The Properties and Origins of Resonant Patterns in the Energy Spectra of the Inner Electron Belt

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Mitchell, D. G.; Takahashi, K.; Lanzerotti, L. J.

    2013-12-01

    The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission provides electron and ion measurements from ~20 keV to ~10 MeV. High temporal and energy resolution electron measurements at RBSPICE show that energy spectra of the inner belt electrons exhibit regular resonance patterns which are more pronounced during intervals of increased geomagnetic activity. While these modulations were previously inferred from electron precipitation measurements on the low orbiting spacecraft, RBSPICE provides important insights into their properties at the equator where these patterns are formed. The modulations are observed over the entire inner belt and approximately follow 1/L energy dependence. This suggests that the modulation patterns are produced in the process of drift-resonant interaction of radiation belt electrons with large-scale fluctuations in the geomagnetic field. In this paper we describe properties of the resonant patterns and discuss their generation mechanisms.

  3. Relativistic Electrons in the Inner Zone and Slot - Quiet Time Observations by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Looper, M. D.; Mazur, J. E.; O'Brien, T. P.; Clemmons, J. H.; Baker, D. N.; Reeves, G. D.; Spence, H.; Funsten, H. O.

    2013-12-01

    The energy spectra of relativistic electrons in the inner zone and slot region are old questions dating from the early days of space research. There are two major reasons for this situation: the paucity of scientific missions traversing the inner zone and slot region at low inclination, and the technical difficulty of making relativistic electron measurements in the presence of the very energetic protons and intense fluxes of electrons with energies up to a few hundred keV that are found in the inner zone. The Van Allen Probes mission offers a new opportunity to address this problem. This mission to date has taken place during a time period of only modest geomagnetic activity with no unusual increases of the energetic electron population deep inside the magnetosphere such as the shock injection of 24 March 1991 or the Halloween storm of 2003. We began by examining observations made during some of the quieter times since launch, in late January and early February 2013. The data show that the inner zone electron fluxes indeed drop to very low intensities by several hundred keV. A major focus of this preliminary study has been a careful examination of sources of background and its removal in the electron spectrometers using several of the Van Allen probe instruments. Upper limits on the relativistic electron intensities as a function of L will be presented.

  4. Spatial Localization and Ducting of EMIC Waves: Van Allen Probes and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Murphy, Kyle; Robertson, Matthew; Milling, David; Kale, Andy; Kletzing, Craig; Wygant, John; Thaller, Scott; Raita, Tero

    2014-05-01

    On 11th October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 hours) of continuous EMIC waves was observed by CARISMA and STEP induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65 degrees magnetic longitude apart) in conjunction with the ground array observed very narrow (Delta L~0.1-0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L~4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak [2012] and consistent with Earth's rotation sweeping magnetometer stations across multiple polarization reversals in the fields in the Earth-ionosphere duct. The narrow L-widths explain the relative rarity of space-based EMIC occurrence, ground-based measurements providing better estimates of global EMIC wave occurrence for input into radiation belt dynamical models. EMIC wave impacts on the radiation belts during this interval are also presented. This work is supported in part by participation in the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) consortium. MAARBLE has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement n° 284520. This paper reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained herein.

  5. Seat belt restraint system

    NASA Technical Reports Server (NTRS)

    Garavaglia, A.; Matsuhiro, D.

    1972-01-01

    Shoulder-harness and lap-belt restraint system was designed to be worn by individuals of widely different sizes and to permit normal body motion except under sudden deceleration. System is divided into two basic assemblies, lap belt and torso or shoulder harness. Inertia-activated reels immediately lock when seat experiences sudden deceleration.

  6. Cobalt-Catalyzed sp(2) -C-H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature.

    PubMed

    Thrimurtulu, Neetipalli; Dey, Arnab; Maiti, Debabrata; Volla, Chandra M R

    2016-09-26

    The reactivity of allenes in transition-metal-catalyzed C-H activation chemistry is governed by the formation of either alkenyl-metal (M-alkenyl) or metal-π-allyl intermediates. Although either protonation or a β-hydride elimination is feasible with a M-alkenyl intermediate, cyclization has remained unexplored to date. Furthermore, due to the increased steric hindrance, the regioselectivity for the intramolecular cyclization of the metal-π-allyl intermediate was hampered towards the more substituted side. To address these issues, a unified approach to synthesize a diverse array of biologically and pharmaceutically relevant heterocyclic moieties by cobalt-catalyzed directed C-H functionalization was envisioned. Upon successful implementation, the present strategy led to the regioselective formation of dihydroisoquinolin-1(2H)-ones, isoquinolin-1(2H)-ones, dihydropyridones, and pyridones. PMID:27584828

  7. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  8. To Belt or Not To Belt?

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1999-01-01

    The National Highway Traffic Transportation Safety Administration (NHTSA) is in the midst of the first school-bus crash tests in more than 10 years. Its report is expected in June 2000, and those on both sides of the seat-belt debate are waiting to see what NHTSA will recommend on passenger restraints in large school buses. A sidebar lists sources…

  9. Exploiting [2+2] cycloaddition chemistry: achievements with allenes.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina

    2010-02-01

    The allene moiety represents an excellent partner for the [2+2] cycloaddition with alkenes and alkynes, affording the cyclobutane and cyclobutene skeletons in a single step. This strategy has been widely studied under thermal, photochemical and microwave induced conditions. More recently, the use of transition metal catalysis has been introduced as an alternative relying on the activation of the allenic component. On the other hand, the intramolecular version has attracted much attention as a strategy for the synthesis of polycyclic compounds in a regio- and stereoselective fashion. This critical review focuses on the most recently developed [2+2] cycloadditions on allenes along with remarkable early works accounting for the mechanism, the regio- and diastereoselectivity of the cycloadducts formed (103 references).

  10. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Nishimura, Y.; Zhang, X.-J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Henderson, M. G.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Angelopoulos, V.

    2016-05-01

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

  11. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE PAGES

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  12. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  13. Dynamic model of Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Matsumoto, Haruhisa; Koshiishi, Hideki; Goka, Tateo; Obara, Takahiro

    The radiation belts are the region that energetic charged particles are trapped by Earth's magnetic field. It is well known that the energetic particle flux vary during geomagnetic distur-bances, and, the relativistic electrons in the outer radiation belt change with solar wind speed. Many researches have been studied about the flux variation of radiation belt, but the mecha-nism of the variation has not been understood in detail. We have developed a new dynamic model of energetic particles trapped in the based on the data from the MDS-1 spacecraft. This model reproduces the dynamic of radiation belt by running average using magnetic activity index(AP) and running average solar wind speed. This model covers the energy ranges of 0.4-2MeV for electrons, 0.9-210 MeV for protons, and 6-140 MeV for helium ions, and it is valid from low altitudes (approximately 500km) to geosynchronous orbit altitude. We discuss the advantage of the new model, and comparisons between MDS-1 data and our new model.

  14. Lap seat belt injuries.

    PubMed

    Hingston, G R

    1996-08-01

    Over a 4 month period, three patients presented acutely to Whangarei Area Hospital after receiving severe abdominal injuries caused directly by lap seat belts. They were involved in road traffic crashes and were all seated in the middle rear seat of the car. The aim of this paper is to alert people to the injuries that can occur from two point lap belts. To this end, the patients and injuries sustained are described and a review of the literature is presented.

  15. 5. Historic American Buildings Survey Harold Allen, Photographer June 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Harold Allen, Photographer June 1964 TRIPLE STAINED GLASS WINDOWS AND COLUMN SUPPORTING BALCONY (EAST WINDOWS IN SOUTH WALL OF MAIN FLOOR OF AUDITORIUM) - Kehilath Anshe Ma'ariv Synagogue, 3301 South Indiana Avenue, Chicago, Cook County, IL

  16. Van Allen Probes Science Gateway: A Centralized Data Access Point

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G. K.; Kessel, R.; Potter, M.

    2015-12-01

    The Van Allen Probes Science Gateway acts a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the Van Allen Probes Space Weather data to users. Over the past years, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes science and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including, simple time series, data plotted as a function of orbital location, and time versus L-Shell, capability of visualizing data from both probes (A & B) on the same plot. In cooperation with all Van Allen Probes Instrument SOCs, the Science Gateway will soon be able to serve higher level data products (Level 3), and to visualize them via the above mentioned HTML5 interface. Users will also be able to create customized CDF files on the fly.

  17. 18. VIEW SHOWING, LEFT TO RIGHT, H. J. LAWSON, ALLEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW SHOWING, LEFT TO RIGHT, H. J. LAWSON, ALLEN MATTISON, SENATOR CARL HAYDEN, LIN B. ORME, PAUL ROCA, AND J. A. FRAPS. THE UPSTREAM FACE AND SPILLWAY GATES ARE VISIBLE IN THE BACKGROUND. October 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  18. James Van Allen and His Namesake NASA Mission

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Hoxie, V. C.; Jaynes, A.; Kale, A.; Kanekal, S. G.; Li, X.; Reeves, G. D.; Spence, H. E.

    2013-12-01

    In many ways, James A. Van Allen defined and "invented" modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.

  19. Regioselective intramolecular [3+2] annulation of allene-nitrones.

    PubMed

    Inagaki, Fuyuhiko; Kobayashi, Harumi; Mukai, Chisato

    2012-01-01

    The regioselective intramolecular 1,3-dipolar cycloaddition of the phenylsulfonylallene-nitrone derivatives has been developed. This reaction showed that the distal double bond of the allene exclusively reacted with the nitrone group to produce the bicyclic isoxazolidine derivatives regardless of the substitution pattern on the allenyl moiety.

  20. Thermal induced intramolecular [2 + 2] cycloaddition of allene-ACPs.

    PubMed

    Chen, Kai; Sun, Run; Xu, Qin; Wei, Yin; Shi, Min

    2013-06-28

    A facile synthetic method for preparation of bicyclo[4.2.0] nitrogen heterocycles has been developed via a thermal induced intramolecular [2 + 2] cycloaddition reaction of allene-ACPs. The DFT calculations indicate that this intramolecular cycloaddition proceeds in a concerted manner and a strained small ring is essential.

  1. Belt scales user's guide

    SciTech Connect

    Rosenberg, N.I. )

    1993-02-01

    A conveyor-belt scale provides a means of obtaining accurate weights of dry bulk materials without delaying other plant operations. In addition, for many applications a belt scale is the most cost-effective alternative among many choices for a weighing system. But a number of users are not comfortable with the accuracy of their belt scales. In cases of unsatisfactory scale performance, it is often possible to correct problems and achieve the accuracy that was expected. To have a belt scale system that is accurate, precise, and cost effective, practical experience has shown that certain basic requisites must be satisfied. These requisites include matching the scale capability to the needs of the application, selecting durable scale equipment and conveyor idlers, adopting improved conveyor support methods, employing superior scale installation and alignment techniques, and establishing and practicing an effective scale testing and performance monitoring program. The goal of the Belt Scale Users' Guide is to enable utilities to reap the benefits of consistently accurate output from their new or upgraded belt scale installations. Such benefits include eliminating incorrect payments for coal receipts, improving coal pile inventory data, providing better heat rate results to enhance plant efficiency and yield more economical power dispatch, and satisfying regulatory agencies. All these benefits can reduce the cost of power generation.

  2. Belt conveyor apparatus

    DOEpatents

    Oakley, David J.; Bogart, Rex L.

    1987-01-01

    A belt conveyor apparatus according to this invention defines a conveyance path including a first pulley and at least a second pulley. An endless belt member is adapted for continuous travel about the pulleys and comprises a lower portion which engages the pulleys and an integral upper portion adapted to receive objects therein at a first location on said conveyance path and transport the objects to a second location for discharge. The upper belt portion includes an opposed pair of longitudinally disposed crest-like members, biased towards each other in a substantially abutting relationship. The crest-like members define therebetween a continuous, normally biased closed, channel along the upper belt portion. Means are disposed at the first and second locations and operatively associated with the belt member for urging the normally biased together crest-like members apart in order to provide access to the continuous channel whereby objects can be received into, or discharged from the channel. Motors are in communication with the conveyance path for effecting the travel of the endless belt member about the conveyance path. The conveyance path can be configured to include travel through two or more elevations and one or more directional changes in order to convey objects above, below and/or around existing structures.

  3. Effect of EMIC Waves on Relativistic and Ultra-Relativistic Electron Populations: Ground-based and Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Usanova, Maria; Drozdov, Alexander; Orlova, Ksenia; Mann, Ian; Shprits, Yuri; Robertson, Matthew; Turner, Drew; Milling, David; Kale, Andy; Baker, Dan; Reeves, Geoff; Spence, Harlan; Kletzing, Craig; Wygant, John

    2014-05-01

    We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch-angle scattering of relativistic and ultra-relativistic electrons during the recovery phase of a moderate geomagnetic storm on October 11, 2012. The EMIC wave activity was observed in-situ on the Van Allen Probes and conjugately on the ground across the CARISMA array throughout an extended 18-hour interval. However, neither enhanced precipitation of >0.7 MeV electrons, nor reductions in Van Allen Probe 90o pitch-angle ultra-relativistic electron flux were observed. Computed radiation belt electron pitch-angle diffusion rates demonstrate that rapid pitch-angle diffusion is confined to low pitch angles and cannot reach 90o. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultra-relativistic (~2-8 MeV) electron loss, but which is confined to pitch angles below around 45 degrees and not affecting the core distribution.

  4. Long-term VERB Code Simulations of Ultra-relativistic Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Orlova, K.; Kellerman, A. C.; Subbotin, D.; Baker, D. N.; Spence, H. E.; Reeves, G. D.

    2015-12-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  5. Long-term VERB code simulations of ultra-relativistic electrons and comparison with Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Kellerman, Adam; Usanova, Maria; Aseev, Nikita; Baker, Daniel; Spence, Harlan; Reeves, Geoff

    2016-04-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  6. Propargyltrimethylsilanes as allene equivalents in transition metal-catalyzed [5 + 2] cycloadditions.

    PubMed

    Wender, Paul A; Inagaki, Fuyuhiko; Pfaffenbach, Magnus; Stevens, Matthew C

    2014-06-01

    Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes. In this one-flask procedure, they provide cycloadducts of what is formally addition to the more sterically encumbered allene double bond.

  7. Propargyltrimethylsilanes as Allene Equivalents in Transition Metal-Catalyzed [5 + 2] Cycloadditions

    PubMed Central

    2015-01-01

    Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes. In this one-flask procedure, they provide cycloadducts of what is formally addition to the more sterically encumbered allene double bond. PMID:24819093

  8. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  9. Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

    DOE PAGES

    Su, Zhenpeng; Gao, Zhonglei; Reeves, Geoffrey D.; Funsten, Herbert O.; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; et al

    2016-07-15

    Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (~500 keV to several MeV) and equatorial pitch angles (0° ≤ αe ≤ 180°). STEERB simulations show that the relativistic electron loss in the region L = 4.5–6.0 was primarily caused bymore » the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Furthermore, our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.« less

  10. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  11. Neutron and Proton Radiation Damage and Isothermal Annealing of Irradiated SiC Schottky Power Diodes

    SciTech Connect

    Kulisek, Jonathan A.; Blue, Thomas E.

    2009-03-16

    NASA is exploring the potential use of nuclear reactors as power sources for future missions. These missions will require semiconductor switches to be placed in close vicinity to the reactor, in the midst of a high neutron and gamma radiation field. Cree SiC Schottky diodes, part number CSD10120A, rated at 10 A and 1200 V, were chosen as the test articles for this radiation-hardness study, since SiC is a wide bandgap semiconductor that has exhibited tolerance for such high radiation environments. As an extension of previous work regarding the degradation of SiC Schottky diodes in the presence of a neutron and gamma radiation field, isothermal annealing experiments were performed on these diodes after they were irradiated in The Ohio State University Research Reactor (OSURR). The experimental results demonstrate that even at an anneal temperature of only 175 C, a noticeable improvement in the electrical performance of the diodes, in the form of decreased series resistance, may be readily observed from I-V curve measurements. Also, since electrical components used for space applications will also be exposed to charged particle radiation from space, such as high energy protons in the Van Allen Radiation Belts surrounding earth, it is important that, in studying the effects of radiation-induced displacement damage, the effects of both neutron and charged particle radiation are considered. Therefore, the data obtained from this study were compared with the data obtained from previous 203 MeV proton irradiations, for which the same diode model was tested. To develop neutron-proton equivalencies which are relevant to the radiation electronics hardening community and the materials science community, comparisons of the degradation of the diodes for proton and neutron irradiation are made in two ways 1) on the basis of displacement damage dose, D{sub d} for protons and neutrons; and 2) on the basis of initially induced vacancies per atom (at a temperature of 0 K)(IIVPA0) for

  12. Distant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Allen, R. Lynne; Bernstein, Gary; Malhotra, Renu

    2001-02-01

    Kuiper Belt Object surveys indicate a lack of objects with semi- major axis a⪆50 AU in low eccentricity, low inclination orbits. This presents a problem for the simplest theories of Kuiper Belt evolution, which predict a dense, primordial outer Kuiper Belt. A possible solution is that the outer Belt is very dynamically cold, appearing as a razor-thin plane on the sky. If this disk was inclined only 0.5° from the ecliptic, present surveys could fail to detect it since the deep surveys (limiting magnitude R~26) lack sufficient sky coverage and the shallow surveys (limiting mag R~24.4) lack sufficient depth to see small (radius ⪉130 km) objects beyond 50 AU. If this cold, dense disk were to cross a Mosaic field with a limiting magnitude R=25.8, we would expect to see at least 15 distant KBOs. By observing strategically placed large fields we could detect any cold, dense distant disk inclined at up to 0.7° from the invariable plane. This would place a strong constraint on the location of a cold, dense outer Kuiper Belt.

  13. First Results from the Radiation Belt Storm Probes REPT instrument

    NASA Astrophysics Data System (ADS)

    Hoxie, V. C.; Baker, D. N.; Kanekal, S. G.; Spence, H. E.

    2012-12-01

    The Relativistic Electron-Proton Telescope (REPT) on board the twin Radiation Belt Storm Probe (RBSP) spacecraft is a high performance solid-state detector telescope capable of measuring high energy electrons (~2 to > 20 MeV) and protons (~20 to > 100 MeV). The REPT is designed to make these measurements with very little background over a broad range of L shells with < 30% energy resolution. Detailed pitch angle distributions are obtained by dividing each spin into 36 sectors. We report here on the initial measurements of electron and proton spectra and their evolution during geomagnetic quiet and disturbed time periods. Results on pitch angle distributions and their dynamics are also presented. These measurements will help constrain the various proposed physical mechanisms of particle acceleration and loss in the Earth's radiation belts.

  14. Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J. R.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.

    2016-05-01

    The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range ˜300-1500 Hz with the peak wave power density about 10-5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhile, hiss emissions are confined inside the plasmasphere, with a higher intensity and a broader area at a lower frequency. A sum of bi-Maxwellian distribution is used to model the observed anisotropic electron distributions and to evaluate the instability of waves. A three-dimensional ray tracing simulation shows that a portion of chorus emission outside the plasmasphere can propagate into the plasmasphere and evolve into plasmaspheric hiss. Moreover, hiss waves below 1 kHz are more intense and propagate over a broader area than those above 1 kHz, consistent with the observation. The current results can explain distributions of the observed hiss emission and provide a further support for the mechanism of evolution of chorus into hiss emissions.

  15. Study of lightning whistler waves observed at high L-shells on Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Holzworth, R.; Brundell, J. B.; Wygant, J. R.; Hospodarsky, G. B.; Mozer, F.; Jacobson, A. R.; Bonnell, J. W.

    2015-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. In our previous work, one-to-one coincidence between lightning and whistler waves is already found by the conjunction work between WWLLN and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)). The previous global study showed a good match between WWLLN sferics and RBSP lightning whistlers at low L-shell region (L < 3). More case studies indicated that this kind of one-to-one coincidence can be extended to a high L-shell region. Since September 2012 to now (July 2015), EMFISIS instrument has already recorded 3-D waveform data with 35 ksamples/s for 527,279 and 542,346 of 6-second snapshots, respectively for RBSP-A and RBSP-B. 461,572 and 478,510 of snapshots with L-shell value larger than 3 are used in our work. In our work, we will show the distribution of lightning whistler waves at high L-shells. This talk will also explore the upper cutoff frequency of lightning whistler waves at high L-shells.

  16. Statistical Features of EMIC Waves Observed on Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Roh, S. J.; Cho, J.; Shin, D. K.; Hwang, J.; Kim, K. C.; Kurth, W. S.; Kletzing, C.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves are one of the key plasma waves that can affect charged particle dynamics in the Earth's inner magnetosphere. Knowledge of global distribution of the EMIC waves is critical for accurately assessing the significance of its interaction with charged particles. With the Van Allen Probes EMFISIS observations, we have surveyed EMIC events for ~2.5 years period. We have identified well-defined, banded wave activities only, as distinguished from broad band wave activities. We have obtained global distribution of occurrence of the identified waves with distinction between H- and He-bands. We compare it with previous observations such as THEMIS and CRRES. For the identified events we have drawn all the basic wave properties including wave frequency, polarization, wave normal angle. In addition, we have distinguished the EMIC events that occur inside the plasmasphere and at the plasmapause from those outside the plasmasphere. Finally, we have tested solar wind and geomagnetic dependence of the wave events. We give discussions about implications of these observations on wave generation mechanism and interaction with radiation belt electrons.

  17. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    SciTech Connect

    Jaynes, A. N.; Baker, D. N.; Singer, H. J.; Rodriguez, J. V.; Loto'aniu, T. M.; Ali, A. F.; Elkington, S. R.; Li, X.; Kanekal, S. G.; Claudepierre, S. G.; Fennell, J. F.; Li, W.; Thorne, R. M.; Kletzing, C. A.; Spence, H. E.; Reeves, G. D.

    2015-09-09

    Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.

  18. Effects of chorus, hiss and electromagnetic ion cyclotron waves on radiation belt dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Horne, R. B.

    2013-12-01

    Wave-particle interactions are known to play an important role in the acceleration and loss of radiation belt electrons, and in the heating and loss of ring current ions. The effectiveness of each wave type on radiation belt dynamics depends on the solar wind interaction with the magnetosphere and the properties of the waves which vary considerably with magnetic local time, radial distance and latitude. Furthermore the interaction of the waves with the particles is usually nonlinear. These factors present a major challenge to test and verify the theories. Here we discuss the role of several types of waves, including whistler mode chorus, plasmaspheric hiss, magnetosonic and electromagnetic ion cyclotron waves, in relation to radiation belt and ring current dynamics. We present simulations of the radiation belts using the BAS radiation belt model which includes the effects of chorus, hiss and EMIC waves along with radial diffusion. We show that chorus waves are required to form the peaks in the electron phase space density during storms, and that this occurs inside geostationary orbit. We compare simulations against observations in medium Earth orbit and the new results from Van Allen probes mission that shows conclusive evidence for a local electron acceleration process near L=4.5. We show the relative importance of plasmaspheric hiss and chorus and the location of the plasmapause for radiation belt dynamics near L=4.5 and demonstrate the losses due to EMIC waves that should occur at high energies. Finally we show how improving our basic physical understanding through missions such as Van Allen probes go to improve space weather forecasting in projects such as SPACECAST and have a direct benefit to society.

  19. Source and seed populations for relativistic electrons: Their roles in radiation belt changes

    DOE PAGES

    Jaynes, A. N.; Baker, D. N.; Singer, H. J.; Rodriguez, J. V.; Loto'aniu, T. M.; Ali, A. F.; Elkington, S. R.; Li, X.; Kanekal, S. G.; Claudepierre, S. G.; et al

    2015-09-09

    Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22more » September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.« less

  20. Obituary: James Alfred Van Allen, 1914-2006

    NASA Astrophysics Data System (ADS)

    Ludwig, George H.; McIlwain, Carl Edwin

    2006-12-01

    James Alfred Van Allen, world-renowned space scientist, died 9 August 2006 at the age of ninety-one. He succumbed to heart failure after a ten-week period of declining health. Van Allen served for his entire sixty-seven-year professional career as an amazingly productive researcher, space science spokesman, inspired teacher, and valued colleague. The realization by him and his associates that charged particles are trapped by the Earth's magnetic field began a whole new field of research, magnetospheric physics. Following that initial discovery, he and his associates quickly extended their observations, first to the inner planets, and then to the rest of the planets and beyond. During his tenure at Iowa, he and his group flew instruments on more than sixty successful Earth satellites and planetary spacecraft, including the first missions to the planets Venus, Mars, Jupiter, Saturn, Uranus, and Neptune. Van Allen's lifetime publication list numbers more than 275, of which many are widely-cited, seminal papers. He was the sole author of more than 125 of those papers. Beyond the research laboratory, Van Allen worked energetically throughout his career in establishing space research as a new branch of human inquiry. He was among the most sought-after as a committee member and adviser, working at the highest levels of government, including the White House and Congress, and at all levels of the national and international research establishments. Many presentations in the non-scientific arena helped to bring the exciting discoveries and challenges of space research to the attention of the general public. James Van Allen (Van to his many friends and colleagues) was born on 7 September 1914 on a small farm near Mount Pleasant, Iowa, the second of four sons of Alfred Morris Van Allen and Alma Olney Van Allen. After high school in Mount Pleasant, he entered Iowa Wesleyan College, majoring in physics and graduating summa cum laude. While there, he was introduced to geophysics

  1. Detecting Mass Loss in Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Sandberg, Erik; Rajagopal, Jayadev; Ridgway, Susan E.; Kotulla, Ralf C.; Valdes, Francisco; Allen, Lori

    2016-01-01

    Sandberg, E., Rajagopal, J., Ridgway, S.E, Kotulla, R., Valdes, F., Allen, L.The Dark Energy Camera (DECam) on the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) is being used for a survey of Near Earth Objects (NEOs). Here we attempt to identify mass loss in main belt asteroids (MBAs) from these data. A primary motivation is to understand the role that asteroids may play in supplying dust and gas for debris disks. This work focuses on finding methods to automatically pick out asteroids that have qualities indicating possible mass loss. Two methods were chosen: looking for flux above a certain threshold in the asteroid's radial profile, and comparing its PSF to that of a point source. After sifting through 490 asteroids, several have passed these tests and should be followed up with a more rigorous analysis.Sandberg was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829)

  2. An Experimental Concept for Probing Nonlinear Radiation Belt Physics

    NASA Astrophysics Data System (ADS)

    Amatucci, Bill; Ganguli, Guru; Crabtree, Chris; Mithaiwala, Manish; Siefring, Carl; Tejero, Erik

    2014-10-01

    The SMART sounding rocket is designed to probe the nonlinear response of a known ionospheric stimulus. High-speed neutral barium atoms generated by a shaped charge explosion perpendicular to the magnetic field in the ionosphere form a ring velocity distribution of photo-ionized Ba+ that will generate lower hybrid waves. Induced nonlinear scattering of lower hybrid waves into whistler/magnetosonic waves has been theoretically predicted, confirmed by simulations, and observed in the lab. The effects of nonlinear scattering on wave evolution and whistler escape to the radiation belts have been studied and observable signatures quantified. The fraction of the neutral atom kinetic energy converted into waves is estimated at 10-12%. SMART will carry a Ba release module and an instrumented daughter section with vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors to determine wave spectra in the source region and detect precipitated particles. The Van Allen Probes can detect the propagation of the scattered whistlers and their effects in the radiation belts. By measuring the radiation belt whistler energy density, SMART will confirm the nonlinear scattering process and the connection to weak turbulence. Supported by the Naval Research Laboratory Base Funds.

  3. Isomer-specific combustion chemistry in allene and propyne flames

    SciTech Connect

    Hansen, Nils; Miller, James A.; Westmoreland, Phillip R.; Kasper, Tina; Kohse-Hoeinghaus, Katharina; Wang, Juan; Cool, Terrill A.

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  4. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  5. The Relative Deep Penetrations of Energetic Electrons and Ions into the Slot Region and Inner Belt

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Baker, D. N.; Reeves, G. D.; Spence, H. E.

    2015-12-01

    Energetic electrons in the inner magnetosphere are distributed into two regions: the inner radiation belt and the outer radiation belt, with the slot region in between separating the two belts. Though many studies have focused on the outer belt dynamics, the energetic electrons in the slot region and especially inner belt did not receive much attention until recently. A number of new features regarding electrons in the low L region have been reported lately, including the abundance of 10s-100s of keV electrons in the inner belt, the frequent deep injections of 100s of keV electrons, and 90°-minimum pitch angle distributions of 100s of keV electrons in the inner belt and slot region. In this presentation, we focus on the relative deep injections into the slot region and inner belt of energetic electrons and ions using observations from HOPE and MagEIS instruments on the Van Allen Probes. It is shown that while 10s - 100s of keV electrons penetrate commonly deep into the low L region and are persistent in the inner belt, the deep injections of ions with similar energies occur rarely, possibly due to the fast loss of ions in the low L region. The energy spectra and pitch angle distributions of electrons and ions during injections are also very different, indicating the existence of different physical mechanisms acting on them. In addition, some intriguing similarities between lower energy ions and higher energy electrons will also be discussed.

  6. Observations of purely compressional waves in the upper ULF band observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Posch, J. L.; Engebretson, M. J.; Johnson, J.; Kim, E. H.; Thaller, S. A.; Wygant, J. R.; Kletzing, C.; Smith, C. W.; Reeves, G. D.

    2014-12-01

    Purely compressional electromagnetic waves, also denoted fast magnetosonic waves, equatorial noise, and ion Bernstein modes, can both heat thermal protons and accelerate electrons up to relativistic energies. These waves have been observed both in the near-equatorial region in the inner magnetosphere and in the plasma sheet boundary layer. Although these waves have been observed by various types of satellite instruments (DC and AC magnetometers and electric field sensors), most recent studies have used data from AC sensors, and many have been restricted to frequencies above ~50 Hz. We report here on a survey of ~200 of these waves, based on DC electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first two years of operation. The high sampling rate of these instruments makes it possible to extend observational studies of the lower frequency population of such waves to lower L shells than any previous study. These waves, often with multiple harmonics of the local proton gyrofrequency, were observed both inside and outside the plasmapause, in regions with plasma number densities ranging from 10 to >1000 cm-3. Wave occurrence was sharply peaked near the magnetic equator and occurred at L shells from below 2 to ~6 (the spacecraft apogee). Waves appeared at all local times but were more common from noon to dusk. Outside the plasmapause, occurrence maximized broadly across noon. Inside the plasmapause, occurrence maximized in the dusk sector, in an extended plasmasphere. Every event occurred in association with a positive gradient in the HOPE omnidirectional proton flux in the range between 2 keV and 10 keV. The Poynting vector, determined for 8 events, was in all cases directed transverse to B, but with variable azimuth, consistent with earlier models and observations.

  7. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study

    PubMed Central

    Breneman, A. W.; Thaller, S. A.; Wygant, J. R.; Kletzing, C. A.; Kurth, W. S.

    2015-01-01

    Abstract We show the first evidence for locally excited chorus at frequencies below 0.1 f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5 f ce and f/f ce decreases rapidly, often to frequencies well below 0.1 f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution. PMID:27667871

  8. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    NASA Astrophysics Data System (ADS)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  9. Chapman Conference on the Earth's radiation belts and inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Summers, Danny; Mann, Ian R.

    2011-10-01

    Late in the evening on 31 January 1958, a Juno (Jupiter-C) rocket blasted into space, lofting the first U.S. artificial Earth satellite into orbit. This spacecraft, dubbed Explorer 1, joined in space one other satellite, Sputnik 2, which had been launched on 3 November 1957 by the Soviet Union. The Explorer 1 mission was groundbreaking, for it carried a small scientific payload prepared at the University of Iowa by a team of researchers led by James A. Van Allen. The instrumentation on Explorer 1 (and on the subsequently successful Explorer 3) would make the first truly revolutionary discovery of the space age, namely, that Earth is enshrouded in toroids, or belts, of extraordinarily high energy, high-intensity radiation.

  10. Frontiers of Radiation Belt Physics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2014-10-01

    The discovery of trapped radiation around Earth by James Van Allen in 1958 revolutionized concepts of Earth's space environment, and its relationship to solar activity. Coming in the same era as the declassification of research in laboratory plasma physics, concepts and theories in space and laboratory plasma environments have grown in parallel, sometimes building upon one another and at times diverging with little overlap. The launch of the dual spacecraft NASA Van Allen Probes mission (August 2012) has opened a fresh era in understanding of Earth's space plasma environment, and has stimulated new opportunities for collaborative interactions between laboratory and space plasma researchers. This talk will outline some past history of space plasma research, and will describe some of the latest developments in new understandings achieved by data from the Van Allen Probes.

  11. Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.

    2015-12-01

    Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.

  12. The levantine amber belt

    NASA Astrophysics Data System (ADS)

    Nissenbaum, A.; Horowitz, A.

    1992-02-01

    Amber, a fossil resin, is found in Early Cretaceous sanstones and fine clastics in Lebanon, Jordan, and Israel. The term "Levantine amber belt" is coined for this amber-containing sediment belt. The amber occurs as small nodules of various colors and frequently contains inclusions of macro- and microorganisms. The Lebanese amber contains Lepidoptera and the amber from southern Israel is rich in fungal remains. The source of the amber, based on geochemical and palynological evidence, is assumed to be from a conifer belonging to the Araucariaceae. The resins were produced by trees growing in a tropical near shore environment. The amber was transported into small swamps and was preserved there together with lignite. Later reworking of those deposits resulted in redeposition of the amber in oxidized sandstones.

  13. Metamorphic belts of Anatolia

    NASA Astrophysics Data System (ADS)

    Oberhänsli, Roland; Prouteau, Amaury; Candan, Osman; Bousquet, Romain

    2015-04-01

    Investigating metamorphic rocks from high-pressure/low-temperature (HP/LT) belts that formed during the closure of several oceanic branches, building up the present Anatolia continental micro-plate gives insight to the palaeogeography of the Neotethys Ocean in Anatolia. Two coherent HP/LT metamorphic belts, the Tavşanlı Zone (distal Gondwana margin) and the Ören-Afyon-Bolkardağ Zone (proximal Gondwana margin), parallel their non-metamorphosed equivalent (the Tauride Carbonate Platform) from the Aegean coast in NW Anatolia to southern Central Anatolia. P-T conditions and timing of metamorphism in the Ören-Afyon-Bolkardağ Zone (>70?-65 Ma; 0.8-1.2 GPa/330-420°C) contrast those published for the overlying Tavşanlı Zone (88-78 Ma; 2.4 GPa/500 °C). These belts trace the southern Neotethys suture connecting the Vardar suture in the Hellenides to the Inner Tauride suture along the southern border of the Kirşehir Complex in Central Anatolia. Eastwards, these belts are capped by the Oligo-Miocene Sivas Basin. Another HP/LT metamorphic belt, in the Alanya and Bitlis regions, outlines the southern flank of the Tauride Carbonate Platform. In the Alanya Nappes, south of the Taurides, eclogites and blueschists yielded metamorphic ages around 82-80 Ma (zircon U-Pb and phengite Ar-Ar data). The Alanya-Bitlis HP belt testifies an additional suture not comparable to the northerly Tavşanlı and Ören-Afyon belts, thus implying an additional oceanic branch of the Neotethys. The most likely eastern lateral continuation of this HP belt is the Bitlis Massif, in SE Turkey. There, eclogites (1.9-2.4 GPa/480-540°C) occur within calc-arenitic meta-sediments and in gneisses of the metamorphic (Barrovian-type) basement. Zircon U-Pb ages revealed 84.4-82.4 Ma for peak metamorphism. Carpholite-bearing HP/LT metasediments representing the stratigraphic cover of the Bitlis Massif underwent 0.8-1.2 GPa/340-400°C at 79-74 Ma (Ar-Ar on white mica). These conditions compares to the Tav

  14. Kuiper Belt Objects (Invited)

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Romanishin, W.

    1999-09-01

    The Kuiper belt represents an exciting, new frontier in solar system research. About 200 Kuiper belt objects (KBOs) with diameters larger than 100 km are known to exist between 30 and 50 AU from the Sun. Surveys indicate that there may be as many as 100,000 KBOs larger than 100 km and perhaps billions of KBOs larger than 1 km between 30 and 50 AU. Although the total mass in these bodies is perhaps a few tenths of an Earth mass, accretion calculations indicate that the primordial Kuiper belt must have contained 10 to 30 Earth masses of material between 30 and 50 AU in order to explain the growth of large KBOs and the Pluto and Charon system in the 100 million years before the onset of the disruptive influence of Neptune. Once Neptune reached a fraction of its current mass, dynamical studies indicate that a combination of erosional collisions and mean motion and secular resonances sculpted the belt into its present day mass and structure. The influence of the resonances can be seen in the belt today as about one-third of the known KBOs are in a stable 2:3 mean motion resonance with Neptune, i.e. eccentric and inclined orbits, that approach or cross the orbit of Neptune, and semi-major axes, a, about 39.4 AU. Many KBOs with a > 42 AU are sufficiently far from Neptune that they are on stable, low inclination, low eccentricity, non-resonant orbits. A combination of resonances and disruptive collisions continue to deplete the Kuiper belt today as they inject KBOs or collision fragments inward into the solar system as Centaur objects and Jupiter family comets. Physical studies of KBOs are in their infancy. Perhaps one of the most surprising results is the observation that KBO colors and hence their surface compositions divide neatly into a grey and an extraordinarily red population. The red population suggests some surfaces are rich in complex carbon-bearing molecules. The colors exhibit no trend with resonant or non-resonant orbits or object size and suggest that

  15. Stereoselective rhodium-catalysed [2+2+2] cycloaddition of linear allene-ene/yne-allene substrates: reactivity and theoretical mechanistic studies.

    PubMed

    Haraburda, Ewelina; Torres, Óscar; Parella, Teodor; Solà, Miquel; Pla-Quintana, Anna

    2014-04-22

    Allene-ene-allene (2 and 5) and allene-yne-allene (3 and 7) N-tosyl and O-linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3 )3 ] was evaluated. Substrates 2 and 5, which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7, which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels-Alder reaction on N-tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction.

  16. Modeling Loss and Rebuilding of the Earth's Outer Zone Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Kress, B. T.; Li, Z.; Paral, J.; Wiltberger, M. J.

    2014-12-01

    Quantifying the competition between radiation belt electron energization due to radial transport and loss to the magnetopause and to the atmosphere is critical to understanding the dynamic changes in outer zone radiation belt electron flux response to solar wind drivers. Plasmasheet electron injection, both due to enhanced convection and substorm dipolarization, provides a source population for generation of whistler mode chorus and seed population for local acceleration. We now have available ~22 months of unprecedented measurements in energy and pitch angle resolution of electrons spanning the energy range from injected plasmasheet to multi-MeV electrons from the twin Van Allen Probes spacecraft in near-equatorial plane elliptical orbits, with apogee at 5.8 Re; and two Balloon Array for Relativistic Radiation Belt Electron Losses (BARREL) campaigns during January-February 2013 and 2014, each establishing a longitudinal array of precipitation measurements extending to relativistic energies via measured Bremsstrahlung x-rays. In addition to this arsenal of data, a set of modeling tools has been developed to examine dynamics of electrons in the magnetosphere. These tools calculate electron trajectories in time-dependent magnetohydrodyanmic (MHD) fields using the Lyon-Fedder-Mobarry global MHD model coupled with the Rice Convection Model to determine the E and B field response to solar wind drivers. With these tools we can follow electron dynamics including response to Ultra Low Frequency (ULF) waves which cause radial transport and energization for inward radial gradient as well as enhanced loss to the magnetopause for outward gradient. These tools have been applied to date to the large equinoctial storms of fall 2012, spring and fall 2013, in addition to moderate storms during BARREL balloon campaigns in both winters 2013 and 2014. Isolated substorm response can clearly be identified for the latter, while plasmasheet injection of electrons during periods of strong

  17. Things we do not yet understand about solar driving of the radiation belts

    NASA Astrophysics Data System (ADS)

    Kessel, Mona

    2016-06-01

    This commentary explores how close we are to predicting the behavior of the radiations belts -- the primary science objective of NASA's Van Allen Probes mission. Starting with what we know or think we know about competing sources, enhancement, transport, and loss, I walk through recent papers that have improved our understanding and then focus on flux dropouts as one particular yardstick of success. I mention a new paradigm for electrons and the importance of reliably matching models and observations for different solar inputs. Although the case for prediction remains a work in progress, there are encouraging signs of progress.

  18. The Impenetrable Barrier Revisited - Anthroprogenic Effects on Earth's Radiation Belts

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Baker, D. N.; Erickson, P. J.; Albert, J.; Fennell, J. F.; Mishin, E. V.; Starks, M. J.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Kletzing, C.

    2015-12-01

    The Van Allen Probes are contributing significantly to the understanding of processes effecting Earth's radiation belts. It has been noted that the earthward extent of the outer zone highly-relativistic electrons encounters a nearly impenetrable barrier at a radial distance (L) near 2.8 RE inside of which they are not observed. Modeling suggests that this is the result of a balance between slow inward diffusion and hiss-induced precipitation. The large storm of 17 March 2015 afforded an excellent opportunity to investigate the impenetrable barrier using the full complement of sensors carried by the Van Allen Probes. The storm was marked by the rapid reappearance of strong fluxes of MeV electrons directly outside the barrier with the formation of very steep MeV flux gradients. In spite of the strong rapid recovery of MeV electron fluxes immediately outside the barrier, the sharpness and constancy of the gradient at the barrier is strongly suggestive of a previously unrecognized fast-acting and spatially localized mechanism responsible for the formation of such a well-defined feature during these dramatic circumstances. The Van Allen Probes regularly observe a magnetically confined bubble of VLF emissions of terrestrial origin filling the inner magnetosphere. Strongest signals are from US Navy VLF transmitters used for one-way communication to submarines. These signals largely are confined to the region of L space where their frequency is < ½ fce. The strong signal from station NAA at 24 kHz is confined to L < 2.8 where it encounters the ½ fce limit. During the event, the flux of MeV electrons decreased by 1000x across 0.5 RE outside L = 2.8 simultaneous with a 6 order of magnitude increase in the VLF wave intensity as the Probes entered the VLF bubble. The VLF transmitter frequencies are amplified at the point where they overlap natural chorus band near ½ fce suggestive of transmitter-induced triggered emissions. MeV radiation belt electrons encounter this

  19. Proton therapy

    MedlinePlus

    ... direction of the tumor. A machine called a synchrotron or cyclotron creates and speeds up the protons. ... redness in the radiation area, and temporary hair loss. AFTER THE PROCEDURE Following proton therapy, you should ...

  20. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  1. Lap belt injuries in children.

    PubMed

    McGrath, N; Fitzpatrick, P; Okafor, I; Ryan, S; Hensey, O; Nicholson, A J

    2010-01-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children's hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  2. Space Geoengineering: James A. Van Allen's Role in Detecting and Disrupting the Magnetosphere, 1958-1962 (Invited)

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2010-12-01

    James A. Van Allen’s celebrated discovery of Earth’s radiation belts in 1958 using Explorer 1 and 3 satellites was immediately followed by his agreement to monitor tests of nuclear weapons in space aimed at disrupting the magnetosphere. This is “space geoengineering” on a planetary scale. “Space is radioactive,” noted Van Allen’s colleague Eric Ray, and the military wanted to make it even more radioactive by nuclear detonations that, in time of war might disrupt enemy radio communications from half a world away and damage or destroy enemy intercontinental ballistic missiles. This study of Van Allen’s participation in Project Argus (1958) and Project Starfish (1962) is based on new posthumous accessions to the Van Allen Papers. At the time radio astronomers protested that, “No government has the right to change the environment in any significant way without prior international study and agreement.” Van Allen later regretted his participation in experiments that disrupted the natural magnetosphere. In a larger policy framework, the history of these space interventions and the protests they generated serve as a cautionary tale for today’s geoengineers who are proposing heavy-handed manipulation of the planetary environment as a response to future climate warming. Anyone claiming that geoengineering has not yet been attempted should be reminded of the planetary-scale engineering of these nukes in space. N. Christofilos describing the intended effect of the Argus nuclear explosions on the magnetosphere, which would direct a stream of radioactive particles along magnetic lines of force half a world away.

  3. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs. PMID:20455711

  4. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs.

  5. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    PubMed

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  6. The Living With a Star Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Fox, Nicola; Mauk, Barry; Sibeck, David; Grebowsky, Joseph

    This presentation provides an overview of the Living With a Star (LWS) Radiation Belt Storm Probes (RBSP) mission. Missions to Geospace offer an opportunity to observe in situ the fundamental processes that operate throughout the solar system and in particular those that generate space weather effects in the vicinity of Earth. The RBSP mission targets Earth's space radiation belts that comprise multiple components of high energy, penetrating charged particles. These belts are hazards to spacecraft and astronauts alike and are controlled by dynamic processes that govern particle radiation mechanisms occurring throughout the universe. The two RBSP spacecraft will make measurements in low-inclination, elliptical, lapping orbits around the Earth to quantify mechanisms for energetic particle acceleration, transport, and loss in space environments. The mission's in situ probes will provide access to and detailed observations of the full range of processes associated with the highly energetic particles that operate within Earth's inner magnetosphere. The two-point measurements by the RBSP spacecraft will enable researchers to discriminate between spatial and temporal effects, and therefore between the various proposed mechanisms for particle acceleration and loss. The science investigations on NASA's LWS program's RBSP will provide the measurements needed to characterize and quantify the processes that supply and remove energetic particles from the Earth's Van Allen radiation belts. Instruments on the RBSP spacecraft will observe charged particles that comprise the Earth's radiation belts over the full energy range from 1 eV to more than 10 MeV (including composition), the plasma waves which energize them, the electric fields which transport them, and the magnetic fields which guide their motion. The two-year prime mission lifetime will provide sufficient local time, altitude, and event coverage to determine the relative significance of the various mechanisms that operate

  7. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    NASA Astrophysics Data System (ADS)

    Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr

    2016-01-01

    Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.

  8. SLH Timing Belt Powertrain

    SciTech Connect

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon- fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning

  9. Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the flight deck of the Space Shuttle Columbia. Allen was joined by four other astronauts and an international payload specialist for more than 16 days of research aboard Columbia. The photograph was taken with a 70mm handheld camera.

  10. Q & A with Ed Tech Leaders: Interview with Michael W. Allen

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    2014-01-01

    Michael W. Allen, the Chairman and CEO of Allen Interactions, is an architect of interactive multimedia learning and is recognized for his many insights, inventions, and presentations. With over 50 years of experience in e-learning, both in academic and corporate settings, he is known for his role in creating Authorware and overseeing the work of…

  11. Highly Regioselective Radical Amination of Allenes: Direct Synthesis of Allenamides and Tetrasubstituted Alkenes.

    PubMed

    Zhang, Ge; Xiong, Tao; Wang, Zining; Xu, Guoxing; Wang, Xuedan; Zhang, Qian

    2015-10-19

    The first controllable, regioselective radical amination of allenes with N-fluoroarylsulfonimide is described to proceed under very mild reaction conditions. With this methodology, a general and straightforward route for the synthesis of both allenamides and fluorinated tetrasubstituted alkenes was realized from a wide range of terminal and internal allenes.

  12. Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes

    PubMed Central

    Muratore, Michael E; Homs, Anna; Obradors, Carla; Echavarren, Antonio M

    2014-01-01

    The development of gold(I)-catalyzed intermolecular carbo- and hetero-cycloadditions of alkynes and allenes has been more challenging than their intramolecular counterparts. Here we review, with a mechanistic perspective, the most fundamental intermolecular cycloadditions of alkynes and allenes with alkenes. PMID:25048645

  13. Ugi/Himbert Arene/Allene Diels-Alder Cycloaddition to Synthesize Strained Polycyclic Skeleton.

    PubMed

    Cheng, Guangsheng; He, Xiang; Tian, Lumin; Chen, Jiawen; Li, Chunju; Jia, Xueshun; Li, Jian

    2015-11-01

    The present work disclosed an efficient multicomponent reaction of isocyanide, allenic acid, aldehyde (ketone), and aniline. This protocol undergoes Ugi reaction followed by an intramolecular arene/allene Diels-Alder sequence, thus providing a rapid access to synthesize strained polycyclic skeletons.

  14. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    SciTech Connect

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-04

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  15. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-01

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  16. Variations of energetic electrons associated with solar wind dynamic pressure enhancement in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lee, E.; Kim, K. H.; Lee, D. H.; Lee, J.; Spence, H. E.

    2015-12-01

    Earth's outer radiation belt varies dynamically under the variations of the solar wind. In this study, we investigated the variations of energetic electrons in the outer radiation belt caused by an enhancement of the solar wind dynamic pressure associated with an interplanetary shock using the measurements from the Van Allen Probes (VAP) satellites. The enhanced dynamic pressure lasted for about 24 hours, but magnetic storm was not occurred. The impact of the interplanetary shock on 13 April 2013 produced dipolarization of the magnetic field for a few minutes, which was simultaneously observed by VAP A and B moving in the nightside region. The enhancement of the electron fluxes with E < ~600 keV coincidentally occurred during the dipolarization. Later, drift echoes with energy dispersion and ULF-like modulations were observed. By comparing the measurements from VAP A and B we will discuss spatial and temporal characteristics of the enhancement of the energetic electron fluxes.

  17. Radiation Belt Storm Probes (RBSP) Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Turney, D.; Matiella Novak, A.; Beisser, K.; Fox, N.

    2013-11-01

    The Radiation Belt Storm Probes (RBSP) Education and Public Outreach (E/PO) program serves as a pipeline of activities to inspire and educate a broad audience about Heliophysics and the Sun-Earth system, specifically the Van Allen Radiation Belts. The program is comprised of a variety of formal, informal and public outreach activities that all align with the NASA Education Portfolio Strategic Framework outcomes. These include lesson plans and curriculum for use in the classroom, teacher workshops, internship opportunities, activities that target underserved populations, collaboration with science centers and NASA visitors' centers and partnerships with experts in the Heliophysics and education disciplines. This paper will detail the activities that make up the RBSP E/PO program, their intended audiences, and an explanation as to how they align with the NASA education outcomes. Additionally, discussions on why these activities are necessary as part of a NASA mission are included. Finally, examples of how the RBSP E/PO team has carried out some of these activities will be discussed throughout.

  18. Recent space shuttle observations of the South Atlantic Anomaly and the radiation belt models.

    PubMed

    Konradi, A; Badhwar, G D; Braby, L A

    1994-10-01

    Active instruments consisting of a tissue equivalent proportional counter (TEPC) and a proton and heavy ion detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of its features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestrial magnetic field the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at L approximately = 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect.

  19. Gould Belt Origin

    NASA Astrophysics Data System (ADS)

    Rivera, Leticia; Loinard, Laurent; Dzib, Sergio

    2013-07-01

    Using archive VLA data and recent observations on the Karl G. Jansky Very Large Array it is worked on a semi-automatic python/CASA code to select, reduce and plot several young stars belonging to the Ophiuchus core. This code mean to help to select observations made along the 30 years of the VLA done in the selected area with the wide configurations A and B, and in the X and C band, to determine their position and compare it with the most recent ones. In this way it is possible to determinate their proper motion with very high precision. It is presented the phases of the process and our first results worked on three well know stars: S1, DoAr 21 and VLA1623. This is the tip of a bigger work that includes Taurus molecular cloud and other important recent star formation regions belonging to the Gould Belt. Our goal is to support the most suitable among several theories about Gould Belt origin or provide a new one taking in count the dynamics of those regions.

  20. James A. Van Allen: The Trip to Jupiter

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Discusses the research purposes and activities of the Pioneer mission, including the instruments used, data on Jupiter's radiation belt, and information about cosmic ray intensity. Included is a description of the scientist's view about the value of the space program. (CC)

  1. Geography of the asteroid belt

    NASA Technical Reports Server (NTRS)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  2. Teaching Science: Seat Belt Science.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Describes activities that will help students understand how car seat belts work, the limited reaction time available to passengers in an automobile accident, and the force of impact in a car collision. These activities will provide students with hands-on experiences that demonstrate the importance of always wearing seat belts while in an…

  3. Physics and Automobile Safety Belts.

    ERIC Educational Resources Information Center

    Kortman, Peter; Witt, C. Edwin

    This collection of problems and experiments related to automobile safety belt usage is intended to serve as a supplement to a standard physics course. Its purpose is to convince the students that the use of safety belts to prevent injury or death is firmly supported by the considerations of physical quantities and laws which apply in a collision…

  4. Proton Therapy

    NASA Astrophysics Data System (ADS)

    Oelfke, Uwe

    Proton therapy is one of the most rapidly developing new treatment technologies in radiation oncology. This treatment approach has — after roughly 40 years of technical developments — reached a mature state that allows a widespread clinical application. We therefore review the basic physical and radio-biological properties of proton beams. The main physical aspect is the elemental dose distribution arising from an infinitely narrow proton pencil beam. This includes the physics of proton stopping powers and the concept of CSDA range. Furthermore, the process of multiple Coulomb scattering is discussed for the lateral dose distribution. Next, the basic terms for the description of radio-biological properties of proton beams like LET and RBE are briefly introduced. Finally, the main concepts of modern proton dose delivery concepts are introduced before the standard method of inverse treatment planning for hadron therapy is presented.

  5. Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts

    NASA Technical Reports Server (NTRS)

    Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven

    2011-01-01

    Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (<10 MeV) protons in the inner belt region. Either the source of these lower energy protons is also neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and

  6. (Hetero)aromatics from dienynes, enediynes and enyne-allenes.

    PubMed

    Raviola, Carlotta; Protti, Stefano; Ravelli, Davide; Fagnoni, Maurizio

    2016-08-01

    The construction of aromatic rings has become a key objective for organic chemists. While several strategies have been developed for the functionalization of pre-formed aromatic rings, the direct construction of an aromatic core starting from polyunsaturated systems is yet a less explored field. The potential of such reactions in the formation of aromatics increased at a regular pace in the last few years. Nowadays, there are reliable and well-established procedures to prepare polyenic derivatives, such as dienynes, enediynes, enyne-allenes and hetero-analogues. This has stimulated their use in the development of innovative cycloaromatizations. Different examples have recently emerged, suggesting large potential of this strategy in the preparation of (hetero)aromatics. Accordingly, this review highlights the recent advancements in this field and describes the different conditions exploited to trigger the process, including thermal and photochemical activation, as well as the use of transition metal catalysis and the addition of electrophiles/nucleophiles or radical species.

  7. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  8. The Allen telescope array: Commensal and efficient SETI

    NASA Astrophysics Data System (ADS)

    Deboer, David R.

    2006-12-01

    The Allen telescope array (ATA) currently under construction affords the possibility of a dedicated and highly efficient SETI program that may be done commensally with other radio astronomy programs. This symbiosis is important in order to maintain and sustain the long-term effort that may be required in order to achieve success as a positive or null result. The technology that is being exploited is the construction of many small elements that allow large fields-of-view at high sensitivity, the use of ultra-wideband front-ends, and the use of flexible digital “intermediate frequency (IF)” systems. The project is under construction in phases, with the first 32 antennas expected to be functional in the fall of 2004, the next 173 dishes operational early 2006, with plans for 350 antennas total within this decade.

  9. Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard; Reeves, Geoffery D.; Kletzing, Craig A.

    2016-04-01

    It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8-9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.

  10. A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Jaynes, A. N.; Turner, D. L.; Nakamura, R.; Schmid, D.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.; Blake, J. B.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Dorelli, J. C.; Gershman, D. J.; Giles, B. L.; Burch, J. L.

    2016-06-01

    An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a "seed" electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.

  11. Van Allen Probe measurements of the electric drift E × B/B2 at Arecibo's L = 1.4 field line coordinate

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2016-07-01

    We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E × B/B2 at one field line coordinate set to Arecibo's incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2) the equatorial electric drift displays a dependence in magnetic local time, with a pattern consistent with the mapping of the Arecibo ionosphere dynamo electric fields along equipotential magnetic field lines. The electric fields due to the ionosphere dynamo are therefore expected to play a significant role when discussing, for instance, the structure and dynamics of the plasmasphere or the transport of trapped particles in the inner belt.

  12. A statistical study of whistler waves observed by Van Allen Probes (RBSP) and lightning detected by WWLLN

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John

    2016-03-01

    Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.

  13. Spatial Localization and Ducting of EMIC Waves: Effect on Ultra-Relativistic Electron Populations using Ground-based and Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Shprits, Yuri; Murphy, Kyle; Baker, Daniel N.; Usanova, Maria; Wygant, John; Orlova, Ksenia; Reeves, Geoffrey; Turner, Drew; Kletzing, Craig; Raita, Tero; Spence, Harlan; Milling, D. K.; Drozdov, Alexander; Robertson, Matthew; Kale, Andy; Thaller, Scott

    We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch-angle scattering of relativistic and ultra-relativistic electrons during the recovery phase of a moderate geomagnetic storm on October 11, 2012. The EMIC wave activity was observed in-situ on the Van Allen Probes confined to very narrow (DeltaL 0.1-0.4) left-hand polarized emission in regions of mass density gradient at the outer edge of the plasmasphere at L 4. Conversely, conjugate on the ground, EMIC wave were seen across the CARISMA array throughout an extended 18 hour interval. The waves have complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak [2012] and consistent with Earth’s rotation sweeping magnetometer stations across multiple polarization reversals in the fields in the Earth-ionosphere duct. Despite the extended interval of EMIC waves, reductions in Van Allen Probe 90o pitch-angle ultra-relativistic electron flux were not observed, but loss was seen at lower pitch angles. Computed radiation belt electron pitch-angle diffusion rates demonstrate that rapid pitch-angle diffusion is confined to low pitch angles and cannot reach 90o. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultra-relativistic ( 2-8 MeV) electron loss, but which is confined to pitch angles below around 45 degrees and not affecting the core distribution. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  14. Reanalysis and forecasting killer electrons in Earth's radiation belts using the VERB code

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Kondrashov, Dmitri; Shprits, Yuri; Podladchikova, Tatiana; Drozdov, Alexander

    2016-07-01

    The Van Allen radiation belts are torii-shaped regions of trapped energetic particles, that in recent years, have become a principle focus for satellite operators and engineers. During geomagnetic storms, electrons can be accelerated up to relativistic energies, where they may penetrate spacecraft shielding and damage electrical systems, causing permanent damage or loss of spacecraft. Data-assimilation provides an optimal way to combine observations of the radiation belts with a physics-based model in order to more accurately specify the global state of the Earth's radiation belts. We present recent advances to the data-assimilative version of the Versatile Electron Radiation Belt (VERB) code, including more sophisticated error analysis, and incorporation of realistic field-models to more accurately specify fluxes at a given MLT or along a spacecraft trajectory. The effect of recent stream-interaction-region (SIR) driven enhancements are investigated using the improved model. We also present a real-time forecast model based on the data-assimilative VERB code, and discuss the forecast performance over the past 12 months.

  15. Understanding the Dynamical Evolution of the Earth Radiation Belt and Ring Current Coupled System

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Usanova, Maria; Kellerman, Adam; Drozdov, Alexander

    2016-07-01

    Modeling and understanding the ring current and radiation belt-coupled system has been a grand challenge since the beginning of the space age. In this study we show long-term simulations with a 3D Versatile Electron Radiation Belt (VERB) code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. Simulations can reproduce long term variations of the electron radiation belt fluxes and show the importance of local acceleration, radial diffusion, loss to the atmosphere and loss to the magnetopause. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV, a number of processes work simultaneously, including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulation of the March 2013 storm are compared with Van Allen Probes observations.

  16. The Solar Wind Effect on Magnetopause Shadowing Loss of Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Huang, C.; Spence, H.; Boyd, A. J.; Jordan, A.; Larsen, B.; Henderson, M. G.; Claudepierre, S. G.; Kanekal, S. G.; Singer, H. J.

    2013-12-01

    The flux level of radiation belt electrons is maintained by the competition of multiple source and loss processes occurring within the magnetosphere and driven by the solar wind. While most of the research community's attention has focused on understanding relativistic electron flux enhancement, we attempt to explain rapid flux decreases during storm main phases. One possible loss mechanism for such dropouts is the drift loss of outer belt electrons to the magnetopause boundary. We investigate how magnetopause shadowing responds to different solar wind conditions using Van Allen Probes (RBSP) and GOES observations. Since higher-level RBSP data are now available, we use the pitch angle resolved electron measurements and derived phase space density data to characterize the electrons' behavior near and off the equator when they encounter open drift orbits. We also use the latest Tsyganenko magnetic field model to identify the global field topology resulting from the inner magnetosphere's ring current effect during dropout periods. Finally, we calculate the total number of radiation belt electrons from the phase space density data as a simple index to portray the global dynamics of the outer electron belt. We use this index to characterize the solar wind effect on drift magnetopause loss, thus taking the initial step toward creating a predictive model for magnetopause shadowing.

  17. Losses of Energetic Electrons in Earth's Outer Radiation Belt During Unusual Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lugaz, Noé; Huang, Chia-Lin; Schwadron, Nathan; Spence, Harlan; Farrugia, Charles; Winslow, Reka

    2016-07-01

    The most extreme changes in solar wind parameters important for the coupling between the solar wind and the magnetosphere (dynamic pressure, dawn-to-dusk electric field, Alfven Mach number, plasma beta, …) occur during the passage at Earth of coronal mass ejections (CMEs). While the response of Earth's radiation belts to CMEs and CME-driven shocks has been investigated in great details, few studies have focused on what makes some CMEs and their shocks especially effective in driving losses of energetic electrons in the outer radiation belt. Here, we present specific examples of losses during the passage at Earth of a coronal mass ejection. In particular, we discuss the conditions which may result in the magnetopause to retreat earthward up to geosynchronous orbit, resulting in significant losses of energetic electrons due to magnetopause shadowing. We also present the result of a low-density magnetic ejecta which impacted Earth in January 2013. Combining interplanetary, magnetosheath, outer magnetosphere and radiation belt measurements by more than ten satellites, including the Van Allen Probes, THEMIS and Cluster, we show how a period of extremely low Mach number and dynamic pressure during the passage of the magnetic cloud resulted in dramatic losses in the outer radiation belt and a large-scale reorganization of the entire day-side magnetosphere.

  18. Revealing the Link Between Solar Activity and Satellite Anomalies: Career Recollections From Joe Allen

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    Beginning his career on the heels of the 1957-1958 International Geophysical Year and the dawn of the satellite era, Joe H. Allen entered the service of the U.S. Coast and Geodetic Survey in 1963. Earning a master's of science in engineering from the University of California at Berkeley while working for the Geodetic Survey, Allen advanced within a department that evolved into the National Geophysical Data Center, a branch of NOAA. Allen earned a Department of Commerce award in 1978 and in 1981 became the chief of the Solar and Terrestrial Physics Division of the National Geophysical Data Center, a position from which he retired in 1994.

  19. Evaluation of the static belt fit provided by belt-positioning booster seats.

    PubMed

    Reed, Matthew P; Ebert, Sheila M; Sherwood, Christopher P; Klinich, Kathleen D; Manary, Miriam A

    2009-05-01

    Belt-positioning booster seats are recommended for children who use vehicle seat belts as primary restraints but who are too small to obtain good belt fit. Previous research has shown that belt-positioning boosters reduce injury risk, but the belt fit produced by the wide range of boosters in the US market has not previously been assessed. The present study describes the development of a method for quantifying static belt fit with a Hybrid-III 6-year-old test dummy. The measurement method was applied in a laboratory seat mockup to 31 boosters (10 in both backless and highback modes) across a range of belt geometries obtained from in-vehicle measurements. Belt fit varied widely across boosters. Backless boosters generally produced better lap belt fit than highback boosters, largely because adding the back component moved the dummy forward with respect to the lap belt routing guides. However, highback boosters produced more consistent shoulder belt fit because of the presence of belt routing guides near the shoulder. Some boosters performed well on both lap belt and shoulder belt fit. Lap belt fit in dedicated boosters was generally better than in combination restraints that also can be used with an integrated harness. Results demonstrate that certain booster design features produce better belt fit across a wide range of belt geometries. Lap belt guides that hold the belt down, rather than up, and shoulder belt guides integrated into the booster backrest provided better belt fit.

  20. Evaluation of the static belt fit provided by belt-positioning booster seats.

    PubMed

    Reed, Matthew P; Ebert, Sheila M; Sherwood, Christopher P; Klinich, Kathleen D; Manary, Miriam A

    2009-05-01

    Belt-positioning booster seats are recommended for children who use vehicle seat belts as primary restraints but who are too small to obtain good belt fit. Previous research has shown that belt-positioning boosters reduce injury risk, but the belt fit produced by the wide range of boosters in the US market has not previously been assessed. The present study describes the development of a method for quantifying static belt fit with a Hybrid-III 6-year-old test dummy. The measurement method was applied in a laboratory seat mockup to 31 boosters (10 in both backless and highback modes) across a range of belt geometries obtained from in-vehicle measurements. Belt fit varied widely across boosters. Backless boosters generally produced better lap belt fit than highback boosters, largely because adding the back component moved the dummy forward with respect to the lap belt routing guides. However, highback boosters produced more consistent shoulder belt fit because of the presence of belt routing guides near the shoulder. Some boosters performed well on both lap belt and shoulder belt fit. Lap belt fit in dedicated boosters was generally better than in combination restraints that also can be used with an integrated harness. Results demonstrate that certain booster design features produce better belt fit across a wide range of belt geometries. Lap belt guides that hold the belt down, rather than up, and shoulder belt guides integrated into the booster backrest provided better belt fit. PMID:19393812

  1. MeV proton flux predictions near Saturn's D ring

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Cooper, J. F.; Mitchell, D. G.; Krupp, N.; Paranicas, C.

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  2. ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; Santolik, Ondrej; Kurth, William S.

    2016-06-01

    We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04-06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04-06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisphere. Using cross-correlation analysis, we did, for the first time, time delay analysis of a conjugate ELF/VLF event between ground and space, finding +2 to +4 s (ATH first) for the QP and -3 s (RBSP A first) for the pulse. Using backward tracing from ATH to the geomagnetic equator and forward tracing from the equator to RBSP A, based on plasmaspheric density observed by the spacecraft, we validate a possible propagation path for the QP emission which is consistent with the observed time delay.

  3. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.; Spence, Harlan E.; Reeves, Geoffrey D.; Baker, Daniel N.

    2015-11-01

    This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the 17 March 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100 MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. The results of the 4-D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.

  4. Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.

    2015-12-01

    Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.

  5. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  6. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    NASA Astrophysics Data System (ADS)

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-01

    We present dynamic simulations of energy-dependent losses in the radiation belt "slot region" and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2-6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the "S shape" can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  7. The importance of energetic particle injections and cross-energy and -species interactions to the acceleration and loss of relativistic electrons in Earth's outer radiation belt (invited talk)

    NASA Astrophysics Data System (ADS)

    Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis

    2014-05-01

    Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how

  8. BARREL observations of an ICME-shock impact with the magnetosphere and the resultant radiation belt electron loss

    NASA Astrophysics Data System (ADS)

    Halford, A. J.; McGregor, S. L.; Murphy, K. R.; Millan, R. M.; Hudson, M. K.; Woodger, L. A.; Cattel, C. A.; Breneman, A. W.; Mann, I. R.; Kurth, W. S.; Hospodarsky, G. B.; Gkioulidou, M.; Fennell, J. F.

    2015-04-01

    The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign, the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014, the shock generated by the coronal mass ejection (CME) originating from the active region hits the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) satellite observed the impact of the interplanetary CME (ICME) shock near the magnetopause, and the Geostationary Operational Environmental Satellites (GOES) were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explain the absence of loss at this location. ULF waves were found to be correlated with the structure of the precipitation. We demonstrate how BARREL can monitor precipitation following an ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation.

  9. Investigation of a new type charging belt

    SciTech Connect

    Jones, N.L.

    1994-12-31

    There are many desirable characteristics for an electrostatic accelerator charging belt. An attempt has been made to find a belt that improves on these properties over the stock belt. Results of the search, procurement, and 1,500 hours of operational experience with a substantially different belt are reported.

  10. Chaos on the conveyor belt.

    PubMed

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five). PMID:23679502

  11. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All...

  12. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All...

  13. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All...

  14. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  15. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  16. Measurement of inner radiation belt electrons with kinetic energy above 1 MeV

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.

    2015-10-01

    Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992-2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft, exponential energy spectra are consistent with extrapolation of lower energy measurements.

  17. Iron‐catalyzed Cross‐Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes

    PubMed Central

    Kessler, Simon N.

    2016-01-01

    Abstract Presented herein is a mild, facile, and efficient iron‐catalyzed synthesis of substituted allenes from propargyl carboxylates and Grignard reagents. Only 1–5 mol % of the inexpensive and environmentally benign [Fe(acac)3] at −20 °C was sufficient to afford a broad range of substituted allenes in excellent yields. The method tolerates a variety of functional groups. PMID:26890161

  18. Copper-catalyzed regio- and stereoselective intermolecular three-component oxyarylation of allenes.

    PubMed

    Itoh, Taisuke; Shimizu, Yohei; Kanai, Motomu

    2014-05-16

    A copper(II)-catalyzed intermolecular three-component oxyarylation of allenes using arylboronic acids as a carbon source and TEMPO as an oxygen source is described. The reaction proceeded under mild conditions with high regio- and stereoselectivity and functional group tolerance. A plausible reaction mechanism is proposed, involving carbocupration of allenes, homolysis of the intervening allylcopper(II), and a radical TEMPO trap. PMID:24766635

  19. Diastereoselective Synthesis of the Aminocyclitol Core of Jogyamycin via an Allene Aziridination Strategy

    PubMed Central

    Gerstner, Nels C.; Adams, Christopher S.; Grigg, R. David; Tretbar, Maik; Rigoli, Jared W.; Schomaker, Jennifer M.

    2016-01-01

    Oxidative allene amination provides rapid access to densely functionalized amine-containing stereotriads through highly reactive bicyclic methyleneaziridine intermediates. This strategy has been demonstrated as a viable approach for the construction of the densely functionalized aminocyclitol core of jogyamycin, a natural product with potent antiprotozoal activity. Importantly, the flexibility of oxidative allene amination will enable the syntheses of modified aminocyclitol analogues of the jogyamycin core. PMID:26741730

  20. Probable identity of Goltz syndrome and Van Allen-Myhre syndrome: evidence from phenotypic evolution.

    PubMed

    Hancock, Susan; Pryde, Peter; Fong, Christine; Brazy, Jane E; Stewart, Katharina; Favour, Amy; Pauli, Richard M

    2002-07-15

    We describe a girl who was diagnosed with split foot-split hand anomaly prenatally, in whom at birth the diagnosis of Van Allen-Myhre syndrome was made, and who at 8 months of age was recognized to have Goltz syndrome. Based on the evolution of clinical features in this infant, we suggest that our case, as well as that reported by Van Allen and Myhre, is an example of unusually severe Goltz syndrome.

  1. STS-46 Pilot Allen uses cycle ergometer on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Pilot Andrew M. Allen exercises using the cycle ergometer on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Allen, shirtless, is equipped with sensors for monitoring his biological systems during the exercise session. A communications kit assembly cable freefloats from his headset at his right and in front of the forward lockers. The open airlock hatch appears at his left and the sleep station behind him.

  2. Stereoselective nickel-catalyzed [2+2] cycloadditions of ene-allenes.

    PubMed

    Noucti, Njamkou N; Alexanian, Erik J

    2015-04-27

    A stereoselective nickel-catalyzed [2+2] cycloaddition of ene-allenes is reported. This transformation encompasses a broad range of ene-allene substrates, thus providing efficient access to fused cyclobutanes from easily accessed π-components. A simple and inexpensive first-row catalytic system comprised of [Ni(cod)2 ] and dppf was used in this process, thus constituting an attractive approach to synthetically challenging cyclobutane frameworks under mild reaction conditions.

  3. Evaluation of the new radiation belt AE9/AP9/SPM model for a cislunar mission

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Walker, Steven A.; Santos Koos, Lindsey M.

    2014-09-01

    Space mission planners continue to experience challenges associated with human space flight. Concerned with the omnipresence of harmful ionizing radiation in space, at the mission design stage, mission planners must evaluate the amount of exposure the crew of a spacecraft is subjected to during the transit trajectory from low Earth orbit (LEO) to geosynchronous orbit (GEO) and beyond (free space). The Earth's geomagnetic field is located within the domain of LEO-GEO and, depending on latitude, extends out some 40,000-60,000 km. This field contains the Van Allen trapped electrons, protons, and low-energy plasmas, such as the nuclei of hydrogen, helium, oxygen, and to a lesser degree other atoms. In addition, there exist the geomagnetically attenuated energetic galactic cosmic rays (GCR). These particles are potentially harmful to improperly shielded crew members and onboard subsystems. Mitigation strategies to limit the exposure due to free space GCR and sporadic solar energetic particles (SEP) such as flare and coronal mass ejection (CME) must also be exercised beyond the trapped field. Presented in this work is the exposure analysis for a multi-vehicle mission planned for the epoch of February 2020 from LEO to the Earth-moon Lagrange-point two (L2), located approximately 63,000 km beyond the orbit of the Earth-moon binary system. Space operation at L2 provides a gravitationally stable orbit for a vehicle and partially eliminates the need for periodic thrust-vectoring to maintain orbital stability. In the cislunar (Earth-moon) space of L2, the mission trajectory and timeline in this work call for a cargo vehicle to rendezvous with a crew vehicle. This is followed by 15 days of space activities at L2 while the cargo and crew vehicles are docked after which the crew returns to Earth. The mission epoch of 2020 is specifically chosen as it is anticipated that the next solar minimum (i.e. end of cycle 24) in the Sun's approximate 11 years cycle will take place around

  4. THE ALLEN TELESCOPE ARRAY SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS

    SciTech Connect

    Anderson, Marin M.; Siemion, Andrew P. V.; Bower, Geoffrey C.; De Pater, Imke; Barott, William C.; Delory, Gregory T.; Werthimer, Dan

    2012-01-01

    The Allen Telescope Array was used to monitor Mars between 2010 March 9 and June 2, over a total of approximately 30 hr, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 2006 June 8. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research. This 1024 channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three-month period of observations, dust activity occurred on Mars in the form of small-scale dust storms; however, no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.

  5. The Allen Telescope Array as Square Kilometer Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.

    2007-12-01

    The Allen Telescope Array (ATA) is a new radio interferometer that has begun scientific operations in 2007. Many of the technologies, techniques, and observing modes developed for the ATA are directly applicable to the Square Kilometer Array (SKA). The ATA is a pioneer of the LNSD, which refers to a large number (LN) of small diameter (SD) dishes to create the array. This concept underlies nearly all SKA designs. Other relevant technologies are the offset Gregorian ATA antenna, the ATA wideband log periodic feed, transport of broadband data over fiber optic cables, and flexible digital signal processing electronics. The small dishes of the ATA gives it extraordinary wide-field imaging and survey capability but also require new solutions for calibration and imaging. Real time imaging, rapid response to transients, and thinking telescope technology are also under development. Finally, the ATA is developing commensal observing modes, which enable multiple simultaneous science programs, such as SETI, transient surveys, and HI surveys. Opportunities exist for community members to perform scientific investigations as well as develop techniques and technology for the SKA through use of the ATA.

  6. The Benton-Van Allen faces: a lateralized tachistoscopic study.

    PubMed

    Püschel, J; Zaidel, E

    1994-03-01

    The Benton-Van Allen Facial Recognition Test (FRT) was adapted to a lateralized same-different task. The lateralized same targets were either physically identical to the central upright faces or had the same face identity but were transformed (3/4-views or shadowed faces). Faces were also modified to include or exclude external features. There was a left hemifield (right hemisphere) advantage only for the most difficult, shadowed faces. The absence of a left hemifield advantage for the matching of upright faces to identical or 3/4-view faces shows bilateral competence for face processing, both by physical and by face identity, and confirms previous observations that the FRT does not discriminate left from right hemisphere-damaged patients. Removal of external features affected performance in the right but not the left visual field, suggesting that the left hemisphere uses a less feature-dependent mechanism than the right hemisphere. This effect was only present in females, who were more lateralized than males.

  7. Post-workshop models of Jupiter's radiation belts

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1972-01-01

    Models for the charged particle populations of Jupiter's trapped radiation belts were derived at the Jupiter Radiation Belt Workshop on the basis of several assumptions which represented a consensus of opinion. It was possible to improve the models on the basis of work performed after the workshop concluded. These improvements affect the models in two ways. The effects of special relativity on the particle energy and flux dependences in the magnetosphere were included in a derivation based on L-shell diffusion with conservation of the magnetic moment. Quantitative conclusions are available for the limit which ion cyclotron instability places on the proton population. A set of models which incorporates these developments in a way consistent with the original workshop assumptions and conclusions is described.

  8. Geographical variation in bill size across bird species provides evidence for Allen's rule.

    PubMed

    Symonds, Matthew R E; Tattersall, Glenn J

    2010-08-01

    Allen's rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen's rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen's rule. The species comprised eight diverse taxonomic groups-toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen's rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen's rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen's rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills. PMID:20545560

  9. Geographical variation in bill size across bird species provides evidence for Allen's rule.

    PubMed

    Symonds, Matthew R E; Tattersall, Glenn J

    2010-08-01

    Allen's rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen's rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen's rule. The species comprised eight diverse taxonomic groups-toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen's rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen's rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen's rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills.

  10. Belt conveyors for bulk materials. 6th ed.

    SciTech Connect

    2007-07-01

    The 16 chapters are entitled: Belt conveyor general applications economics; Design considerations; Characteristics and conveyability of bulk materials; Capacities, belt widths and speeds; Belt conveyor idlers; Belt tension and power engineering; Belt selection; Pulleys and shafts; Curves; Steep angle conveying; Belt cleaners and accessories; Transfer points; Conveyor motor drives and controls; Operation, maintenance and safety; Belt takeups; and Emerging technologies. 6 apps.

  11. Chiral nonracemic alpha-alkylidene and alpha-silylidene cyclopentenones from chiral allenes using an intramolecular allenic Pauson-Khand-type cycloaddition.

    PubMed

    Brummond, Kay M; Kerekes, Angela D; Wan, Honghe

    2002-07-26

    We have successfully effected a transfer of chirality from a chiral nonracemic allene to an alpha-alkylidene and an alpha-silylidene cyclopentenone. The molybdenum-mediated examples possessing a silyl group on the terminus of the allene show good facial selectivities, but isomerization of the (E)-silylidene cyclopentenone to the (Z)-silylidene cyclopentenone occurs upon purification of these products. Alternatively, an alkyl group on the terminus of the allene undergoes cycloaddition with moderate selectivities but gives products that undergo an isomerization of the (Z)-alkylidene cyclopentenone to the (E)-alkylidene cyclopentenone when exposed to acidic conditions. Thus, erosion of the enantiomeric excesses is observed for one of the two products as a result of this isomerization. The allenic Pauson-Khand-type cycloaddition has also been effected by first isolation the (eta(6)-arene)molybdenum tricarbonyl complex, demonstrating for the first time that this is most likely the active complex in the molybdenum-mediated reactions. Attempts to increase the facial selectivity by increasing the size of the arene moiety resulted in a marginal increase in the selectivity at the expense of the yield. Based upon these results, we have concluded that altering the approach for the preparation of nonracemic alpha-alkylidene cyclopentenones is necessary in order to obtain synthetically useful levels of stereocontrol.

  12. Trends in PVC conveyor belting

    SciTech Connect

    Hopwood, J.E.

    1984-03-01

    The development of mechanical systems of extraction at the coal face necessitated the introduction of efficient methods of mineral transportation in deep-mining operations. The most popular system is the belt conveyor. Originally PVC was being evaluated as a rubber substitute, as in its liquid form it appeared to offer an easier route to fabric coating and impregnation for conveyor belt applications. However, it was not until 1950, when over 200 miners lost their lives due to an underground fire being spread by combustible rubber conveyor belts, that the full significance of the properties of PVC were appreciated. Following this tragedy, an intensive development program to produce a substitute for rubber was initiated. It had to have similar operational characteristics as rubber while incorporating the safety features of resistance to flame propagation and build-up of static electrical charges. It became evident that PVC could be compounded to realize these requirements and belting manufacturers immediately started to produce a new generation of belts based on the previouly proven mechanical characteristics of multiply fabrics, but substituting PVC for the rubber content. The advantages of PVC are discussed.

  13. Foreland basins and fold belts

    SciTech Connect

    Macqueen, R.W.; Leckie, D.A. )

    1992-01-01

    The papers in this book describe six foreland basins and fold belts in terms of their regional setting, stratigraphy, tectonics, and structure, and their oil and gas systems. All of the basins show general similarities, but each differs significantly in detail from the others, posing something of a problem in terms of arriving at a 'typical' foreland basin and fold belt. Some are major hydrocarbon producers; others are not. The major characteristics of the six foreland basins and fold belts are summarized in Tables 1 through 5, which provide a convenient means of comparing and contrasting these basins and their hydrocarbon resources. The Western Canada foreland basin and fold belt serves as the type example for several reasons. These include: its setting and clear relationship to a major orogene of Mesozoic-Cenozoic age; the fact that it is uncomplicated by later overprinting, segmentation, or cover rocks unlike the Ouachita, Eastern Venezuela, and U.S. Rocky Mountain foreland basins and fold belts); the fact that there is a large volume of publicly available data on the basin and an active exploration and research community; and the fact that it has reasonable oil and gas reserves in a well-defined stratigraphic framework.

  14. The Role of Substorms in Radiation Belt Particle Enhancements

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2014-12-01

    Observational and numerical modeling evidence demonstrates that magnetospheric substorms are a coherent set of processes within the coupled near-Earth system. This supports the view that substorms are a global configurational instability. The magnetosphere progresses through a specific sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Related long-term studies of relativistic electron fluxes in the Earth's magnetosphere have revealed many of their temporal occurrence characteristics and their relationships to solar wind drivers. Early work showed the obvious and powerful role played by solar wind speed in producing subsequent high-energy electron enhancements. More recent work has also pointed out the key role that the north-south component of the IMF plays: In order to observe major relativistic electron enhancements, there must typically be a significant interval of southward IMF along with a period of high (VSW≥500 km/s) solar wind speed. This has led to the view that enhancements in geomagnetic activity (i.e., magnetospheric substorms) are normally a key first step in the acceleration of radiation belt electrons to high energies. A second step is suggested to be a period of powerful low-frequency waves that is closely related to high values of VSW or higher frequency ("chorus") waves that rapidly heat and accelerate electrons. Hence, substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. This picture seems to apply to most storms examined whether associated with high-speed streams or with CME-related events. In this talk, we address the substorm relationships as they pertain to high-energy electron acceleration and transport. We also discuss various models of electron energization that have recently been advanced. We present remarkable new results from the Van Allen Probes (Radiation Belt Storm

  15. Effects of vehicle seat and belt geometry on belt fit for children with and without belt positioning booster seats.

    PubMed

    Reed, Matthew P; Ebert-Hamilton, Sheila M; Klinich, Kathleen D; Manary, Miriam A; Rupp, Jonathan D

    2013-01-01

    A laboratory study was conducted to quantify the effects of belt-positioning boosters on lap and shoulder belt fit. Postures and belt fit were measured for forty-four boys and girls ages 5-12 in four highback boosters, one backless booster, and on a vehicle seat without a booster. Belt anchorage locations were varied over a wide range. Seat cushion angle, seat back angle, and seat cushion length were varied in the no-booster conditions. All boosters produced better mean lap belt fit than was observed in the no-booster condition, but the differences among boosters were relatively large. With one midrange belt configuration, the lap belt was not fully below the anterior-superior iliac spine (ASIS) landmark on the front of the pelvis for 89% of children in one booster, and 75% of children failed to achieve that level of belt fit in another. In contrast, the lap belt was fully below the ASIS for all but two children in the best-performing booster. Child body size had a statistically significant but relatively small effect on lap belt fit. The largest children sitting without a booster had approximately the same lap belt fit as the smallest children experienced in the worst-performing booster. Increasing lap belt angle relative to horizontal produced significantly better lap belt fit in the no-booster condition, but the boosters isolated the children from the effects of lap belt angles. Reducing seat cushion length in the no-booster condition improved lap belt fit but changing cushion angle did not. Belt upper anchorage (D-ring) location had a strong effect on shoulder belt fit in conditions without shoulder belt routing from the booster. Unexpectedly, the worst average shoulder belt fit was observed in one highback booster with a poorly positioned shoulder belt routing clip. The shoulder belt was routed more outboard, on average, with a backless booster than without a booster, but raising the child also amplified the effect of D-ring location, such that children were

  16. Effects of vehicle seat and belt geometry on belt fit for children with and without belt positioning booster seats.

    PubMed

    Reed, Matthew P; Ebert-Hamilton, Sheila M; Klinich, Kathleen D; Manary, Miriam A; Rupp, Jonathan D

    2013-01-01

    A laboratory study was conducted to quantify the effects of belt-positioning boosters on lap and shoulder belt fit. Postures and belt fit were measured for forty-four boys and girls ages 5-12 in four highback boosters, one backless booster, and on a vehicle seat without a booster. Belt anchorage locations were varied over a wide range. Seat cushion angle, seat back angle, and seat cushion length were varied in the no-booster conditions. All boosters produced better mean lap belt fit than was observed in the no-booster condition, but the differences among boosters were relatively large. With one midrange belt configuration, the lap belt was not fully below the anterior-superior iliac spine (ASIS) landmark on the front of the pelvis for 89% of children in one booster, and 75% of children failed to achieve that level of belt fit in another. In contrast, the lap belt was fully below the ASIS for all but two children in the best-performing booster. Child body size had a statistically significant but relatively small effect on lap belt fit. The largest children sitting without a booster had approximately the same lap belt fit as the smallest children experienced in the worst-performing booster. Increasing lap belt angle relative to horizontal produced significantly better lap belt fit in the no-booster condition, but the boosters isolated the children from the effects of lap belt angles. Reducing seat cushion length in the no-booster condition improved lap belt fit but changing cushion angle did not. Belt upper anchorage (D-ring) location had a strong effect on shoulder belt fit in conditions without shoulder belt routing from the booster. Unexpectedly, the worst average shoulder belt fit was observed in one highback booster with a poorly positioned shoulder belt routing clip. The shoulder belt was routed more outboard, on average, with a backless booster than without a booster, but raising the child also amplified the effect of D-ring location, such that children were

  17. The Radiation Belt Storm Probes (RBSP): Using A Fundamental Physics Mission to Support Practical Applications

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Mauk, B. H.; Weiss, M.; Barnes, R. J.; Kessel, R.; Sibeck, D. G.

    2010-12-01

    This presentation provides an overview of the Living With a Star (LWS) Radiation Belt Storm Probes (RBSP) mission and its planned contributions to space weather activities. The RBSP mission targets Earth’s space radiation belts that comprise multiple components of high energy, penetrating charged particles. These belts are hazardous to spacecraft and astronauts alike and are controlled by dynamic processes that govern particle radiation mechanisms occurring throughout the universe. The two RBSP spacecraft will make measurements in low-inclination, elliptical, lapping orbits around the Earth to quantify mechanisms for energetic particle acceleration, transport, and loss in space environments. The RBSP instrument investigations provide the measurements needed to characterize and quantify the processes that supply and remove energetic particles from the Earth's Van Allen radiation belts. The radiation belts are now part of our technology infrastructure, and if we can understand them, we can improve our mission planning, spacecraft operation and system design, and replace average or worst case design assumptions by actual values of solar cycle radiation. Space weather forecasting ideally requires specification and prediction of impacts on satellite operations. The RBSP spacecraft will characterize the space environment and also provide satellite state of health data, thereby providing a great opportunity to study the spacecraft interaction with the local space environment. In addition to the space weather modeling efforts, the RBSP mission will provide real-time support for the user community. The spacecraft will broadcast real-time space weather data which will be used for monitoring and analyzing current environmental conditions, anomaly resolution and to forecast natural environmental changes.

  18. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  19. Rhodium-catalyzed dynamic kinetic asymmetric transformations of racemic allenes by the [3+2] annulation of aryl ketimines.

    PubMed

    Tran, Duc N; Cramer, Nicolai

    2013-09-27

    Racemization required: Rhodium(I)-catalyzed C-H activation directed by unprotected ketimines initiates selective [3+2] cycloaddition with allenes, providing access to highly substituted indenylamines. The reaction proceeds through the dynamic kinetic asymmetric transformation of racemic allenes. The catalyst controls the enantio- and diastereoselectivity, the regioselectivities of the C-H activation and allene incorporation, as well as the E/Z ratio.

  20. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  1. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Drake, J. F.; Mozer, F.

    2015-12-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  2. On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

    NASA Technical Reports Server (NTRS)

    Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.

    2016-01-01

    Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.

  3. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  4. Effects of Complex Interplanetary Structures on the Dynamics of the Earth's Outer Radiation Belt During the 16-30 September 2014 Period: II) Corotating Solar Wind Stream

    NASA Astrophysics Data System (ADS)

    Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.

    2015-12-01

    We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.

  5. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system.

    PubMed

    Sunkin, Susan M; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L; Thompson, Carol L; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.

  6. The Proton

    NASA Astrophysics Data System (ADS)

    Canal, Carlos Garcia; Sassot, Rodolfo

    2003-10-01

    In this talk we present a collection of selected topics concerning the structure of the proton and the fundamental interactions as seen inside it. These topics have been thoroughly covered by high energy experiments with ever increasing precision in recent years and beautifully illustrate our present knowledge of the standard model.

  7. Proton Radiobiology

    PubMed Central

    Tommasino, Francesco; Durante, Marco

    2015-01-01

    In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed. PMID:25686476

  8. Design certification review assessment report. Electron/proton spectrometer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics of the electron-photon spectrometer developed for the Skylab program are presented. The spectrometer is externally mounted on the Skylab module complex and provides omnidirectional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The data are applied to the determination of relative biological effectiveness factors as a safety factor for manned space flight.

  9. Keeping conveyor belts clean reduces operating costs

    SciTech Connect

    Leroy, T.C.

    1982-07-01

    Surveys devices for cleaning conveyor belts. Inefficient belt cleaning will result in material sticking to the return belt. This material then accumulates and forms piles underneath the conveyor, as shown in an illustration. Unevenly worn idlers bring about off-centering of the belt, causing spillage, and often, considerable damage. Continued accumulation of the material brings about stoppages and unscheduled shut downs of the plant. Devices examined include brushes, metallic cable and depression rollers.

  10. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    PubMed Central

    Fu, Xiangrong; Cowee, Misa M; Friedel, Reinhard H; Funsten, Herbert O; Gary, S Peter; Hospodarsky, George B; Kletzing, Craig; Kurth, William; Larsen, Brian A; Liu, Kaijun; MacDonald, Elizabeth A; Min, Kyungguk; Reeves, Geoffrey D; Skoug, Ruth M; Winske, Dan

    2014-01-01

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr<Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr≃Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ∼Ωe/2 is a natural consequence of the growth of two whistler modes with different properties. PMID:26167433

  11. On the Cross-Energy Cross-Pitch-Angle Coherence of Electrons in the Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Reeves, G. D.; Tu, W.; Cunningham, G.; Henderson, M. G.; Kletzing, C.; Redmon, R. J.

    2014-12-01

    Relativistic electrons, mainly trapped in the Earth's outer radiation belt, present a highly hazardous radiation environment for electronic hardware on board satellites and spacecraft. Thus developing a predictive capability for MeV electron levels as well as understanding the physics have been deemed critical for both space research and industry communities. In this work, we first demonstrate that a high cross-energy cross-pitch-angle coherence exists between the trapped ~MeV electrons and precipitating ~100s KeV electrons—observed respectively by Van Allen Probes and NOAA POES satellites in different orbits—by conducting a correlation survey on measurements from both high- and low-altitudes. Then, based upon the results, we further test the possibility of using a linear prediction filter model, driven by POES observations from low-Earth-orbits, to predict the energization of MeV electrons after geomagnetic storms, as well as the evolving distributions of MeV electrons in real time. Finally, to account for this high coherence, we provide our hypothesis based upon theoretical calculations and numerical simulations for individual events using diffusion codes with realistic particle and wave inputs from missions including Van Allen Probes. Results from this study unveil new knowledge on radiation belt dynamics, add new science significance to a long existing space infrastructure, and provide practical and useful tools to the whole space community.

  12. Hazards of conveyor belt fires

    SciTech Connect

    Perzak, F.J.; Litton, C.D.; Mura, K.E.; Lazzara, C.P.

    1995-12-31

    This report describes a US Bureau of Mines study on the hazards of large-scale conveyor belt fires in underground coal mines, as a function of both air velocity and distance from belt surface to gallery roof. The fire hazards considered were smoke obscuration, toxic effects of carbon monoxide (CO), and elevated air temperatures downstream of the fire. All of these hazards scale with the ratio of fire intensity to ventilation airflow. These hazards were all found to be greater at the lower belt-to-roof distance, owing to the greater fire intensities that resulted. The hazards of smoke obscuration and elevated CO levels were greater at lower air velocities. Smoke obscuration was found to be the earliest hazard, reaching critical levels before the stages of flame spread. Fire growth rates during rapid flame spread were much greater than rates measured during the early stages of flame spread. Fire growth rates during rapid flame spread were much greater than rates measured during the early stages of belt burning. Data were analyzed to determine the early-warning capability of fire sensors. Smoke sensors provided the earliest warning, followed closely by CO sensors. Thermal sensors did not exhibit any early warning capability.

  13. 36 CFR 4.15 - Safety belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened...

  14. 36 CFR 4.15 - Safety belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened...

  15. 46 CFR 169.723 - Safety belts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch...

  16. 36 CFR 4.15 - Safety belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened...

  17. 46 CFR 169.723 - Safety belts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch...

  18. 46 CFR 169.723 - Safety belts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch...

  19. 36 CFR 4.15 - Safety belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened...

  20. 36 CFR 4.15 - Safety belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened...

  1. 46 CFR 169.723 - Safety belts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch...

  2. 46 CFR 169.723 - Safety belts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch...

  3. Grinding Glass Disks On A Belt Sander

    NASA Technical Reports Server (NTRS)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  4. Appendiceal transection associated with seat belt restraint

    PubMed Central

    Go, Seung Je; Ye, Jin Bong; Kim, Joong Suck

    2016-01-01

    The seat belt is designed for safety in a motor vehicle and should be worn to prevent severe injuries. But, the seat belt itself can be an injury factor in combination with deceleration forces applied to fixation points of mobile viscera. Here, we present a 23-year-man with traumatic transection of the appendix, highly mobile viscera, following seat belt injury. PMID:27478816

  5. 30 CFR 77.406 - Drive belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drive belts. 77.406 Section 77.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless...

  6. 30 CFR 75.1727 - Drive belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drive belts. 75.1727 Section 75.1727 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1727 Drive belts. (a) Drive belts shall not...

  7. 30 CFR 75.1727 - Drive belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drive belts. 75.1727 Section 75.1727 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1727 Drive belts. (a) Drive belts shall not...

  8. 30 CFR 77.406 - Drive belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drive belts. 77.406 Section 77.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless...

  9. 30 CFR 77.406 - Drive belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drive belts. 77.406 Section 77.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless...

  10. 30 CFR 75.1727 - Drive belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drive belts. 75.1727 Section 75.1727 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1727 Drive belts. (a) Drive belts shall not...

  11. 30 CFR 75.1727 - Drive belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drive belts. 75.1727 Section 75.1727 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1727 Drive belts. (a) Drive belts shall not...

  12. 30 CFR 77.406 - Drive belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drive belts. 77.406 Section 77.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless...

  13. 30 CFR 75.1727 - Drive belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drive belts. 75.1727 Section 75.1727 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1727 Drive belts. (a) Drive belts shall not...

  14. 30 CFR 77.406 - Drive belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drive belts. 77.406 Section 77.406 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... Mechanical Equipment § 77.406 Drive belts. (a) Drive belts shall not be shifted while in motion unless...

  15. Dawn-dusk asymmetry and adiabatic dynamic of the radiation belt electrons during magnetic storm

    NASA Astrophysics Data System (ADS)

    Lazutin, Leonid L.

    2016-09-01

    The changes of the latitudinal profiles of outer belt energetic electrons during magnetic storms are mostly explained by the precipitation into the loss cone caused by VLF and EMIC waves or by the scattering into the magnetopause. In present work, energetic electron dynamics during magnetic storm of August 29-30, 2004 we attributed at most to the adiabatic transformation of the magnetic drift trajectories and Dst effect. This conclusion was based on the analysis of dawn-dusk asymmetry of the electron latitudinal profiles measured by low altitude polar orbiter SERVIS-1 and on the coincidence of pre-storm and after-storm profiles of radiation belt electrons and protons.

  16. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  17. Space Weather data processing and Science Gateway for the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2013-12-01

    A near real-time data processing pipeline for the Space Weather broadcast data from the Van Allen Probes is presented. The Van Allen Probes broadcasts a sub-set of the science data in real-time when not downlinking the principal science data. This broadcast is received by several ground stations and relayed to APL in near real time to be ingested into the space weather processing pipeline. This pipeline processes the available level zero space weather data into higher level science data products. These products are made available to the public via the Van Allen Probes Science Gateway website (http://athena.jhuapl.edu). The website acts as pivotal point though which all other instrument SOC's can be accessed. Several other data products (e.g KP/DST indices) and tools (e.g orbit calculator) are made also available to the general public.

  18. Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft

    NASA Astrophysics Data System (ADS)

    Němec, F.; Hospodarsky, G.; Pickett, J. S.; Santolík, O.; Kurth, W. S.; Kletzing, C.

    2016-08-01

    We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very quiet, and the events occurred inside the plasmasphere. The modulation period observed by the Van Allen Probes and THEMIS E spacecraft (duskside) was in both events about twice larger than the modulation period observed by the Cluster spacecraft (dawnside). Moreover, individual QP elements occur about 15 s earlier on THEMIS E than on Van Allen Probes, which might be related to a finite propagation speed of a modulating ULF wave.

  19. A C–H bond activation-based catalytic approach to tetrasubstituted chiral allenes

    PubMed Central

    Wu, Shangze; Huang, Xin; Wu, Wangteng; Li, Pengbin; Fu, Chunling; Ma, Shengming

    2015-01-01

    Enantioselective synthesis of fully substituted allenes has been a challenge due to the non-rigid nature of the axial chirality, which spreads over three carbon atoms. Here we show the commercially available simple Rh complex may catalyse the CMD (concerted metalation/deprotonation)-based reaction of the readily available arenes with sterically congested tertiary propargylic carbonates at ambient temperature affording fully substituted allenes. It is confirmed that the excellent designed regioselectivity for the C–C triple bond insertion is induced by the coordination of the carbonyl group in the directing carbonate group as well as the steric effect of the tertiary O-linked carbon atom. When an optically active carbonate was used, surprisingly high efficiency of chirality transfer was realized, affording fully substituted allenes in excellent enantiomeric excess (ee). PMID:26246391

  20. Short-Term Forecasting of Radiation Belt and Ring Current

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2007-01-01

    A computer program implements a mathematical model of the radiation-belt and ring-current plasmas resulting from interactions between the solar wind and the Earth s magnetic field, for the purpose of predicting fluxes of energetic electrons (10 keV to 5 MeV) and protons (10 keV to 1 MeV), which are hazardous to humans and spacecraft. Given solar-wind and interplanetary-magnetic-field data as inputs, the program solves the convection-diffusion equations of plasma distribution functions in the range of 2 to 10 Earth radii. Phenomena represented in the model include particle drifts resulting from the gradient and curvature of the magnetic field; electric fields associated with the rotation of the Earth, convection, and temporal variation of the magnetic field; and losses along particle-drift paths. The model can readily accommodate new magnetic- and electric-field submodels and new information regarding physical processes that drive the radiation-belt and ring-current plasmas. Despite the complexity of the model, the program can be run in real time on ordinary computers. At present, the program can calculate present electron and proton fluxes; after further development, it should be able to predict the fluxes 24 hours in advance

  1. Global simulations of ring current and radiation belt electrons in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Aseev, Nikita

    2016-04-01

    Understanding the ring current and radiation belts has been a major challenge since the discovery of the space radiation. We first present long-term simulations with a VERB-3D of relativistic and ultra-relativistic electrons with boundary conditions from GEO observations. We then present VERB-4D modelling that include convection, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy electron transport is dominated by the diffusive transport. We also show that at energies of 100s of keV, a number of processes work simultaneously, including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulation of the Marc, 17 2013 storm are compared with Van Allen Probes observations for a wide range of energies.

  2. Simulation of radiation belt electron dynamics using in-situ global model of chorus waves inferred from the low-altitude electron precipitation

    NASA Astrophysics Data System (ADS)

    Li, W.; Thorne, R. M.; Ni, B.; Bortnik, J.; Ma, Q.; Chen, L.; Kletzing, C.; Kurth, W. S.; Hospodarsky, G. B.; Green, J. C.; Baker, D. N.; Kanekal, S. G.; Reeves, G. D.; Henderson, M. G.; Spence, H.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.

    2013-12-01

    The global evolution of chorus wave intensity is crucial to evaluate the electron local acceleration by chorus waves, which is fundamentally important for radiation belt electron dynamics. Based on the fact that chorus waves play a dominant role in scattering 30-100 keV electrons, we adopt a physics-based technique of inferring chorus wave amplitudes from the low-altitude electron population (30-100 keV) measured by multiple POES/MetOp satellites, which provide extensive coverage over a broad L-MLT region. This technique is validated through analyzing conjunction events with the Van Allen Probes measuring chorus wave amplitudes near the equator and POES/MetOp satellites measuring the 30-100 keV electron population at the conjugate low altitudes. We adopt this technique to construct chorus wave intensity distributions, which are then used to simulate the radiation belt electron dynamics during the 09 October 2012 storm. The simulation results show that the pronounced electron acceleration to relativistic energies with a peak in phase space density observed by the Van Allen probes was primarily caused by chorus-driven local acceleration. Our numerical simulation of local stochastic acceleration not only accounts for the timescale and energy dependence of the rapid increase in electron flux in the heart of the outer radiation belt, but also reproduces the evolution of the observed electron pitch angle distribution.

  3. Regiodivergent Intermolecular [3+2] Cycloadditions of Vinyl Aziridines and Allenes: Stereospecific Synthesis of Chiral Pyrrolidines.

    PubMed

    Lin, Tao-Yan; Zhu, Chao-Ze; Zhang, Peichao; Wang, Yidong; Wu, Hai-Hong; Feng, Jian-Jun; Zhang, Junliang

    2016-08-26

    The first rhodium-catalyzed intermolecular [3+2] cycloaddition reaction of vinyl aziridines and allenes for the synthesis of enantioenriched functionalized pyrrolidines was realized. [3+2] cycloaddition with the proximal C=C bond of N-allenamides gave 3-methylene-pyrrolidines in high regio- and diastereoselectivity, whereas, 2-methylene-pyrrolidines were obtained as the major products by the cycloadditions of vinyl aziridines with the distal C=C bond of allenes. Use of readily available starting materials, a broad substrate scope, high selectivity, mild reaction conditions, as well as versatile functionalization of the cycloadducts make this approach very practical and attractive. PMID:27485044

  4. Experiments in no-impact control of dingoes: comment on Allen et al. 2013.

    PubMed

    Johnson, Christopher N; Crowther, Mathew S; Dickman, Chris R; Letnic, Michael I; Newsome, Thomas M; Nimmo, Dale G; Ritchie, Euan G; Wallach, Arian D

    2014-01-01

    There has been much recent debate in Australia over whether lethal control of dingoes incurs environmental costs, particularly by allowing increase of populations of mesopredators such as red foxes and feral cats. Allen et al. (2013) claim to show in their recent study that suppression of dingo activity by poison baiting does not lead to mesopredator release, because mesopredators are also suppressed by poisoning. We show that this claim is not supported by the data and analysis reported in Allen et al.'s paper. PMID:24558973

  5. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    PubMed Central

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  6. Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.

    PubMed

    Pham, Hung V; Houk, K N

    2014-10-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels-Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate.

  7. Differentiating mechanistic possibilities for the thermal, intramolecular [2 + 2] cycloaddition of allene-ynes.

    PubMed

    Siebert, Matthew R; Osbourn, Joshua M; Brummond, Kay M; Tantillo, Dean J

    2010-09-01

    Intramolecular [2 + 2] cycloaddition reactions of allene-ynes offer a quick and efficient route to fused bicyclic ring structures. Insights into the mechanism and regiochemical preferences of this reaction are provided herein on the basis of the results of quantum chemical calculations (B3LYP/6-31+G(d,p)) and select experiments; both indicate that the reaction likely proceeds through a stepwise diradical pathway where one radical center is stabilized through allylic delocalization. The influences of the length of the tether connecting the alkyne and allene and substituent effects are also discussed.

  8. Copper-catalyzed regiodivergent silacarboxylation of allenes with carbon dioxide and a silylborane.

    PubMed

    Tani, Yosuke; Fujihara, Tetsuaki; Terao, Jun; Tsuji, Yasushi

    2014-12-24

    A regiodivergent silacarboxylation of allenes under a CO2 atmosphere with PhMe2Si-B(pin) as a silicon source in the presence of a copper catalyst at 70 °C has been developed. The regioselectivity of the reaction is successfully reversed by the proper choice of ligand; carboxylated vinylsilanes are obtained with rac-Me-DuPhos as the ligand, whereas the use of PCy3 affords carboxylated allylsilanes. Thus, two different carboxylated silanes can be selectively and regiodivergently synthesized from a single allene substrate. PMID:25469703

  9. Intermolecular sequential [4 + 2]-cycloaddition-aromatization reaction of aryl-substituted allenes with DMAD affording phenanthrene and naphthalene derivatives.

    PubMed

    Jiang, Xuefeng; Kong, Wangqing; Chen, Jie; Ma, Shengming

    2008-10-01

    An efficient entry to phenanthrene and naphthalene derivatives through intermolecular sequential [4 + 2]-cycloaddition-aromatization reactions of aryl-substituted allenes with DMAD in the absence of any catalyst was discovered. In this reaction the aromatic ring and the adjacent carbon-carbon double bond of the allene unit acted as the 1,3-diene.

  10. A Critique of Mark D. Allen's "The Preservation of Verb Subcategory Knowledge in a Spoken Language Comprehension Deficit"

    ERIC Educational Resources Information Center

    Kemmerer, David

    2008-01-01

    Allen [Allen, M. (2005). "The preservation of verb subcategory knowledge in a spoken language comprehension deficit." "Brain and Language, 95", 255-264.] reports a single patient, WBN, who, during spoken language comprehension, is still able to access some of the syntactic properties of verbs despite being unable to access some of their semantic…

  11. The Southeast Asian Tin Belt

    NASA Astrophysics Data System (ADS)

    Schwartz, M. O.; Rajah, S. S.; Askury, A. K.; Putthapiban, P.; Djaswadi, S.

    1995-07-01

    The Southeast Asian Tin Belt is a north-south elongate zone 2800 km long and 400 km wide, extending from Burma (Myanmar) and Thailand to Peninsular Malaysia and the Indonesian Tin Islands. Altogether 9.6 million tonnes of tin, equivalent to 54% of the world's tin production is derived from this region. Most of the granitoids in the region can be grouped geographically into elongate provinces or belts, based on petrographic and geochronological features. - The Main Range Granitoid Province in western Peninsular Malaysia, southern Peninsular Thailand and central Thailand is almost entirely made up of biotite granite (184-230 Ma). Tin deposits associated with these granites contributed 55% of the historic tin production of Southeast Asia. - The Northern Granitoid Province in northern Thailand (0.1% of tin production) also has dominant biotite granite (200-269 Ma) but it is distinguished by abundant post-intrusion deformation. - The Eastern Granitoid Province extends from eastern Peninsular Malaysia to eastern Thailand. The Malaysian part is subdivided into the East Coast Belt (220-263 Ma), Boundary Range Belt (197-257 Ma) and Central Belt (79-219 Ma). The granitoids cover a wide compositional range from biotite granite to hornblende-biotite granite/granodiorite and diorite-gabbro. Tin deposits are associated with biotite granite in the East Coast Belt (3% of tin production). The granitoids in the other areas of the Eastern Granitoid Province are barren. - The Western Granitoid Province (22-149 Ma) in northern Peninsular Thailand, western Thailand and Burma has biotite granite and hornblende-biotite granite/granodiorite. Tin deposits are associated with biotite granite, which probably is the dominant phase (14% of tin production). The granitoids of the Indonesian Tin Islands (193-251 Ma) do not permit grouping into geographically distinct units. Main Range-type and Eastern Province-type plutons occur next to each other. Most of the tin deposits are associated with Main

  12. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    NASA Astrophysics Data System (ADS)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  13. Quantifying Energy-Time Dispersion of Relativistic Electron Microbursts to Constrain Their Generation Mechanism: Coordinated Studies Using FIREBIRD, Van Allen Probes, and BARREL

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Blake, J. B.; Crew, A. B.; Fennell, J. F.; Klumpar, D. M.; Larsen, B.; Millan, R. M.; Miyoshi, Y.; O'Brien, T. P., III; Reeves, G. D.; Smith, S. S.

    2015-12-01

    In this paper, we quantify properties of relativistic electron precipitation at low altitudes in order to constrain the mechanism(s) for microburst loss occurring in Earth's radiation belt. Though studied for decades, the physical mechanism(s) responsible for the loss of radiation belt particles through microburst precipitation to the atmosphere remains uncertain, and, unquantified in a global sense. Accordingly, we appeal to new measurements from the NSF FIREBIRD (Focused Investigation of Relativistic Electron Burst Intensity Range and Dynamics) mission. FIREBIRD comprises two 1.5U CubeSats launched in early 2015 into identical coplanar polar low altitude orbits; a small spring imparted a slow separation between the two spacecraft upon orbit insertion. Over the course of the mission, the orbits of the two identically-instrumented spacecraft slowly evolve, sampling spatial scales of electron precipitation measured simultaneously at separations of 10's to 1000's of kilometers. FIREBIRD provides electron energy spectra from ~250 keV to > 1MeV, with both high spectral resolution (6 to 12 energy channels) and high temporal resolution (principally operated at ~18 millisecond sampling). To do so, FIREBIRD employs two solid-state detectors on each CubeSat, one an uncollimated detector with a large geometric factor (optimized for weak events) and the other a collimated detector (optimized for intense events). While the primary goal of FIREBIRD is to establish the spatial/temporal coherence of microburst precipitation, it also provides the capability of quantifying on each spacecraft the dispersive properties of microbursts. In this work, we report on the energy-time dispersive qualities of individual bursts, which in turn provide a means for testing models and constraining where and how the bursts are generated. To test these models, we use measurements made near the magnetic equator by the Van Allen Probes mission during times when the two FIREBIRD and two Van Allen

  14. Seat-belt syndrome revisited.

    PubMed

    Thompson, N S; Date, R; Charlwood, A P; Adair, I V; Clements, W D

    2001-10-01

    This report describes a complex syndrome of injuries occurring in a young female who was a back seat passenger wearing a lap-belt restraint in a high-speed road traffic accident. As a consequence of the forced flexion distraction injury of her lumbar spine, she sustained a fracture-subluxation of the first lumbar vertebra in association with a jejunal perforation and extensive small intestinal mesenteric laceration. She also had a large traumatic hernia of the anterior abdominal wall, which was overlooked at primary laparotomy. This report highlights collectively the classical combination of injuries associated with the lap-belt syndrome and demonstrates the importance of carefully inspecting the anterior abdominal wall for deficiencies, because traumatic herniation may be easily overlooked.

  15. Radiation Belts Storage Ring : What the Cluster-CIS data can tell us

    NASA Astrophysics Data System (ADS)

    Dandouras, I. S.; Ganushkina, N.; Amariutei, O. A.; Reme, H.

    2013-12-01

    Following the launch by NASA of the Radiation Belt Storm Probes (RBSP) twin spacecraft, now named the Van Allen Probes, the discovery of a storage ring was announced: Baker et al., Science, 2013. This transient feature was observed during September 2012, following the arrival of an interplanetary shock, was located between L=3.0 and L=3.5 and consisted of about 4 to 6 MeV electrons. During that period the Cluster spacecraft had a high-inclination orbit, with a perigee just above 2 Re. The CIS experiment onboard Cluster is sensitive to penetrating energetic electrons (E > 2 MeV), which produce background counts and thus allow to localize the boundaries of the outer and inner radiation belts (Ganushkina et al., JGR, 2011). A search was undertaken in the September 2012 CIS data for eventual signatures of the storage ring, and indeed a small increase of the instrument background was observed between L=3.0 and L=3.5. This is clearly separated from the main outer radiation belt, which presents a much stronger background due to higher fluxes of relativistic electrons. A mono-energetic ion drift band was also observed by CIS inside the storage ring, at about 5 keV for He+ and O+ ions. This result provides an independent confirmation for the storage ring. In addition, it allows also to examine Cluster and Double Star data from earlier years, covering a full solar cycle, for other such signatures of a transient storage ring. It results that this 3-belt structure is seen several times.

  16. LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts

    SciTech Connect

    Cowee, Misa; Liu, Kaijun; Friedel, Reinhard H.; Reeves, Geoffrey D.

    2012-07-17

    We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

  17. Cobalt/rhodium heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and bisallenes to Pauson-Khand-type reaction products.

    PubMed

    Park, Ji Hoon; Kim, Eunha; Kim, Hyeong-Mook; Choi, Soo Young; Chung, Young Keun

    2008-05-28

    The first catalytic intra- and intermolecular [2+2+1] cocyclization reactions of allenes and carbon monoxide have been developed. In the Co(2)Rh(2) heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and carbon monoxide, the allenes formally serve both as an excellent alkene- and alkyne-like moiety within a Pauson-Khand-type process.

  18. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  19. Homoallylic amines by reductive inter- and intramolecular coupling of allenes and nitriles

    PubMed Central

    Manojlovic, Marija D

    2011-01-01

    Summary The one-pot hydrozirconation of allenes and nitriles followed by an in situ transmetalation of the allylzirconocene with dimethylzinc or zinc chloride provides functionalized homoallylic amines. An intramolecular version of this process leads to 3-aminotetrahydrofurans and 3-aminotetrahydropyrans. PMID:21804878

  20. Improving the Collection of Student Accounts at Allen County Community College.

    ERIC Educational Resources Information Center

    Geffert, Barbara

    During the past several years, Allen County Community College has experienced a growing number of uncollected student accounts. In an effort to encourage timely payment of student charges, lower the number of students receiving payment deferments, increase cash flow at the beginning of each semester, and reduce the number of bad debts being…

  1. The Native Speaker, the Student, and Woody Allen: Examining Traditional Roles in the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Finger, Anke

    This paper uses a language classroom role-playing scene from a Woody Allen movie to examine the language student who has traditionally been asked to emulate and copy the native speaker and to discuss roles that teachers ask students to play. It also presents the changing paradigm of the native speaker and his or her role inside and outside the…

  2. Rotationally resolved photoelectron spectroscopic study of the Jahn-Teller effect in allene

    NASA Astrophysics Data System (ADS)

    Schulenburg, A. M.; Merkt, F.

    2009-01-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectra of allene (C3H4) and perdeuterated allene have been recorded from the first adiabatic ionization energy up to 2200 cm-1 of internal energy in the cations at a resolution sufficient to observe the full rotational structure. The intensity distributions in the spectra are dominated by vibrational progressions in the torsional mode, which were analyzed in the realm of a two-dimensional model of the E ⊗(b1⊕b2) Jahn-Teller effect in the allene cation [C. Woywod and W. Domcke, Chem. Phys. 162, 349 (1992)]. Whereas the rotational structure of the transitions to the lowest torsional levels (00 and 41) are regular and can be qualitatively analyzed in terms of a simple orbital ionization model, the rotational structure of the spectra of the 42 and 43 levels are strongly perturbed. The photoelectron spectrum of C3H4 also reveals several weak vibrational bands in the immediate vicinity of these levels that are indicative of (ro)vibronic perturbations. A slight broadening of the transitions to the 41 levels compared to that of the vibronic ground state and the increase of the number of sharp features in the rotational structure of the spectrum of the 42 level point at the importance of large-amplitude motions not considered in previous treatments of the Jahn-Teller effect in the allene cation.

  3. Astronauts Joseph Allen rides cherry picker over stowage area/work station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Joseph P. Allen rides a cherry picker over to a stowage area/work station to wrap up extravehicular activity (EVA) duties above Earth. The cherry picker is a union of the mobile foot restraint and the remote manipulator system (RMS), controlled from inside Discovery's cabin. The Westar VI/PAM-D satellite is pictured secured in Discovery's cargo bay.

  4. Regioselective Allene Hydrosilylation Catalyzed by NHC Complexes of Nickel and Palladium

    PubMed Central

    Miller, Zachary D.; Li, Wei; Belderrain, Tomás R.; Montgomery, John

    2013-01-01

    Regioselective methods for allene hydrosilylation have been developed, with regioselectivity being governed primarily by choice of metal. Alkenylsilanes are produced via nickel catalysis with larger N-heterocyclic carbene ligands, and allylsilanes are produced via palladium catalysis with smaller N-heterocyclic carbene ligands. These complementary methods allow either regioisomeric product to be obtained with exceptional regiocontrol. PMID:24079389

  5. Nathaniel Topliff Allen, Early Professional and 19th Century Risk Taker.

    ERIC Educational Resources Information Center

    Cadwallader, Lynn

    Nathaniel T. Allen's life (1823-1903) offers insights into 19th century professionalization of education in the United States. His independent political views set him apart as a strong-willed and dauntless supporter of equal education opportunity. Appointed by Horace Mann as principal of a model school connected with the first public normal school…

  6. An Interview with Dr. Roach van Allen (Leaders in Reading Research and Instruction).

    ERIC Educational Resources Information Center

    Searfoss, Lyndon; Jerrolds, Bob W.

    1989-01-01

    Presents an interview with Dr. Roach van Allen in which he describes how he became involved in education, who influenced him professionally, his proudest accomplishments (a theoretical model for a language experience program), what he sees as the current problems in reading education, and what he sees in the future. (RS)

  7. A Call to Action: JoBeth Allen, NCTE's 2012 Outstanding Educator in the Language Arts

    ERIC Educational Resources Information Center

    Tisdale, Carmen

    2012-01-01

    This article is a tribute to JoBeth Allen, recipient of the Elementary Section's 2012 award for Outstanding Educator in the English Language Arts. Each year, this award recognizes a distinguished educator who has made major contributions to the field of language arts in elementary education. This article was written by second-grade teacher and…

  8. All Together Now: Valerie Allen--U.S. Department of Energy

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    When Valerie Allen decided she did not want to be a Montessori teacher any longer, she began work on her MLIS. Immediately she learned concepts she could apply to her new job as information specialist for the Department of Energy's (DOE) Office of Scientific and Technical Information (OSTI) at Oak Ridge National Laboratory, TN. While the LIS…

  9. Rh(I)-Catalyzed Insertion of Allenes into C-C Bonds of Benzocyclobutenols.

    PubMed

    Zhao, Chunliang; Liu, Li-Chuan; Wang, Jing; Jiang, Chenran; Zhang, Qing-Wei; He, Wei

    2016-01-15

    Herein we report a Rh(I)-catalyzed two carbon insertion into C-C bonds of benzocyclobutenols by employing symmetrical and unsymmetrical allenes. This reaction provides rapid access to alkylidene tetralins bearing two adjacent stereogenic centers in good yields and diasteroselectivities.

  10. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  11. Complex polycyclic scaffolds by metathesis rearrangement of Himbert arene/allene cycloadducts.

    PubMed

    Lam, Jonathan K; Schmidt, Yvonne; Vanderwal, Christopher D

    2012-11-01

    The intramolecular arene/allene cycloaddition first described 30 years ago by Himbert and Henn permits rapid access to strained polycyclic compounds. Alkene metathesis processes cleanly rearrange appropriately substituted cycloadducts into complex, functional-group-rich polycyclic lactams of potential utility for natural product synthesis and medicinal chemistry.

  12. Highly selective cobalt-mediated [6 + 2] cycloaddition of cycloheptatriene and allenes.

    PubMed

    Clavier, Hervé; Le Jeune, Karel; de Riggi, Innocenzo; Tenaglia, Alphonse; Buono, Gérard

    2011-01-21

    [6 + 2] Cycloadditions between cycloheptatrienes with allenes have been investigated. Cobalt salts were found to promote this transformation efficiently. Moreover, this reaction was found to be highly selective since only one regioisomer was obtained with an excellent E/Z-selectivity.

  13. Studies on Lewis acid-mediated intramolecular cyclization reactions of allene-ene systems.

    PubMed

    Hiroi, K; Watanabe, T; Tsukui, A

    2000-03-01

    The Lewis acid-mediated reactions of allene-ene compounds, derived from 3-methylcitronellal or dimethyl malonate, were carried out using various Lewis acids such as ethylaluminum dichloride, diethylaluminum chloride, titanium chloride, zinc chloride etherate, or boron trifluoride etherate, affording unexpectedly intramolecular [2+2]cycloaddition products under some particular reaction conditions without any formation of intramolecular ene reaction products.

  14. Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes.

    PubMed

    González, Ana Z; Toste, F Dean

    2010-01-01

    An enantioselective gold(I)-catalyzed intramolecular [4 + 2]-cycloaddition of allenes and dienes is reported. The reactions allow for the asymmetric synthesis of trans-hexahydroindenes and pyrrolidine products using C(3)-symmetric phosphitegold(I) and ortho-arylphosphoramiditegold(I) complexes as catalysts, respectively.

  15. Enantioselective [2 + 2 + 2] cycloaddition reaction of isocyanates and allenes catalyzed by nickel.

    PubMed

    Miura, Tomoya; Morimoto, Masao; Murakami, Masahiro

    2010-11-17

    The enantioselective intermolecular [2 + 2 + 2] cycloaddition reaction of two molecules of isocyanate and one molecule of allene is catalyzed by a nickel(0)/(S,S)-i-Pr-FOXAP complex, providing an efficient access to enantiomerically enriched dihydropyrimidine-2,4-diones.

  16. Gold-catalyzed stereocontrolled oxacyclization/[4+2]-cycloaddition cascade of ketone-allene substrates.

    PubMed

    Teng, Tse-Min; Liu, Rai-Shung

    2010-07-14

    We report the first success on the Au-catalyzed tandem oxacyclization/[4+2]-cycloaddition cascade using ketone-allene substrates to give highly substituted oxacyclics with excellent stereocontrol. In contrast to oxo-alkyne substrates, the resulting cycloadducts are isolable and efficiently produced from a reasonable scope of enol ethers.

  17. Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes.

    PubMed

    González, Ana Z; Toste, F Dean

    2010-01-01

    An enantioselective gold(I)-catalyzed intramolecular [4 + 2]-cycloaddition of allenes and dienes is reported. The reactions allow for the asymmetric synthesis of trans-hexahydroindenes and pyrrolidine products using C(3)-symmetric phosphitegold(I) and ortho-arylphosphoramiditegold(I) complexes as catalysts, respectively. PMID:19961192

  18. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Astrophysics Data System (ADS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-03-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  19. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Technical Reports Server (NTRS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  20. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  1. Synchronous and Cogged Fan Belt Performance Assessment

    SciTech Connect

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  2. Development of a new Global RAdiation Belt model: GRAB

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Ecoffet, Robert; Bourdarie, Sébastien; Boscher, Daniel; Standarovski, Denis

    2016-07-01

    The well known AP8 and AE8 NASA models are commonly used in the industry to specify the radiation belt environment. Unfortunately, there are some limitations in the use of these models, first due to the covered energy range, but also because in some regions of space, there are discrepancies between the predicted average values and the measurements. Therefore, our aim is to develop a radiation belt model, covering a large region of space and energy, from LEO altitudes to GEO and above, and from plasma to relativistic particles. The aim for the first version is to correct the AP8 and AE8 models where they are deficient or not defined. At geostationary, we developed ten years ago for electrons the IGE-2006 model which was proven to be more accurate than AE8, and used commonly in the industry, covering a broad energy range, from 1keV to 5MeV. From then, a proton model for geostationary orbit was also developed for material applications, followed by the OZONE model covering a narrower energy range but the whole outer electron belt, a SLOT model to asses average electron values for 2proton flux values at low altitudes. As most of these models were developed using more than a solar cycle of measurements, these measurements being checked, cross calibrated and filtered, we have no doubt that the obtained averages are more accurate than AP8 and AE8 for these particular locations. These local models were validated along different orbit with independent data sets or effect measurements. We will use a cache file system to switch between models, in order to obtain at each location in space and energy point the most reliable value. Of course, the way the model is developed is well suited to add new local developments or to include international partnership. This model will be called the GRAB model, as Global Radiation Belt model. We will present first beta version during this conference.

  3. Investigation of Moving Belt Radiator Technology Issues

    NASA Technical Reports Server (NTRS)

    Teagan, W. Peter; Aguilar, Jerry L.

    1994-01-01

    The development of an advanced spacecraft radiator technology is reported. The moving belt radiator is a thermal radiator concept with the promise of lower specific mass (per kW rejected) than that afforded by existing technologies. The results of a parametric study to estimate radiator mass for future space power systems is presented. It is shown that this technology can be scaled up to 200 MW for higher rejection temperatures. Several aspects of the design concept are discussed, including the dynamics of a large rotating belt in microgravity. The results of a computer code developed to model the belt dynamics are presented. A series of one-g experiments to investigate the dynamics of small belts is described. A comprehensive test program to investigate belt dynamics in microgravity aboard the NASA KC-135 aircraft is discussed. It was found that the desired circular shape can readily be achieved in microgravity. It is also shown that a rotating belt is stable when subjected to simulated attitude control maneuvers. Heat exchanger design is also investigated. Several sealing concepts were examined experimentally, and are discussed. Overall heat transfer coefficients to the rotating belt are presented. Material properties for various belt materials, including screen meshes, are also presented. The results presented in this report indicate that the moving belt radiator concept is technically feasible.

  4. Pediatric lap belt injuries: care and prevention.

    PubMed

    Shoemaker, B L; Ose, M

    1997-01-01

    Motor vehicle collisions are the leading cause of death from injury during childhood. As children outgrow their toddler car seats, they are often restrained by two-point lap belts, which are fashioned for adult body proportions. Those children restrained by two-point lap belts are at risk for intraabdominal and spinal injury during an auto collision. This article explores the mechanisms of injury and identification of "lap belt syndrome." Aspects of nursing care and prevention strategies will be discussed. A case study illustrates and summarizes the cogent aspects of lap belt related injury and child/family care.

  5. Workshop on Techtonic Evolution of Greenstone Belts

    NASA Technical Reports Server (NTRS)

    Dewit, M. J. (Editor); Ashwal, Lewis D. (Editor)

    1986-01-01

    Topics addressed include: greenstone belt externalities; boundaries; rock terranes; synthesis and destiny; tectonic evolution; rock components and structure; sedimentology; stratigraphy; volcanism; metamorphism; and geophysics.

  6. Puzzling Snowballs: Main Belt Comets

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Meech, Karen

    2015-03-01

    Main belt comets (MBCs) are a class of newly discovered objects that exhibit comet-like appearances and yet are dynamically indistinguishable from ordinary main belt asteroids. The measured size and albedo of MBCs are similar to those of classical comets. At present, six MBCs have been discovered, namely 133P/Elst-Pizarro, 176P/LINEAR, 238P/Read, P/2008 R1, P/La Sagra and P/2006 VW139. The total number of active MBCs is estimated to be at the level of a few hundreds (Hsieh & Jewitt, 2006). Several explanations for the activity of MBCs have been suggested. These include impact ejection, sublimation and rotational instability. However, since renewed activity has been observed in 133P and 238P at successive perihelion passages, the most likely explanation may be a thermally-driven process - e.g sublimation of exposed surface ice. Although the proximity of MBCs to the Sun (r ~ 3 AU) makes the survival of surface ice improbable, thermal models have shown that water ice is thermally stable under a regolith layer a few meters thick. The study of MBCs has recently been complicated by the discoveries of two asteroid collisional events (P/2010 A2 (LINEAR) and (596) Scheila) in 2010, where comet-like dust coma/tail have been attributed to recent impacts. If MBCs are indeed icy, they represent the closest and the third established reservoir of comets (after the Oort cloud and the Kuiper belt). As such, they may have been an important source of water for the Earth's oceans. I will review the current state of MBC studies, present the latest observational results and discuss possible mechanisms that could produce the observed activity. I will also talk about current and future space missions that are dedicated or closely related to MBC studies.

  7. Palladium-catalyzed synthesis of endocyclic allenes and their application in stereoselective [2 + 2]cycloaddition with ketenes.

    PubMed

    Ogasawara, Masamichi; Okada, Atsushi; Nakajima, Kiyohiko; Takahashi, Tamotsu

    2009-01-01

    Palladium-catalyzed reactions of various 2-bromo-3-exo-methylenecycloalkenes with a stabilized nucleophile were examined. When the carbocycles were nine-membered or larger, the corresponding endocyclic allenes were isolated in excellent yields. In a reaction of the eight-membered cyclic substrate, initial formation of a cycloocta-1,2-diene derivative was detected; however, it dimerized slowly. The seven-membered carbocycle was inert to the reaction. Using a chiral Pd-catalyst, an axially chiral endocyclic allene was obtained in 65% ee. The cyclic allenes were applied to [2 + 2]cycloaddition with ketenes, and the stereoselectivity was studied.

  8. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maintenance of belt conveyors and belt conveyor entries. 75.1731 Section 75.1731 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1731 Maintenance of belt conveyors...

  9. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maintenance of belt conveyors and belt conveyor entries. 75.1731 Section 75.1731 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1731 Maintenance of belt conveyors...

  10. ULF Wave Modulation of Radiation Belt Electron Precipitation: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Brito, T. V.; Paral, J.; Halford, A.; Kress, B. T.; Hudson, M. K.; Millan, R. M.; Woodger, L. A.; Cully, C. M.

    2013-12-01

    The Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) experiment consists of multiple balloons launched from two different locations, South African Antarctic Station (SANAE IV) and the British station Halley Bay VI, form an array of 5-8 observations at a single point in time. Each balloon measures the bremsstrahlung X-rays produced by precipitation of electrons. This configuration is ideal for investigation of the temporal and spatial relationships between magnetosphere dynamics including ULF waves, drift echoes, and higher time scale precipitation from radiation belt electrons. This large slowly drifting array allows for many conjunctions with other satellite missions and ground based instrumentation. Specifically, due to the launch locations, the payloads spent large amounts of their time in close conjunction with the CARISMA magnetometer array, and the GOES satellites. Here we will present data from THEMIS, the Van Allen Probes, CARISMA, GOES and other data sources together with results from 3D particle tracing in global MHD fields using the Lyon-Fedder-Mobarry code to identify the mechanisms which drive and modulate the precipitation commonly observed during the 2013 BARREL campaign, comparing loss to the magnetopause and atmosphere for the CME-shock driven storm on January 17, 2013.

  11. Forecasting the Radiation Belts for Satellites Undergoing Electric-Orbit Raising

    NASA Astrophysics Data System (ADS)

    Horne, R. B.; Glauert, S. A.; Meredith, N. P.; Kersten, T.; Heynderickx, D.; Maget, V.; Li, W.; Pitchford, D. A.; Wade, D.

    2015-12-01

    The introduction of commercial satellites with all-electric propulsion systems is nothing less than a revolution in the quest for low-cost access to space. As a consequence, it can take as long as 200 - 400 days to raise the perigee of the satellite to final geostationary orbit. During this time the satellites are exposed to the most intense part of the van Allen radiation belts where the electron radiation environment can vary by orders of magnitude as a result of changes in the solar wind. Here we describe briefly this new method of launch and discuss the importance of radiation protection, the need for real-time data on orbit and how physics based models can help supply this need. We describe the forecasting system that was developed in the European SPACECAST project, and is now continued in the SPACESTORM project, and how we use physics based models to forecast the electron flux throughout the outer radiation belt in real-time, updated hourly. We show that forecasts are much improved when the physics of wave-particle interactions is included, and show comparisons between models using different wave models for plasmaspheric hiss and chorus waves. The results emphasise the importance of chorus wave amplitudes. Finally, we discuss some areas of research needed to improve the forecasts, such as the need to understand electron flux drop-outs and their relation to distortions of the geomagnetic field in the tail region, and the need for additional wave models.

  12. Structure and evolution of electron "zebra stripes" in the inner radiation belt

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zong, Q.-G.; Zhou, X.-Z.; Foster, J. C.; Rankin, R.

    2016-05-01

    "Zebra stripes" are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The "wave number" of this sinusoidal function, which corresponds to the reciprocal of the gap between two adjacent peaks in the drift frequency coordinate, increases in proportion to real time. Further, these structural and evolutionary characteristics of zebra stripes can be reproduced by an analytic model of the evolution of the particle distribution under a single monochromatic or static azimuthal electric field. It is shown that the essential ingredient for the formation of multiple zebra stripes is the periodic drift of particles. The amplitude of the zebra stripes shows a good positive correlation with Kp index, which indicates that the generation mechanism of zebra stripes should be related to geomagnetic activities.

  13. Exploring the Radiation Belts with the Explorer-1 [Prime] CubeSat

    NASA Astrophysics Data System (ADS)

    Mashburn, K. W.; Klumpar, D. M.; Springer, L.; Mosleh, E.

    2009-12-01

    The Explorer-1 [Prime] (E1P) CubeSat mission currently under development in the Space Science and Engineering Laboratory at Montana State University demonstrates the utility of low-cost CubeSats for the study of space weather phenomenon in the near-earth space environment. Using a collimated end window Geiger-Müller tube (donated by Dr. James Van Allen prior to his death in 2006), E1P will monitor the flux of trapped electrons in the horns of the inner and outer radiation belts with energies greater than approximately 60 keV. E1P is a 10cm x 10cm x 10cm satellite with a total mass of less than 1kg. It carries a UHF communications system to support both command uplink and data downlink to our satellite tracking station in Bozeman, Montana. In its nearly circular, low altitude polar orbit and using its continuous real-time telemetry beacon, E1P investigates both temporal and spatial irregularities in radiation belt intensity. The E1P mission will demonstrate the feasibility of a small constellation of similar CubeSats to provide real-time observations of the space environment at a fraction of the cost of larger dedicated spacecrafts. E1P’s secondary goal is to contribute to workforce development by involving university students in its design, development, and operations. E1P is sponsored by the NASA Montana Space Grant Consortium.

  14. Deep Dielectric Charging of Spacecraft Polymers by Energetic Protons

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Dennison, J. R.

    2007-01-01

    The majority of research in the field of spacecraft charging concentrates on electron charging effects with little discussion of charging by protons. For spacecraft orbiting in the traditional LEO and GEO environments this emphasis on electrons is appropriate since energetic electrons are the dominant species in those orbits. But for spacecraft in orbits within the inner radiation belts or for interplanetary and lunar space probes, proton charging (center dot) effects may also be of concern. To examine bulk spacecraft charging effects in these environments several typical highly insulating spacecraft polymers were exposed to energetic protons (center dot) with energies from 1 Me V to lO Me V to simulate protons from the solar wind and from solar energetic proton events. Results indicate that effects in proton charged dielectrics are distinctly different than those observed due to electron charging. In most cases, the positive surface potential continued to increase for periods on the order of minutes to a day, followed by long time scale decay at rates similar to those observed for electron charging. All samples charged to positive potentials with substantially lower magnitudes than for equivalent electron doses. Possible explanations for the different behavior of the measured surface potentials from proton irradiation are discussed; these are related to the evolving internal charge distribution from energy dependent electron and proton transport, electron emission, charge migration due to dark current and radiation induced conductivity, and electron capture by embedded protons.

  15. The Relativistic Electron-Proton Telescope (REPT)

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Kanekal, S. G.; Spence, H. E.; Westfall, J.; Hoxie, V.

    In order to measure the crucially-important high-energy electron (and proton) component in the Earth's radiation belts, there is a need for a carefully designed particle telescope. This is required since the highest energy particles are a source of great concern from the space weather and climate perspective. Their production is the least understood aspect of radiation belt science and it is important that their fluxes and energy distributions be accurately determined. The Relativistic Electron-Proton Telescope (REPT) consists of a stack of silicon solid-state detectors in a telescope configuration, a conical collimator, and a thick case surrounding the detector stack to shield the sensor from penetrating radiation and bremsstrahlung that would cause background. The REPT has an FOV (field of view) that is a circular cone of 30° . The instrument will point nearly perpendicular to the spin axis of the Radiation Belt Storm Probe (RBSP) spacecraft and will sample all pitch angles of particles during normal (or nominal) magnetic field orientations. It will measure high-energy electrons (up to ˜20 MeV) with good sensitivity and will also measure protons to E˜100 MeV. The REPT will be used in a closely coordinated way with the Magnetic Electron-Ion Spectrometer that is part of the RBSP proposed payload. The goal for the REPT design is to measure well the directional intensities and energy spectra of ˜2 to ˜20 MeV electrons throughout the slot and outer radiation belt region. To do this, the instrument requires an adequately large geometric factor to get reasonable count rates (above background) at the higher energies and yet must not saturate at the lower energy ranges. Thus, there must be a balance between foreground saturation on the one hand and background dominance on the other. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. Present simulations and lab testing show that a good design has been attained

  16. Direct comparison of transient radiation belt topology and dynamics in 1991 based on measurements onboard Mir space station and NOAA satellite.

    PubMed

    Shurshakov, V A; Huston, S L; Dachev TsP; Petrov, V M; Ivanov YuV; Semkova, J V

    1998-01-01

    In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year.

  17. Calculating ultra-low-frequency wave power of the compressional magnetic field vs. L and time: multi-spacecraft analysis using the Van Allen probes, THEMIS and GOES

    NASA Astrophysics Data System (ADS)

    Sarris, Theodore E.; Li, Xinlin

    2016-06-01

    Ultra-low-frequency (ULF) pulsations are critical in radial diffusion processes of energetic particles, and the power spectral density (PSD) of these fluctuations is an integral part of the radial diffusion coefficients and of assimilative models of the radiation belts. Using simultaneous measurements from two Geostationary Operational Environmental Satellites (GOES) geosynchronous satellites, three satellites of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft constellation and the two Van Allen probes during a 10-day period of intense geomagnetic activity and ULF pulsations of October 2012, we calculate the PSDs of ULF pulsations at different L shells. By following the time history of measurements at different L it is shown that, during this time, ULF wave power is not enhanced uniformly throughout the magnetosphere but instead is mostly enhanced in the outer L shells, close to the magnetopause, and to a lesser extent in the inner magnetosphere, closer to the plasmapause. Furthermore, by using phase differences between two GOES geosynchronous satellite pairs, we estimate the daily-averaged distribution of power at different azimuthal wave numbers. These results can have significant implications in better defining the effect of radial diffusion in the phase space density of energetic particles for different wave numbers or L shell distributions of ULF power.

  18. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; et al

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore » chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  19. Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen Probes REPT measurements

    NASA Astrophysics Data System (ADS)

    Ni, Binbin; Zou, Zhengyang; Li, Xinlin; Bortnik, Jacob; Xie, Lun; Gu, Xudong

    2016-06-01

    Using Van Allen Probes Relativistic Electron Proton Telescope (REPT) pitch angle resolved electron flux data from September 2012 to March 2015, we investigate in detail the global occurrence pattern of equatorial (|λ| ≤ 3°) butterfly distribution of outer zone relativistic electrons and its potential correlation with the solar wind dynamic pressure. The statistical results demonstrate that these butterfly distributions occur with the highest occurrence rate ~ 80% at ~ 20-04 magnetic local time (MLT) and L > ~ 5.5 and with the second peak (> ~ 50%) at ~ 11-15 MLT of lower L shells ~ 4.0. They can also extend to L = 3.5 and to other MLT intervals but with the occurrence rates predominantly < ~25%. It is further shown that outer zone relativistic electron butterfly distributions are likely to peak between 58° and 79° for L = 4.0 and 5.0 and between 37° and 58° for L = 6.0, regardless of the level of solar wind dynamic pressure. Relativistic electron butterfly distributions at L = 4.0 also exhibit a pronounced day-night asymmetry in response to the Pdyn variations. Compared to the significant L shell and MLT dependence of the global occurrence pattern, outer zone relativistic electron butterfly distributions show much less but still discernable sensitivity to Pdyn, geomagnetic activity level, and electron energy, the full understanding of which requires future attempts of detailed simulations that combine and differentiate underlying physical mechanisms of the geomagnetic field asymmetry and scattering by various magnetospheric waves.

  20. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    SciTech Connect

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

  1. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; Jaynes, A.; Li, X.; Blake, J. B.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (<1 MeV) electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (<1 MeV) electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  2. Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; Jaynes, A.; Li, X.; Blake, J. B.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.

    2015-09-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (<1 MeV) electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (<1 MeV) electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  3. The Kuiper Belt Recovery Program

    NASA Astrophysics Data System (ADS)

    Parker, Joel; Allen, Lynne; Gladman, Brett; Hergenrother, Carl; Kavelaars, J. J.

    2002-08-01

    The number of known Kuiper belt objects continues to increase each year, and the rate will soon accelerate significantly due to new and continuing wide-field projects dedicated to the discovery of these outer solar system bodies. A focused program dedicated to the recovery of these objects is necessary if the considerable effort and observing time spent on the discoveries are to have any long-term scientific significance. Our project explicitly addresses that need by providing reliable recovery observations (integrated with a CFHT survey we are conducting) at sufficient frequency to keep pace with the discoveries that need follow-up, as well as to provide photometric data for use in analysis of Kuiper belt physical properties such as size distribution, dynamics, formation, and structure. This NOAO proposal requests two KPNO observing runs at the end of semester 2002B to continue our successful recovery project. Our measurements will assure that the calculated orbits are determined well enough for future photometric and spectroscopic observations for physical studies. We have an efficient and proven pipeline to: find objects, provide sub- arcsecond absolute astrometry and calibrated photometry, determine orbits, and report results to the Minor Planet Center to refine the orbital elements.

  4. The Kuiper Belt Recovery Program

    NASA Astrophysics Data System (ADS)

    Parker, Joel; Allen, Lynne; Gladman, Brett; Grav, Tommy; Hergenrother, Carl; Holman, Matthew; Kavelaars, J. J.

    2002-02-01

    The number of known Kuiper belt related objects is increasing at an accelerated rate due to many wide-field projects dedicated to the discovery of these outer solar system bodies. A focused and dedicated recovery program is necessary and urgent if the considerable effort and observing time spent on the discoveries are to have any long-term scientific significance. This project (integrated with a CFHT survey we are conducting) will address that need by providing reliable recovery observations at sufficient frequency to keep pace with the discoveries that need follow-up, as well as to provide photometric data for use in analysis of Kuiper belt physical properties such as size distribution, dynamics, formation, and structure. Our measurements will assure that the calculated orbits are determined well enough for future photometric and spectroscopic observations for physical studies. We have an efficient and proven pipeline to: find objects, provide sub-arcsecond absolute astrometry and calibrated photometry, determine orbits, and report results to the Minor Planet Center to refine the orbital elements.

  5. Weak Turbulence in Radiation Belts

    NASA Astrophysics Data System (ADS)

    Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid

    2015-11-01

    Weak turbulence plays a significant role in space plasma dynamics. Induced nonlinear scattering dominates the evolution in the low-beta isothermal radiation belt plasmas and affects the propagation characteristics of waves. As whistler waves propagate away from the earth they are scattered in the magnetosphere such that their trajectories are turned earthward where they are reflected back towards the magnetosphere. Repeated scattering and reflection of the whistlers establishes a cavity in which the wave energy can be maintained for a long duration with, on average, a smaller wave-normal angle. Consequently, the cyclotron resonance time for the trapped energetic electrons increases, leading to an enhanced pitch-angle scattering rate. Enhanced pitch-angle scattering lowers the lifetime of the energetic electron population. Also, pitch-angle scattering of the trapped population in the cavity with a loss cone distribution amplifies the whistler waves, which in turn promotes a more rapid precipitation through a positive feedback mechanism. Typical storm-pumped radiation belt parameters and laboratory experiments will be used to elucidate this phenomenon Work supported by NRL Base Funds.

  6. Weak Turbulence in Radiation Belts

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.

    2015-12-01

    Weak turbulence plays a significant role in space plasma dynamics. Induced nonlinear scattering dominates the evolution in the low-beta isothermal radiation belt plasmas and affects the propagation characteristics of waves. As whistler waves propagate away from the earth they are scattered in the magnetosphere such that their trajectories are turned earthward where they are reflected back towards the magnetosphere. Repeated scattering and reflection of the whistlers establishes a cavity in which the wave energy can be maintained for a long duration with, on average, a smaller wave-normal angle. Consequently, the cyclotron resonance time for the trapped energetic electrons increases, leading to an enhanced pitch-angle scattering rate. Enhanced pitch-angle scattering lowers the lifetime of the energetic electron population. Also, pitch-angle scattering of the trapped population in the cavity with a loss cone distribution amplifies the whistler waves, which in turn promotes a more rapid precipitation through a positive feedback mechanism. Typical storm-pumped radiation belt parameters and laboratory experiments will be used to elucidate this phenomenon.

  7. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  8. 47. INTERIOR VIEW, DETAIL OF CONVEYOR BELT SYSTEM SYSTEM WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. INTERIOR VIEW, DETAIL OF CONVEYOR BELT SYSTEM SYSTEM WITH BACK BELT DROPPING HARDENED NAILS ON THE FRONT BELT TO BE TEMPERED; MOTION STOPPED - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  9. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE PAGES

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; et al

    2016-07-26

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  10. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  11. 14 CFR 31.63 - Safety belts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety...

  12. 14 CFR 27.1413 - Safety belts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety...

  13. 14 CFR 27.1413 - Safety belts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety...

  14. 36 CFR 1004.15 - Safety belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at...

  15. 14 CFR 31.63 - Safety belts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety...

  16. 14 CFR 27.1413 - Safety belts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety...

  17. 36 CFR 1004.15 - Safety belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at...

  18. 36 CFR 1004.15 - Safety belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at...

  19. 14 CFR 27.1413 - Safety belts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety...

  20. 14 CFR 31.63 - Safety belts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety...

  1. 14 CFR 31.63 - Safety belts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety...

  2. 36 CFR 1004.15 - Safety belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at...

  3. 14 CFR 27.1413 - Safety belts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety...

  4. 14 CFR 31.63 - Safety belts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety...

  5. Seat Belts on School Buses: Some Considerations.

    ERIC Educational Resources Information Center

    Soule, David

    1982-01-01

    A representative of the National Highway Traffic Safety Administration weighs advantages and discusses issues associated with installing seat belts in school buses. Federal regulations and research findings are considered. A list of guideline questions for school districts planning to install seat belts is included. (PP)

  6. Seat belt use and stress in adolescents.

    PubMed

    Schichor, A; Beck, A; Bernstein, B; Crabtree, B

    1990-01-01

    This study explored the association of adolescent seat belt use with psychosocial risk factors in an urban minority population after the enactment of a mandatory seat belt law. Data on seat belt use, family support, feelings of being down, suicidal ideation, substance abuse, sexual activity, school troubles, and problems with the law were obtained from 541 self-report intake forms administered to an adolescent medicine clinic population from 1986 to 1987. Respondents were almost exclusively black and Hispanic; 315 (59%) were females and 222 (41%) males, with a mean age of 15.4. Seat belt use was reported by 249 (46%) and no or intermittent use by 292 (54%). Chi-square and Wilcoxon rank sums tests were used to examine associations between seat belt use and risk factors. Results showed that the group comprised of those reporting no and intermittent seat belt use was significantly more likely to feel down, have decreased home support, have problems with school and the law, have been on probation, and feel that life in general was not going very well. No association was found between seat belt use and cigarette, drug, or alcohol use or sexual activity without contraceptives. Taking into account the lack of observed behavioral information to validate such self-report questionnaires, these data nevertheless point to the nonuse or intermittent use of seat belts as a possible manifestation of a lack of self-care due to feeling down and/or preoccupation with family, school, or societal problems. PMID:2275431

  7. Understanding Quaternions and the Dirac Belt Trick

    ERIC Educational Resources Information Center

    Staley, Mark

    2010-01-01

    The Dirac belt trick is often employed in physics classrooms to show that a 2n rotation is not topologically equivalent to the absence of rotation whereas a 4n rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors…

  8. 36 CFR 1004.15 - Safety belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at...

  9. Pregnancy: Should I Use a Seat Belt?

    MedlinePlus

    ... injury or death in the event of a car crash. You should wear a seat belt no matter where you sit in the car. How should I wear my seat belt? The ... together keep you from being thrown from the car during an accident. The shoulder strap also keeps ...

  10. Expression of concern: A unifying mechanism for the rearrangement of vinyl allene oxide geometric isomers to cyclopentenones.

    PubMed

    Kelly, Richard

    2015-12-21

    Expression of concern for 'A unifying mechanism for the rearrangement of vinyl allene oxide geometric isomers to cyclopentenones' by Adán B. González-Pérez et al., Org. Biomol. Chem., 2014, 12, 7694-7701.

  11. A Versatile Room-Temperature Route to Di- and Trisubstituted Allenes Using Flow-Generated Diazo Compounds.

    PubMed

    Poh, Jian-Siang; Tran, Duc N; Battilocchio, Claudio; Hawkins, Joel M; Ley, Steven V

    2015-06-26

    A copper-catalyzed coupling reaction between flow-generated unstabilized diazo compounds and terminal alkynes provides di- and trisubstituted allenes. This extremely mild and rapid transformation is highly tolerant of several functional groups.

  12. Novel synthesis of fused isoxazolidines via a palladium catalysed allene insertion-intramoleculer 1,3-dipolar cycloaddition cascade reaction.

    PubMed

    Aftab, Tajassas; Grigg, Ronald; Ladlow, Mark; Sridharan, Visuvanathar; Thornton-Pett, Mark

    2002-08-21

    A one pot, three component palladium catalysed allenation of aryl iodides, in combination with a nitrone cycloaddition, leads to formation of fused isoxazolidines, creating two rings, two stereocentres and one tetrasubstituted carbon centre.

  13. Nickel-iminophosphine-catalyzed [4+2] cycloaddition of enones with allenes: synthesis of highly substituted dihydropyrans.

    PubMed

    Sako, Saori; Kurahashi, Takuya; Matsubara, Seijiro

    2011-06-01

    Enones were found to react with allenes intermolecularly in the presence of a catalytic amount of a nickel-iminophosphine complex to provide dihydropyrans via oxidative cyclization of an enone and Ni(0).

  14. Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition reactions of 1-ene-, 1-yne- and 1-allene-vinylcyclopropanes.

    PubMed

    Jiao, Lei; Lin, Mu; Yu, Zhi-Xiang

    2010-02-21

    New Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition reactions of 1-ene-, 1-yne and 1-allene-vinylcyclopropanes have been developed, affording an efficient and versatile synthesis of cyclopentane- and cyclopentene-embedded bicyclic structures.

  15. Tensioning of a belt around a drum using membrane element

    NASA Technical Reports Server (NTRS)

    Chen, C. H. S.

    1980-01-01

    An application of the membrane element to the problem of the tensioning of a conveyer belt which wraps around a drum is presented. Two cases were investigated: (1) belt tension increase due to drum edge wear; and (2) material trapped between the drum and the belt. In both cases it was found that the increase in belt tension was due to the additional stretching of the belt resulting from the drum radius change rather than from the transverse deflection of the belt.

  16. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  17. Arthroscopic Medial Meniscus Posterior Root Fixation Using a Modified Mason-Allen Stitch

    PubMed Central

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Kim, Jin Goo

    2016-01-01

    A complete radial tear of the meniscus posterior root, which can effectively cause a state of total meniscectomy via loss of hoop tension, requires that the torn root be repaired. Several methods have been used to repair medial meniscus posterior root tears, most of which are based on a simple stitch technique that is known to have stitch-holding strength. We applied a modified version of the Mason-Allen stitch technique, which is recognized as a method for rotator cuff repair surgery because its locking effect overcomes the potential weakness of simple stitches. This article introduces the medial meniscus posterior root tears repair procedure based on a modified Mason-Allen stitch technique in which 2 strands (i.e., 1 simple horizontal and 1 simple vertical stitch) are used. PMID:27073778

  18. Automated Determination of Electron Density from Electric Field Measurements on the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Spasojevic, Maria; Shprits, Yuri; Kurth, William

    2016-04-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurement made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detection. We describe the design and implementation of the algorithm and perform initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  19. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, I. S.; Spasojevic, M.; Shprits, Y. Y.; Kurth, W. S.

    2016-05-01

    We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  20. Portrait of an instrument-maker:Wenceslaus Hollar's engraving of Elias Allen.

    PubMed

    Higton, Hester

    2004-06-01

    Among the many engravings of landscapes, buildings, portraits and other illustrations produced by the seventeenth-century artist Wenceslaus Hollar, there are a small number of images of contemporary men of science. Of particular interest is the portrait of the instrument-maker Elias Allen, both because portraits of men of his social status were extremely uncommon at this time, and also because the cluttered mass of instruments shown in the image presents a picture wholly unlike other portraits of the period. The first part of this paper explores the position of portraiture as inherently linked to nobility, and seeks to present an explanation as to why the original oil painting of Allen (made by Hendrik van der Borcht and no longer extant) might have been made. The second part looks at the image itself, and discusses possible reasons for Hollar's production of the engraving some twenty years after the original.