Science.gov

Sample records for allen earth observatory

  1. Van Allen Probes: Successful launch campaign and early operations exploring Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Stratton, J.

    The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA's Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes are operating in a challenging high radiation environment, and at the same time they are designed to make an insubstantial electric and magnetic field contribution to their surroundings. This paper will describe the challenges associated with observatory integration and test activities and observatory on-orbit checkout and commissioning. The lessons learned can be applied to other observatories and payloads that will be exposed to similar environments.

  2. Mission to Planet Earth's Geostationary Earth Observatories (GEO's)

    NASA Technical Reports Server (NTRS)

    Keller, V.; Beranek, R.; Herrmann, M.; Koczor, R.

    1992-01-01

    The Geostationary Earth Observatories (GEO's) are the space-based element of NASA's Mission to Planet Earth program which provide the excellent temporal resolution data required for a thorough understanding of earth processes and their role in global climate change. This paper discusses the scientific rationale, required instrumentation, observatory configuration, and data system of the GEO program.

  3. Earth Atmosphere Observatory Formation at L2

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, A. Behcet; Breckenridge, William G.; Mecenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper is a product of research supported by NASA under RASC (the Revolutionary Aerospace Systems Concepts) program. It presents an overall system architecture, and covers issues of deployment, navigation, and control related to a formation of two spacecraft in the neighborhood of the Sun-Earth L2 Lagrange point (on the Sun-Earth line), that serves as an observatory of Earth's atmosphere. The observatory concept definition study was a multi-center NASA effort conducted in 2003, and covered a much wider scope than is presented in this focused paper.The Earth observatory at L2 is a unique design concept that can improve the knowledge and understanding of dynamic, chemical and radiative mechanisms that cause changes in the atmosphere, and can lead to the development of models and techniques to predict short and long-term climate changes.

  4. Near Earth Objects Research in Pulkovo Observatory

    NASA Astrophysics Data System (ADS)

    Devyatkin, A. V.; Bashakova, E. A.; Gorshanov, D. L.; Ivanov, A. V.; Karashevich, S. V.; Kouprianov, V. V.; L'Vov, V. N.; Naumov, K. N.; Romas, E. S.; Slesarenko, V. Yu.; Shakht, N. A.; Sokov, E. N.; Tsekmeister, S. D.; Vasilkova, O. O.; Vereschagina, I. A.

    2015-03-01

    More than 20000 observations of Near Earth asteroids and comets are collected and reduced in Pulkovo Observatory during last 10 years. For observations of these objects two robotic telescopes are used - ZA-320M (Cassegrain system, D = 320 mm, F = 3200 mm) at Pulkovo and MTM-500M (Maksutov - Cassegrain system, D = 500 mm, F = 4100 mm) at Kislovodsk mountain station. These telescopes perform CCD observations of objects up to 18.0 and 20.5 magnitude, correspondingly. The results of observations are regularly submitted to Minor Planet Center.

  5. Earth Observatory Satellite (EOS) system definition study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An executive summary of a study on the Earth Observatory Satellite (EOS) was presented. It was concluded that the overall costs of space systems could be reduced significantly by the development of a modular shuttle compatible standard spacecraft, and the use of that spacecraft with the Shuttle Transportation System. It was also demonstrated that the development of the standard spacecraft is feasible, desirable, and cost effective if applied to a series of missions. The ability to initially retrieve, refurbish, and reuse the spacecraft and its payload, and ultimately to perform in-orbit servicing, would result in significant cost savings. A number of specific conclusions and recommendations were also suggested.

  6. Geostationary earth observatories - Key elements of NASA's 'Mission to Planet Earth'

    NASA Technical Reports Server (NTRS)

    Snoddy, William C.; Keller, Vernon W.

    1991-01-01

    The scientific rationale, required instrumentation, observatory configuration, and data system of the Geostationary Earth Observatory (GEO) element of NASA's Mission to Planet Earth program are discussed. Physical characteristics of GEO candidate instruments are listed.

  7. Observatories in earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji (Editor)

    1990-01-01

    The present volume on observations in earth orbit and beyond discusses current and future missions, launch vehicles, the relative merits of various observatories, and long-term future issues. Attention is given to the Granat automatic spacecraft, the prospects of the Hipparcos mission, EUV and FUV astronomy from Voyagers 1 and 2, and the X-ray Timing Explorer. Topics addressed include the SAX mission for X-ray astronomy, the Space Infrared Telescope Facility, the Ulysses mission in the high-latitude heliosphere, and science operations for future space astrophysics missions. Also discussed are science observations with the IUE using the one-gyro mode, new methods of determining spacecraft attitude, cryogenic testing of optics for ISOCAM, and the stellar X-ray polarimeter for the Spectrum-X-Gamma mission.

  8. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  9. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  10. The International Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  11. A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt.

    PubMed

    Baker, D N; Kanekal, S G; Hoxie, V C; Henderson, M G; Li, X; Spence, H E; Elkington, S R; Friedel, R H W; Goldstein, J; Hudson, M K; Reeves, G D; Thorne, R M; Kletzing, C A; Claudepierre, S G

    2013-04-12

    Since their discovery more than 50 years ago, Earth's Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  12. Variation of energetic electron flux in Earth's radiation belts based on Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Tang, Rongxin; Zhong, Zhihong; Yu, Deyin

    2016-04-01

    The Earth's radiation belts have been an important research topic of solar-terrestrial physics from 1958. In 2012, Van Allen Probes (VAP) were launched into near-equatorial orbit and provide very good in-situ observations of energetic particles in inner magnetosphere. Since magnetospheric substorm can cause the severe disturbance of the Earth's megnetospheric environment, here we focus on the characteristics of energetic electron fluxes in the radiation belts during substorm time and non-storm time. Energetic electron data observed by the Magnetic Electron Ion Spectrometer (MagEIS) and Energetic Particle Composition and Thermal Plasma Suite (ECT) of VAP during 2012 to 2014 are carefully analyzed. We select portions of energetic electron data from substorm onset phase, growth phase, recovery phase, and quiet time, and make a comparisons with theoretical computations. We find that the electron differential fluxes present E-1 shape at lower energies (<1MeV), and have a sharp transition with steeper slopes at high energies for large L-shells, which are in coincidence with Mauk's model [Mauk et al., 2010].

  13. NASA's Earth Observatory: Success Story or Work in Progress?

    NASA Astrophysics Data System (ADS)

    Herring, D. D.

    2004-12-01

    After a series of failures and setbacks in a variety of public communications strategies explored, and then despite internal pressure not to build it, a prototype for NASA's Earth Observatory (http://earthobservatory.nasa.gov) was built in the spring of 1998. With no budget and roughly one full-time equivalent (FTE) in personnel, the site was launched in April 1999. Aimed primarily at the "science attentive public," the Earth Observatory is an interactive Web-based magazine focusing on the subjects of climatic and environmental change, with an emphasis on the use of satellite remote sensors to study our planet. Within one year after launch, the site was selected by Popular Science as one of the Web's 50 best, while subscriptions jumped to about 12,000 readers worldwide. Fast forward to 2004, the Earth Observatory core team has grown to 5.5 FTE and enjoys contributions from all across the agency as well as a number of NASA-affiliated agencies and institutions. The site's success hinges on the partnerships that have grown up around it over the years. As a testament to the outstanding content published today in the Earth Observatory, the site was also selected by Scientific American as one of the Web's 50 best, and has twice been nominated by the International Academy of the Digital Arts and Sciences for their annual Webby Awards--in both the "Education" and "Science" categories--winning the Webby once and the People's Voice Award twice. Still, the Earth Observatory is a work in progress as there remain some developmental goals it has yet to attain. In this talk, site founder and Chief Editor David Herring will give a brief tour of the site while elaborating on some of its developmental history, lessons learned along the way, and a brief look ahead at some exciting new developments on its horizon.

  14. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  15. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  16. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  17. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    DOE PAGES

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; et al

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less

  18. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    SciTech Connect

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; Reeves, G. D.; Thorne, R. M.; Kletzing, C. A.; Claudepierre, S. G.

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  19. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  20. Earth resources applications of the Synchronous Earth Observatory Satellite (SEOS)

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Cook, J. J.

    1973-01-01

    The results are presented of a four month study to define earth resource applications which are uniquely suited to data collection by a geosynchronous satellite. While such a satellite could also perform many of the functions of ERTS, or its low orbiting successors, those applications were considered in those situations where requirements for timely observation limit the capability of ERTS or EOS. Thus, the application presented could be used to justify a SEOS.

  1. QuakeSim and the Solid Earth Research Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Rundle, John; Fox, Geoffrey; McLeod, Dennis; Grant, Lisa; Tullis, Terry; Pierce, Marlon; Parker, Jay; Lyzenga, Greg

    2004-01-01

    We are developing simulation and analysis tools in order to develop a solid Earth science framework for understanding and studying active tectonic and earthquake processes. The goal of QuakeSim and its extension, the Solid Earth Research Virtual Observatory (SERVO), is to study the physics of earthquakes using state-of-the-art modeling, data manipulation, and pattern recognition technologies. We are developing clearly defined accessible data formats and code protocols as inputs to simulations, which are adapted to high-performance computers. The solid Earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes. We are using Web (Grid) service technology to demonstrate the assimilation of multiple distributed data sources (a typical data grid problem) into a major parallel high-performance computing earthquake forecasting code. Such a linkage of Geoinformatics with Geocomplexity demonstrates the value of the Solid Earth Research Virtual Observatory (SERVO) Grid concept, and advances Grid technology by building the first real-time large-scale data assimilation grid.

  2. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  3. Technical Note: Estimation of Micro-Watershed Topographic Parameters Using Earth Observatory Tools

    EPA Science Inventory

    The study set out to analyze the feasibility of using Earth observatory tools to derive elevations to characterize topographic parameters of slope gradient and area useful in predicting erosion and for natural resources engineering education and instruction. Earth obseravtory too...

  4. Enhancing the Lowell Observatory Near-Earth-Object Search

    NASA Astrophysics Data System (ADS)

    Koehn, B. W.; Bowell, E.

    1999-09-01

    The Lowell Observatory Near-Earth-Object Search (LONEOS) uses a fully automated 59-cm Schmidt telescope to discover asteroids and comets that can approach the Earth. Secondary and tertiary scientific goals are, respectively, to discover other solar system bodies (main-belt asteroids, unusual asteroids, the largest TNOs), and, with extramural collaborators, to pursue a suite of non-solar system programs. Nightly observing started in March 1998, and to date we have discovered 13 near-Earth asteroids (2 Atens, 7 Apollos, and 4 Amors), and 4 comets (1 periodic). One of the Atens (1999 HF_1) is likely to be the largest known, and 8 of the Earth approachers are probably larger than 1 km in diameter. Comet Skiff (= C/1999 J_2) has the largest known cometary perihelion distance (7.5 AU). We have submitted about 200,000 observations of asteroids to the Minor Planet Center, of which 100,000 pertain to known objects or to unknown objects that have been designated. Thus we have quickly become the fifth largest generator of asteroid astrometric data over the last decade. In terms of the discovery of larger NEOs, our search effort has, in the past year, been second only to that of LINEAR. We are currently (July 1999) searching the sky at a steady monthly rate of about 6,000 deg(2) to a typical limiting magnitude of V = 18.4 (for moving objects at a 50% detection probability). By fall 1999, we hope to have installed a new CCD camera, which will afford twice the DQE, a FOV of 9 deg(2) (80% larger than that of our present camera), and more than a 50% increase in observational duty cycle. Later, we hope to improve the corrector plate's optical performance and to improve dome seeing. Together, these enhancements should allow us to increase monthly sky coverage (three passes per region) to 20,000 deg(2) --which represents the entire accessible dark sky--and to increase the search limiting magnitude to V = 19.2 or fainter. During the coming years, we expect to discover many hundreds of

  5. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  6. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  7. Radar observations of near-Earth asteroids from Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  8. H. Julian Allen

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen stands beside the observation window of the 8 x 7 foot test section of the NACA Ames Unitary Plan Wind Tunnel. H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  9. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  10. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  11. Systems definition summary. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A standard spacecraft bus for performing a variety of earth orbit missions in the late 1970's and 1980's is defined. Emphasis is placed on a low-cost, multimission capability, benefitting from the space shuttle system. The subjects considered are as follows: (1) performance requirements, (2) internal interfaces, (3) redundancy and reliability, (4) communications and data handling module design, (5) payload data handling, (6) application of the modular design to various missions, and (7) the verification concept.

  12. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  13. A study to define meteorological uses and performance requirements for the Synchronous Earth Observatory Satellite

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.; Krauss, R. J.; Barber, D.; Levanon, N.; Martin, D. W.; Mclellan, D. W.; Sikdar, D. N.; Sromovsky, L. A.; Branch, D.; Heinricy, D.

    1973-01-01

    The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters.

  14. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  15. Hydrological Effects in the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Wahr, J.; Borsa, A.; Jackson, M.; Wahr, A.

    2008-12-01

    The dense network of 1,100 continuously operating GPS stations in the Plate Boundary Observatory (PBO) is providing high quality position time series. Data are processed by PBO Analysis Centers at the New Mexico Institute of Mining and Technology and at Central Washington University. The results are combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology and are made available from the UNAVCO Data Center in Boulder. Analysis software of Langbein, 2008, was used to estimate secular trends and annual variations in the time series. The results were interpreted in terms of hydrological loading and poroelastic effects, from both natural and anthropogenic changes in water storage. The effects of monument stability were also considered. The density of PBO observations allows for the identification of spatial patterns that appear coherent over relatively broad areas. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and southern Oregon showing peak uplift in October and are correlated to hydrological loading. The vertical elastic loading signal, calculated from the 0.25 by 0.25 degree community Noah land-surface model, fits the annual signal well and appears also to model the secular trends, although the time duration of ~3 years is still limited. In contrast to mountainous regions, stations in the valleys of California show greater spatial variability ranging from stations with almost no detectable annual signal to stations with very large, 20-30 mm, amplitudes with peak uplift in March. The vertical signals are temporally correlated to ground-water variations caused by pumping for agricultural irrigation and likely are caused by poroelastic effects in the sediments rather than loading. Annual vertical signals in southern California, where not obviously influenced from localized ground-water fluctuations, are small with ~2 mm amplitude and may be due to

  16. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.

  17. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  18. NASA's Earth Observatory: 16 Years of Communicating with and for Scientists

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.; Hansen, K.; Stevens, J.

    2015-12-01

    For the past 16 years NASA's Earth Observatory website has featured stories that are driven by strong visualization and in-depth reporting and storytelling. The Earth Observatory Image of the Day is published 365 days a year and is a syndication staple for major news outlets, science-related publications, blogs and social media outlets. The daily publication pace requires that we cover a wide range of topics within NASA's portfolio of Earth science research. To meet our deadlines, and to do so competently and with the authority that a NASA-branded publication warrants, we have developed relationships with scientists from throughout the agency who both provide us with ideas for stories and review our content for accuracy. This symbiotic relationship insures that the Earth Observatory has a quality product that is syndicated, repurposed and sourced throughout popular media, resulting in science content reaching the public that might not otherwise be reported. We will discuss how we have developed our relationships and processes over the years, how we work with scientists to see the potential stories in their data, and how we package and promote these stories and visualizations for maximum exposure and reuse.

  19. The EarthScope USArray Observatories: Status and Results

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R.; Alvarez, M.; Schultz, A.; Simpson, D.

    2009-05-01

    The EarthScope USArray program includes three seismic and two magnetotelluric components. The USArray seismic components consist of the Transportable Array (TA), the Flexible Array (FA), and the Reference Network. The TA component of USArray has now occupied over 700 sites in the western United States, from the Pacific coast through the Rocky Mountains. The three component broadband TA stations are deployed in a grid-like arrangement, with 70 km separation between stations. At any given time there are approximately 400 station sites, occupying a ~2000 km by 800 km "footprint." Each station is operated for two years. The FA component of USArray provides a pool of instruments, ranging from high frequency geophones to three- component broadband sensors, and these instruments are typically deployed for focused geological targets for time periods ranging from days to years. Finally, the Reference Network provides a fixed, permanent reference frame for the TA and FA, with approximately 100 broadband stations deployed across the contiguous US, at roughly 300 km spacing. The magnetotelluric (MT) component of USArray consists of both a fixed reference network as well as a transportable array of instruments that are deployed campaign style, using a 70 km by 70 km grid. The geographical extent of USArray allows unprecedented observation of geophysical targets. Instruments have been deployed across the west and mid-west of the US, with TA stations presently moving into the states spanning a north-south line from North Dakota to Texas. MT observations in Cascadia have been augmented by corresponding observations in Canada. Similarly, as the seismic TA moves east, plans are being developed to collaborate on TA seismic observations on both sides of the US-Canada border in the region of the Great Lakes. We will present the current status of USArray activities and progress to-date, with a special emphasis on standardized data products that are produced from USArray data, including

  20. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  1. Earth Observatory Satellite system definition study. Report no. 4: Management approach recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A management approach for the Earth Observatory Satellite (EOS) which will meet the challenge of a constrained cost environment is presented. Areas of consideration are contracting techniques, test philosophy, reliability and quality assurance requirements, commonality options, and documentation and control requirements. The various functional areas which were examined for cost reduction possibilities are identified. The recommended management approach is developed to show the primary and alternative methods.

  2. Instrument constraints and interface specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.

  3. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  4. Earth Observatory Satellite system definition study. Report 4: Low cost management approach and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of low cost management approaches for the development of the Earth Observatory Satellite (EOS) is presented. The factors of the program which tend to increase costs are identified. The NASA/Industry interface is stressed to show how the interface can be improved to produce reduced program costs. Techniques and examples of cost reduction which can be applied to the EOS program are tabulated. Specific recommendations for actions to be taken to reduce costs in prescribed areas are submitted.

  5. Manned Earth Observatory - Possible contributions towards enhanced understanding of the marine environment

    NASA Technical Reports Server (NTRS)

    Gerding, R. B.; Johnson, G. F.; Weidner, D. K.

    1973-01-01

    The Manned Earth Observatory (MEO) study being conducted by TRW under the management of NASA/MSFC will establish the conceptual design of and the mission requirements for an Earth Observation Laboratory that will be flown on Shuttle missions beginning in 1980. MEO offers a variety of unique inroads to improving our understanding of the marine environment. The Shuttle-MEO is a valuable addition to a multi-level multi-disciplinary remote sensing program. The unique attributes of MEO are its experimental flexibility due to man-instrument interaction, its complimentary orbit (intermediate between nonorbital and high-orbital platforms), its high weight and volume capacity, and short duration missions.

  6. L2 Earth Atmosphere Observatory: Formation Guidance, Metrology and Control Synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    The Earth Observatory Formation at L2, a Lagrange libration point, is a unique large aperture (25 m diameter) space telescope concept that will improve the knowledge and understanding of dynamic, chemical and radiative mechanisms that cause changes in the atmosphere, and can lead to the development of models and techniques to predict short and long-term climate changes. The results of this concept definition study show that the telescope concept is feasible, and can have technology readiness in the 2020 time frame. Further advanced development in several subsystems is needed, such as higher efficiency Xenon ion thrusters with throttling, and optical quality large membrane mirror with active shape control. It presents an analysis and solution of guidance, sensing, control, and propulsion problems for a formation of two spacecraft on the Sun-Earth line in the neighborhood of the Sun-Earth L2 point, that observes Earth s atmosphere during continuous solar occultation by the Earth. A system architecture is described for the observatory, and its components that include unique mission specific metrology. The formation must follow a powered trajectory with strictly limited fuel use to observe solar occultation. A configuration of ion thrusters and reaction wheels for translation and attitude control is designed along with algorithms for orbit following and formation control. Simulation results of the orbital and formation dynamics are presented that verify performance of the control systems.

  7. L1 and L2 Observatories for Earth Science Vision in the Post-2010 Era

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren; Herman, Jay; Valero, Francisco; Lau, William (Technical Monitor)

    2002-01-01

    NASA's Post-2010 Earth Science Vision is partly built around a new paradigm called the Sensor Web, involving a collaborating set of sensors ranging from deep space, at the L1 and L2 (Lagrange) points, down to the ocean and land surfaces. L1 and L2 observatories, roughly 1.5 million km from Earth towards and away from the Sun, respectively, provide unique vantage points. from L1, the entire sunlit face of the Earth is visible, and from L2, the entire night side. In tandem, they can observe the entire Earth simultaneously, with much less stitching than now needed to patch together the five operational geostationary images. This makes new kinds of science possible, especially science requiring synoptic (simultaneous) observations over the whole globe. Triana, the pioneer of these kinds of observatories, is currently waiting for a launch opportunity. We will describe the novel features of the Triana mission, and of the L1 and L2 vantage points, with examples of the kinds of science that can be done from these points and examples of the way in which Earth observation from such great distances is pushing instrument technology.

  8. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report. Appendixes A through D

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.

  9. Scientific Visualizations of Data Collected From EarthScope's Seismic Observatory (USArray) and San Andreas Fault Observatory at Depth (SAFOD)

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Im, T.; Quan, A.; Nayak, A.; Weiland, C.; Kent, G.

    2007-12-01

    Looking at data from perspectives other than map view, or standard cross sections, can help researchers with their science. Interactively exploring visualizations of multi-dimensional data allows scientists to assess the quality of their data, identify links between different data types, assist with project planning, refine their hypotheses and more easily convey research findings to a wide range of audiences. Working with EarthScope scientists we explore ways to use visualization techniques to help researchers explore their data and explain key concepts and theories. Examples of our visualizations include: (1) Movies of the temporal evolution of earthquakes, detected and recorded by USArray stations, juxtaposed with the progress of USArray station deployment. (2) Using the USArray station spacing as an irregular grid we create a 3D mesh depicting displacements generated by teleseismic waves. (3) An interactive 3D visualization of data pertaining to the SAFOD observatory (i.e., drill hole plans, side tracks, surface and borehole experiment locations, geologic cross-sections, seismicity and fault planes). (4) Exploration of the temporal evolution of the Rayleigh wave group velocity dispersion throughout the California region. (5) Interactive 3D visualizations of notable earthquakes that include, but are not limited to, the location of the mainshock epicenter and hypocenter, historical seismicity, USArray seismic station locations and station codes, geographic boundaries and topography of the region. We make these visualizations available for free download on the web within a day or two of the mainshock event so they can be used in classrooms, outreach venues and for media response. These visualizations can be accessed from the visual objects library at the Scripps Institution of Oceanography's Visualization Center (http://siovizcenter.ucsd.edu/library.php). They include 3D interactive visualizations, Quicktime movies and online tools and can be explored using

  10. The UNH Earth Systems Observatory: A Regional Application in Support of GEOSS Global-Scale Objectives

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Braswell, B.; Fekete, B.; Glidden, S.; Hartmann, H.; Magill, A.; Prusevich, A.; Wollheim, W.; Blaha, D.; Justice, D.; Hurtt, G.; Jacobs, J.; Ollinger, S.; McDowell, W.; Rock, B.; Rubin, F.; Schloss, A.

    2006-12-01

    The Northeast corridor of the US is emblematic of the many changes taking place across the nation's and indeed the world's watersheds. Because ecosystem and watershed change occurs over many scales and is so multifaceted, transferring scientific knowledge to applications as diverse as remediation of local ground water pollution, setting State-wide best practices for non-point source pollution control, enforcing regional carbon sequestration treaties, or creating public/private partnerships for protecting ecosystem services requires a new generation of integrative environmental surveillance systems, information technology, and information transfer to the user community. Geographically complex ecosystem interactions justify moving toward more integrative, regionally-based management strategies to deal with issues affecting land, inland waterways, and coastal waterways. A unified perspective that considers the full continuum of processes which link atmospheric forcings, terrestrial responses, watershed exports along drainage networks, and the final delivery to the coastal zone, nearshore, and off shore waters is required to adequately support the management challenge. A recent inventory of NOAA-supported environmental surveillance systems, IT resources, new sensor technologies, and management-relevant decision support systems shows the community poised to formulate an integrated and operational picture of the environment of New England. This paper presents the conceptual framework and early products of the newly-created UNH Earth Systems Observatory. The goal of the UNH Observatory is to serve as a regionally-focused yet nationally-prominent platform for observation-based, integrative science and management of the New England/Gulf of Maine's land, air, and ocean environmental systems. Development of the UNH Observatory is being guided by the principles set forth under the Global Earth Observation System of Systems and is cast as an end-to-end prototype for GEOSS

  11. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  12. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE PAGES

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  13. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  14. Combining EarthScope Long Period Magnetotelluri and Geomagnetic Observatory Data: Hypothetical Events at Continental Scale

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.

    2015-12-01

    The EarthScope USArray project has been collecting long period (1 hz) MT data on a quasi-uniform 70 km grid since 2006, using a "rolling" array of approximately 20 long period MT sensors. Up to this point over 700 sites have been occupied (each for ~3-4 weeks) covering almost half the continental US. Seven "backbone" EarthScope MT sites were deployed (but did not fully operate) continuously from 2008-2011. At the same time, continuous high-quality 1 hz vector magnetic field data are available from eight geomagnetic observatories spread over the continental US/southern Canada since 2007. These data can be supplemented with long term (but again not always continuous) magnetometer deployments used for space physics research—e.g., up to 25 sites are available from the Themis project. I will discuss application of multivariate array processing methods to these datasets, with the goal of merge the large scale synoptic observatory, with the other sites, including the spatially dense, but short duration, partially overlapping EarthScope arrays. The merged array can be used to create true hypothetical events -- maps of the electromagnetic that would be observed for highly idealized sources—both plane wave and gradient. These maps can provide a unique perspective on the internal induced fields within the Earth, and suggest novel strategies for extracting reliable information about crust and mantle conductivity. The synthesis may also provide new insights into external source characteristics, and their interaction with the conducting Earth. Application of these results to development and validation of methods for modeling and predicting geomagnetically induced currents (GIC) will also be discussed.

  15. Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.

  16. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  17. Modeling Loss and Rebuilding of the Earth's Outer Zone Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Kress, B. T.; Li, Z.; Paral, J.; Wiltberger, M. J.

    2014-12-01

    Quantifying the competition between radiation belt electron energization due to radial transport and loss to the magnetopause and to the atmosphere is critical to understanding the dynamic changes in outer zone radiation belt electron flux response to solar wind drivers. Plasmasheet electron injection, both due to enhanced convection and substorm dipolarization, provides a source population for generation of whistler mode chorus and seed population for local acceleration. We now have available ~22 months of unprecedented measurements in energy and pitch angle resolution of electrons spanning the energy range from injected plasmasheet to multi-MeV electrons from the twin Van Allen Probes spacecraft in near-equatorial plane elliptical orbits, with apogee at 5.8 Re; and two Balloon Array for Relativistic Radiation Belt Electron Losses (BARREL) campaigns during January-February 2013 and 2014, each establishing a longitudinal array of precipitation measurements extending to relativistic energies via measured Bremsstrahlung x-rays. In addition to this arsenal of data, a set of modeling tools has been developed to examine dynamics of electrons in the magnetosphere. These tools calculate electron trajectories in time-dependent magnetohydrodyanmic (MHD) fields using the Lyon-Fedder-Mobarry global MHD model coupled with the Rice Convection Model to determine the E and B field response to solar wind drivers. With these tools we can follow electron dynamics including response to Ultra Low Frequency (ULF) waves which cause radial transport and energization for inward radial gradient as well as enhanced loss to the magnetopause for outward gradient. These tools have been applied to date to the large equinoctial storms of fall 2012, spring and fall 2013, in addition to moderate storms during BARREL balloon campaigns in both winters 2013 and 2014. Isolated substorm response can clearly be identified for the latter, while plasmasheet injection of electrons during periods of strong

  18. Earth Observatory Satellite system definition study. Report 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.

  19. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; EASCO Team

    2011-05-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using 55 kg of Xenon) and hydrazine ( 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025.

  20. The Earth Observatory Natural Event Tracker (EONET): An API for Matching Natural Events to GIBS Imagery

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2015-12-01

    Hidden within the terabytes of imagery in NASA's Global Imagery Browse Services (GIBS) collection are hundreds of daily natural events. Some events are newsworthy, devastating, and visibly obvious at a global scale, others are merely regional curiosities. Regardless of the scope and significance of any one event, it is likely that multiple GIBS layers can be viewed to provide a multispectral, dataset-based view of the event. To facilitate linking between the discrete event and the representative dataset imagery, NASA's Earth Observatory Group has developed a prototype application programming interface (API): the Earth Observatory Natural Event Tracker (EONET). EONET supports an API model that allows users to retrieve event-specific metadata--date/time, location, and type (wildfire, storm, etc.)--and web service layer-specific metadata which can be used to link to event-relevant dataset imagery in GIBS. GIBS' ability to ingest many near real time datasets, combined with its growing archive of past imagery, means that API users will be able to develop client applications that not only show ongoing events but can also look at imagery from before and after. In our poster, we will present the API and show examples of its use.

  1. The Earth Climate Hyperspectral Observatory: Advances in Cloud and Aerosol Remote Sensing

    NASA Astrophysics Data System (ADS)

    Pilewskie, Peter; Schmidt, Sebastian; Coddington, Odele; Kopp, Greg

    2015-04-01

    Future satellite missions to monitor global change require the establishment of high-accuracy spectrally resolved benchmark data records of reflected shortwave radiation for trend detection and attribution. Not surprisingly, these same attributes also provide substantial improvements in the retrieval of microphysical and optical properties of clouds and aerosols over current discrete-band observations. The NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission, currently in pre-formulation, defines a set of fundamental direct observations of spectrally resolved reflected shortwave and emitted longwave radiation, and GNSS radio occultation in order to detect climate trends and to test and improve climate prediction models. The Earth Climate Hyperspectral Observatory (ECHO), a proposed pathfinder mission to CLARREO, focuses on measuring spectrally resolved Earth-reflected shortwave radiation over a spectral range that comprised approximately 95% of the solar radiative energy incident at the top-of-atmosphere. This paper will report on the ECHO requirements specifically directed at objectives related to cloud and aerosol remote sensing, and more generally, characterizing the physical parameters responsible for the observed spectral and temporal variability in a benchmark data record. These objectives are centered on targeted remote sensing and data assimilation analyses to derive the dominant contributors to the observed spectral, temporal, and spatial perturbations in the reflected shortwave signal. Specific improvements in the retrieval of cloud and aerosol properties due to increased spectral coverage, spectral resolution, and radiometric accuracy will be discussed.

  2. NASA's Earth Observatory Natural Event Tracker: Curating Metadata for Linking Data and Images to Natural Events

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2015-12-01

    On any given date, there are multiple natural events occurring on our planet. Storms, wildfires, volcanoes and algal blooms can be analyzed and represented using multiple dataset parameters. These parameters, in turn, may be visualized in multiple ways and disseminated via multiple web services. Given these multiple-to-multiple relationships, we already have the makings of a microverse of linked data. In an attempt to begin putting this microverse to practical use, NASA's Earth Observatory Group has developed a prototype system called the Earth Observatory Natural Event Tracker (EONET). EONET is a metadata-driven service that is exploring digital curation as a means to adding value to the intersection of natural event-related data and existing web service-enabled visualization systems. A curated natural events database maps specific events to topical groups (e.g., storms, fires, volcanoes), from those groups to related web service visualization systems and, eventually, to the source data products themselves. I will discuss the complexities that arise from attempting to map event types to dataset parameters, and the issues of granularity that come from trying to define exactly what is, and what constrains, a single natural event, particularly in a system where one of the end goals is to provide a group-curated database.

  3. How to Communicate Near Earth Objects with the Public - Klet Observatory Experience

    NASA Astrophysics Data System (ADS)

    Ticha, Jana; Tichy, Milos; Kocer, Michal

    2015-08-01

    Near-Earth Object (NEO) research is counted among the most popular parts of communicating astronomy with the public. Increasing research results in the field of Near-Earth Objects as well as impact hazard investigations cause growing interest among general public and media. Furthermore NEO related issues have outstanding educational value. So thus communicating NEO detection, NEO characterization, possible impact effects, space missions to NEOs, ways of mitigation and impact warnings with the public and media belong to the most important tasks of scientists and research institutions.Our institution represents an unique liaison of the small professional research institution devoted especially to NEO studies (the Klet Observatory, Czech Republic) and the educational and public outreach branch (the Observatory and Planetarium Ceske Budejovice, Czech Republic). This all has been giving us an excellent opportunity for bringing NEO information to wider audience. We have been obtaining a wide experience in communicating NEOs with the public more than twenty years.There is a wide spectrum of public outreach tools aimed to NEO research and hazard. As the most useful ones we consider two special on-line magazines (e-zins) devoted to asteroids (www.planetky.cz) and comets (www.komety.cz) in Czech language, educational multimedia presentations for schools at different levels in planetarium, summer excursions for wide public just at the Klet Observatory on the top of the Klet mountain, public lectures, meetings and exhibitions. It seems to be very contributing and favoured by public to have opportunities for more or less informal meetings just with NEO researchers from time to time. Very important part of NEO public outreach consists of continuous contact with journalists and media including press releases, interviews, news, periodical programs. An increasing role of social media is taken into account through Facebook and Twitter profiles.The essential goal of all mentioned NEO

  4. The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Ukhorskiy, A. Y.; Mitchell, D. G.; Sotirelis, T.; Mauk, B. H.; Lanzerotti, L. J.

    2014-09-01

    Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on 17 March 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 - 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: (i) associated pressure enhancement, (ii) the time duration of this enhancement, and (iii) the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm time inner magnetosphere.

  5. The importance of a multidisciplinary approach for solid earth geophysics in Seafloor Observatories data analysis

    NASA Astrophysics Data System (ADS)

    Embriaco, Davide; De Caro, Mariagrazia; De Santis, Angelo; Etiope, Giuseppe; Frugoni, Francesco; Giovanetti, Gabriele; Lo Bue, Nadia; Marinaro, Giuditta; Monna, Stephen; Montuori, Caterina; Sgroi, Tiziana; Beranzoli, Laura; Favali, Paolo

    2016-04-01

    Continuous time-series in deep ocean waters are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which: hydrothermal systems, active tectonics, and ecosystem life cycles. Geo-hazards at sea have often been studied with a single-parameter approach on a short time-scale, but it is now becoming clear that to understand these phenomena and, specifically, to identify precursors to very energetic events, such as mega-earthquakes, tsunamis and volcanic eruptions, continuous long-term multiparameter monitoring is strongly needed. In fact, given a signal of interest, by using several sensors recording simultaneously it is possible to identify the contribution of different sources to this signal, and to be less prone to false associations. In Europe, large cabled systems with marine sensors are being developed for near real-time and real-time long-term monitoring of ocean processes within the EMSO (European Multidisciplinary Seafloor and water column Observatory www.emso-eu.org) Research Infrastructure. Obtaining good quality long-term multiparameter data from sensors on-board seafloor observatories, which are the base of a multidisciplinary approach, is a challenging task. We describe the main steps we have taken to retrieve good quality multiparametric data acquired by GEOSTAR class seafloor observatories, both standalone and cabled, deployed at various sites offshore European coast during the last decade. Starting from this data we show the application of a multidisciplinary approach with some examples coming from experiments in EMSO sites.

  6. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using approximately 55 kg of Xenon) and hydrazine (approximately 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025. The mission can be readily extended for another solar cycle to get a solar-cycle worth of data on Earth

  7. The Virtual Earth-Solar Observatory of the SCiESMEX

    NASA Astrophysics Data System (ADS)

    De la Luz, V.; Gonzalez-Esparza, A.; Cifuentes-Nava, G.

    2015-12-01

    The Mexican Space Weather Service (SCiESMEX, http://www.sciesmex.unam.mx) started operations in October 2014. The project includes the Virtual Earth-Solar Observatory (VESO, http://www.veso.unam.mx). The VESO is a improved project wich objetive is integrate the space weather instrumentation network from the National Autonomous University of Mexico (UNAM). The network includes the Mexican Array Radiotelescope (MEXART), the Callisto receptor (MEXART), a Neutron Telescope, a Cosmic Ray Telescope. the Schumann Antenna, the National Magnetic Service, and the mexican GPS network (TlalocNet). The VESO facility is located at the Geophysics Institute campus Michoacan (UNAM). We offer the service of data store, real-time data, and quasi real-time data. The hardware of VESO includes a High Performance Computer (HPC) dedicated specially to big data storage.

  8. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  9. TWINKLE – A Low Earth Orbit Visible and Infrared Exoplanet Spectroscopy Observatory

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell; Savini, Giorgio; Tinetti, Giovanna; Tennyson, Jonathan; Dhesi, Mekhi; Joshua, Max

    2016-10-01

    Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS).Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a low-Earth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs - between 0.4 and 4.5µm - with resolving power R~300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes.The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.

  10. SALSA: a tool to estimate the stray light contamination for low-Earth orbit observatories

    NASA Astrophysics Data System (ADS)

    Kuntzer, Thibault; Fortier, Andrea; Benz, Willy

    2014-08-01

    Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and

  11. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  12. Visible Wavelength Reflectance Spectra of Near-Earth Objects from Apache Point Observatory: Science Highlights

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Brucker, Melissa; Nault, Kristie A.; Gyuk, Geza

    2016-10-01

    In January 2015 we began a program of near-Earth object (NEO) astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our roughly 500 hours of annual observing time are split into 2 hour runs usually in the middle of every other night (see poster by K. Nault et al.), and frequent half-night runs devoted to physical characterization (this poster). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph instrument. As of June 22, 2016 we have obtained reflectance spectra of 129 unique NEOs, ranging in diameter from approximately 5 m to 6 km.Highlights of this work presented here include 106 spectra of (357439) 2004 BL86 spanning 3 hours 4.5 minutes, more than a full rotation, and spectra of 18 objects with diameters comparable to historical Earth impactors (e.g., Tunguska, Chelyabinsk and smaller bolides).This work is based on observations obtained with the APO 3.5-meter telescope, which is owned and operated by ARC. We gratefully acknowledge support from NASA NEOO award NNX14AL17G, and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.

  13. Data Access and Web Services at the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Henderson, D.; Hodgkinson, K.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Smith, J.; Wright, J.; Jackson, M.

    2007-12-01

    The EarthScope Plate Boundary Observatory (PBO) at UNAVCO, Inc., part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 880 continuous GPS stations, 103 borehole strainmeter stations, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations and one previously existing laser strainmeter. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of access methods, incuding map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  14. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data

  15. The EarthScope Plate Boundary Observatory Alaska Region: Highlights from the 2012 Summer Field Season

    NASA Astrophysics Data System (ADS)

    Enders, M.; Bierma, R. M.; Boyce, E. S.; Willoughby, H.; Fend, M.; Feaux, K.

    2012-12-01

    UNAVCO has now completed its fourth year of operation and maintenance of the 138 continuous GPS stations, 12 tiltmeters and 31 data communications relays that comprise the Alaska region of the EarthScope Plate Boundary Observatory (PBO). The successful operation of the autonomous GPS and tiltmeter network in Alaska continues to be a challenge, because of logistics, weather, and other difficulties related to working in Alaska. PBO engineers continue to work on network enhancements to make the stations more robust, while improving overall data quality and station uptime to better serve the EarthScope science community. In the summer of 2012, PBO engineers completed maintenance activities in Alaska, which resulted in a 95% operational status for the Alaska network within PBO. PBO engineers completed a total of 87 maintenance visits in the summer of FY2012, including 62 routine maintenance and 25 unscheduled maintenance visits to GPS and data communications stations. We present a number of highlights and accomplishments from the PBO 2012 summer field season in Alaska, for example the deployment of a newly designed methanol fuel cell at AV35, a critical station that serves as the main repeater for the real time network on Unimak Island. In addition, PBO engineers also completed the installation of three Inmarsat BGAN terminals for data telemetry following successful testing at AC60 Shemya. Lastly, PBO engineers completed scheduled battery replacements at most of the PBO stations on Unimak Island, in collaboration with the USGS/Alaska Volcano Observatory. In addition to routine maintenance and planned station improvements to sites in Alaska, numerous critical repairs were made at stations on Unimak Island and elsewhere to ensure that the PBO network continues to function well and continues to meet the requirements stipulated by the NSF. We also present some of the station failures unique to Alaska, which we encountered during the course of the 2012 field season, as well

  16. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  17. Lowell Observatory Near-Earth Asteroid Photometric Survey (NEAPS) - 2009 January through 2009 June

    NASA Astrophysics Data System (ADS)

    Koehn, Bruce W.; Bowell, Edward G.; Skiff, Brian A.; Sanborn, Jason J.; McLelland, Kyle P.; Pravec, Petr; Warner, Brian D.

    2014-10-01

    We report the results of the Lowell Observatory Near- Earth Asteroid Photometric Survey (NEAPS) for the period between 2009-01-01 and 2009-06-30. During this period, we obtained our first photometric data for 40 asteroids including 433 Eros, 1943 Anteros, 3554 Amun, 5011 Ptah, (5604) 1992 FE, 5620 Jasonwheeler, (5693) 1993 EA, (8566) 1996 EN, (14402) 1991 DB, (16834) 1997 WU22, (22753) 1998 WT, (35107) 1991 VH, (52768) 1998 OR2, (68350) 2001 MK3, (85867) 1999 BY9, (138883) 2000 YL29, (141052) 2001 XR1, (143651) 2003 QO104, (154244) 2002 KL6, 161989 Cacus, (162385) 2000 BM19, (163758) 2003 OS13, (175706) 1996 FG3, (194386) 2001 VG5, (203217) 2001 FX9, (207945) 1991 JW, (208023) 1999 AQ10, (212546) 2006 SV19, (256412) 2007 BT2, 2001 FE90, 2004 LV3, 2005 BC, 2005 SG19, 2008 QT3, 2008 WL60, 2009 DE47, 2009 DO111, 2009 EP2, 2009 FD, and 2009 JM2. We also report our analysis of 5261 Eureka, a Mars Trojan.

  18. Ocean pC02 Data from the Lamont-Doherty Earth Observatory of Columbia University, 1994 - 2009

    DOE Data Explorer

    Takahashi, T.

    The Earth Institute of Columbia University has, as an overarching goal, to help achieve sustainable development primarily by expanding the world's understanding of Earth as one integrated system. The Earth Institute encompasses centers of excellence with an established reputation for groundbreaking research, including the renowned Lamont-Doherty Earth Observatory (LDEO), home to more than 200 researchers who study Earth and its systems. The Carbon Dioxide Research Group, led by Dr. Taro Takahashi, studies pCO2 in seawater, carbon sequestration models related to deep aquifers, and air-sea CO2 flux. Datasets from ocean cruises in the years 1994 to the present are made available from this website, along with a list of publications, and cruise maps.

  19. Visible Wavelength Reflectance Spectra and Taxonomies of Near-Earth Objects from Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Brucker, Melissa J.; Nault, Kristie A.; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    Near-Earth Objects (NEOs) are interesting to scientists and the general public for diverse reasons: their impacts pose a threat to life and property; they present important albeit biased records of the formation and evolution of the Solar System; and their materials may provide in situ resources for future space exploration and habitation.In January 2015 we began a program of NEO astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our 500 hours of annual observing time are split into frequent, short astrometric runs (see poster by K. A. Nault et. al), and half-night runs devoted to physical characterization (see poster by M. J. Brucker et. al for preliminary rotational lightcurve results). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph (DIS) instrument. As of August 25, 2015, including testing runs during fourth quarter 2014, we have obtained reflectance spectra of 68 unique NEOs, ranging in diameter from approximately 5m to 8km.In addition to investigating the compositions of individual NEOs to inform impact hazard and space resource evaluations, we may examine the distribution of taxonomic types and potential trends with other physical and orbital properties. For example, the Yarkovsky effect, which is dependent on asteroid shape, mass, rotation, and thermal characteristics, is believed to dominate other dynamical effects in driving the delivery of small NEOs from the main asteroid belt. Studies of the taxonomic distribution of a large sample of NEOs of a wide range of sizes will test this hypothesis.We present a preliminary analysis of the reflectance spectra obtained in our survey to date, including taxonomic classifications and potential trends with size.Acknowledgements: Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which

  20. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  1. Radiation Belt Storm Probes—Observatory and Environments

    NASA Astrophysics Data System (ADS)

    Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce

    2013-11-01

    The National Aeronautics and Space Administration's (NASA's) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA's Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth's environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10∘ inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

  2. EarthScope Plate Boundary Observatory, Southwest Region - Communications, Challenges, and Cooperation

    NASA Astrophysics Data System (ADS)

    Turner, R. C.; Mann, D.; Walls, C. P.; Basset, A.; Lawrence, S.; Berglund, H. T.

    2015-12-01

    The Southwest Region of the EarthScope Plate Boundary Observatory is engaged in efforts to expand capabilities and renovate the network. These efforts include GNSS hardware modernization (in cooperation with state and local agencies), communications upgrades that improve data throughput and decrease recurring costs, co-location of prototype instruments for use in earthquake early warning, and working to ensure consistent high-quality data in the face of radio spectrum encroachment.The Global Positioning System (GPS) is but one of a growing number of global navigation satellite systems (GNSS) with the potential to improve geodetic observations. In addition to strategic deployment of GNSS-capable hardware, the Southwest region is currently developing an agreement with Caltrans to augment the network with GNSS systems at about a dozen stations. The upgrades will consist of a number of Caltrans-provided GLONASS-ready receivers and project is scheduled for completion by early 2016.The Southwest Region has continued to upgrade and build new radio networks to improve dependability, monitoring, and data download rates (including transfers of high-rate data). Here, we highlight one such network near Hollister, CA, which eliminated several cellular modems and improved reliability.UNAVCO and Scripps have been working in collaboration to augment a subset of GPS stations with low-cost strong-motion sensors for use in Earthquake Early Warning systems. To date, 21 PBO stations have been upgraded with MEMS accelerometers along the San Andreas and San Jacinto Faults in Northern and Southern California, 15 of which stream data to UNAVCO in real time.As the use of the radio frequency spectrum increases, PBO faces more radio frequency interference (RFI) in our data communications networks; in addition, RFI issues are beginning to impact GNSS data collection. Here we report on a PBO site suspected of suffering from RFI and discuss briefly mitigation efforts to minimize these effects.

  3. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  4. The EarthScope Plate Boundary Observatory (PBO) Facility: Innovations, Transformations, and Impact

    NASA Astrophysics Data System (ADS)

    Jackson, M. E.; Mencin, D.; Feaux, K.

    2013-12-01

    The word 'transformation' is not used lightly in science. However, the transformative nature of the EarthScope Plate Boundary Observatory facility on the science community is large and measurable. The impact of the creation, execution and delivery of the PBO resulted in radical changes in the way the geodesy community views permanent, continuously operating (and often) real-time GPS and strain networks, open data policies, and the ability for consortium based facilities, such as UNAVCO, to manage and deliver on large National Science Foundation investments. Our presentation will explore these innovations and transformations from the community, facility, and science perspectives. In the genesis of the EarthScope proposal there was a distinct shift away from the PBO being managed and constructed by prominent PI's within the community to a vesting of the responsibility and authority in UNAVCO to execute on behalf of the entire community. This tipping away from individual PI concerns towards a communal behavior allowed the construction of a facility based on broad input from, and equal access for, any member of the geodesy community. The open and transparent nature of EarthScope, including the open data policy for both facility and PI derived data was truly transformative. One of the key tenants of the PBO was strict adherence to not redesigning unless absolutely necessary. For example PBO monumentation and data processing practices were adopted wholesale from the SCIGN project, while the station selection, project management, permitting practices, data downloading, metadata, and, data communications were refactored for optimum use for the broader geodesy community and to scale with the large geography that confronted PBO. The PBO strainmeter network, one of the largest in the world, started by looking at the procedures of 30 years of heterogeneous installations around the word then crafted, created, and amalgamated new drilling, grouting, installation, and data

  5. Searching the Heavens and the Earth: This History of Jesuit Observatories

    NASA Astrophysics Data System (ADS)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  6. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  7. EarthScope's Plate Boundary Observatory as the Mother of Invention (Invited)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.

    2013-12-01

    The Plate Boundary Observatory (PBO) component of EarthScope includes a network of over 1,100 permanent, continuously operating GPS stations. After 5 years of site selection, permitting, and construction, the network was completed in 2008. Having such an unprecedented number of high quality stations in western North America has enabled us to image geology in action, as it happens, such as contemporary uplift of the Sierra Nevada, and block rotation in the Walker Lane. Yet, when PBO was in its planning stages, questions were raised as to whether GPS analysis could keep up with the flood of data, while producing results with the highest achievable accuracy. The general consensus was that the challenge would be met by a combination of innovative data processing methods together with the inevitable progress in computer speed and capacity. Various innovations made by the geodetic community over the last decade have enabled massive operational processing of GPS data with high accuracy. For example, now in 2013, the Nevada Geodetic Laboratory operationally produces position time series and quality assurance data from all ~7,000 GPS geodetic stations in the world that make data publicly available. Of these stations, 4,000 have daily time series updated the next day, and 2,000 have 5-minute time series updated within 1-2 hours of real time. The RMS precision of daily positions for well-sited stations are at the level of 1-2 mm horizontal, and 3-6 mm vertical in the International Terrestrial Reference Frame (ITRF). For 5-minute positions, the precision is at the level of 6-12 mm horizontal, and 15-30 mm vertical. Here we review some of the innovations that have made all of this possible, which were in part driven by challenges presented by EarthScope. First of all, at the data processing level, much creative effort went into making computer processing time scale linearly with the number of GPS stations. The Precise Point Positioning (PPP) technique invented in 1997 has been

  8. EarthScope: Cyberinfrastructure to access Plate Boundary Observatory data products and services

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Mattioli, G. S.; Miller, M.; Boler, F. M.; Crosby, C. J.; Mencin, D.; Phillips, D. A.; Snett, L.

    2013-12-01

    The wealth of data from geodetic observing systems, especially the Plate Boundary Observatory (PBO), presents major data management challenges. The challenges are driven by ingenious new uses of Global Positioning System (GPS) data, demands for higher-rate, lower latency data, the need for continued access and long term preservation of archival data, the expansion of data users into other science, engineering and commercial arenas, and the growth of enhanced products that expand the utility of the data. To meet these challenges, UNAVCO has established a comprehensive suite of data services encompassing sensor network data operations, data product generation (through the activities of partners at Massachusetts Institute of Technology, Central Washington University, New Mexico Institute of Mining and Technology, and the University of California, San Diego - UCSD), data management, access and archiving, and advanced cyberinfrastructure. PBO sensor systems include 1,100 continuously operating GPS stations, 79 borehole geophysical sites (with a combination of strainmeters, tiltmeters, seismometers, pore pressure gauges, and meteorological sensors), and 6 long baseline strainmeters. Imaging data acquired for EarthScope include large volumes of satellite synthetic aperture radar (SAR) and airborne LiDAR data. Core data products such as daily GPS position time series and derived crustal motion velocities have been augmented with real-time data streams and positions calculated every second from 367 PBO stations. Higher rate (5 Hz) data files are available for applications such as GPS seismology. Efforts are underway with UCSD to integrate GPS and accelerometers at a subset of PBO sites to increase the reliability and capability of the observations. These observations have utility for research and hazards mitigation. Ingenious methods of GPS data analysis, developed by the University of Colorado and the University Corporation for Atmospheric Research, measure snow depth

  9. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 1. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A listing of the Earth Observatory Satellite (EOS) candidate missions is presented for use as a baseline in describing the EOS payloads. The missions are identified in terms of first, second, and third generation payloads. The specific applications of the EOS satellites are defined. The subjects considered are: (1) orbit analysis, (2) space shuttle interfaces, (3) thematic mapping subsystem, (4) high resolution pointable imager subsystem, (5) the data collection system, (6) the synthetic aperture radar, (7) the passive multichannel microwave radiometer, and (8) the wideband communications and handling equipment. Illustrations of the satellite and launch vehicle configurations are provided. Block diagrams of the electronic circuits are included.

  10. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  11. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  12. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  13. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  14. L2 Earth atmosphere observatory : formation guidance, metrology, and control synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper discusses the results of research sponsored by the NASA Revolutionary Aerospace Systems Concepts (RASC) program, and includes the synthesis and analysis of the guidance, metrology and control for a two-spacecraft formation in a unique continuously powered orbit near the Sun-Earth L2 Lagrange point observing the illuminated atmosphere of the Earth while it is continuously occulting the Sun.

  15. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  16. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  17. The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Centauri

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Bergmann, Christoph; Hearnshaw, John; Barnes, Stuart I.; Wittenmyer, Robert A.; Ramm, David; Kilmartin, Pam; Gunn, Fraser; Brogt, Erik

    2015-04-01

    The `holy grail' in planet hunting is the detection of an Earth-analogue: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analogue around one of the stars in the immediate solar neighbourhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the α Centauri system using the High Efficiency and Resolution Canterbury University Large Échelle Spectrograph (Hercules) at the 1 m McLellan telescope at Mt John University Observatory in New Zealand. The goal of our project is to obtain such a large number of radial velocity (RV) measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past few years, we have collected more than 45 000 spectra for both stars combined. These data are currently processed by an advanced version of our RV reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules programme for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in a 3.24-day orbit announced by Dumusque et al. (2012).

  18. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  19. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferre, T. P. A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  20. The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes

    NASA Astrophysics Data System (ADS)

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferre, T. P. A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-09-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  1. The international Solid Earth Virtual Research Observatory (iSERVO) institute seed project

    NASA Astrophysics Data System (ADS)

    Mora, P.; Donnellan, A.; Fox, G.; Pierce, M.; Matsu'Ura, M.; McLeod, D.; Yin, X.

    2003-12-01

    Numerical simulation models that capture the essential physics and dynamics of the solid earth system provide a critical means to probe the earth's complex system behaviour. The APEC Cooperation for Earthquake Simulation (ACES) was established to develop simulation models for the complete physics of earthquakes and related processes, to foster collaboration between complementary national programs, and to foster development of research infrastructure. Research by ACES participants is summarised in 3 special issues of PAGEOPH (2000, 2002, and in press). Solid earth simulator programs linked via ACES include a new 5 year program to establish a national facility in Australia (Australian Computational Earth Systems Simulator MNRF), USA programs being developed by NASA JPL in collaboration with science centers, and Japan's new Centre of Excellence in predictability of the evolution and variation of the multi-scale earth system. Plans are now commencing to establish the framework for an international institute for computational earth system simulation to maximise benefits of these international efforts. The institute will make extensive use of the World Wide Web, computational Grid technologies, and multi-tiered information architectures to allow simulation models and data to be manipulated by symbolic means in a way not previously possible. A seed iSERVO project is underway to illustrate the approach. It involves development of web based services and portals to enable different numerical simulation models contributed by Australia, Japan and USA to be run using several "standard" crustal fault system models (strike-slip, intraplate, and subduction). The iSERVO Grid is being constructed from Web services enhanced to be consistent with Grid Forum standards. The system uses distributed computing including high performance computers and distributed heterogeneous databases using OGSA interfaces. These are accessed with portals exploiting the new portlet standards. The i

  2. EPICS: Allen-Bradley hardware reference manual

    SciTech Connect

    Nawrocki, G.

    1993-04-05

    This manual covers the following hardware: Allen-Bradley 6008 -- SV VMEbus I/O scanner; Allen-Bradley universal I/O chassis 1771-A1B, -A2B, -A3B, and -A4B; Allen-Bradley power supply module 1771-P4S; Allen-Bradley 1771-ASB remote I/O adapter module; Allen-Bradley 1771-IFE analog input module; Allen-Bradley 1771-OFE analog output module; Allen-Bradley 1771-IG(D) TTL input module; Allen-Bradley 1771-OG(d) TTL output; Allen-Bradley 1771-IQ DC selectable input module; Allen-Bradley 1771-OW contact output module; Allen-Bradley 1771-IBD DC (10--30V) input module; Allen-Bradley 1771-OBD DC (10--60V) output module; Allen-Bradley 1771-IXE thermocouple/millivolt input module; and the Allen-Bradley 2705 RediPANEL push button module.

  3. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 4: Mission peculiar spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) peculiar spacecraft segment and associated subsystems and modules are presented. The specifications considered include the following: (1) wideband communications subsystem module, (2) mission peculiar software, (3) hydrazine propulsion subsystem module, (4) solar array assembly, and (5) the scanning spectral radiometer.

  4. Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.; Rodrigo, C.; Pulido, R.; Carry, B.

    2014-02-01

    This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators ({the citizens}) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6 % of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.

  5. Comparison between the Juno Earth flyby magnetic measurements and the magnetometer package on the IRIS solar observatory

    NASA Astrophysics Data System (ADS)

    Merayo, J. M.; Connerney, J. E.; Joergensen, J. L.; Dougherty, B.

    2013-12-01

    In October 2013 the NASA's Juno New Frontier spacecraft will perform an Earth Flyby Gravity Assist. During this flyby, Juno will reach an altitude of about 600 km and the magnetometer experiment will measure the magnetic field with very high precision. In June 2013 the NASA's IRIS solar observatory was successfully launched. IRIS uses a very fine guiding telescope in order to maintain a high pointing accuracy, assisted by a very high accuracy star tracker and a science grade vector magnetometer. IRIS was placed into a Sun-synchronous orbit at about 600 km altitude by a Pegasus rocket from the Vandenberg Air Force Base in California. This platform will also allow to performing measurements of the Earth's magnetic field with very high precision, since it carries similar instrumentation as on the Swarm satellites (star trackers and magnetometer). The data recorded by the Juno magnetic experiment and the IRIS magnetometer will bring a very exciting opportunity for comparing the two experiments as well as for determining current structures during the flyby.

  6. Multi-epoch Measurements of the Galactic Center 6667 MHz) and the Blazar 0716+714 (1 & 3 MHz) taken from the Allen Telescope Array at Hat Creek Radio Observatory in 2013

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2014-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.

  7. Using EarthScope Construction of the Plate Boundary Observatory to Provide Locally Based Experiential Education and Outreach

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Eriksson, S.; Barbour, K.; Venator, S.; Mencin, D.; Prescott, W.

    2006-12-01

    EarthScope is an NSF-funded, national science initiative to explore the structure and evolution of the North American continent and to understand the physical processes controlling earthquakes and volcanoes. This large-scale experiment provides locally based opportunities for education and outreach which engage students at various levels and the public. UNAVCO is responsible for the Plate Boundary Observatory (PBO) component of EarthScope. PBO includes the installation and operations and maintenance of large networks of Global Positioning Satellite (GPS), strainmeter, seismometer, and tiltmeter instruments and the acquisition of satellite radar imagery, all of which will be used to measure and map the smallest movements across faults, the magma movement inside active volcanoes and the very wide areas of deformation associated with plate tectonic motion. UNAVCO, through its own education and outreach activities and in collaboration with the EarthScope E&O Program, uses the PBO construction activities to increase the understanding and public appreciation of geodynamics, earth deformation processes, and their relevance to society. These include programs for public outreach via various media, events associated with local installations, a program to employ students in the construction of PBO, and development of curricular materials by use in local schools associated with the EarthScope geographic areas of focus. PBO provides information to the media to serve the needs of various groups and localities, including interpretive centers at national parks and forests, such as Mt. St. Helens. UNAVCO staff contributed to a television special with the Spanish language network Univision Aquí y Ahora program focused on the San Andreas Fault and volcanoes in Alaska. PBO participated in an Education Day at the Pathfinder Ranch Science and Outdoor Education School in Mountain Center, California. Pathfinder Ranch hosts two of the eight EarthScope borehole strainmeters in the Anza

  8. H. Julian Allen with Blunt Body Theory

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  9. Van Allen Discovery Most Important

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1959-01-01

    The first step toward the exploration of space occurred approximately 22 months ago as a part of the International Geophysical Year. In the short interval since October, 1957, the new tools of research, the satellite and the space rocket, have produced two unexpected results of fundamental scientific importance. First, instruments placed in the Explorer satellites by James A. Van Allen have revealed the existence of layers of energetic particles in the outer atmosphere. This discovery constitutes the most significant research achievement of the IGY satellite program. The layers may provide the explanation for the aurora and other geophysical phenomena, and they will also influence the design of vehicles for manned space flight, whose occupants must be shielded against their harmful biological effects. Second, the shape of the earth has been determined very accurately with the aid of data from the first Vanguard. As a result of this investigation, we have found that our planet tends toward the shape of a pear, with its stem at the North Pole. This discovery may produce major changes in our ideas on the interior structure of the earth.

  10. Precision Astrometry of Near Earth Objects at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Riddle, Andrew; Ries, J. G.

    2013-01-01

    The McDonald astrometry group has been observing Near-Earth Objects (NEOs) since 1998 with a 0.76m telescope. The main goal is to confirm newly discovered objects and follow-up known, but under-observed objects. NASA's mission to discover and catalogue 90 percent of NEOs larger than 1 km as soon as possible has been extended down to 140 m. The number of objects in the 140 m size range is much larger than the number of 1 km sized asteroids and thus, a collision is more likely to involve a smaller one. These objects are faint with absolute magnitudes 21.5 or larger. We are resuming the program concentrating on faint/small NEOs on the 2.1m Otto Struve telescope with the Camera for QUasars in EArly uNiverse (Park, 2012). The telescope-camera combination allows us to follow-up virtually any object discovered by the various NEO search teams as it provides detectable images of a 19th magnitude source with a 10 second exposure in the red. The field of view is 4.7’ by 4.7’, with 0.276 ‘’/pixel resolution, and we can fully sample the PSF for precision astrometry. Our first task is to characterize the plate solution, the transformation between the standard and pixel coordinates with the least number of coefficients, but removing all systematic errors from the residuals. We obtained images of M71 at three different airmasses during two nights in September. We also took exposures of asteroids with well-known orbits to test our astrometry. The results and the evaluation will be presented at the meeting. This research is funded by NASA NEO Program grant NNX12AG09G. Park, W.K., et al.,(2012), PASP, Vol. 124.

  11. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    NASA Astrophysics Data System (ADS)

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir; Olsen, Nils

    2015-12-01

    We present a new model of the radial (1-D) conductivity structure of Earth's mantle. This model is derived from more than 10 yr of magnetic measurements from the satellites Ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core and crustal field as predicted by a recent field model, we fit the magnetic data with spherical harmonic coefficients describing ring current activity and associated induction effects and estimate global C-responses at periods between 1.5 and 150 d. The C-responses are corrected for 3-D effects due to induction in the oceans and inverted for a 1-D model of mantle conductivity using both probabilistic and deterministic methods. Very similar results are obtained, consisting of a highly resistive upper mantle, an increase in conductivity in and beneath the transition zone and a conductive lower mantle. Analysis of the Hessian of the cost function reveals that the data are most sensitive to structures at depths between 800 and 1200 km, in agreement with the results obtained from the probabilistic approach. Preliminary interpretation of the inverted conductivity structure based on laboratory-based conductivity profiles shows that the recovered structure in the lower mantle either requires higher temperatures or the presence of material of high conductivity related to ponding of carbonate melts below the transition zone.

  12. Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) Earth Venture Suborbital Mission Overview

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Entekhabi, D.; Moorcroft, P. R.; Lou, Y.; Chapin, E.; Saatchi, S. S.; Reichle, R. H.; Crow, W. T.; Cuenca, R. H.; Tabatabaeenejad, A.; Shepson, P. B.; Hensley, S.; Hagimoto, Y.; Chen, R.; Milak, S.; Ali, A. A.; Hollinger, D. Y.

    2015-12-01

    AirMOSS was selected by NASA in 2010 as one of the first 5 Earth-Venture-Suborbital missions, with the goal of reducing the uncertainty of net ecosystem exchange (NEE) in north America through provision of high-resolution surface-to-depth profiles of soil moisture to land hydrology and ecosystem models. AirMOSS is accomplishing this goal by producing retrieved maps of so-called root zone soil moisture (RZSM) at approximately 100-m resolution for 9 biomes (10 sites) in north America, ranging from the boreal forests in Canada to the tropical rainforests in Costa Rica. RZSM has been hypothesized to account for 60% or more of the uncertainty in estimates of NEE. AirMOSS, currently in its final mission year, has acquired about 3 years of observations of RZSM at its study sites, with a total of 21 flight campaigns per year. Each flight campaign has included 2-3 flight dates. The RZSM maps have been retrieved from polarimetric synthetic aperture radar (SAR) instrument built by the Jet Propulsion Laboratory and flyign aboard a Gulfstream-3 airplane, operated by NASA Johnson Space Center. The estimation algorithms for deriving the RZSM maps have been matured throughout the mission, and have been shown to produce estimates of RZSM that are accurate to within 0.02-0.12 m3/m3 compared to in-situ validation data. The mission has also produced higher level RZSM products at hourly intervals, using land hydrology models, whose parameters are optimized using the AirMOSS snapshots. The ultimate product of the mission are the NEE estimates, generated not only for the mission study sites, but also upscaled to the entire scale of north America. These results are all under production, with the final mission products expected in May 2016. This presentation will give an overview of the mission, its products, and the main scientific findings. Several other papers in this session provide more details on each of the various aspects of the mission.

  13. Three dimensional data-assimilative VERB-code simulations of the Earth's radiation belts: Reanalysis during the Van Allen Probe era, and operational forecasting

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Shprits, Yuri; Podladchikova, Tatiana; Kondrashov, Dmitri

    2016-04-01

    The Versatile Electron Radiation Belt (VERB) code 2.0 models the dynamics of radiation-belt electron phase space density (PSD) in Earth's magnetosphere. Recently, a data-assimilative version of this code has been developed, which utilizes a split-operator Kalman-filtering approach to solve for electron PSD in terms of adiabatic invariants. A new dataset based on the TS07d magnetic field model is presented, which may be utilized for analysis of past geomagnetic storms, and for initial and boundary conditions in running simulations. Further, a data-assimilative forecast model is introduced, which has the capability to forecast electron PSD several days into the future, given a forecast Kp index. The model assimilates an empirical model capable of forecasting the conditions at geosynchronous orbit. The model currently runs in real time and a forecast is available to view online http://rbm.epss.ucla.edu.

  14. Observations of comet 252P/LINEAR during its historically close approach to Earth in 2016 from Lowell Observatory

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Schleicher, David G.

    2016-10-01

    We report on imaging and photometry of comet 252P/LINEAR acquired at Lowell Observatory during 2016 February-April. 252P passed 0.036 AU from Earth on March 21, among the closest passages on record. Its southern declination and the full moon made observations during the close encounter impractical from Lowell Observatory, but we observed 252P on one night each in February and early March, and on 13 nights from April 2-21 using the 4.3-m Discovery Channel Telescope, Hall 1.1-m, and 0.8-m. According to reports by other observers, the comet brightened significantly beginning in late-February and, coupled with the extreme close approach, was highly extended during our April observations. Narrowband photometry revealed a typical gas composition and an extremely low dust-to-gas ratio. The ratios remained essentially unchanged between late-February and April, e.g., during and after the extended "outburst" reported by other observers. 252P exhibited distinctly different coma morphology between dust and gas species. Enhanced images revealed a short sunward dust feature and the dust tail. Enhanced CN and C3 images exhibited a tilted spiral that was seen partially edge on approximately in the north-south directions. Enhanced OH images were also brightest along this direction but with considerably more material in the tailward hemisphere, potentially implying icy grains subject to radiation pressure. The CN coma morphology varied smoothly during a night and repeated every ~22 hr, implying a period of ~22 hr or a sub-multiple. There was also a repetition of features after ~95.5 hr, implying that the actual period is 7.35 +/- 0.05 hr. The repetition of features was most consistent April 2-7; the morphology diverged during later later nights, with the apparent spiral seen earlier separating into two or more distinct jet features. We will discuss these results as well as the results of our ongoing analyses. These studies were supported by NASA Planetary Astronomy grant NNX14AG81G.

  15. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  16. HydroViz: A web-based hydrologic observatory for enhancing hydrology and earth-science education

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Ma, Y.; Williams, D.

    2010-12-01

    The main goal of this study is to develop a virtual hydrologic observatory (HydroViz) that integrates hydrologic field observations with numerical simulations by taking advantage of advances in hydrologic field & remote sensing data, computer modeling, scientific visualization, and web resources and internet accessibility. The HydroViz system is a web-based teaching tool that can run on any web browsers. It leverages the strength of Google Earth to provide authentic and hands-on activities to improve learning. Evaluation of the HydroViz was performed in three engineering courses (a senior level course and two Introductory courses at two different universities). Evaluation results indicate that HydroViz provides an improvement over existing engineering hydrology curriculum. HydroViz was effective in facilitating students’ learning and understanding of hydrologic concepts & increasing related skills. HydroViz was much more effective for students in engineering hydrology classes rather than at the freshmen introduction to civil engineering class. We found that HydroViz has great potential for freshmen audience. Even though HydroViz was challenging to some freshmen, most of them still learned the key concepts and the tool increased the enthusiasm for half of the freshmen. The evaluation provided suggestions to create a simplified version of HydroViz for freshmen-level courses students. It identified concepts and tasks that might be too challenging or irrelevant to the freshmen and areas where we could provide more guidance in the tool. After the first round of evaluation, the development team has made significant improvements to HydroViz, which would further improve its effectiveness for next round of class applications which is planned for the Fall of 2010 to take place in 5 classes at 4 different institutions.

  17. Low-latency high-rate GPS data streams from the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Borsa, A.; Jackson, M.; Stark, K.

    2008-05-01

    Real-time processing of high rate GPS data can give precise (e.g., 5-10 mm for data recorded once per second) recordings of rapid volcanic and seismic deformation. These time series now provide an emerging tool for seismic, volcanic, and tsunami geodesy and early warning applications. UNAVCO, as part of the EarthScope Plate Boundary Observatory project, has developed the UStream system to provide streaming GPS data from some PBO and other UNAVCO-operated GPS stations. UStream is based on the Ntrip standard, a widely used protocol for streaming GNSS data over the Internet. Remote GPS stations provide a stream of BINEX data at 1 sample/sec to an Ntrip server at UNAVCO's Boulder offices, while simultaneously recording data locally in the event of communications failure. Once in Boulder, the data fork into three output streams: BINEX files stored at UNAVCO and streams of data in BINEX and RTCM 2.3 format. These streams flow to an Ntrip broadcaster that distributes data to Ntrip clients, which can be anything from low-latency processing systems to external data archiving systems. Current development efforts are geared toward providing data in RTCM 3.x format. This system is now operating in a public beta test mode, with data available from over 55 PBO and Nucleus GPS stations across the western United States. Data latencies from stations operating on mobile telephone communications are under 1.1 seconds at 95% confidence, and data completeness is typically more than 95% barring transient communications disruptions. Data from the system are available under the terms of the draft UNAVCO streaming data usage policy. For further information, please visit http://rtgps.unavco.org or send e-mail to rtgps@unavco.org.

  18. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (I): Programs and Workshops

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Turrin, M.; Kenna, T. C.; Newton, R.; Buckley, B.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science through “live” and web-based programs that provide teachers, students, and the other access to new discoveries and updates on key issues. We highlight current activities in paired posters. Part 1 focuses on events held at the Palisades, NY, campus. "Earth2Class (E2C)" is a unique program integrating science content with increased understanding about classroom learning and technology. Monthly workshops allow K-14 participants to combine talks by researchers about cutting-edge investigations with acquisition of background knowledge and classroom-ready applications. E2C has sponsored 100 workshops by more than 60 LDEO scientists for hundreds of teachers. A vast array of resources on earth2class.org> includes archived versions of workshops, comprehensive sets of curriculum units, and professional development opportunities. It has been well received by both workshop participants and others who have only accessed the web site. "Hudson River Snapshot Day" celebrates the Hudson River Estuary and educates participants on the uniqueness of our nearby estuary as part of the annual National Estuaries Week. The New York State Department of Environmental Conservation Hudson River Estuary Program and Hudson Basin River Watch coordinate the event. LDEO scientists help coordinate annual data collection by school classes to create a day-in-the-life picture all along the river. LDEO researchers also participate in "River Summer," bringing together participants from a variety of perspectives to look at the Hudson River and foster better understanding of how the same features can appear very differently to artists, writers, political scientists, economists, or scientists. These perspectives aid in recognizing the Hudson’s unique characteristics and history by identifying cross-disciplinary relationships and fostering new

  19. Intramolecular ketene-allene cycloadditions.

    PubMed

    McCaleb, K L; Halcomb, R L

    2000-08-24

    [reaction: see text]This report describes intramolecular thermal [2 + 2] cycloadditions between ketenes and allenes. The formation of ketenes and the subsequent cycloadditions occurred under a variety of conditions, affording 7-methylidinebicyclo[3.2.0]heptanones and 7-methylidinebicyclo[3.1.1]heptanones in 45-78% yields. The regioselectivity of the cycloaddition varied with the substitution of the allene, and the yield of cyclized products varied with reaction conditions.

  20. Obituary: James Alfred Van Allen, 1914-2006

    NASA Astrophysics Data System (ADS)

    Ludwig, George H.; McIlwain, Carl Edwin

    2006-12-01

    James Alfred Van Allen, world-renowned space scientist, died 9 August 2006 at the age of ninety-one. He succumbed to heart failure after a ten-week period of declining health. Van Allen served for his entire sixty-seven-year professional career as an amazingly productive researcher, space science spokesman, inspired teacher, and valued colleague. The realization by him and his associates that charged particles are trapped by the Earth's magnetic field began a whole new field of research, magnetospheric physics. Following that initial discovery, he and his associates quickly extended their observations, first to the inner planets, and then to the rest of the planets and beyond. During his tenure at Iowa, he and his group flew instruments on more than sixty successful Earth satellites and planetary spacecraft, including the first missions to the planets Venus, Mars, Jupiter, Saturn, Uranus, and Neptune. Van Allen's lifetime publication list numbers more than 275, of which many are widely-cited, seminal papers. He was the sole author of more than 125 of those papers. Beyond the research laboratory, Van Allen worked energetically throughout his career in establishing space research as a new branch of human inquiry. He was among the most sought-after as a committee member and adviser, working at the highest levels of government, including the White House and Congress, and at all levels of the national and international research establishments. Many presentations in the non-scientific arena helped to bring the exciting discoveries and challenges of space research to the attention of the general public. James Van Allen (Van to his many friends and colleagues) was born on 7 September 1914 on a small farm near Mount Pleasant, Iowa, the second of four sons of Alfred Morris Van Allen and Alma Olney Van Allen. After high school in Mount Pleasant, he entered Iowa Wesleyan College, majoring in physics and graduating summa cum laude. While there, he was introduced to geophysics

  1. Grand Observatory

    NASA Technical Reports Server (NTRS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  2. The Evolving Space Weather System—Van Allen Probes Contribution

    NASA Astrophysics Data System (ADS)

    Zanetti, L. J.; Mauk, B. H.; Fox, N. J.; Barnes, R. J.; Weiss, M.; Sotirelis, T. S.; Raouafi, N.-E.; Kessel, R. L.; Becker, H. N.

    2014-10-01

    The overarching goal and purpose of the study of space weather is clear—to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA's Van Allen Probes' twin pair of satellites, launched in August of 2012 and orbiting directly through Earth's severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP), was renamed soon after launch to honor the discoverer of Earth's radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes are one part of NASA's Living With a Star program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions, and their effects on the geospace and Earth environment.

  3. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  4. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  5. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 6: Specification for EOS Central Data Processing Facility (CDPF)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications and functions of the Central Data Processing (CDPF) Facility which supports the Earth Observatory Satellite (EOS) are discussed. The CDPF will receive the EOS sensor data and spacecraft data through the Spaceflight Tracking and Data Network (STDN) and the Operations Control Center (OCC). The CDPF will process the data and produce high density digital tapes, computer compatible tapes, film and paper print images, and other data products. The specific aspects of data inputs and data processing are identified. A block diagram of the CDPF to show the data flow and interfaces of the subsystems is provided.

  6. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  7. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sarah; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.

  8. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gy

    2010-07-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093+/-0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  9. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gy

    2010-07-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093+/-0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters. PMID:20687746

  10. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 7: Specification for EOS low cost readout station

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Low Cost Readout Station (LCRS) which supports the Earth Observatory Satellite (EOS) data system are described. The basic LCRS consists of all hardware and software needed to acquire and track the EOS-A or EOS-B satellite and receive, record, process, and annotate the instrument data from the satellites. The LCRS also provides appropriate interfaces with the unique local user provided display and extractive processing equipment. The LCRS has the capability of acquiring image data from the EOS-A and the EOS-B satellites over a ground area defines by a 500 kilometer radius from the coordinates of the station. The LCRS is also capable of receiving and processing both, but not simultaneously, full five band Multispectral Scanner (MSS) image data and various modes of the Compacted Thematic (CTM) data.

  11. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  12. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  13. Study of heliospheric effects on galactic cosmic ray fluxes near Earth using low energy modes of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Saleh, Ahmed; Pierre Auger Collaboration

    2016-04-01

    Surface detector array (SD) of the Pierre Auger Observatory has the capability to observe variations in the flux of low energy secondary cosmic ray particles. Flux rates of low energy particles can be obtained either from particle count rates (scaler mode) or from charge distribution of the pulses (histogram mode), detected by individual water Cherenkov detectors (WCD). In scaler mode, SD is sensitive to particles that deposit energy between ~15 MeV and ~100 MeV in a WCD, while in histogram mode the deposited energy range can be extended up to ~1 GeV. These two low energy detection modes are excellent tools for monitoring modulations of the galactic cosmic ray flux, related to solar activity, such as Forbush decreases (with typical duration of several hours to weeks) and Solar cycle (with a duration of several years), as they provide fluxes of cosmic rays with different energies at the same detector. In this contribution we present an analysis of the effects of space weather and space climate on low energy mode data collected by the Pierre Auger Observatory in the period between 2006 and 2013. In particular, we focus on the long term trend of the cosmic ray flux. In addition to the standard corrections for atmospheric effects such as pressure, the analysis takes into account also the corrections for the long term evolution of the response of the surface detectors. Results show good correlation of the corrected low energy mode Auger data with neutron flux measurements by the global neutron monitoring network (NMDB).

  14. Earth-Affecting Solar Causes Observatory (EASCO): A Potential International Living with a Star Mission from Sun-Earth L5

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Davila, J. M.; St Cyr, O. C.; Sittler, E. C.; Auchere, F.; Duvall, Jr. T. L.; Hoeksema, J. T.; Maksimovic, M.; MacDowall, R. J.; Szabo, A.; Collier, M. R.

    2011-01-01

    This paper describes the scientific rationale for an L5 mission and a partial list of key scientific instruments the mission should carry. The L5 vantage point provides an unprecedented view of the solar disturbances and their solar sources that can greatly advance the science behind space weather. A coronagraph and a heliospheric imager at L5 will be able to view CMEs broadsided, so space speed of the Earth-directed CMEs can be measured accurately and their radial structure discerned. In addition, an inner coronal imager and a magnetograph from L5 can give advance information on active regions and coronal holes that will soon rotate on to the solar disk. Radio remote sensing at low frequencies can provide information on shock-driving CMEs, the most dangerous of all CMEs. Coordinated helioseismic measurements from the Sun Earth line and L5 provide information on the physical conditions at the base of the convection zone, where solar magnetism originates. Finally, in situ measurements at L5 can provide information on the large-scale solar wind structures (corotating interaction regions (CIRs)) heading towards Earth that potentially result in adverse space weather.

  15. Improving the Science Observing Efficiency of the Chandra X-ray Observatory via Chandra Radiation

    NASA Technical Reports Server (NTRS)

    Virani, Shanil; Schwartz, Daniel; Cameron, Robert; Plucinsky, Paul; ODell, Stephen; Minow, Joseph; Blackwell, William

    2003-01-01

    The Chandra X-ray Observatory (CXO), NASA' latest "Great Observatory", swas launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (approx. 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center currently uses the National Space Science Data Center's "near Earth" AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. Our earlier analysis demonstrated that our implementation of the AP-8/AE-8 model (a simple dipole model of the Earth's magnetic field) does not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. This led to a change in our operating procedure whereby we "padded" the start and end times of transit by 10 kiloseconds (ks) so that ACIS, the primary science instrument on-board Chandra, would not be exposed to the "fringes" of the Van Allen belts on ingress and egress for any given transit. This additional 20 ks per orbit during which Chandra is unable to perform science observations sums to approximately 3 Ms of "lost" science time per year and therefore reduces the science observing efficiency of the Observatory. To address the need for a higher fidelity radiation model appropriate for the Chandra orbit, the Chandra Radiation Model (CRM) was developed. The CRM is an ion model for the outer magnetosphere and is based on data from the EPIC/ICS instrument on-board the Geotail satellite as well as data from the CEPPAD/IPS instrument on-board the Polar satellite. With the production and implementation of the CRM, we present the results of a study designed to investigate the science observing time that may be recovered by using the CRM as a function of the additional low

  16. Recent Advances in the Reactions of 1,2-Allenic Ketones and α-Allenic Alcohols.

    PubMed

    Fan, Xuesen; He, Yan; Zhang, Xinying

    2016-06-01

    This Personal Account summarizes our recent efforts in searching for novel synthetic strategies for a number of organic molecules by using allene derivatives as valuable substrates. It starts with a concise description of the background of allene-related synthetic chemistry. The second part deals with the reactions of 1,2-allenic ketones, including the reactions of 1,2-allenic ketones with various nucleophiles to afford functionalized benzenes, heterocycles, and fluoroenones, and those of allenic ketones as nucleophiles under the promotion of bases to provide 1,3,4'-triones or functionalized furans. The third part of this account focuses on the reactions of α-allenic alcohols. In this section, multicomponent reactions involving α-allenic alcohols, and cascade reactions of α-allenic alcohols promoted by Brønsted acid or iodine, are presented. PMID:27230525

  17. The Campaign GPS Component of the Plate Boundary Observatory (PBO): New Tools, New Strategies and New Opportunities to Support EarthScope Investigations

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Greenberg, J.; Sklar, J.; Meertens, C. M.; Andreatta, V.; Feaux, K.

    2004-12-01

    The UNAVCO Facility is charged with implementing the campaign GPS component of the Plate Boundary Observatory (PBO) to support EarthScope investigators through a pool of approximately one hundred mobile GPS systems. In contrast to the PBO continuous GPS network, the PBO campaign systems are designed for temporary deployments with periods ranging from several minutes to several months per site. This allows researchers to conduct spatially and temporally focused investigations into a wide range of phenomena, including volcano monitoring, post-seismic deformation monitoring, and ground control for airborne LIDAR surveys. A standard PBO campaign system consists of a Topcon GB-1000 dual-frequency GPS receiver, a Topcon PG-A1 compact GPS antenna, an 18 Ah battery, cabling, a portable and waterproof Pelican case enclosure, and a Tech 2000 GPS antenna mast or tripod and tribrach. Available ancillary equipment includes solar panels, additional batteries, enclosures and mounting hardware. Communications equipment such as radio modems and cellular modems are also available to allow remote data retrieval during longer term deployments. We present an overview of the PBO campaign equipment available to investigators, technical specifications of the system, examples of current and planned EarthScope research projects utilizing the campaign equipment, and a hands-on demonstration of a PBO campaign system.

  18. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  19. Van Allen Probes: Resolving Fundamental Physics with Practical Consequences

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr; Sibeck, David; Fox, Nicola; Mauk, Barry; Kessel, Ramona

    The Van Allen Probes twin spacecraft were launched on 30 August 2012 into nearly identical, 1.1 x 5.8 Re elliptical, low inclination (10°) Earth orbits with one of the two spacecraft lapping the other about every 2.5 months. The goal of the mission is to provide understanding of how populations of relativistic electrons and penetrating ions in space form or change in response to variable inputs of energy from the Sun. In this paper we overview the new understanding and discoveries of the Van Allen Probes science investigations since the operational mission began on 1 November 2012, which include formation of multiple coherently ordered structures within the outer electron belt and new persistent “zebra stripes” in the inner electron belt.

  20. Water resources of Allen Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, approximately 29.2 million gallons per day (Mgal/d) of water were withdrawn in Allen Parish, Louisiana, including about 26.8 Mgal/d from groundwater sources and 2.45 Mgal/d from surface-water sources. Rice irrigation accounted for 74 percent (21.7 Mgal/d) of the total water withdrawn. Other categories of use included public supply, industrial, rural domestic, livestock, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish were greatest in 1960 (119 Mgal/d) and 1980 (98.7 Mgal/d). The substantial decrease in surface-water use between 1960 and 1965 is primarily attributable to rice-irrigation withdrawals declining from 61.2 to 6.74 Mgal/d. This fact sheet summarizes information on the water resources of Allen Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  1. Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth.

    PubMed

    Hoeijmakers, H J; Arts, M L J; Snik, F; Keller, C U; Kuiper, J M

    2016-09-19

    We provide a proof of the technical feasibility of LOUPE, the first integral-field snapshot spectropolarimeter, designed to monitor the reflected flux and polarization spectrum of Earth. These are to be used as benchmark data for the retrieval of biomarkers and atmospheric and surface characteristics from future direct observations of exoplanets. We perform a design trade-off for an implementation in which LOUPE performs snapshot integral-field spectropolarimetry at visible wavelengths. We used off-the-shelf optics to construct a polarization modulator, in which polarization information is encoded into the spectrum as a wavelength-dependent modulation, while spatial resolution is maintained using a micro-lens array. The performance of this design concept is validated in a laboratory setup. Our proof-of-concept is capable of measuring a grid of 50 × 50 polarization spectra between 610 and 780 nm of a mock target planet - proving the merit of this design. The measurements are affected by systematic noise on the percent level, and we discuss how to mitigate this in future iterations. We conclude that LOUPE can be small and robust while meeting the science goals of this particular space application, and note the many potential applications that may benefit from our concept for doing snapshot integral-field spectropolarimetry.

  2. Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth.

    PubMed

    Hoeijmakers, H J; Arts, M L J; Snik, F; Keller, C U; Kuiper, J M

    2016-09-19

    We provide a proof of the technical feasibility of LOUPE, the first integral-field snapshot spectropolarimeter, designed to monitor the reflected flux and polarization spectrum of Earth. These are to be used as benchmark data for the retrieval of biomarkers and atmospheric and surface characteristics from future direct observations of exoplanets. We perform a design trade-off for an implementation in which LOUPE performs snapshot integral-field spectropolarimetry at visible wavelengths. We used off-the-shelf optics to construct a polarization modulator, in which polarization information is encoded into the spectrum as a wavelength-dependent modulation, while spatial resolution is maintained using a micro-lens array. The performance of this design concept is validated in a laboratory setup. Our proof-of-concept is capable of measuring a grid of 50 × 50 polarization spectra between 610 and 780 nm of a mock target planet - proving the merit of this design. The measurements are affected by systematic noise on the percent level, and we discuss how to mitigate this in future iterations. We conclude that LOUPE can be small and robust while meeting the science goals of this particular space application, and note the many potential applications that may benefit from our concept for doing snapshot integral-field spectropolarimetry. PMID:27661884

  3. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (II): Web-Based Projects for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Kastens, K. A.; Goodwillie, A. M.; Brenner, C.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science. Highlights of current efforts are described in paired posters. Part 2 focuses on web-based activities that foster access to LDEO cutting-edge research for worldwide audiences. “Geoscience Data Puzzles" are activities that purposefully present a high ratio of insight-to-effort for students. Each Puzzle uses selected authentic data to illuminate fundamental Earth processes typically taught in Earth Science curricula. Data may be in the form of a graph, table, map, image or combination of the above. Some Puzzles involve downloading a simple Excel file, but most can be worked from paper copies. Questions guide students through the process of data interpretion. Most Puzzles involve calculations, with emphasis on the too-seldom-taught skill of figuring out what math process is useful to answer an unfamiliar question or solve a problem. Every Puzzle offers "Aha" insights, when the connection between data and process or data and problem comes clear in a rewarding burst of illumination. Time needed to solve a Puzzle is between 15 minutes and an hour. “GeoMapApp” is a free, map-based data exploration and visualization application from the LDEO Marine Geoscience Data System group. GeoMapApp provides direct access to hundreds of data sets useful to geoscience educators, including continuously-updated Global Multi-Resolution Topography compilations that incorporates high-resolution bathymetry in the oceans and Space Shuttle elevations over land. A new User Guide, multi-media tutorials and webinar offer follow-along help and examples. “Virtual Ocean” integrates GeoMapApp functionality with NASA World Wind code to provide a powerful new 3-D platform for interdisciplinary geoscience research and education. Both GeoMapApp and Virtual Ocean foster scientific understanding and provide training in new data visualization

  4. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  5. Obituary: James Alfred Van Allen, 1914-2006

    NASA Astrophysics Data System (ADS)

    Ludwig, George H.; McIlwain, Carl Edwin

    2006-12-01

    James Alfred Van Allen, world-renowned space scientist, died 9 August 2006 at the age of ninety-one. He succumbed to heart failure after a ten-week period of declining health. Van Allen served for his entire sixty-seven-year professional career as an amazingly productive researcher, space science spokesman, inspired teacher, and valued colleague. The realization by him and his associates that charged particles are trapped by the Earth's magnetic field began a whole new field of research, magnetospheric physics. Following that initial discovery, he and his associates quickly extended their observations, first to the inner planets, and then to the rest of the planets and beyond. During his tenure at Iowa, he and his group flew instruments on more than sixty successful Earth satellites and planetary spacecraft, including the first missions to the planets Venus, Mars, Jupiter, Saturn, Uranus, and Neptune. Van Allen's lifetime publication list numbers more than 275, of which many are widely-cited, seminal papers. He was the sole author of more than 125 of those papers. Beyond the research laboratory, Van Allen worked energetically throughout his career in establishing space research as a new branch of human inquiry. He was among the most sought-after as a committee member and adviser, working at the highest levels of government, including the White House and Congress, and at all levels of the national and international research establishments. Many presentations in the non-scientific arena helped to bring the exciting discoveries and challenges of space research to the attention of the general public. James Van Allen (Van to his many friends and colleagues) was born on 7 September 1914 on a small farm near Mount Pleasant, Iowa, the second of four sons of Alfred Morris Van Allen and Alma Olney Van Allen. After high school in Mount Pleasant, he entered Iowa Wesleyan College, majoring in physics and graduating summa cum laude. While there, he was introduced to geophysics

  6. Carnegie Observatories

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Carnegie Observatories were founded in 1902 by George Ellery Hale. Their first facility was the MOUNT WILSON OBSERVATORY, located in the San Gabriel Mountains above Pasadena, California. Originally a solar observatory, it moved into stellar, galactic and extragalactic research with the construction of the 60 in (1.5 m), and 100 in (2.5 m) telescopes, each of which was the largest in the world...

  7. Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model

    NASA Technical Reports Server (NTRS)

    Virani, S. N.; Plucinsky, P. P.; Butt, Y. M.; Mueller-Mellin, R.

    2000-01-01

    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of roughly 63.5 hours (approx. 2.6 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center (CXC) currently uses the National Space Science Data Center's "near Earth" AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software only uses a simple dipole model of the Earth's magnetic field. The resulting B, L magnet coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instrument. We present evidence that demonstrates this mis- of the radiation belts as well as data that also demonstrate the significant variability of one radiation belt transit to the next as experienced by the CXO. We present an explanation for why the dipole implementation of the AP-8/AE-8 gives inaccurate results. We are also investigating use of the Magnetospheric Specification and Forecast Model (MSM) - a model that also accounts for radiation belt variability and geometry.

  8. Chandra X-ray Observatory's radiation environment and the AP-8/AE-8 model

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; Mueller-Mellin, Reinhold; Plucinsky, Paul P.; Butt, Yousaf M.

    2000-07-01

    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km X 10,000 km, and has a period of approximately 63.5 hours (approximately equals 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center currently uses the National Space Science Data Center's `near Earth' AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software uses only a simple dipole model of the Earth's magnetic field. The resulting B, L magnetic coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instrument. We present evidence that demonstrates this mis-timing of the outer electron radiation belt as well as data that also demonstrate the significant variability of one radiation belt transit to the next as experienced by the CXO. We also present an explanation for why the dipole implementation of the AP-8/AE-8 model is not ideally suited for the CXO. Lastly, we provide a brief discussion of our on-going efforts to identify a model that accounts for radiation belt variability, geometry, and one that can be used for observation scheduling purposes.

  9. Hanohano: Hawaiian antineutrino observatory

    NASA Astrophysics Data System (ADS)

    Maricic, Jelena; Hanohano Collaboration

    2010-01-01

    Design studies are underway for the deep ocean antineutrino observatory Hanohano. The 10 kton monolitic underwater detector will be able to make precision measurement of neutrino mixing parameters (including θ13 and neutrino mass hierarchy) if stationed around 60 km offshore, from the nuclear reactor. Hanohano will be a mobile detector and placing it in a mid-Pacific location will provide the first ever flux measurement of geoneutrinos (antineutrinos emitted in the radioactive decay series of uranium and thorium), coming from the Earth's mantle and perform a sensitivity search for a hypothetical natural fission reactor in the Earth's core. Additional deployment at a different mid-ocean location will lead to tests of lateral heterogeneity of uranium and thorium in the Earth's mantle. These measurements would provide an important insight into deep-Earth geophysics, mantle composition and understanding of the Earth's heat flow and sources of energy inside the Earth.

  10. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  11. Improving the science observing efficiency of the Chandra X-ray Observatory via the Chandra radiation model

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; DePasquale, Joseph M.; Schwartz, Daniel A.; Cameron, Robert A.; Plucinsky, Paul P.; O'Dell, Stephen L.; Minow, Joseph I.; Blackwell, William C., Jr.

    2004-02-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, with an apogee altitude of 120,000 km and a perigee altitude 20,000 km, and has a period of approximately 63.5 hours (≍ 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center currently uses the National Space Science Data Center's "near Earth" AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. Our earlier analysis (Virani et al, 2000) demonstrated that our implementation of the AP-8/AE-8 model (a simple dipole model of the Earth's magnetic field) does not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. This led to a change in our operating procedure whereby we "padded" the start and end times of transit as determined by the AE-8 model by 10 ks so that ACIS, the Advanced CCD Imaging Spectrometer and the primary science instrument on-board Chandra, would not be exposed to the "fringes" of the Van Allen belts on ingress and egress for any given transit. This additional 20 ks per orbit during which Chandra is unable to perform science observations integrates to approximately 3 Ms of "lost" science time per year and therefore reduces the science observing efficiency of the Observatory. To address the need for a higher fidelity radiation model appropriate for the Chandra orbit, the Chandra Radiation Model (CRM) was developed. The CRM is an ion model for the outer magnetosphere and is based on data from the EPIC/ICS instrument on-board the Geotail satellite as well as data from the CEPPAD/IPS instrument on-board the Polar satellite. With the production and implementation of the CRM Version 2.3, we present the results of a study

  12. Improving the Science Observing Efficiency of the Chandra X-Ray Observatory via the Chandra Radiation Model

    NASA Technical Reports Server (NTRS)

    Virani, Shanil; Schwartz, Daniel; Cameron, Robert; Plucinsky, Paul; O'Dell, Stephen; Munow, Joseph; Blackwell, William

    2003-01-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (N 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center currently uses the National Space Science Data Center's "near Earth" AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. Our earlier analysis demonstrated that our implementation of the AP-8/AE-8 model (a simple dipole model of the Earth's magnetic field) does not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. This led to a change in our operating procedure whereby we "padded" the start and end times of transit by 10 kiloseconds (ks) so that ACIS, the primary science instrument on-board Chandra, would not be exposed to the "fringes" of the Van Allen belts on ingress and egress for any given transit. This additional 20 ks per orbit during which Chandra is unable to perform science observations sums to approximately 3 Ms of "lost" science time per year and therefore reduces the science observing efficiency of the Observatory. To address the need for a higher fidelity radiation model appropriate for the Chandra orbit, the Chandra Radiation Model (CRM) was developed. The CRM is an ion model for the outer magnetosphere and is based on data from the EPIC/ICS instrument on-board the Geotail satellite as well as data from the CEPPAD/IPS instrument on-board the Polar satellite. With the production and Implementation of the CRM, we present the results of a study designed to investigate the science observing time that may be recovered by using the CRM as a function of the additional low

  13. Astronauts Joseph Allen rides cherry picker over stowage area/work station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Joseph P. Allen rides a cherry picker over to a stowage area/work station to wrap up extravehicular activity (EVA) duties above Earth. The cherry picker is a union of the mobile foot restraint and the remote manipulator system (RMS), controlled from inside Discovery's cabin. The Westar VI/PAM-D satellite is pictured secured in Discovery's cargo bay.

  14. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  15. Real-time Characterization of Near-Earth Objects: New Spectral Capabilities at the Magdalena Ridge Observatory 2.4-meter

    NASA Astrophysics Data System (ADS)

    Ryan, William; Ryan, Eileen V.; Johnson, Lee K.

    2014-11-01

    Researchers at the Magdalena Ridge Observatory's (MRO) 2.4-meter telescope facility have been contributing to the Near-Earth Object (NEO) project by working in tandem with discovery survey programs since 2008 to provide real-time, rapid response astrometric and photometric characterization follow-up (i.e., lightcurves to deduce spin rates). We are now extending this to include rapid spectroscopic follow-up using the Magdalena Optical Spectroscopy System (MOSS). This 300 visible wavelength spectrometer is permanently mounted at the Nasmyth port opposite the imager port (CCD camera) and is accessible in 30 seconds via repositioning of a tertiary mirror. A second spectroscopic capability is available via a simple filter wheel-mounted grating when MOSS is not in use. By having these instruments mounted (CCD, spectrometer, and stand alone grating) while performing our normal astrometric follow-up tasks, determination of rotation rates and spectral classification are possible as soon as an interesting target is identified, even within minutes of discovery.We report on the first spectral characterization results of NEOs utilizing this new capability at MRO. In particular, we will present spectra for the Sq/Q-type asteroids 2010 XZ67 and 2000 DK79; and the more S-like 2012 HM. In addition, we will present the near simultaneous lightcurve and spectral observations of 2014 EC. The lightcurve observations reveal a period of 0.54 +/- 0.01 hours that hint at non-principle axis rotation. The MOSS-acquired spectra imply its spectral class is Sq/Q as well. A simple grating spectrum of this object was also obtained and was of sufficient quality to corroborate an Sq/Q classification. As an ancillary benefit, this demonstrates that the grating technique can be reliable for rough classification of targets-of-opportunity when it is the only instrumentation option available.

  16. Phosphine Catalysis of Allenes with Electrophiles

    PubMed Central

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-01-01

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles. PMID:24663290

  17. A Century after Van Allen's Birth: Conclusion of Reconnaissance of Radiation Belts in the Solar System

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.

    2014-12-01

    On May 1, 1958 in the Great Hall of the US National Academy of Sciences, James A. Van Allen, having instrumented Explorer-1 and follow-on satellites with radiation detectors, announced the discovery of intense radiation at high altitudes above Earth. The press dubbed the doughnut-shaped structures "Van Allen Belts" (VAB). Soon thereafter, the search began for VAB at nearby planets. Mariner 2 flew by Venus in 1962 at a distance of 41,000 km, but no radiation was detected. The Mariner 4 mission to Mars did not observe planet-associated increase in radiation, but scaling arguments with Earth's magnetosphere yielded an upper limit to the ratio of magnetic moments of MM/ME < 0.001 (Van Allen et al, 1965). Similarly, the Mariner 5 flyby closer to Venus resulted in a ratio of magnetic moments < 0.001 (Van Allen et al, 1967), dealing a blow to the expectation that all planetary bodies must possess significant VAB. The flyby of Mercury in 1974 by Mariner 10 revealed a weak magnetic field, but the presence of durably trapped higher energy particles remained controversial until MESSENGER in 2011.The first flybys of Jupiter by Pioneers 10, 11 in 1973 and 1974, respectively, measured a plethora of energetic particles in Jupiter's magnetosphere and established the fact that their intensities were rotationally modulated. Later flybys of Jupiter and Saturn by the two Voyagers in 1979 and 1981 revealed that those magnetospheres possessed their own internal plasma source(s) and radiation belts. Subsequent discoveries of Van Allen belts at Uranus and Neptune by Voyager 2 demonstrated that VAB are the rule rather than the exception in planetary environments. We now know from the Voyagers and through Energetic Neutral Atom images from Cassini and IBEX that an immense energetic particle population surrounds the heliosphere itself. Thus, the reconnaissance of radiation belts of our solar system has been completed, some 56 years after the discovery of the Van Allen Belts at Earth.

  18. Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Tartu Observatory (TO) is a research institution in Estonia accommodating the northernmost 1.5 m telescope in the world. It is located in Estonia, about 20 km south-west of Tartu in the village of Tõravere (58°16'08''.4 N, 26°27'32''.4 E). TO performs research in astrophysics and atmospheric physics and popularizes those branches of science. TO was founded in 1808 as an observatory of Tartu Unive...

  19. NEPTUNE Canada Regional Cabled Ocean Observatory Network: Scientific results across the earth/ocean sciences from two years of continuous real-time data.

    NASA Astrophysics Data System (ADS)

    Best, M.; Johnson, F.; Moran, K.; Pirenne, B.; Founding Scientists Of Neptune Canada

    2011-12-01

    NEPTUNE Canada completed the installation and is now operating an 800 km, 5-node, regional cabled ocean network that spans the northern Juan de Fuca tectonic plate and continental shelf/slope in the northeastern Pacific. The NEPTUNE Canada network is part of the Ocean Networks Canada Observatory. Public data flow started in 2009 and interactive instruments continue to be added to this technically advanced system which provides continuous power and high bandwidth for enabling the collection of real-time physical, chemical, geological, and biological oceanographic data at resolutions relevant for furthering our understanding of the dynamics of the earth-ocean system. Here we present an overview and some initial results of the early installed real-time experiments, developed through workshops and international competitions, at five offshore locations. Inshore at Folger Passage, Barkley Sound, observations are focused on understanding biological productivity and the effects that marine processes have on fish and marine mammals. Experiments around Barkley Canyon allow quantification of changes in benthic activity with nutrient and sediment transport. There and north along the mid-continental slope near ODP Site 889, instruments are monitoring changes in the distribution, structure, related biotas and venting of gas hydrates. A Circulation Obviation Retrofit Kit (CORK) at our mid-plate site (ODP 1026) monitors real-time changes in crustal temperature and pressure, particularly related to events such as earthquakes, tsunamis, hydrothermal convection; these data are also important for understanding regional plate strain. At Endeavour on the Juan de Fuca Ridge, complex interactions among volcanic, tectonic, hydrothermal and biological processes are being observed. Across the NEPTUNE Canada network, high resolution acoustic and seismic monitoring elucidates tectonic processes such as earthquakes, and a tsunami detection system allows for the determination of open ocean

  20. Electrophilic addition and cyclization reactions of allenes.

    PubMed

    Ma, Shengming

    2009-10-20

    Modern organic synthesis depends on the development of highly selective methods for the efficient construction of potentially useful target molecules. A primary goal in our laboratory is the discovery of new reactions that convert readily available starting materials to complex products with complete control of regio- and stereoselectivity. Allenes are one underused moiety in organic synthesis, because these groups are often thought to be highly reactive. However, many compounds containing the allene group, including natural products and pharmaceuticals, are fairly stable. The chemistry of allenes has been shown to have significant potential in organic synthesis. Electrophilic additions to allenes have often been considered to be synthetically less attractive due to the lack of efficient control of the regio- and stereoselectivity. However, this Account describes electrophilic reactions of allenes with defined regio- and stereoselectivity developed in our laboratory. Many substituted allenes are readily available from propargylic alcohols. Our work has involved an exploration of the reactions of these allenes with many different electrophiles: the E- or Z-halo- or seleno-hydroxylations of allenyl sulfoxides, sulfones, phosphine oxides, carboxylates, sulfides or selenides, butenolides, and arenes, and the halo- or selenolactonization reactions of allenoic acids and allenoates. These reactions have produced a host of new compounds such as stereodefined allylic alcohols, ethers, amides, thiiranes, and lactones. In all these reactions, water acts as a reactant and plays an important role in determining the reaction pathway and the stereoselectivity. The differing electronic properties of the two C=C bonds in these allenes determine the regioselectivity of these reactions. Through mechanistic studies of chirality transfer, isolation and reactivity of cyclic intermediates, (18)O-labeling, and substituent effects, we discovered that the E-stereoselectivity of some

  1. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  2. Preparation of allenic sulfones and allenes from the selenosulfonation of acetylenes

    SciTech Connect

    Back, T.G.; Krishna, M.V.; Muralidharan, K.R. )

    1989-08-18

    {beta}-(phenylseleno)vinyl sulfones 2 are readily obtained from the free-radical selenosulfonation of acetylenes. Compounds 2 isomerize to allyl sulfones 4 under base-catalyzed conditions in nearly quantitative yield, with high stereoselectivity favoring the Z configuration. Allyl sulfones 4 afford generally high yields of allenic sulfones 1 when subjected to oxidation with m-chloroperbenzoic acid or tert-butyl hydroperoxide, followed by selenoxide syn-elimination. The sulfone-stabilized anion intermediates in the isomerizations of 2 to 4 can be alkylated, deuterated, or silylated in the {alpha}-position prior to oxidation, providing allenic sulfones with an additional {alpha}-substituent. In some cases, spontaneous elimination of the phenylseleno group occurred, producing the allenic sulfone without the need for an oxidation step. Desulfonylation of allyl sulfones 4f, 4c, and 25 with sodium amalgam afforded vinyl selenides that were converted to allenes in moderate to good yields by oxidation-elimination. The copper-catalyzed coupling of allyl sulfones 4 with Grignard reagents comprises an alternative route to vinyl selenide precursors of allenes. These procedures permit the synthesis of various {alpha}- and {gamma}-substituted allenic sulfones and allenes from acetylenes.

  3. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  4. Mechanisms of allene stereoinversion by imidozirconium complexes.

    PubMed

    Michael, Forrest E; Duncan, Andrew P; Sweeney, Zachary K; Bergman, Robert G

    2003-06-18

    The zirconium-mediated stereoinversion of allenes has been investigated by studying the stereochemical behavior of metallacycles derived from [2 + 2] cycloaddition of enantioenriched allenes with chiral and achiral imidozirconocene complexes. Relative rates of metallacycle racemization were measured by circular dichroism, and intermediates in the selective stereoinversion of diphenylallene with a chiral imidozirconium complex were observed by NMR spectroscopy. Metallacycles derived from dialkylallenes are proposed to racemize via reversible beta-hydride elimination. Stereoinversion of diarylallene-derived metallacycles proceeds much more slowly and is thought to proceed through an eta4-azatrimethylenemethane transition state.

  5. Snowstorm at the geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.

    2015-08-01

    The Sinji Vrh Geomagnetic Observatory (hereinafter the Observatory) is situated on Gora above Ajdovščina, a highland karst plateau, in the southwestern part of Slovenia. The Observatory operates in exceptional geological and meteorological conditions due to its location. The very first measurements at the time of initial tests showed that weather fronts induce changes in the local magnetic field. The first measurements intended to determine the value of this influence were carried out at the end of summer 2011. In 2013 the first such measurements were carried out in January. This article presents the results of these measurements, showing how the snowstorm induced changes in Earth's magnetic field.

  6. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    SciTech Connect

    Jordanova, Vania K; Miyoshi, Y; Sakaguchi, K; Shiokawa, K; Evans, D S; Connors, M

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  7. Observations of Whistler-Mode Chorus with Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Kurth, William; Hospodarsky, George; Santolik, Ondrej; Kletzing, Craig; Bounds, Scott

    2014-10-01

    The Van Allen Probes mission provides an excellent opportunity to observe whistler-mode chorus and its role in the radiation belts. The plasma wave instrument on the two probes, called Waves, includes six identical waveform receivers covering the frequency range from 10 Hz to 12 kHz. The instrument measures three orthogonal magnetic field components and three orthogonal electric field components of waves. This complement supports wave-normal and Poynting flux analyses of chorus as well as other wave modes that interact with radiation belt particles. Extensive use of burst modes provides multicomponent waveforms enabling the study of individual chorus elements, including their substructure. The early-mission publications confirm the importance of chorus to the local acceleration of electrons in the outer radiation belts. The orbital precession of the twin Van Allen Probes through a complete range of local times now allows for a new survey of the distribution of chorus emissions. Hence, we now have the tools to study chorus from the nonlinear growth in chorus element substructures through synoptic studies of the near-equatorial occurrence of chorus out to a distance of approximately 5.8 Earth radii.

  8. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system. Part 1: System trade studies no. 1 through 8

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design requirements and associated cost impacts for using the space shuttle to deliver the Earth Observatory Satellite (EOS) are identified. The additional impact of achieving full compatibility for resupply and retrieval is considered. Based on the results of the analysis, it is concluded that the EOS-Shuttle compatibility can be realized with reasonable spacecraft weight and cost penalties. Inherent space shuttle capabilities are adequate to meet the requirements of all missions except E and F. Mission E (Tiros 0) may be accommodated by either an EOS orbit transfer capability or a tug. The tug appears to be the only viable approach to satisfying the mission F (SEOS) requirements.

  9. Recent developments in allene-based synthetic methods.

    PubMed

    Kim, Hiyun; Williams, Lawrence J

    2008-11-01

    Presented is a review of the advances in synthetic methodology that make use of the allene functional group, with emphasis on catalytic asymmetric transformations and new mechanistic insights. The review covers the period from January 2007 to May 2008 and focuses on intra- and intermolecular cycloaddition, carbocycle cycloisomerization, heterocycle synthesis, epoxidation, addition and miscellaneous transformations. A brief discussion of allenes as transition metal ligands, the use of allenes in total synthesis and potential medicinal agents that contain the allene functionality is also presented.

  10. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  11. Spacecraft-level verification of the Van Allen Probes' RF communication system

    NASA Astrophysics Data System (ADS)

    Crowne, M. J.; Srinivasan, D.; Royster, D.; Weaver, G.; Matlin, D.; Mosavi, N.

    This paper presents the verification process, lessons learned, and selected test results of the radio frequency (RF) communication system of the Van Allen Probes, formerly known as the Radiation Belt Storm Probes (RBSP). The Van Allen Probes mission is investigating the doughnut-shaped regions of space known as the Van Allen radiation belts where the Sun interacts with charged particles trapped in Earth's magnetic field. Understanding this dynamic area that surrounds our planet is important to improving our ability to design spacecraft and missions for reliability and astronaut safety. The Van Allen Probes mission features two nearly identical spacecraft designed, built, and operated by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) for the National Aeronautics and Space Administration (NASA). The RF communication system features the JHU/APL Frontier Radio. The Frontier Radio is a software-defined radio (SDR) designed for spaceborne communications, navigation, radio science, and sensor applications. This mission marks the first spaceflight usage of the Frontier Radio. RF ground support equipment (RF GSE) was developed using a ground station receiver similar to what will be used in flight and whose capabilities provided clarity into RF system performance that was previously not obtained until compatibility testing with the ground segments. The Van Allen Probes underwent EMC, acoustic, vibration, and thermal vacuum testing at the environmental test facilities at APL. During this time the RF communication system was rigorously tested to ensure optimal performance, including system-level testing down to threshold power levels. Compatibility tests were performed with the JHU/APL Satellite Communication Facility (SCF), the Universal Space Network (USN), and the Tracking and Data Relay Satellite System (TDRSS). Successful completion of this program as described in this paper validated the design of the system and demonstrated that it will be able to me

  12. New Results About the Earth’s Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Baker, Daniel

    2015-01-01

    The first great scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or 'belts', of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons in the energy range 100 keV < E< 1 MeV often populated both the inner and outer zones with a pronounced 'slot' region relatively devoid of energetic electrons existing between them. This two-belt structure for the Van Allen moderate-energy electron component was explained as being due to strong interactions of electrons with electromagnetic waves just inside the cold plasma (plasmapause) boundary. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed wholly unexpected properties of the radiation belts, especially at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the Relativistic Electron-Proton Telescope (REPT) experiment on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are not due to a physical boundary within Earth's intrinsic magnetic field. Neither is it likely that human-generated electromagnetic transmitter wave fields might produce such effects. Rather, we conclude from these unique measurements that slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle

  13. RBSP: Studying the Sun's Influence on Earth

    NASA Video Gallery

    Two wide rings of high-intensity particles encircle our planet's equator. Known as the Van Allen Radiation Belts, their behavior in response to the sun directly impacts life on Earth and in orbit. ...

  14. Earth's magnetic environment

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1988-10-01

    The nature of the earth's magnetosphere is outlined. The magnetosphere is illustrated and its regions and features are discussed, including solar wind, bow shock, and the magnetopause. The formation process and characteristics of the magnetotail are presented. The plasmasphere, Van Allen belts, auroras, whistlers, and micropulsations are examined. Effects of the magnetosphere, including problems for communications lines, spacecraft electronics, and communication satellites are considered.

  15. An Impenetrable Barrier to Ultra-Relativistic Electrons in the Van Allen Radiation Belt

    NASA Astrophysics Data System (ADS)

    Baker, Daniel

    2015-04-01

    Early observations indicated that the Earth's Van Allen belts could be delineated into an inner zone dominated by high energy protons and an outer zone dominated by high energy electrons. Subsequent studies showed that moderate-energy electrons (E≲1 MeV) often populate both zones with a deep "slot" region between them. This two-belt structure was explained as being due to strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer zone corresponding to the minimum plasmapause location. Recent Van Allen Probes observations have revealed unexpected radiation belt morphology, especially at ultra-relativistic (E > 5 MeV) kinetic energies. Here we discuss an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Concurrent data reveal that this barrier for inward electron radial transport is not due to a physical boundary within Earth's intrinsic magnetic field nor is it likely that scattering by human-generated electromagnetic transmitter wave fields would inhibit inward radial diffusion. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can conspire to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

  16. Wave acceleration of electrons in the Van Allen radiation belts.

    PubMed

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-01

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  17. The AAS ``Semi-centennial" Meeting: Northwestern University and Yerkes Observatory, September 1947

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1999-05-01

    The AAS celebrated its "semi-centennial" fifty-two years ago! It was actually the fiftieth anniversary of the "First Conference" of astronomers and astrophysicists held at the dedication of Yerkes Observatory in 1897, which led to the actual formation of the Society two years later. Otto Struve, president of the AAS, was publicizing the fiftieth anniversary of his Yerkes Observatory in 1947, and he simply announced it was also the semi-centennial of the Society. Joel Stebbins, the grand old man of the AAS who had joined it as a graduate student in 1900, and held nearly every office in the Society from councilor to president, supported Struve's early celebration of the anniversary, probably largely because he was to retire himself in 1948. The meeting was held at Northwestern University and at Yerkes. There were then 625 AAS members. About 140 of them attended the meeting, and presented some 50 papers, all oral, with no parallel sessions. Struve organized a symposium on stellar atmospheres, with 5 invited speakers, and the great majority of the contributed papers were also on stars, a few on nebulae and interstellar matter, one on galaxies, and none on cosmology. Not to be outdone, Gerard P. Kuiper, who had recently succeeded Struve as director of Yerkes Observatory, organized a second symposium on the atmospheres of the planets, held at Yerkes immediately after the AAS meeting. After two days of sessions at Evanston, the members had driven to Williams Bay for the closing session Saturday, at which Struve and Stebbins gave their versions of the history of the observatory and of the Society. The two symposia formed the bases for two important books, Astrophysics: A Topical Symposium, and The Atmospheres of the Earth and the Planets, edited by J. Allen Hynek and Kuiper respectively.

  18. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  19. Maximal tractable subclasses of Allen`s interval algebra: Preliminary report

    SciTech Connect

    Drakengren, T.; Jonsson, P.

    1996-12-31

    This paper continues Nebel and Burckert`s investigation of Allen`s interval algebra by presenting nine more maximal tractable subclasses of the algebra (provided that P {ne} NP), in addition to their previously reported ORD-Horn subclass. Furthermore, twelve tractable subclasses are identified, whose maximality is riot decided. Four of these can express the notion of sequentiality between intervals, which is not possible in the ORD-Horn algebra. The satisfiability algorithm, which is common for all the algebras, is shown to be linear.

  20. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system trade data. Part 2: System trade studies no. 9 - 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The relative merits of several international data acquisition (IDA) alternatives for the Earth Observatory Satellite (EOS) are established and rated on a cost effectiveness basis. The primary alternatives under consideration are: (1) direct transmission to foreign ground stations, (2) a wideband video tape recorder system for collection of foreign data and processing and distribution from the United States, and (3) a tracking and data relay satellite (TDRS) system for the relay of foreign data to the United States for processing and distribution. A requirements model is established for the analysis on the basis of the heaviest concentration of agricultural areas around the world. The model, the orbit path and the constraints of EOS and data volume summaries are presented. Alternative system descriptions and costs are given in addition to cost-performance summaries.

  1. The Van Allen Probes first year of discovery and understanding (Invited)

    NASA Astrophysics Data System (ADS)

    Mauk, B.; Fox, N. J.; Sibeck, D. G.; Kanekal, S. G.; Kessel, R.

    2013-12-01

    The Van Allen Probes twin spacecraft were launched on 30 August 2012 and inserted into nearly identical, 1.1 x 5.8 RE elliptical, low inclination (10°), 9-hour period Earth orbits with one of the two spacecraft lapping the other about every 2.5 months. The discoveries and understandings achieved by the Van Allen Probes science investigations since the operational mission began on 1 November 2012 are all that we had hoped. The probes are discovering new and unanticipated behaviors of the radiation belts, for example coherently ordered multiple structures, and are revealing quantitatively how and why those behaviors occur. The probes are answering definitely outstanding important questions regarding Earth's inner magnetosphere, for example, the extent to which and the processes by which local acceleration contributes to creation of the belts. With its close 2-month coordination with the BARREL mission of opportunity array of Antarctic balloons, the Probes are contributing greatly to our understanding of the causes of radiation belt loss and the relationship between high and low altitude radiation belt phenomena. In this overview presentation we assess the discoveries and findings of the Van Allen Probes mission following its first year of operation, and provide a guide to the activities and achievements anticipated over the next year.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  3. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like planets with Future Space Observatories

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Soummer, Rémi; Pueyo, Laurent; Carlotti, Alexis; Stark, Christopher C.; Perrin, Marshall D.

    2016-02-01

    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 1010. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures, or segment gaps. We illustrate the technique with a design that could reach a 1010 contrast level at 34 mas for a 12 m segmented telescope over a 10% bandpass centered at a wavelength of {λ }0 = 500 nm. These designs can be optimized specifically for the presence of a resolved star and, in our example, for stellar angular size up to 1.1 mas. This would allow one to probe the vicinity of Sun-like stars located beyond 4.4 pc, therefore, fully retiring this concern. If the fraction of stars with Earth-like planets is {η }\\oplus =0.1, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12 m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward toward enabling these science goals with future large space missions.

  4. Cross-coupling/cyclization reactions of two different allenic moieties.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Martínez del Campo, Teresa

    2010-05-25

    The allene moiety represents an excellent building block for allene cross-coupling cyclization reactions, affording heterocyclic skeletons in a single step. This strategy is of particular interest when two different allene derivatives are involved in a series of metal-catalyzed cross-coupling heterocyclization processes. This Concept article is focused on the Pd-catalyzed union of two different allenic moieties, with cyclization of at least one of them by intramolecular cyclometalation. These new, versatile, and highly effective transformations are complex multistep processes leading to potential privileged structures that could find wide applications in related medicinal chemistry.

  5. 5. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 ICONOSTASIS AND CHANDELIER - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  6. 4. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 SANCTUARY FROM ENTRANCE - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  7. Electron acceleration in the heart of the Van Allen radiation belts.

    PubMed

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  8. Obituary: John Allen Eddy (1931-2009)

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2011-12-01

    bin HAD," which has been passed on to every subsequent division president. At the IAU meeting in New Delhi, Eddy became president of the IAU Commission 41 on the history of astronomy (1985-88). While at the CfA Eddy received a tenure offer from the director, George Field. But Eddy's wife, Marjorie Bratt Eddy, and four children had remained behind, and Jack felt obliged to return to Colorado. With the offer from the Smithsonian Observatory and his considerable fame, HAO and NCAR were eager to rehire him. Eddy soon became increasingly interested in interdisciplinary sciences, turning away from his earlier enthusiasm for the history of astronomy. He became the first chairman of a National Academy of Sciences committee for an International Geosphere-Biosphere Program, which later became the U.S. Global Change Program. Early in 1986, UCAR (the University Corporation for Atmospheric research, which managed NCAR) formalized its response to the challenge of global change with a new Office for Interdisciplinary Earth Studies, which Eddy founded and directed. The office focused efforts to bring the atmospheric sciences and other relevant disciplines together to study the earth's living and inanimate elements as a single system. In 1987 Eddy received the Arctowski medal from the National Academy of Science, an honor awarded triennially for studies in solar physics and solar terrestrial relationships. In 1992 Eddy found a new opportunity as chief scientist and vice president of the Center for International Earth Science Information Network, which he described as a federally funded pork barrel project in Michigan. Meanwhile Eddy had divorced; he remarried in 1992 to a fellow worker at UCAR, and he and his new wife, Barbara, relocated to Saginaw, Michigan. After two years he was "extremely frustrated" by the bureaucracy, so he and Barbara struck out on their own, founding the newsletter Consequences (with support from five federal agencies) to explain in popular terms the nature

  9. An extreme distortion of the Van Allen belt arising from the 'Hallowe'en' solar storm in 2003.

    PubMed

    Baker, D N; Kanekal, S G; Li, X; Monk, S P; Goldstein, J; Burch, J L

    2004-12-16

    The Earth's radiation belts--also known as the Van Allen belts--contain high-energy electrons trapped on magnetic field lines. The centre of the outer belt is usually 20,000-25,000 km from Earth. The region between the belts is normally devoid of particles, and is accordingly favoured as a location for spacecraft operation because of the benign environment. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the 'Hallowe'en storm' of 2003. From 1 to 10 November, the outer belt had its centre only approximately 10,000 km from Earth's equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire magnetosphere implies surprisingly powerful acceleration and loss processes deep within the magnetosphere.

  10. 33 CFR 165.T08-0432 - Safety Zone; Waterway Closure, Morgan City-Port Allen Route from Mile Marker 0 to Port Allen Lock.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone; Waterway Closure, Morgan City-Port Allen Route from Mile Marker 0 to Port Allen Lock. 165.T08-0432 Section 165.T08-0432...-Port Allen Route from Mile Marker 0 to Port Allen Lock. (a) Location. Waters of the Gulf...

  11. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  12. SETI Surveys on the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Kilsdonk, T. N.; ATA Team

    2009-01-01

    The Allen Telescope Array (ATA-42) is a centimeter-wave array of 42 six-meter dishes that allows simultaneous SETI and other radio astronomy projects. In this paper we report on initial SETI observations using several observation and RFI mitigation strategies. We conducted both "targeted” observations of selected stars and "sky survey” observations of areas of the sky. Some observations were done with the SETI project directing the pointing of the array and others were "commensal,” in a direction selected by another project. In both modes, SETI observations used an independent RF tuning and two synthesized beams pointing at stars or positions in the field of view and tuned to the same frequency band. Results of the two SETI observations were compared and used to excise interference. In some observations, each beam had a null positioned at the center of the other beam. In the long term, we plan to observe one million target stars and survey large sections of the galactic plane over the frequency range from 1 GHz to 10 GHz. Much of this work may be done in parallel with other large-scale surveys. The first phase of the ATA was funded through generous grants from the Paul G. Allen Family Foundation. UC Berkeley, the SETI Institute, the National Science Foundation (Grant No. 0540599), Sun Microsystems, Xilinx, Nathan Myhrvold, Greg Papadopoulos, and other corporations and individual donors contributed additional funding.

  13. Macular pseudohaemorrhage secondary to Allen Dot artefact.

    PubMed

    Michaels, Luke; Alexander, Philip; Newsom, Richard

    2015-01-01

    A 34-year-old highly myopic (-11.00 D) woman presented to eye clinic with a 3 day history of right eye paracentral blurring. Visual acuities were 6/6 bilaterally. Clinical examination was normal. Fundus photography showed the classic appearance of a macular haemorrhage. This is a recognised complication of high myopia and would have accounted for the patient's symptoms. However, further photography showed that the haemorrhage seemed to 'jump' around the fundus and was even present in the fellow eye. The apparent haemorrhage was revealed to be an imaging artefact. The 'Allen Dot' is a 6 mm black mask incorporated into retinal cameras to reduce reflection. Rarely, in highly myopic eyes, optical artefact can result. To the best of our knowledge, we are the first in the literature to report artefacts from the Allen Dot masquerading as ophthalmic disease. This case re-iterates the importance of clinical examination, especially in high myopes, given the current trend towards virtual clinics. PMID:25564595

  14. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    PubMed Central

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  15. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  16. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  17. Remarkable new results for high-energy protons and electrons in the inner Van Allen belt regions

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-04-01

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location.. Recent Van Allen Probes observations have revealed an unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than several megaelectronvolts). The data show an exceedingly sharp inner boundary for the ultrarelativistic electrons right at L=2.8. Additional, concurrently measured data reveal that this barrier to inward electron radial transport is likely due to scattering by powerful human electromagnetic transmitter (VLF) wave fields. We show that weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere due to manmade signals can act to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. Inside of this distance, the Van Allen Probes data show that high energy (20 -100 MeV) protons have a double belt structure with a stable peak of flux at L~1.5 and a much more variable belt peaking at L~2.3.

  18. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  19. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  20. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  1. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  2. 33 CFR 80.1440 - Port Allen, Kauai, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Port Allen, Kauai, HI. 80.1440 Section 80.1440 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1440 Port Allen, Kauai, HI. A line drawn...

  3. Mission Specialist (MS) Allen experiments with beverage on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mission Specialist (MS) Allen, using beverage container and drinking straw, experiments with microgravity chararcteristics of orange juice on middeck in front of the Development Flight Instrument (DFI) unit and forward lockers. Allen laughes as he watches the results of his experimentation.

  4. Bi(OTf)3-catalyzed cycloisomerization of aryl-allenes.

    PubMed

    Lemière, Gilles; Cacciuttolo, Bastien; Belhassen, Emilie; Duñach, Elisabet

    2012-06-01

    Intramolecular hydroarylation of allenes was achieved under very mild conditions using bismuth(III) triflate as the catalyst. Efficient functionalization of activated and nonactivated aromatic nuclei led to C-C bond formation through a formal Ar-H activation. A tandem bis-hydroarylation of the allene moiety was also developed giving access to various interesting polycyclic structures. PMID:22578075

  5. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  6. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts.

    PubMed

    Baker, D N; Jaynes, A N; Hoxie, V C; Thorne, R M; Foster, J C; Li, X; Fennell, J F; Wygant, J R; Kanekal, S G; Erickson, P J; Kurth, W; Li, W; Ma, Q; Schiller, Q; Blum, L; Malaspina, D M; Gerrard, A; Lanzerotti, L J

    2014-11-27

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location. Recent observations have revealed unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth's intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

  7. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts.

    PubMed

    Baker, D N; Jaynes, A N; Hoxie, V C; Thorne, R M; Foster, J C; Li, X; Fennell, J F; Wygant, J R; Kanekal, S G; Erickson, P J; Kurth, W; Li, W; Ma, Q; Schiller, Q; Blum, L; Malaspina, D M; Gerrard, A; Lanzerotti, L J

    2014-11-27

    Early observations indicated that the Earth's Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep 'slot' region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location. Recent observations have revealed unexpected radiation belt morphology, especially at ultrarelativistic kinetic energies (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth's intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate. PMID:25428500

  8. Water-levels fluctuations in a borehole at the Royal Observatory of Belgium: Effects on local gravity, Earth tidal, and barometric responses

    NASA Astrophysics Data System (ADS)

    Delcourt-Honorez, M.

    A borehole was drilled at the Royal Observatory of Belgium in Brussels, next to the superconducting gravimeter. Three aquifers belong to the 'multiple aquifer-aquitard system'. Continuously since Jun. 1984, various kinds of water levels variations are registered: long term and short term variations and, in the intermediate and deep wells, periodic tidal oscillations. Moreover, the water table and the pressure heads respond to the atmospheric pressure variations. The water levels variations perturbing effects in the superconducting gravimeter registrations are estimated and the hydraulic problem and the consolidation problem are studied. The classical Bouguer's formula in theories is enlarged, taking into account the nature of the layers, the expansions or compressions of each layer, the global land surface displacement and the various hydrostatic occurrences of phases on porous media. The Bouguer's theory is also extended to the case of a finite thickness layer, by a numerical integration. The water levels variations in the intermediate and deep aquifers (at long term, at short term, and the barometric and tidal responses) are only inducing negligible perturbing effects on the superconducting gravimeter registrations but the effect of the water table drift is at the limit of the actual precision of the gravimeter registrations. On the other hand, the barometric and tidal responses of the well-aquifer systems are used to estimate the in situ parameters of both the aquifers and the aquifer system (porosity, specific storage, vertical compressibility, and permeability). The estimated values are in good agreement with those deduced by using hydrogeological, soil, and rock mechanics considerations. The research presented can be applied to any hydrogeological configuration with any complexity.

  9. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  10. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  11. Physical Properties and Seasonal Behavior of H2O, HDO, CO2 and Trace Gases on Mars: Quantitative Mapping from Earth-Based Observatories

    NASA Technical Reports Server (NTRS)

    Novak, Robert E.; Mumma, Michael J.

    2011-01-01

    Since 1997, we have used high-resolution (R greater than 40000) spectrometers on ground based-telescopes to study molecules that have astrobiological significance in Mars' atmosphere. We have used the NASA-IRTF, Keck II, and VLT telescopes in the 1.0-5.0 micron range. The spectrometer is set at a wavelength to detect specific molecules. Spectral/spatial images are produced. Extracts from these images provide column densities centered at latitude/longitude locations (resolution 400km at sub-Earth point). We have mapped the O2 singlet-Delta emission (a proxy for ozone), HDO, and H2O for seasonal dates throughout the Martian year. Previously undiscovered isotopic bands of CO2 have been identified along with isotopic forms of CO. We are searching for other molecules that have astrobiological importance and have successfully measured methane in Mars' atmosphere.

  12. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  13. Radition belt dynamics : Recent results from van Allen Probes and future observations from CeREs

    NASA Astrophysics Data System (ADS)

    Kanekal, Shrikanth; O'Brien, Paul; Baker, Daniel N.; Ogasawara, Keiichi; Fennell, Joseph; Christian, Eric; Claudepierre, Seth; Livi, Stefano; Desai, Mihir; Li, Xinlin; Jaynes, Allison; Turner, Drew; Jones, Ashley; Schiller, Quintin

    2016-07-01

    We describe recent observations of the Earth's radiation belts made by instruments on board the Van Allen Probes mission, particularly the Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron Ion spectrometer (MagEIS). These observations have significantly advanced our understanding of terrestrial radiation belt dynamics. The Van Allen Probes mission comprises two identically instrumented spacecraft which were launched 31 August, 2012 into low-inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigees and apogees of of ~600 km and 5.8 RE respectively. We discuss the new scientific findings of the Van Allen Probes mission regarding the physics of energization and loss of relativistic electrons and their implications for future low-cost missions, especially CubeSats. We describe the CeREs (a Compact Radiation belt Explorer) CubeSat mission currently being built at the Goddard Space Flight Center, and carrying on board, an innovative instrument, the Miniaturized Electron Proton Telescope (MERiT). The MERiT is a compact low-mass low-power instrument measuring electrons from a few keV to tens of MeV in multiple differential channels. MERiT is optimized to measure electron microbursts with a high time resolution of a few milliseconds. We present and discuss possible future scientific contributions from CeREs.

  14. New Insight Into the Nightside Magnetosphere Ion Plasma Regimes With the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Jahn, J.; Goldstein, J.; Reeves, G. D.; Spence, H.; Skoug, R. M.; Funsten, H. O.

    2013-12-01

    The recent successful launch of the twin Van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting Van Allen spacecraft are returning clean, high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both Van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we present initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focusing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere. We detect frequent occurrences of multiple peak energy distributions in this energy range occurring in ring current, plasmasphere and plasma sheet. We observe distinct differences between the three ion species in these spectra. Energy spectra with 5 peaks for a single species have been observed repeatedly. We discuss possible explanations for these observations, and possible ramifications for the evolution of the outer radiation belt.

  15. New Insight into the Inner Magnetosphere Plasma Regimes with the van Allen Probes (RBSP)

    NASA Astrophysics Data System (ADS)

    Jahn, Joerg-Micha; Denton, Richard E.; Funsten, Herbert O.; Reeves, Geoff; Spence, Harlan E.

    2013-04-01

    The recent successful launch of the twin van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting van Allen spacecraft are returning clean high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we are presenting initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focussing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results do not only indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere, they also show frequent occurrences of multiple peak energy distributions in this energy range. Multi-peaked energy distributions with several peaks occurring in ring current, plasmasphere and (less often) plasma sheet are frequently observed, with distinct differences between the three ion species. Energy spectra with 5-6 peaks for a single species have been observed repeatedly.

  16. Enhancements and Losses of Radiation Belt Particles: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2015-12-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into megaelectron Volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different time scales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. Analysis of multi-MeV electron flux and phase space density (PSD) changes during key intervals in March 2013 and March 2015 are presented in the context of the first three years of Van Allen Probes operation. These March periods demonstrate the classic signatures both of inward radial diffusive energization as well as abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0±0.5). Such results reveal graphically that both "competing" mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in very rapid succession. They also show in remarkable ways how the coldest plasmas in the magnetosphere intimately control the most highly energetic particles.

  17. Observation of plasma depletions in outer radiation belt by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, K.; Lee, E.; Kim, Y.; Park, Y.; Parks, G. K.; Sibeck, D. G.

    2013-12-01

    Van Allen Probes (RBSP) observed plasma fine structures in the outer radiation belt during storm time on 14 November 2012. Five plasma depletion regions are clearly identified by VAP_A and VAP_B from 02:00UT to 04:45UT by particle instrument suite that can measure electrons and ions in a wide energy range, from 20 eV to 10 MeV. The plasma flux density dramatically decreases about 2 - 3 orders of magnitude in the depletion regions regardless of energy and particle species. Our analysis shows the plasma cavities are formed at the boundary of trapped and injected particle current. The total plasma pressures inside the depletion regions are much smaller than outside, implying unstable structures. It seems that this structures appear unusually only for storm main phase. During strong storm event, geomagnetic field is stretched and low plasma density region (lobe) moves to low latitude, this event could be analyzed by lobe region crossing of spacecraft. However, to explain temporal sequences of this event, we should assume large fluctuation of lobe boundary. Another possible analysis is plasma bubble generated in the tail region. The bubble model proposed to explain plasma transportation form tail to near Earth region in 1980s. While the bubble model reasonably explain the spatial and temporal structures observed by Van Allen probes, we cannot completely rule out the lobe region crossing model. In this presentation, we shall discuss about the characteristics of the plasma density cavities first observed by Van Allen Probes.

  18. Freeman Allen: Boston's pioneering physician anesthetist.

    PubMed

    Morris, Samuel D; Morris, Alina J; Rockoff, Mark A

    2014-11-01

    On October 16, 1846 dentist William T. G. Morton successfully demonstrated at the Massachusetts General Hospital that ether could prevent the pain of surgery. For decades afterwards, the administration of anesthesia in the United States was generally relegated to dentists, medical students, junior surgical trainees, or even nonmedical personnel. It was not until the end of the 19th century that a few pioneering physicians began devoting their careers to administering anesthesia to patients, studying ways to make it safer and more effective, and teaching others about its use. One of these individuals was Freeman Allen, who was appointed the first physician anesthetist to the medical staff at the Massachusetts General Hospital and several other major hospitals in Boston. We describe this remarkable man, his contributions to the early development of anesthesiology as a medical specialty, and the true cause of his untimely death. PMID:25329027

  19. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  20. Van Allen Probes RBSPICE Observations of the March 2015 Solar Storm

    NASA Astrophysics Data System (ADS)

    Manweiler, J. W.; Patterson, J. D.; Gerrard, A. J.; Gkioulidou, M.; Mitchell, D. G.; Lanzerotti, L. J.

    2015-12-01

    The Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument provides the ability to measure the energetic particle composition of the Earth's ring current from 20 KeV to approximately 1 MeV. On March 17, 2015 a solar storm impacted the Earth with a maximum negative Dst of -232. The onset of the storm was directly observed by the RBSPICE B instrument. The RBSPICE A instrument observed the development of the storm prior to onset in one orbit and a few hours after onset on the subsequent orbit. These observations displayed a number of interesting features of the storm including an Oxygen beam, high beta plasma conditions, and multiple injections of protons, helium, and oxygen into the inner magnetosphere. Our presentation will report on the observations made from each RBSPICE instrument coupled with observations from other Van Allen Probes instruments (EMFISIS, ECT, and EFW) to provide a complete picture of the impact of this storm on the Earth's inner magnetosphere.

  1. Orion GNC Mitigation Efforts for Van Allen Radiation

    NASA Technical Reports Server (NTRS)

    King, Ellis T.; Jackson, Mark

    2013-01-01

    The Orion Crew Module (CM) is NASA's next generation manned space vehicle, scheduled to return humans to lunar orbit in the coming decade. The Orion avionics and GN&C architectures have progressed through a number of project phases and are nearing completion of a major milestone. The first unmanned test mission, dubbed "Exploration Flight Test One" (EFT-1) is scheduled to launch from NASA Kennedy Space Center late next year and provides the first integrated test of all the vehicle systems, avionics and software. The EFT-1 mission will be an unmanned test flight that includes a high speed re-entry from an elliptical orbit, which will be launched on an expendable launch vehicle (ELV). The ELV will place CM and the ELV upper stage into a low Earth orbit (LEO) for one revolution. After the first LEO, the ELV upper stage will re-ignite and place the combined upper stage/CM into an elliptical orbit whose perigee results in a high energy entry to test CM response in a relatively high velocity, high heating environment. While not producing entry velocities as high as those experienced in returning from a lunar orbit, the trajectory was chosen to provide higher stresses on the thermal protection and guided entry systems, as compared against a lower energy LEO entry. However the required entry geometry with constraints on inclination and landing site result in a trajectory that lingers for many hours in the Van Allen radiation belts. This exposes the vehicle and avionics to much higher levels of high energy proton radiation than a typical LEO or lunar trajectory would encounter. As a result, Van Allen radiation poses a significant risk to the Orion avionics system, and particularly the Flight Control Module (FCM) computers that house the GN&C flight software. The measures taken by the Orion GN&C, Flight Software and Avionics teams to mitigate the risks associated with the Van Allen radiation on EFT-1 are covered in the paper. Background on the Orion avionics subsystem is

  2. Using Virtual Observatories for Heliophysics Research

    NASA Astrophysics Data System (ADS)

    Weigel, Robert S.; Baker, Daniel N.; Roberts, D. Aaron; King, Todd

    2009-11-01

    Scientific satellites, balloons, ground-based instruments, and other observational platforms are producing rich streams of data about the Earth and space. Ensuring widespread access to such data has led to the development of a new type of observatory: the virtual observatory. Existing only in cyberspace, virtual observatories are Web-based interfaces that point users to online data repositories. More important, they allow users not only to access and view multiple sources of information at the same time but also to cross-compare data to build new insights.

  3. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    SciTech Connect

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  4. A new Magnetic Observatory in Pantanal - Brazil

    NASA Astrophysics Data System (ADS)

    Siqueira, F.; Pinheiro, K.; Linthe, H.

    2013-05-01

    The aim of a Magnetic Observatory is to register the variations of the Earth's magnetic field in a long temporal scale. Using this data it is possible to study field variations of both external and internal origins. The external variations concern interactions between the magnetosphere and the solar wind, in general are measured in a short time scale. The internal field generated by convection of a high electrical conductivity fluid in the external core by a mechanism known as the geodynamo. Usually the internal field time variations are longer than in the external field and are called secular variations. Measurements carried out over the last century suggest that field intensity is decreasing rapidly. The decreasing of the field's intensity is not the same around the globe, especially at the SAMA (South Atlantic Magnetic Anomaly) regions, where this reduction is occurring faster. The global distribution of magnetic observatories is uneven, with few observatories in South America. In Brazil, there are three magnetic observatories, but only Vassouras Observatory (VSS- RJ) is part of the INTERMAGNET network. The National Observatory has plans to install seven new observatories in Brazil. Pantanal was the chosen location for installing the first observatory because of its privileged location, close to the SAMA region, and its data can contribute to more information about its origin. We followed the procedures suggested by the IAGA to build this observatory. The first step is to perform a magnetic survey in order to avoid strong magnetic gradients in the location where the absolute and variometers houses will be installed. The next step, the construction of the observatory, includes the selection of special non-magnetic material for the variometer and absolute houses. All materials used were previously tested using a proton magnetometer GSM-19. After construction of the whole infrastructure, the equipment was installed. This Project is a cooperation between Brazilian

  5. Real-time beamforming using high-speed FPGAs at the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Barott, William C.; Milgrome, Oren; Wright, Melvyn; MacMahon, David; Kilsdonk, Tom; Backus, Peter; Dexter, Matt

    2011-02-01

    The Allen Telescope Array (ATA) at the Hat Creek Radio Observatory (HCRO) is a wide-field panchromatic radio telescope currently consisting of 42 offset-Gregorian antennas each with a 6 m aperture, with plans to expand the array to 350 antennas. Through unique back-end hardware, the ATA performs real-time wideband beamforming with independent subarray capabilities and customizable beam shaping. The beamformers enable science observations requiring the full gain of the array, time domain (nonintegrated) output, and interference excision or orthogonal beamsets. In this paper we report on the design of this beamformer, including architecture and experimental results. Furthermore, we address some practical considerations in large-N wideband beamformers implemented on field programmable gate array platforms, including device utilization, methods of calibration and control, and interchip synchronization.

  6. 2. Historic American Buildings Survey Harold Allen, Photographer 24 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Harold Allen, Photographer 24 June 1964 HALL AND MAIN STAIR, LOOKING NORTHWEST FROM ENTRANCE VESTIBULE - Edward E. Ayer House, 2 East Banks Street, Chicago, Cook County, IL

  7. 10. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 DINING ROOM 1ST FLOOR (west wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  8. 9. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 NORTHEAST ROOM (1st floor south wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  9. 8. Historic American Buildings Survey Allen L. Hubbard, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic American Buildings Survey Allen L. Hubbard, Photographer May 5, 1936 NORTHEAST ROOM (west wall) - Holmes-Sayward House, West side of U.S. Route 202 (State Route 4), Alfred, York County, ME

  10. 6. Historic American Buildings Survey Harold Allen, Photographer June 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey Harold Allen, Photographer June 1964 STAINED GLASS WINDOW, WEST WINDOW IN SOUTH WALL, FROM BALCONY - Kehilath Anshe Ma'ariv Synagogue, 3301 South Indiana Avenue, Chicago, Cook County, IL

  11. 8. Historic American Buildings Survey Harold Allen, Photographer 24 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic American Buildings Survey Harold Allen, Photographer 24 June 1964 GRAND STAIRWAY, FROM SECOND FLOOR HALL, SHOWING STAINED GLASS WINDOW IN WEST WALL ABOVE LANDING - Francis J. Dewes House, 503 West Wrightwood Avenue, Chicago, Cook County, IL

  12. 3. Historic American Buildings Survey Harold Allen, Photographer 3 May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Harold Allen, Photographer 3 May 1965 ENTRANCE CANOPY FROM SOUTHWEST - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  13. 1. Historic American Buildings Survey Harold Allen, Photographer 31 May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Harold Allen, Photographer 31 May 1964 WEST (NORMAL AVE.) AND SOUTHEAST (CANALPORT AVE.) ELEVATIONS - Schoenhofen Brewing Company, Powerhouse, 1770 Canalport Avenue, Chicago, Cook County, IL

  14. Extreme enhancements and depletions of relativistic electrons in Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Claudepierre, S. G.; O'Brien, T. P., III; Fennell, J. F.; Blake, J. B.; Baker, D. N.; Jaynes, A. N.; Morley, S.; Geoffrey, R.

    2015-12-01

    Earth's electron radiation belts consist of toroidal zones in near-Earth space characterized by intense levels of relativistic electrons with distinct energy-dependent boundaries. It has been known for decades that the outer electron radiation belt is highly variable, with electron intensities varying by orders of magnitude on timescales ranging from minutes to years. Now, we are gaining much insight into the nature of this extreme variability thanks to the unprecedented number of observatories capable of measuring radiation belt electrons, the most recent of which is NASA's Van Allen Probes mission. In this presentation, we analyze and review several of the most extreme events observed in Earth's outer radiation belt. We begin with very sudden and strong enhancements of the outer radiation belt that can result in several orders of magnitude enhancements of electron intensities up to several MeV that sometimes occur in less than one day. We compare and contrast two of the most extreme cases of sudden and strong enhancements from the Van Allen Probes era, 08-09 October 2012 and 17-18 March 2015, and review evidence of the dominant acceleration mechanism in each event. Sudden enhancements of the radiation belts can also occur from injections by interplanetary shocks impacting the magnetosphere, such as occurred on 24 March 1991. We compare shock characteristics from previous injection events to those from the Van Allen Probes era to investigate why none of the interplanetary shocks since September 2012 have caused MeV electron injections into the slot region and inner radiation belt, which has surprisingly been devoid of measurable quantities of >~1 MeV electrons throughout the Van Allen Probes era. Our last topic concerns loss processes. We discuss drastic loss events, known as "flux dropouts", and present evidence that these loss events can eliminate the vast majority of relativistic electrons in the outer radiation belt on time scales of only a few hours. We

  15. Synthesis and biological evaluation of 12 allenic aromatic ethers.

    PubMed

    Wang, San-Yong; Mao, Wei-Wei; She, Zhi-Gang; Li, Chun-Rong; Yang, Ding-Qiao; Lin, Yong-Cheng; Fu, Li-Wu

    2007-05-15

    Twelve allenic aromatic ethers, some of them are natural products isolated from the mangrove fungus Xylaria sp. 2508 in the South China Sea, were synthesized. Their antitumor activities against KB and KBv200 cells were determined. All these compounds demonstrated cytotoxic potential, ranging from weak to strong activity. The analysis of structure-activity relationships suggested that the introduction of allenic moiety could generate or enhance cytotoxicity of these phenol compounds.

  16. Recent Performance Testing Results Using the 3-element Production Test Array for the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Tarter, J. C.; Blitz, L.; ATA 25 person Team; Paul G. Allen Foundation Collaboration

    2002-12-01

    The Allen Telescope Array will consist of 350 fixed six-meter dishes at the Hat Creek Radio Observatory in northern California (land use permits pending). It is the first massively parallel array ever built. Where possible, components from consumer markets and mass-production manufacturing processes have been used to lower costs. The architecture of the array explicitly anticipates future growth as a result of "Moore's Law" improvements. There will be many novel features of this array including ultra-wideband instantaneous frequency coverage from 0.5 to 11 GHz, a very wide field of view (2.5 degrees across at 21 cm), miniaturized 80K cryogenics, full bandwidth analog data transmission from the antennas to the Myhrvold central processing facility, dynamic null-formation and tracking of satellite interferers, and continuous multi-user support for radio astronomical research and SETI explorations. Starting in July 2000, the technology development for this array has been a collaboration between the Paul G. Allen Foundation and the ATA team located at the SETI Institute and at the Radio Astronomy Laboratory at UC Berkeley. A rapid prototyping array (RPA) consisting of seven COTS antennas and room temperature L-band receivers was erected in Orinda, CA in March 2001. Thanks to strong and continuing support from Sun Microsystems, the RPA has provided an invaluable testbed for software development and evaluation of RFI mitigation schemes. An operational 3-element Production Test Array (PTA) has been implemented at Hat Creek Observatory over the last few months. The antennas, drives, monitor and control software, and frontend components are near-final versions to be manufactured for the full array. This poster provides performance data from the first few months of testing with the PTA. A final decision on commitment for construction is expected by April 1, 2003.

  17. Voices: A Conversation with Allen J. Wilcox.

    PubMed

    Jukic, Anne Marie Z

    2016-09-01

    Allen James Wilcox was born on 30 September 1946 in Columbus, OH. He studied medicine at the University of Michigan, graduated in 1973, and after a rotating internship, he completed a master's degree in maternal and child health (1976) and a PhD in epidemiology (1979) at the University of North Carolina in Chapel Hill. After graduation, he went to work at the National Institute of Environmental Health Sciences (NIEHS, one of the US National Institutes of Health) in Durham, NC, where he has spent his career. He developed a research program in reproductive and perinatal epidemiology, a relatively unexplored area at the time. His studies include the early pregnancy study, which documented the extent of subclinical pregnancy loss in humans and established the fertile days of a woman's menstrual cycle. He served as the Chief of the Epidemiology Branch from 1991 to 2001, and as Editor-in-Chief of the journal EPIDEMIOLOGY from 2001 to 2014. His textbook, Fertility and Pregnancy-An Epidemiologic Perspective, was published by Oxford University Press in 2010. He was elected to the American Epidemiological Society in 1989, and served as its president in 2003. He also served as president of the Society of Pediatric and Perinatal Epidemiological Research (1996) and the president of the Society of Epidemiological Research (1998). He holds adjunct teaching appointments at the University of North Carolina, Harvard University, and the University of Bergen (Norway), which awarded him an honorary doctoral degree in 2008. PMID:27482869

  18. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  19. Obituary: John Allen Eddy (1931-2009)

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2011-12-01

    Jack Eddy, who was born 25 March 1931 in Pawnee City in southeastern Nebraska, died after a long battle with cancer in Tucson, Arizona, on 10 June 2009. Best known for his work on the long-term instability of the sun, described in a landmark paper in Science titled "The Maunder Minimum," he also deserves recognition as one of the triumvirate who founded the Historical Astronomy Division of the AAS. His father ran a cooperative farm store where Jack worked as a teenager; his parents were of modest means and there were concerns whether he could afford college, but one of the state senators, also from Pawnee City, nominated him for the U.S. Naval Academy. A course in celestial navigation gave him a love of the sky. After graduation in 1953, he served four years on aircraft carriers in the Pacific during the Korean War and then as a navigator and operations officer on a destroyer in the Persian Gulf. In 1957, he left the Navy and entered graduate school at the University of Colorado in Boulder, where in 1962 he received a Ph.D. in astro-geophysics. His thesis, supervised by Gordon Newkirk, dealt with light scattering in the upper atmosphere, based on data from stratospheric balloon flights. He then worked as teacher and researcher at the High Altitude Observatory in Boulder. Always adventuresome and willing to explore new frontiers, on his own time Eddy examined an Amerindian stone circle in the Big Horn mountains of Wyoming, a so-called medicine wheel, concluding that there were alignments with both the solstitial sun and Aldebaran. His conjectures became a cover story on Science magazine in June of 1974. In 1971 Jack privately reproduced for his friends a small collection of his own hilarious cartoons titled "Job Opportunities for Out-of-work Astronomers," with an abstract beginning, "Contrary to popular belief, a PhD in Astronomy/Astrophysics need not be a drawback in locating work in this decade." For example, under merchandising, a used car salesman advertises

  20. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d−π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  1. Reactivity and chemoselectivity of allenes in Rh(I)-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes: allene-mediated rhodacycle formation can poison Rh(I)-catalyzed cycloadditions.

    PubMed

    Hong, Xin; Stevens, Matthew C; Liu, Peng; Wender, Paul A; Houk, K N

    2014-12-10

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.

  2. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  3. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  4. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  5. NASA's Great Observatories Paper Model Kits.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Hubble Space Telescope, the most complex and sensitive optical telescope ever made, was built to study the cosmos from low-Earth orbit for 10 to 15 years or more. The Compton Gamma Ray Observatory is a complex spacecraft fitted with four different gamma ray detectors, each of which concentrates on different but overlapping energy range and was…

  6. ECHO - the Exoplanet Characterisation Observatory

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell

    2010-10-01

    A famous example of Super Earth is GJ 1214b, found by Charbonneau et al. in 2009 as part of the Mearth project: it is believed to be a small (2 Earth masses) ice world. But most of the currently known Exoplanets are of the Hot Jupiter type, large gas giants orbiting bright stars. Attention is now turning to these Super Earths, orbiting low mass late-type stars - many yet to be detected - as they offer the opportunity of obtaining spectral signatures from their atmospheres when found in a transiting or even non-transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. As more of these planets await detection, we estimate from microlensing and radial velocity surveys - which report that Super Earths form 24 to 100% of planets at orbits between 1 and 5 A.U. of their parent stars - and catalogs of stars (RECONS, PMSU, 2MASS), that within 30pc from our sun, over 50 Super Earths transit, orbiting within the Habitable Zone of their host star.

  7. Exploiting [2+2] cycloaddition chemistry: achievements with allenes.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina

    2010-02-01

    The allene moiety represents an excellent partner for the [2+2] cycloaddition with alkenes and alkynes, affording the cyclobutane and cyclobutene skeletons in a single step. This strategy has been widely studied under thermal, photochemical and microwave induced conditions. More recently, the use of transition metal catalysis has been introduced as an alternative relying on the activation of the allenic component. On the other hand, the intramolecular version has attracted much attention as a strategy for the synthesis of polycyclic compounds in a regio- and stereoselective fashion. This critical review focuses on the most recently developed [2+2] cycloadditions on allenes along with remarkable early works accounting for the mechanism, the regio- and diastereoselectivity of the cycloadducts formed (103 references).

  8. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  9. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  10. 150 years of magnetic observatories: Recent researches on world data

    NASA Astrophysics Data System (ADS)

    Barraclough, D. R.; Clark, T. D. G.; Cowley, S. W. H.; Hibberd, F. H.; Hide, R.; Kerridge, D. J.; Lowes, F. J.; Malin, S. R. C.; Murphy, T.; Rishbeth, H.; Runcorn, S. K.; Soffel, H. C.; Stewart, D. N.; Stuart, W. F.; Whaler, K. A.; Winch, D. E.

    1992-01-01

    A joint Discussion Meeting of the Royal Astronomical Society and the Royal Irish Academy, held on January 11th, 1991, commemorated the establishment of some early magnetic observatories, discussed recent research using global geomagnetic data and described the present status of magnetic observatories in the United Kingdom. The observatory and instruments at the Dublin magnetic observatory; the origins of the Greenwich magnetic observatory, and why it eventually had to be resited; and the history of the Munich magnetic observatory formed the historical part of the proceedings. Current research topics discussed were the geomagnetic secular variation and deep Earth structure and dynamics; fluid flow patterns near the top of the core; the origin of the annual variation of the geomagnetic field; results of an analysis of monthly means from some British observatories; a new theory of the geomagnetic daily variation; and the interactions between ionospheric science and geomagnetism. The present-day observatory scene was described in terms of the information that can be derived from the almost 40 year series of data from Hartland magnetic observatory; of the methods used to process data from the three UK magnetic observatories, which nowadays are operated automatically and remotely; and (a look into the future) of a new project, INTERMAGNET, which aims to make available, in near real time, data from the world-wide network of magnetic observatories.

  11. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  12. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  13. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  14. Simultaneous Observation of Plasma Waves Detected by the Van Allen Probes Spacecraft During Close Spacecraft Separations

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George; Santolik, Ondrej; Averkamp, Terrance; Bounds, Scott; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John

    2014-05-01

    The twin Van Allen Probe spacecraft launched in August 2012 includes the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Wave instrument that simultaneously measures three orthogonal components of the wave magnetic field and, with the support of the Electric Fields and Waves (EFW) instrument sensors, three components of the wave electric field at two locations in Earth's magnetosphere. Measuring all six wave components simultaneously allows the wave propagation parameters, such as the wave normal angle and Poynting vector, of the plasma wave emissions to be obtained. The orbit of the spacecraft are designed such that they "lap" each other roughly every 69 days, allowing observations over a range of spacecraft separations, with the closest separations on the order of 100 km. Simultaneous measurements at a range of distances between the two spacecraft provide an opportunity to investigate the scale, size and propagation characteristics of a number of plasma wave emissions associated with the Van Allen radiation belts, including whistler mode chorus. We examine these characteristics of the emissions detected by both spacecraft during separation distance of < 1000 km. Very similar small scale chorus wave packets were detected by both spacecraft when separation distances were the smallest. The similarities and differences detected by both spacecraft and their relation to separation distances will be discussed.

  15. Prospects of Comparing Van Allen Probes Data with Recent Nonlinear Radiation Belt Theory

    NASA Astrophysics Data System (ADS)

    Summers, D.; Omura, Y.; Tang, R.

    2013-12-01

    We consider the prospects of comparing recently developed theory and simulations of nonlinear wave processes with Van Allen Probes observational data. Electron gyro-resonant interaction with whistler-mode chorus waves is considered to be a prime mechanism for generating relativistic electrons in Earth's outer radiation belt. Resonant pitch angle scattering by chorus can also cause significant electron precipitation loss from the inner magnetosphere. Whistler-mode waves can as well act to suppress radiation belt electron fluxes below a theoretical (Kennel-Petschek) limit. Nonlinear cyclotron resonance theory is required to analyze the nonlinear characteristics of whistler-mode wave generation and the interaction of chorus with radiation belt electrons. We discuss recently developed nonlinear theory that involves wave trapping of resonant electrons near the equator and the formation of an electron hole in the phase space. The resulting formation of a resonant current causes nonlinear growth of a wave with rising frequency. Nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. A fraction of radiation belt electrons can be energized extremely efficiently by special wave trapping mechanisms called "relativistic turning acceleration" and "ultra-relativistic acceleration". In this presentation we summarize the salient features of whistler-mode wave generation and these associated acceleration processes,and discuss how they can be compared with particle and wave data from the Van Allen Probes mission.

  16. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  17. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  18. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  19. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  20. Einstein Observatory (HEAO-2)

    NASA Astrophysics Data System (ADS)

    Bond, P.; Murdin, P.

    2002-04-01

    The second in the series of HIGH ENERGY ASTROPHYSICAL OBSERVATORIES was launched by an Atlas-Centaur rocket on 13 November 1978. Soon after its insertion into a 470 km circular orbit inclined at 23.5° to the equator, HEAO-2 was named the Einstein Observatory, in celebration of the centenary of Albert Einstein's birth....

  1. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  2. Strasbourg's "Academy" observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The observing post located on the roof of Strasbourg's 19th-century "Academy" is generally considered as the second astronomical observatory of the city: a transitional facility between the (unproductive) turret lantern at the top of the Hospital Gate and the German (Wilhelminian) Observatory. The current paper reviews recent findings from archives (blueprints, inventories, correspondence, decrees and other documents) shedding some light on this observatory of which virtually nothing was known to this day. While being, thanks to Chrétien Kramp (1760-1826), an effective attempt to establish an actual observatory equipped with genuine instrumentation, the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. A meridian instrument with a Cauchoix objective doublet was however recovered by the German observatory and is still existing.

  3. Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

    NASA Astrophysics Data System (ADS)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-08-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300-2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  4. 5. Historic American Buildings Survey Harold Allen, Photographer June 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Harold Allen, Photographer June 1964 TRIPLE STAINED GLASS WINDOWS AND COLUMN SUPPORTING BALCONY (EAST WINDOWS IN SOUTH WALL OF MAIN FLOOR OF AUDITORIUM) - Kehilath Anshe Ma'ariv Synagogue, 3301 South Indiana Avenue, Chicago, Cook County, IL

  5. Van Allen Probes Science Gateway: A Centralized Data Access Point

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G. K.; Kessel, R.; Potter, M.

    2015-12-01

    The Van Allen Probes Science Gateway acts a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the Van Allen Probes Space Weather data to users. Over the past years, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes science and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including, simple time series, data plotted as a function of orbital location, and time versus L-Shell, capability of visualizing data from both probes (A & B) on the same plot. In cooperation with all Van Allen Probes Instrument SOCs, the Science Gateway will soon be able to serve higher level data products (Level 3), and to visualize them via the above mentioned HTML5 interface. Users will also be able to create customized CDF files on the fly.

  6. 18. VIEW SHOWING, LEFT TO RIGHT, H. J. LAWSON, ALLEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW SHOWING, LEFT TO RIGHT, H. J. LAWSON, ALLEN MATTISON, SENATOR CARL HAYDEN, LIN B. ORME, PAUL ROCA, AND J. A. FRAPS. THE UPSTREAM FACE AND SPILLWAY GATES ARE VISIBLE IN THE BACKGROUND. October 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  7. James Van Allen and His Namesake NASA Mission

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Hoxie, V. C.; Jaynes, A.; Kale, A.; Kanekal, S. G.; Li, X.; Reeves, G. D.; Spence, H. E.

    2013-12-01

    In many ways, James A. Van Allen defined and "invented" modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.

  8. Regioselective intramolecular [3+2] annulation of allene-nitrones.

    PubMed

    Inagaki, Fuyuhiko; Kobayashi, Harumi; Mukai, Chisato

    2012-01-01

    The regioselective intramolecular 1,3-dipolar cycloaddition of the phenylsulfonylallene-nitrone derivatives has been developed. This reaction showed that the distal double bond of the allene exclusively reacted with the nitrone group to produce the bicyclic isoxazolidine derivatives regardless of the substitution pattern on the allenyl moiety.

  9. Thermal induced intramolecular [2 + 2] cycloaddition of allene-ACPs.

    PubMed

    Chen, Kai; Sun, Run; Xu, Qin; Wei, Yin; Shi, Min

    2013-06-28

    A facile synthetic method for preparation of bicyclo[4.2.0] nitrogen heterocycles has been developed via a thermal induced intramolecular [2 + 2] cycloaddition reaction of allene-ACPs. The DFT calculations indicate that this intramolecular cycloaddition proceeds in a concerted manner and a strained small ring is essential.

  10. From the IGY to the IHY: A Changing View of the Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.

    2006-12-01

    Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as static inner and outer zones of energetic particles with different sources, a double-doughnut encircling the Earth, became iconic to the point that their dynamic behavior and solar connection receded from public awareness and apparent scientific import. Then the Cycle 23 maximum in solar activity arrived in 1989-1991, the first approaching the activity level of the International Geophysical Year of 1957-58, when the Van Allen belts were first discovered. Delay in launch of the NASA-Air Force Combined Radiation Release and Effects Satellite, following the Challenger accident in 1986, led to having the right instruments in the right orbit at the right time to detect prompt injection of outer belt electrons and solar energetic protons into the `slot region' between the inner and outer belts, forming new trapped populations which lasted for years in an otherwise benign location. This event in March 1991, along with the great geomagnetic storm of March 1989, and our increased dependence on space technology since the early Explorer days, led to a resurgence of interest in the Van Allen radiation belts and understanding of their connectivity to the Sun. Additional instrumentation from NASA's International Solar Terrestrial Physics Program, the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) and IMAGE spacecraft from the Explorer program, NOAA and DOD spacecraft, and improved worldwide linkages of groundbased measurements have contributed much since 1991 to our understanding of the dynamic characteristics of the Van Allen belts. Further, the presence of continuous solar wind measurements beginning with the launch of WIND in 1994, and SOHO images of Coronal Mass Ejections and coronal hole sources of high speed solar wind flow have filled in the connection with solar activity qualitatively anticipated

  11. The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-01

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, we use a combination of four distributions that together capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a "gold standard," we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 "St. Patrick's Day" geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

  12. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGES

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  13. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  14. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  15. EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; Agapitov, O.; Bonnell, J. W.; Kletzing, C.; Wygant, J.

    2016-05-01

    Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30-60 s is observable during close conjunction events but is lost as spacecraft separations exceed ~1 Earth Radii.

  16. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  17. High Energy Astronomy Observatory (HEAO)-1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  18. High Energy Astronomy Observatory (HEAO)-1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This drawing is a schematic of the High Energy Astronomy Observatory (HEAO)-1. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  19. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  20. Propargyltrimethylsilanes as allene equivalents in transition metal-catalyzed [5 + 2] cycloadditions.

    PubMed

    Wender, Paul A; Inagaki, Fuyuhiko; Pfaffenbach, Magnus; Stevens, Matthew C

    2014-06-01

    Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes. In this one-flask procedure, they provide cycloadducts of what is formally addition to the more sterically encumbered allene double bond.

  1. Propargyltrimethylsilanes as Allene Equivalents in Transition Metal-Catalyzed [5 + 2] Cycloadditions

    PubMed Central

    2015-01-01

    Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes. In this one-flask procedure, they provide cycloadducts of what is formally addition to the more sterically encumbered allene double bond. PMID:24819093

  2. Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.

    2015-12-01

    Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.

  3. Prototype optical SETI observatory

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.

    1996-06-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) is based on the premise that there are ETIs within our galaxy which are targeting star systems like our own with free-space beams. Upon these beams will ride attention- getting beacon signals and wideband data channels. Perhaps the wideband channels form part of a Galactic Information Superhighway, a Galactic Internet to which we are presently oblivious. The Columbus Optical SETI Observatory described in this paper is intended to be a prototype observatory which might lead to a new renaissance in both optical SETI and optical astronomy. It is hoped that the observatory design will be emulated by both the professional and amateur communities. The modern-day OSETI observatory is one that is more affordable than ever. With the aid of reasonably priced automatic telescopes, low-cost PCs, software and signal processing boards, Optical SETI can become accessible to all nations, professional scientific groups, amateur astronomy societies and even individuals.

  4. Global Health Observatory (GHO)

    MedlinePlus

    ... repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the SDGs ... relevant web pages on the theme. Monitoring the health goal: indicators of overall progress Mortality and global ...

  5. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  6. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  7. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  8. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  9. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  10. The Livingston Island Geomagnetic and Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Altadill, David; Marsal, Santiago; Blanch, Estefania; Miquel Torta, J.; Quintana-Seguí, Pere; Germán Solé, J.; Cid, Òscar; José Curto, Juan; Ibáñez, Miguel; Segarra, Antoni; Lluís Pijoan, Joan; Juan, Juan Miguel

    2014-05-01

    The Ebre Observatory Institute manages a geophysical observatory installed at the Spanish Antarctic Station (SAS) Juan Carlos I. It was set up in 1995 and it has been updated yearly by our team throughout several projects carried out since then. Nowadays, it hosts a magnetic station providing 1-second data of the 3 components (X, Y, Z) and the total force (F) during the entire year, and an ionospheric station providing vertical and oblique data during austral summer. This observatory has provided long data series of high scientific value from this remote region of the Earth. They have been used to improve the knowledge of the climate and weather behavior of the geomagnetic field and ionosphere in the area, and to model and expand the capacity of data transmission. This contribution aims to present a brief review of the instruments installed at SAS, the research results obtained from their data, and the developing activities under the current project. Finally, future perspectives are outlined with regard to adapting our geophysical observatory to the evolving needs of observatory practice.

  11. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    DOE PAGES

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28more » June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.« less

  12. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  13. Isomer-specific combustion chemistry in allene and propyne flames

    SciTech Connect

    Hansen, Nils; Miller, James A.; Westmoreland, Phillip R.; Kasper, Tina; Kohse-Hoeinghaus, Katharina; Wang, Juan; Cool, Terrill A.

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  14. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  15. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  16. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  17. Can You Hear Me Now? Software Development at the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2013-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. In order to minimize the Radio Frequency Interference (RFI) that leaks into the antennas of the ATA and gain a stronger signal along with a clearer picture of the sky, we must analyze the array to determine which antennas are operating best. Readgains is a new tool that we developed to generate the system temperatures of the dishes and if they are below a given threshold (e.g. 150 K), we use them for observations. We conducted a five week observation of the galaxy 3c286 in order to study the behavior of the array and concluded that most operating antennas are performing well and the ones that were not will be excluded in the next observations. Hat Creek Radio Observatory will continue to use this tool for continuous analysis of the array.

  18. Commensal observing with the Allen Telescope array: software command and control

    NASA Astrophysics Data System (ADS)

    Gutierrez-Kraybill, Colby; Keating, Garrett K.; MacMahon, David; Williams, Peter K. G.; Harp, Gerald; Ackermann, Robert; Kilsdonk, Tom; Richards, Jon; Barott, William C.

    2010-07-01

    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.

  19. GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH IS TO THE RIGHT. THE BUILDING TO THE LEFT IS 'STATION 'A'', ALSO A NON-MAGNETIC STRUCTURE, ONCE USED FOR COMPARISONS OF MAGNETIC INSTRUMENTS WITH THE SMO. THE BUILDING IN THE CENTER CONTAINED A SEARCH-LIGHT USED IN CONJUNCTION WITH MEASUREMENTS OF THE EARTH'S ATMOSPHERE. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  20. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  1. The Collaborative Heliophysics Observatory

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.; Freeland, S.; Cheung, M.; Bose, P.

    2007-12-01

    The Collaborative Heliophysics Observatory (CHO) would provide a robust framework and enabling tools to fully utilize the VOs for scientific discovery and collaboration. Scientists across the realm of heliophysics would be able to create, use and share applications -- either as services using familiar tools or through intuitive workflows -- that orchestrate access to data across all virtual observatories. These applications can be shared freely knowing that proper recognition of data and processing components are acknowledged; that erroneous use of data is flagged; and that results from the analysis runs will in themselves be shared Ð all in a transparent and automatic fashion. In addition, the CHO would incorporate cross-VO models and tools to weave the various virtual observatories into a unified system. These provide starting points for interactions across the solar/heliospheric and heliospheric/magnetospheric boundaries.

  2. Generation and effects of EMIC waves observed by the Van Allen Probes on 18 March 2013

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Saikin, A.; Gamayunov, K. V.; Spence, H. E.; Larsen, B.; Geoffrey, R.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves play a crucial role in particle dynamics in the Earth's magnetosphere. The free energy for EMIC wave generation is usually provided by the temperature anisotropy of the energetic ring current ions. EMIC waves can in turn cause particle energization and losses through resonant wave-particle interactions. Using measurements from the Van Allen Probes, we perform a case study of EMIC waves and associated plasma conditions observed on 18 March 2013. From 0204 to 0211 UT, the Van Allen Probe-B detected He+-band EMIC wave activity in the post-midnight sector (MLT=4.6-4.9) at very low L-shells (L=2.6-2.9). The event occurred right outside the inward-pushed plasmapause in the early recovery phase of an intense geomagnetic storm - min. Dst = -132 nT at 2100 UT on 17 March 2013. During this event, the fluxes of energetic (> 1 keV), anisotropic O+ dominate both the H+ and He+ fluxes in this energy range. Meanwhile, O+ fluxes at low energies (< 0.1 keV) are low compared to H+ and He+ fluxes in the same energy range. The fluxes of <0.1 keV He+ are clearly enhanced during the wave event, indicating a signature of wave heating. To further confirm the association of the observed plasma features with the EMIC waves, we calculate the electron minimum resonant energy (Emin) and pitch angle diffusion coefficient (Dαα) of the EMIC wave packets by using nominal ion composition, derived total ion density from the frequencies of upper hybrid resonance, and measured ambient and wave magnetic field. EMIC wave growth rates are also calculated to evaluate the role of loss-cone distributed ring current ions in the EMIC wave generation.

  3. New results from the Colorado CubeSat and comparison with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the NSF, launched into a highly inclined (650) low-Earth (490km x 790km) orbit on 09/13/12 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a simplified and miniaturized version of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP) of University of Colorado for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched on 08/30/12, that traverse the heart of the radiation belts in a low inclination (100) orbit. REPTile is designed to measure the directional differential flux of protons ranging from 9 to 40 MeV and electrons from 0.5 to >3.3 MeV. Three-month science mission (full success) was completed on 1/05/13. We are now into the extended mission phase, focusing on data analysis and modeling. REPTile measures a fraction of the total population that has small enough equatorial pitch angles to reach the altitude of CSSWE, thus measuring the precipitating population as well as the trapped population. These measurements are critical for understanding the loss of outer radiation belt electrons. New results from CSSWE and comparison with Van Allen Probes data will be presented. The CSSWE is also an ideal class project, involving over 65 graduate and undergraduate students and providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  4. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  5. Arecibo Observatory for All

    NASA Astrophysics Data System (ADS)

    Isidro, Gloria M.; Pantoja, C. A.; Bartus, P.; La Rosa, C.

    2006-12-01

    We describe new materials available at Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, some basic terms used in radio astronomy and frequently asked questions. We have also designed a tactile model of the telescope. We are interested that blind visitors can participate of the excitement of the visit to the worlds largest radio telescope. We would like to thank the "Fundacion Comunitaria de Puerto Rico" for the scholarship that allowed GMI to work on this project. We would like to express our gratitude to the Arecibo Observatory/NAIC for their support.

  6. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  7. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  8. Long Valley Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Hill, David

    2008-01-01

    The ~300-year-old lava on Paoha Island in Mono Lake was produced by the most recent eruption in the Long Valley Caldera area in east-central California. The Long Valley Caldera was formed by a massive volcanic eruption 760,000 years ago. The region is monitored by the Long Valley Observatory (LVO), one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about the Long Valley Caldera region and LVO at http://volcanoes.usgs.gov/lvo.

  9. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  10. The IT Observatory.

    ERIC Educational Resources Information Center

    Kent, Kai Iok Tong; Sousa, Antonio C. M.

    1999-01-01

    Describes the IT Observatory, a service of the Macau Productivity and Technology center (CPTTM) that provides information on demand using information technology. The CPTTM is a nonprofit organization funded by the Macau government and private businesses to enhance the productivity of Macau businesses by introducing new technologies and new…

  11. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  12. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  13. Arecibo Observatory for All

    ERIC Educational Resources Information Center

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  14. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  15. Study of lightning whistler waves observed at high L-shells on Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Holzworth, R.; Brundell, J. B.; Wygant, J. R.; Hospodarsky, G. B.; Mozer, F.; Jacobson, A. R.; Bonnell, J. W.

    2015-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. In our previous work, one-to-one coincidence between lightning and whistler waves is already found by the conjunction work between WWLLN and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)). The previous global study showed a good match between WWLLN sferics and RBSP lightning whistlers at low L-shell region (L < 3). More case studies indicated that this kind of one-to-one coincidence can be extended to a high L-shell region. Since September 2012 to now (July 2015), EMFISIS instrument has already recorded 3-D waveform data with 35 ksamples/s for 527,279 and 542,346 of 6-second snapshots, respectively for RBSP-A and RBSP-B. 461,572 and 478,510 of snapshots with L-shell value larger than 3 are used in our work. In our work, we will show the distribution of lightning whistler waves at high L-shells. This talk will also explore the upper cutoff frequency of lightning whistler waves at high L-shells.

  16. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGES

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  17. Quasi-periodic Whistler Mode Waves Detected by the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Hospodarsky, G. B.; Santolik, O.; Nemec, F.; Kurth, W. S.; Kletzing, C.; Bounds, S. R.; Wygant, J. R.; Bonnell, J. W.

    2014-12-01

    Quasi-periodic (QP) whistler mode electromagnetic emissions have been detected in Earth's magnetosphere by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument. These emissions typically consist of intervals of enhanced wave power between a few hundred Hz to a few kHz with modulation periods on the order of minutes. These emissions are primarily observed on the dayside and detected between L shells of 3 to 6, though some events are observed down to L shells of ~2. EMFISIS simultaneously measures the vector wave magnetic field and, with the support of the Electric Fields and Waves (EFW) instrument sensors, the vector wave electric field at two locations in Earth's magnetosphere in a continuous survey mode (typically with a 6 second cadence) along with a number of different burst modes to provide high time resolution waveforms (35000 samples per second). These two modes allow a systematic survey of the occurrence of these waves. By measuring all six wave components simultaneously, the wave propagation parameters, such as the wave normal angle and Poynting vector, of these plasma wave emissions are obtained. We will present a statistical survey of the properties of these waves as detected by the Van Allen Probes, examine their occurrence location and use burst data to examine the fine structure of individual events.

  18. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    NASA Technical Reports Server (NTRS)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  19. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  20. Stereoselective rhodium-catalysed [2+2+2] cycloaddition of linear allene-ene/yne-allene substrates: reactivity and theoretical mechanistic studies.

    PubMed

    Haraburda, Ewelina; Torres, Óscar; Parella, Teodor; Solà, Miquel; Pla-Quintana, Anna

    2014-04-22

    Allene-ene-allene (2 and 5) and allene-yne-allene (3 and 7) N-tosyl and O-linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3 )3 ] was evaluated. Substrates 2 and 5, which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7, which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels-Alder reaction on N-tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction.

  1. HELIO: A Heliospheric Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Aboudarham, J.; Bentley, R. D.; Csillaghy, A.

    2012-09-01

    HELIO, the Heliophysics Integrated Observatory, is a Research Infrastructure funded under EC's FP7 Capacities Specific Programme. It began in June 2009 for three years. It will provide the heliophysics research community with an integrated e-infrastructure that has no equivalent anywhere else. The project objectives are as follows: - to create a collaborative environment where scientists can discover, understand and model the connection between solar phenomena, interplanetary disturbances and their effects on the planets (esp. the Earth) - to establish a consensus on standards for describing all heliophysical data and champion them within international standards bodies, e.g. the IVOA - to develop new ways to interact with a virtual observatory that are more closely aligned with the way researchers wish to use the data. HELIO is based on a Service-Oriented architecture. For this purpose, HELIO developed a Front End, which facilitates the search for data, using series of search metadata services covering different domains (many Events and Features available; use of context information to refine selection); Services to identify and retrieve observations based on search results (knows which data are stored where and how to access them); Enabling services such as tools to find and track events/phenomena in 4D environment (i.e. including the propagation of phenomena). Services can be used individually or combined through workflow capability. Heliophysics Event Catalogue and Heliophysics Features Catalogue provide a specific access to information concerning phenomena that occur in the Solar system. A semantic-driven approach is used to integrate data from different domains, based on ontology derived from existing data models. Thirteen partners from Europe and US are involved in this project. And although it is not completed, a prototype is already available, which can be accessed through HELIO web site (http://www.helio-vo.eu/).

  2. Comparison of magnetospheres and radio emissions of Jupiter with earth

    NASA Technical Reports Server (NTRS)

    Libby, L. M.; Libby, W. F.

    1975-01-01

    The magnetosphere and radio emission of Jupiter is compared with those of the earth. It was predicted that Jupiter would have a Van Allen belt at a radius such that its magnetic field strength would be about equal to that in earth's Van Allen belt and that Jupiter's moon Io travels in the Van Allen belt. Because of Io's low conductivity, plasma sweeping past hits Io, producing a turbulent plasma proboscis which forms hydrodynamic shocks. These shocks travel down the magnetic field lines to the Jovian magnetosphere where they stimulate electron cyclotron emission and free radical spin-flip emission. The free radicals likely to exist abundantly and the richness of the likely decametric frequencies resulting from the many g values of the free radicals are discussed.

  3. High Energy Astronomy Observatory program

    NASA Technical Reports Server (NTRS)

    Wojtalik, F. S.

    1979-01-01

    The series of three orbiting high energy astronomy observatories that comprise the HEAO program are described. Several unique designs as well as the attitude control and determination system, used for observatory scan rotation of the first and third missions and for precision pointing on the second mission, are analyzed. Attention is given to observatory requirements, design characteristics, and the RGA performance summary.

  4. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  5. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  6. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  7. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  8. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  9. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  10. Jodrell Bank Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Jodrell Bank Observatory is part of the University of Manchester and was founded by Bernard Lovell in December 1945. Its prime instrument, the 76 m, MK1 radio-telescope, was completed in 1957. It was given a major upgrade in 1971 and is now known as the Lovell Telescope. In its early years it pioneered the technique of long baseline interferometry which led to the discovery of quasars. A majo...

  11. Arecibo Observatory for All

    NASA Astrophysics Data System (ADS)

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling blind visitors to participate in the excitement of visiting the world's largest radio telescope.

  12. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs. PMID:20455711

  13. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs.

  14. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    PubMed

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  15. The Russian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O. B.; Malkov, O. Yu.; Kilpio, A. A.; Kilpio, E. Yu.; Kovaleva, D. A.; Sat, L. A.

    The Russian Virtual Observatory (RVO) will be an integral component of the International Virtual Observatory (IVO). The RVO has the main goal of integrating resources of astronomical data accumulated in Russian observatories and institutions (databases, archives, digitized glass libraries, bibliographic data, a remote access system to information and technical resources of telescopes etc.), and providing transparent access for scientific and educational purposes to the distributed information and data services that comprise its content. Another goal of the RVO is to provide Russian astronomers with on-line access to the rich volumes of data and metadata that have been, and will continue to be, produced by astronomical survey projects. Centre for Astronomical Data (CAD), among other Russian institutions, has had the greatest experience in collecting and distributing astronomical data for more than 20 years. Some hundreds of catalogs and journal tables are currently available from the CAD repository. More recently, mirrors of main astronomical data resources (VizieR, ADS, etc) are now maintained in CAD. Besides, CAD accumulates and makes available for the astronomical community information on principal Russian astronomical resources.

  16. Megalithic observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  17. Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronaut Andrew M. Allen, mission commander, sets up systems for a television downlink on the flight deck of the Space Shuttle Columbia. Allen was joined by four other astronauts and an international payload specialist for more than 16 days of research aboard Columbia. The photograph was taken with a 70mm handheld camera.

  18. Q & A with Ed Tech Leaders: Interview with Michael W. Allen

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    2014-01-01

    Michael W. Allen, the Chairman and CEO of Allen Interactions, is an architect of interactive multimedia learning and is recognized for his many insights, inventions, and presentations. With over 50 years of experience in e-learning, both in academic and corporate settings, he is known for his role in creating Authorware and overseeing the work of…

  19. Highly Regioselective Radical Amination of Allenes: Direct Synthesis of Allenamides and Tetrasubstituted Alkenes.

    PubMed

    Zhang, Ge; Xiong, Tao; Wang, Zining; Xu, Guoxing; Wang, Xuedan; Zhang, Qian

    2015-10-19

    The first controllable, regioselective radical amination of allenes with N-fluoroarylsulfonimide is described to proceed under very mild reaction conditions. With this methodology, a general and straightforward route for the synthesis of both allenamides and fluorinated tetrasubstituted alkenes was realized from a wide range of terminal and internal allenes.

  20. Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes

    PubMed Central

    Muratore, Michael E; Homs, Anna; Obradors, Carla; Echavarren, Antonio M

    2014-01-01

    The development of gold(I)-catalyzed intermolecular carbo- and hetero-cycloadditions of alkynes and allenes has been more challenging than their intramolecular counterparts. Here we review, with a mechanistic perspective, the most fundamental intermolecular cycloadditions of alkynes and allenes with alkenes. PMID:25048645

  1. Ugi/Himbert Arene/Allene Diels-Alder Cycloaddition to Synthesize Strained Polycyclic Skeleton.

    PubMed

    Cheng, Guangsheng; He, Xiang; Tian, Lumin; Chen, Jiawen; Li, Chunju; Jia, Xueshun; Li, Jian

    2015-11-01

    The present work disclosed an efficient multicomponent reaction of isocyanide, allenic acid, aldehyde (ketone), and aniline. This protocol undergoes Ugi reaction followed by an intramolecular arene/allene Diels-Alder sequence, thus providing a rapid access to synthesize strained polycyclic skeletons.

  2. Sir Thomas Brisbane's Legacy to Colonial Science: Colonial Astronomy at the Parramatta Observatory, 1822-1848

    NASA Astrophysics Data System (ADS)

    Saunders, Shirley D.

    2004-12-01

    Sir Thomas Makdougall Brisbane's legacy to colonial science derives from his initiative in establishing a privately owned observatory in the southern hemisphere, the Parramatta Observatory, during his term as Governor of the Colony of New South Wales from 1822 to 1825. In this paper a discussion is given of the origin and setting up of Brisbane's Parramatta Observatory, including the recruitment and employment of Carl Rümker and James Dunlop. An account is given of the choice of the work undertaken at Parramatta Observatory when it was privately owned by Brisbane such as the rediscovery of Encke's Comet in 1822, the publication of a catalogue of 7,385 southern stars in 1835 and measurements of earthly phenomena such as the weather, the temperature of the interior of the Earth and the figure of the Earth. An investigation is made of the ensuing struggles as the Parramatta Observatory moved from a private, gentlemanly endeavour to a more accountable public-sector institution in a distant colony of Britain. The main events concerning the public Parramatta Observatory are chronicled from 1826 to 1830 during the years when Rümker worked at the Observatory. A discussion is given of the period 1831 to 1848 at the Parramatta Observatory during Dunlop's term of public office, concluding with an account of the decay and demolition of the observatory.

  3. Moon exploration: lunar radio observatory

    NASA Astrophysics Data System (ADS)

    Skalsky, Alexandre; Zelenyi, Lev; Rothkaehl, Hanna; Gurvits, Leonid; Sadovski, Andrei; Mogilevsky, Mikhail; Gotlib, Vladimir

    The Moon is an attractive base for fundamental scientific studies. The conducting ionosphere of Earth prevents propagation of radio emission coming from the outer space to the Earth’s surface at frequencies below a few MHz. In contrast, the Moon surrounded by a very thin atmosphere and ionosphere is a perfect site for an ultra-long-wavelength (ULW) facility for studies of cosmic radio emission at frequencies below the Earth’s ionosphere cut-off. This range of frequencies is the last unexplored window in the spectrum of the universe’s electromagnetic emission, The radio facility deployed on the Moon’s surface will be a multidisciplinary tool for addressing a wide range of scientific disciplines from cosmology to astrophysics to planetology, solar-terrestrial physics and geophysics. The Moon-based ULW observatory will be an experimental and observational facility for transformational science. One of the most intriguing objectives for the ULW science is a search for terrestrial-like planets in the exosolar systems, i.e. extra-solar planets possessing an intrinsic magnetic field and magnetospheres interacting with a stellar wind. Such the interaction generates radio emission similar to the Auroral Kilometric Radiation (AKR) of the terrestrial magnetosphere. The intrinsic magnetic field shielding the planetary surface from the cosmic radiation is one of the strong indicators of possible habitability of an exoplanet. ACKNOWLEDGMENTS: This work was supported by the PP RAS 22 grant.

  4. Geomagnetic Storms and EMIC waves: Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yuan, Z.; Yu, X.; Deng, X.; Zhou, M.; Huang, S.; Li, H.

    2015-12-01

    EMIC waves are believed to play an important role in the dynamics of ring current ions and radiation belt electrons, especially during geomagnetic storms. But, in which phase of the storm do the EMIC waves occur more is still under debate. Ground and some low altitude satellite observations demonstrate that EMIC waves are observed more frequently during the recovery phase, rather than during the main phase. Halford et al. 2010 looked at the occurrences of EMIC waves during 119 storms occurring throughout the CRRES mission. They found that 49 of the 119 (41%) storms observed EMIC waves and the majority, 56.25%, of storm time EMIC waves occurring during the main phase, while 35.57% in the recovery phase. One shortcoming of the CRRES mission is that the apogee of it did not covered the dawn to noon sector during its life time. Therefore, some dayside EMIC waves caused by the compression of magnetosphere may not be included in Halford et al 2010, as they mentioned. The apogee of Van Allen Probes covered all the MLT sectors from their launch to April 2014. Utilizing the data from magnetometer instrument on board the Van Allen Probe A, Wang et al. 2015 studied the occurrence rate of H-band and He-band EMIC waves in different MLT sectors, and Yu et al 2015 reported the O-band EMIC wave observations. In this work, we analysis the occurrence of EMIC waves during storms. According to the criteria of storm in Halford et al. 2010, we find 76 storms in our interested period, 8 September 2012 to 30 April 2014, when the apogee of Van Allen Probe A covered all the MLT sectors. To identify the onset of geomagnetic storm more accurately, we corrected the Sym-H index referred to Zhao and Zong (2011), which is helpful to demonstrate the activity of ring current. 50 of the 76 storms (66%) observed 124 EMIC wave events, in which 80 (64.5%) EMIC wave events are found in the recovery phase, more than the EMIC wave events in the main phase (35, 28.2%). The remaining 9 (7.3%) EMIC wave

  5. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  6. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  7. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  8. Strasbourg Observatory Archives Revisited

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2002-12-01

    Official talks in France and Germany after World War I were generally of hatred and revenge. Strasbourg Observatory had just changed nationality (from Prussian to French) for the first time (this would happen again at the outbreak of WWII and after the conflict). Documents show that astronomers did not share the general attitude. For example the inventory book started in German was continued in French after 1918. It is moving to see those different handwritings in two different languages on the same pages -- making of that book a unique document in various respects, but also reminding us that the native language of the region was in fact Alsacian.

  9. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  10. ACE EPAM and Van Allen Probes RBSPICE measurements of interplanetary oxygen injection to the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Patterson, J. D.; Manweiler, J. W.; Gerrard, A. J.; Lanzerotti, L. J.

    2015-12-01

    On March 17, 2015, a significant oxygen-rich interplanetary event was measure by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument. At the same time the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument recorded significant enhancements of oxygen in the inner magnetosphere. We present a detailed analysis of this event utilizing a new method of exploiting the EPAM Pulse Height Analyzer (PHA) data to precisely resolve helium and oxygen spectra within the 0.5 to 5 MeV/nuc range. We also present the flux, partial particle pressures, and pitch angle distributions of the ion measurements from RBSPICE. During this event, both EPAM and RBSPICE measured O:He ratios greater than 10:1. The pitch angle distributions from RBSPICE-B show a strong beam of oxygen at an L ~ 5.8 early on March 17th during orbit. The timing between the observations of the oxygen peak at ACE and the beam observed at RBSPICE-B is consistent with the travel-time required for energetic particle transport from L1 to Earth and access to the magnetosphere. We assert that the oxygen seen by RBSPICE during the initial phase of this event is the result of direct injection from the interplanetary medium of energetic ions. This poster contains the observations and detailed calculations to support this assertion.

  11. Estimates of trapped radiation encountered on low-thrust trajectories through the Van Allen belts

    NASA Technical Reports Server (NTRS)

    Karp, I. M.

    1973-01-01

    Estimates were made of the number of trapped protons and electrons encountered by vehicles on low-thrust trajectories through the Van Allen belts. The estimates serve as a first step in assessing whether these radiations present a problem to on-board sensitive components and payload. The integrated proton spectra and electron spectra are presented for the case of a trajectory described by a vehicle with a constant-thrust acceleration A sub c equal to 0.001 meter/sq sec. This value of acceleration corresponds to a trip time of about 54 days from low earth orbit to synchronous orbit. It is shown that the time spent in the belts and hence the radiation encountered vary nearly inversely with the value of thrust acceleration. Thus, the integrated spectral values presented for the case of A sub c = 0.001 meter/sq sec can be generalized for any other value of thrust acceleration by multiplying them by the factor 0.001/A sub c.

  12. Statistical Features of EMIC Waves Observed on Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Roh, S. J.; Cho, J.; Shin, D. K.; Hwang, J.; Kim, K. C.; Kurth, W. S.; Kletzing, C.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves are one of the key plasma waves that can affect charged particle dynamics in the Earth's inner magnetosphere. Knowledge of global distribution of the EMIC waves is critical for accurately assessing the significance of its interaction with charged particles. With the Van Allen Probes EMFISIS observations, we have surveyed EMIC events for ~2.5 years period. We have identified well-defined, banded wave activities only, as distinguished from broad band wave activities. We have obtained global distribution of occurrence of the identified waves with distinction between H- and He-bands. We compare it with previous observations such as THEMIS and CRRES. For the identified events we have drawn all the basic wave properties including wave frequency, polarization, wave normal angle. In addition, we have distinguished the EMIC events that occur inside the plasmasphere and at the plasmapause from those outside the plasmasphere. Finally, we have tested solar wind and geomagnetic dependence of the wave events. We give discussions about implications of these observations on wave generation mechanism and interaction with radiation belt electrons.

  13. Van Allen Probes observations of EMIC events triggered by solar wind dynamic pressure enhancements

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Cho, J.; Roh, S. J.; Shin, D. K.; Hwang, J.; Kim, K. C.; Choi, C.; Kletzing, C.; Wygant, J. R.; Thaller, S. A.; Larsen, B.; Skoug, R. M.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves are one of the key plasma waves that can affect charged particle dynamics in the Earth's inner magnetosphere. One of the generation mechanisms of EMIC waves has long been known to be due to magnetospheric compression due to impact by enhanced solar wind dynamic pressure Pdyn. With the Van Allen Probes observations, we have identified 4 EMIC wave events that are triggered by Pdyn enhancements under northward IMF, prolonged quiet time conditions. We find the following features of the EMIC events. (1) They are triggered immediately at the Pdyn impact and remain active during the same period as the enhanced Pdyn duration. (2) They occur in either H band or He band or both. (3) Two events occur inside the plasmasphere and the other two outside the plasmasphere. (4) The wave polarization, either R or L, are highly elliptical, being close to be linear. (5) The wave normal angles are quite large, well away from being field-aligned. (6) About 10 - 50 keV proton fluxes indicate enhanced flux state with ~90 deg-peaked anisotropy in velocity distribution after the Pdyn impact. (7) From low altitude NOAA POES satellite observations of particles we find no obvious evidence for relativistic electron precipitation due to these Pdyn-triggered EMIC events. We will discuss implications of these observations on wave generation mechanism and interaction with radiation belt electrons.

  14. New chorus wave properties near the equator from Van Allen Probes wave observations

    NASA Astrophysics Data System (ADS)

    Li, W.; Santolik, O.; Bortnik, J.; Thorne, R. M.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.

    2016-05-01

    The chorus wave properties are evaluated using Van Allen Probes data in the Earth's equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-electrostatic mode is considerably weaker than the quasi-parallel mode, their electric intensities are comparable. A newly identified feature of the quasi-electrostatic mode is that its frequency peaks at higher values compared to the quasi-parallel mode that exhibits a broad frequency spectrum. Moreover, upper band chorus wave normal directions vary between 0° and the resonance cone and become more parallel as geomagnetic activity increases. Our new findings suggest that chorus-driven energetic electron dynamics needs a careful examination by considering the properties of these two distinct modes.

  15. (Hetero)aromatics from dienynes, enediynes and enyne-allenes.

    PubMed

    Raviola, Carlotta; Protti, Stefano; Ravelli, Davide; Fagnoni, Maurizio

    2016-08-01

    The construction of aromatic rings has become a key objective for organic chemists. While several strategies have been developed for the functionalization of pre-formed aromatic rings, the direct construction of an aromatic core starting from polyunsaturated systems is yet a less explored field. The potential of such reactions in the formation of aromatics increased at a regular pace in the last few years. Nowadays, there are reliable and well-established procedures to prepare polyenic derivatives, such as dienynes, enediynes, enyne-allenes and hetero-analogues. This has stimulated their use in the development of innovative cycloaromatizations. Different examples have recently emerged, suggesting large potential of this strategy in the preparation of (hetero)aromatics. Accordingly, this review highlights the recent advancements in this field and describes the different conditions exploited to trigger the process, including thermal and photochemical activation, as well as the use of transition metal catalysis and the addition of electrophiles/nucleophiles or radical species.

  16. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  17. Van Allen Probe Charging During the St. Patrick's Day Event

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Minow, J. I.

    2015-01-01

    The geomagnetic storms on and around March 17, 2015 marked the largest storms seen in the declining phase of the solar cycle to date. We use the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probe - A and B satellites to study in detail the charging effects seen on these spacecraft during this time. Ion particle flux data provides information on the magnitude of the charging events using the ion line charging signature due to low energy ions accelerated by the spacecraft potential. Electron flux observations are used to correlate the charging environment with variations in spacecraft potential through the event. We also investigate the density and temperature of ions and electrons during the time of the charging event.

  18. The Allen telescope array: Commensal and efficient SETI

    NASA Astrophysics Data System (ADS)

    Deboer, David R.

    2006-12-01

    The Allen telescope array (ATA) currently under construction affords the possibility of a dedicated and highly efficient SETI program that may be done commensally with other radio astronomy programs. This symbiosis is important in order to maintain and sustain the long-term effort that may be required in order to achieve success as a positive or null result. The technology that is being exploited is the construction of many small elements that allow large fields-of-view at high sensitivity, the use of ultra-wideband front-ends, and the use of flexible digital “intermediate frequency (IF)” systems. The project is under construction in phases, with the first 32 antennas expected to be functional in the fall of 2004, the next 173 dishes operational early 2006, with plans for 350 antennas total within this decade.

  19. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  20. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  1. Investigation of asteroids in Pulkovo Observatory

    NASA Astrophysics Data System (ADS)

    Devyatkin, A.; Gorshanov, D.; L'vov, V.; Tsekmeister, S.; Petrova, S.; Martyusheva, A.; Slesarenko, V.; Naumov, K.; Sokova, I.; Sokov, E.; Zinoviev, S.; Karashevich, S.; Ivanov, A.; Lyashenko, A.; Rusov, S.; Kouprianov, V.; Bashakova, E.; Melnikov, A.

    2015-08-01

    Observational Astrometry Laboratory and Ephemeris Provision Sector of Pulkovo Observatory carry out a joint multipurpose research on asteroids belonging to various groups. Astrometric and photometric observations are done using ZA-320M and MTM-500M telescopes located at Pulkovo and in Northern Caucasus mountains, correspondingly. We obtain lightcurves that allow us to determine spin parameters and shapes of asteroids. Their color indices and taxonomy classes are derived from wideband filter observations. Improvement of asteroid orbits is achieved by doing positional measurements. Orbital evolution of asteroids is modelled, taking into account also non-gravity forces, including light pressure and Yarkovsky effect. NEAs, as well as binary asteroids, take an important place in our investigations. Quasi-satellites of Venus, Earth, and Mars are new targets of our research, one of the examples being 2012DA14 that approached Earth in early 2013; many MTM-500M observations of this asteroid were obtained around the date of approach.

  2. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  3. Spatial Localization and Ducting of EMIC Waves: Van Allen Probes and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Murphy, Kyle; Robertson, Matthew; Milling, David; Kale, Andy; Kletzing, Craig; Wygant, John; Thaller, Scott; Raita, Tero

    2014-05-01

    On 11th October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 hours) of continuous EMIC waves was observed by CARISMA and STEP induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65 degrees magnetic longitude apart) in conjunction with the ground array observed very narrow (Delta L~0.1-0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L~4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak [2012] and consistent with Earth's rotation sweeping magnetometer stations across multiple polarization reversals in the fields in the Earth-ionosphere duct. The narrow L-widths explain the relative rarity of space-based EMIC occurrence, ground-based measurements providing better estimates of global EMIC wave occurrence for input into radiation belt dynamical models. EMIC wave impacts on the radiation belts during this interval are also presented. This work is supported in part by participation in the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) consortium. MAARBLE has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement n° 284520. This paper reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained herein.

  4. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

    SciTech Connect

    He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.

    2015-08-20

    We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10–4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

  5. Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

    DOE PAGES

    He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D. N.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; et al

    2015-08-20

    We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst ≈ –45) and 14 January 2013 (Dst ≈ –18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 – 6.3, with a lower frequency band 0.1–0.5fce and a peak spectral density ~10–4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (~10–300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations tomore » show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation approximately between 0.3fce and 0.4fce, at latitude <7°. Moreover, chorus waves launched with initial normal angles either θ < 90° or > 90° propagate along the field either northward or southward and then bounce back either away from Earth for a lower frequency or toward Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Furthermore, we examine a dayside event during a small storm C on 8 May 2014 (Dst ≈ –45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.« less

  6. Revealing the Link Between Solar Activity and Satellite Anomalies: Career Recollections From Joe Allen

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    Beginning his career on the heels of the 1957-1958 International Geophysical Year and the dawn of the satellite era, Joe H. Allen entered the service of the U.S. Coast and Geodetic Survey in 1963. Earning a master's of science in engineering from the University of California at Berkeley while working for the Geodetic Survey, Allen advanced within a department that evolved into the National Geophysical Data Center, a branch of NOAA. Allen earned a Department of Commerce award in 1978 and in 1981 became the chief of the Solar and Terrestrial Physics Division of the National Geophysical Data Center, a position from which he retired in 1994.

  7. LCOGT network observatory operations

    NASA Astrophysics Data System (ADS)

    Pickles, Andrew; Hjelstrom, Annie; Boroson, Todd; Burleson, Ben; Conway, Patrick; De Vera, Jon; Elphick, Mark; Haworth, Brian; Rosing, Wayne; Saunders, Eric; Thomas, Doug; White, Gary; Willis, Mark; Walker, Zach

    2014-08-01

    We describe the operational capabilities of the Las Cumbres Observatory Global Telescope Network. We summarize our hardware and software for maintaining and monitoring network health. We focus on methodologies to utilize the automated system to monitor availability of sites, instruments and telescopes, to monitor performance, permit automatic recovery, and provide automatic error reporting. The same jTCS control system is used on telescopes of apertures 0.4m, 0.8m, 1m and 2m, and for multiple instruments on each. We describe our network operational model, including workloads, and illustrate our current tools, and operational performance indicators, including telemetry and metrics reporting from on-site reductions. The system was conceived and designed to establish effective, reliable autonomous operations, with automatic monitoring and recovery - minimizing human intervention while maintaining quality. We illustrate how far we have been able to achieve that.

  8. The virtual observatory registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  9. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  10. Global geodetic observatories

    NASA Astrophysics Data System (ADS)

    Boucher, Claude; Pearlman, Mike; Sarti, Pierguido

    2015-01-01

    Global geodetic observatories (GGO) play an increasingly important role both for scientific and societal applications, in particular for the maintenance and evolution of the reference frame and those applications that rely on the reference frame for their viability. The International Association of Geodesy (IAG), through the Global Geodetic Observing System (GGOS), is fully involved in coordinating the development of these systems and ensuring their quality, perenniality and accessibility. This paper reviews the current role, basic concepts, and some of the critical issues associated with the GGOs, and advocates for their expansion to enhance co-location with other observing techniques (gravity, meteorology, etc). The historical perspective starts with the MERIT campaign, followed by the creation of international services (IERS, IGS, ILRS, IVS, IDS, etc). It provides a basic definition of observing systems and observatories and the build up of the international networks and the role of co-locations in geodesy and geosciences and multi-technique processing and data products. This paper gives special attention to the critical topic of local surveys and tie vectors among co-located systems in sites; the agreement of space geodetic solutions and the tie vectors now place one of the most significant limitations on the quality of integrated data products, most notably the ITRF. This topic focuses on survey techniques, extrapolation to instrument reference points, computation techniques, systematic biases, and alignment of the individual technique reference frames into ITRF. The paper also discusses the design, layout and implementation of network infrastructure, including the role of GGOS and the benefit that would be achieved with better standardization and international governance.

  11. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  12. Rolloff Roof Observatory Construction (Abstract)

    NASA Astrophysics Data System (ADS)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  13. The SIM Lite Astrometric Observatory

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-05-01

    SIM Lite is an observatory mission dedicated to precision astrometry. With a single measurement accuracy of 1 microarcsecond (µas) and a noise floor below 0.035 µas it will have the capability to do an extensive search for Earth-mass planets in the `habitable zone’ around several dozen of the nearest stars. SIM Lite maintains its wide-angle accuracy of 4 µas for all targets down to V = 19, limited only by observing time. This opens up a wide array of astrophysical problems. As a flexibly pointed instrument, it is a natural complement to sky surveys such as JMAPS and Gaia, and will tackle questions that don't require the acquisition of statistics on a large number of targets. It will provide accurate masses for the first time for a variety of exotic star types, including X-ray binaries; it will study the structure and evolution of our Galaxy through tidal streams from dwarf spheroidals and the trajectories of halo stars and galaxies. Its faint-target capability will enable the use of astrometric and photometric variability as a probe of the disk accretion and jet formation processes in blazars. SIM Lite will have an extensive GO (General Observer) program, open to all categories of astrometric science. The project successfully completed a series of technology milestones in 2005, and is currently under study by by NASA as a flight mission. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. The Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Thompson, B. J.; Chamberlin, P. C.

    2012-01-01

    The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.

  15. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  16. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  17. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  18. The Solar Connections Observatory for Planetary Environments

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  19. Iron‐catalyzed Cross‐Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes

    PubMed Central

    Kessler, Simon N.

    2016-01-01

    Abstract Presented herein is a mild, facile, and efficient iron‐catalyzed synthesis of substituted allenes from propargyl carboxylates and Grignard reagents. Only 1–5 mol % of the inexpensive and environmentally benign [Fe(acac)3] at −20 °C was sufficient to afford a broad range of substituted allenes in excellent yields. The method tolerates a variety of functional groups. PMID:26890161

  20. Copper-catalyzed regio- and stereoselective intermolecular three-component oxyarylation of allenes.

    PubMed

    Itoh, Taisuke; Shimizu, Yohei; Kanai, Motomu

    2014-05-16

    A copper(II)-catalyzed intermolecular three-component oxyarylation of allenes using arylboronic acids as a carbon source and TEMPO as an oxygen source is described. The reaction proceeded under mild conditions with high regio- and stereoselectivity and functional group tolerance. A plausible reaction mechanism is proposed, involving carbocupration of allenes, homolysis of the intervening allylcopper(II), and a radical TEMPO trap. PMID:24766635

  1. Diastereoselective Synthesis of the Aminocyclitol Core of Jogyamycin via an Allene Aziridination Strategy

    PubMed Central

    Gerstner, Nels C.; Adams, Christopher S.; Grigg, R. David; Tretbar, Maik; Rigoli, Jared W.; Schomaker, Jennifer M.

    2016-01-01

    Oxidative allene amination provides rapid access to densely functionalized amine-containing stereotriads through highly reactive bicyclic methyleneaziridine intermediates. This strategy has been demonstrated as a viable approach for the construction of the densely functionalized aminocyclitol core of jogyamycin, a natural product with potent antiprotozoal activity. Importantly, the flexibility of oxidative allene amination will enable the syntheses of modified aminocyclitol analogues of the jogyamycin core. PMID:26741730

  2. Probable identity of Goltz syndrome and Van Allen-Myhre syndrome: evidence from phenotypic evolution.

    PubMed

    Hancock, Susan; Pryde, Peter; Fong, Christine; Brazy, Jane E; Stewart, Katharina; Favour, Amy; Pauli, Richard M

    2002-07-15

    We describe a girl who was diagnosed with split foot-split hand anomaly prenatally, in whom at birth the diagnosis of Van Allen-Myhre syndrome was made, and who at 8 months of age was recognized to have Goltz syndrome. Based on the evolution of clinical features in this infant, we suggest that our case, as well as that reported by Van Allen and Myhre, is an example of unusually severe Goltz syndrome.

  3. STS-46 Pilot Allen uses cycle ergometer on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Pilot Andrew M. Allen exercises using the cycle ergometer on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Allen, shirtless, is equipped with sensors for monitoring his biological systems during the exercise session. A communications kit assembly cable freefloats from his headset at his right and in front of the forward lockers. The open airlock hatch appears at his left and the sleep station behind him.

  4. Stereoselective nickel-catalyzed [2+2] cycloadditions of ene-allenes.

    PubMed

    Noucti, Njamkou N; Alexanian, Erik J

    2015-04-27

    A stereoselective nickel-catalyzed [2+2] cycloaddition of ene-allenes is reported. This transformation encompasses a broad range of ene-allene substrates, thus providing efficient access to fused cyclobutanes from easily accessed π-components. A simple and inexpensive first-row catalytic system comprised of [Ni(cod)2 ] and dppf was used in this process, thus constituting an attractive approach to synthetically challenging cyclobutane frameworks under mild reaction conditions.

  5. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  6. THE ALLEN TELESCOPE ARRAY SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS

    SciTech Connect

    Anderson, Marin M.; Siemion, Andrew P. V.; Bower, Geoffrey C.; De Pater, Imke; Barott, William C.; Delory, Gregory T.; Werthimer, Dan

    2012-01-01

    The Allen Telescope Array was used to monitor Mars between 2010 March 9 and June 2, over a total of approximately 30 hr, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 2006 June 8. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research. This 1024 channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three-month period of observations, dust activity occurred on Mars in the form of small-scale dust storms; however, no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.

  7. The Allen Telescope Array as Square Kilometer Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.

    2007-12-01

    The Allen Telescope Array (ATA) is a new radio interferometer that has begun scientific operations in 2007. Many of the technologies, techniques, and observing modes developed for the ATA are directly applicable to the Square Kilometer Array (SKA). The ATA is a pioneer of the LNSD, which refers to a large number (LN) of small diameter (SD) dishes to create the array. This concept underlies nearly all SKA designs. Other relevant technologies are the offset Gregorian ATA antenna, the ATA wideband log periodic feed, transport of broadband data over fiber optic cables, and flexible digital signal processing electronics. The small dishes of the ATA gives it extraordinary wide-field imaging and survey capability but also require new solutions for calibration and imaging. Real time imaging, rapid response to transients, and thinking telescope technology are also under development. Finally, the ATA is developing commensal observing modes, which enable multiple simultaneous science programs, such as SETI, transient surveys, and HI surveys. Opportunities exist for community members to perform scientific investigations as well as develop techniques and technology for the SKA through use of the ATA.

  8. The Benton-Van Allen faces: a lateralized tachistoscopic study.

    PubMed

    Püschel, J; Zaidel, E

    1994-03-01

    The Benton-Van Allen Facial Recognition Test (FRT) was adapted to a lateralized same-different task. The lateralized same targets were either physically identical to the central upright faces or had the same face identity but were transformed (3/4-views or shadowed faces). Faces were also modified to include or exclude external features. There was a left hemifield (right hemisphere) advantage only for the most difficult, shadowed faces. The absence of a left hemifield advantage for the matching of upright faces to identical or 3/4-view faces shows bilateral competence for face processing, both by physical and by face identity, and confirms previous observations that the FRT does not discriminate left from right hemisphere-damaged patients. Removal of external features affected performance in the right but not the left visual field, suggesting that the left hemisphere uses a less feature-dependent mechanism than the right hemisphere. This effect was only present in females, who were more lateralized than males.

  9. Geographical variation in bill size across bird species provides evidence for Allen's rule.

    PubMed

    Symonds, Matthew R E; Tattersall, Glenn J

    2010-08-01

    Allen's rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen's rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen's rule. The species comprised eight diverse taxonomic groups-toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen's rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen's rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen's rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills. PMID:20545560

  10. Geographical variation in bill size across bird species provides evidence for Allen's rule.

    PubMed

    Symonds, Matthew R E; Tattersall, Glenn J

    2010-08-01

    Allen's rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen's rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen's rule. The species comprised eight diverse taxonomic groups-toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen's rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen's rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen's rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills.

  11. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  12. 10 meter airborne observatory

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    Inside an aircraft fuselage there is little room for the mass of all the instrumentation of a ground-based observatory much less a primary objective aperture at the scale of 10 meters. We have proposed a solution that uses a primary objective grating (POG) which matches the considerable length of the aircraft, approximately 10 meters, and conforms to aircraft aerodynamics. Light collected by the POG is diffracted at an angle of grazing exodus inside the aircraft where it is disambiguated by an optical train that fits within to the interior tunnel. Inside the aircraft, light is focused by a parabolic mirror onto a spectrograph slit. The design has a special benefit in that all objects in the field-of-view of the free spectral range of the POG can have their spectra taken as the aircraft changes orientation. We suggest flight planes that will improve integration times, angular resolution and spectral resolution to acquire targets of high stellar magnitudes or alternatively increase the number of sources acquired per flight at the cost of sensitivity.

  13. World Space Observatory - Ultraviolet mission: state of art 2016

    NASA Astrophysics Data System (ADS)

    Sachkov, Mikhail; Gomez De Castro, Ana; Shustov, Boris M.

    2016-07-01

    The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 - 300 nm) range, where some of the most important astrophysical processes can be efficiently studied. The observatory includes a 170 cm aperture telescope capable of high-resolution spectroscopy and long slit low-resolution spectroscopy with the WUVS instrument; moreover UV imaging will be available with cameras. WSO-UV is a Russian led mission that will be operating in high Earth orbit (geosynchronous with inclination 51.^o6) for five+five years grating access to the UV range to the world-wide astronomical community in the post-Hubble era. Spain is a major partner to the project. Updated information of the WSO-UV project is provided periodically in the COSPAR meetings. Henceforth, this review provides a summary on the project, its status and the major outcomes since the last COSPAR Assembly.

  14. The Renovation and Future Capabilities of the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt

    2016-01-01

    The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.

  15. Boyden Observatory, then and now

    NASA Astrophysics Data System (ADS)

    Van Heerden, H. J.

    2008-08-01

    In this article the history of Boyden Observatory, 'the first truly international observatory', from its establishment in 1889 to the present will be discussed. There will be looked at locations, personnel, research done and discoveries made. The discussion will also include sections on the instruments used during that time, with specific emphasis on the 60-inch Boyden Rockefeller Telescope. Details about the instrument's specifications, upgrades, new equipment and role as research instrument will be examined. A final section will then be devoted to where Boyden Observatory finds itself today and where it wants to position itself in the future, specifically in terms of research and education.

  16. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  17. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    night skies on the Earth. At its peak, La Silla was home to no fewer than 15 telescopes, among them the first -- and, for a very long time, the only -- telescope working in submillimetric waves (the 15-metre SEST) in the southern hemisphere, which paved the way for APEX and ALMA, and the 1-metre Schmidt telescope, which completed the first photographic mapping of the southern sky. The telescopes at La Silla have also supported countless space missions, e.g., by obtaining the last images of comet Shoemaker Levy 9 before it crashed into Jupiter, thereby helping predicting the exact moment when the Galileo spacecraft should observe to capture images of the cosmic collision. "Many of the current generation of astronomers were trained on La Silla where they got their first experience with what were then considered large telescopes," says Bruno Leibundgut, ESO Director for Science. While some of the smaller telescopes have been closed over the years, frontline observations continue with the larger telescopes, aided by new and innovative astronomical instruments. La Silla currently hosts two of the most productive 4-metre class telescopes in the world, the 3.5-metre New Technology Telescope (NTT) and the 3.6-metre ESO telescope. "The NTT broke new ground for telescope engineering and design," says Andreas Kaufer, director of the La Silla Paranal Observatory. The NTT was the first in the world to have a computer-controlled main mirror (active optics), a technology developed at ESO and now applied to the VLT and most of the world's current large telescopes. The ESO 3.6-metre telescope, which was for many years one of the largest European telescopes in operation, is now home to the extrasolar planet hunter, HARPS (High Accuracy Radial velocity Planet Searcher), a spectrograph with unrivalled precision. The infrastructure of La Silla is used by many of the ESO member states for targeted projects such as the Swiss 1.2-metre Euler telescope, the Italian Rapid-Eye Mount (REM) and

  18. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  19. Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.

    2015-12-01

    Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.

  20. Correlation of dose rate and spectral measurements in the Inner Van Allen Belt.

    PubMed

    Thede, A L; Radke, G E

    1968-01-01

    Dose rate measurements and the charged particle environment of the Inner Van Allen Belt have been correlated using recent data obtained from the radiation research satellite, OV3-4. Six tissue equivalent ionization chambers, constructed of a material which simulates the muscle tissue response to ionizing radiation, measured the dose rate behind various types and thicknesses of material. The specific shields used for several of the chambers were 0.192 g/cm2 aluminum, 0.797 g/cm2 Lucite and 4.485 g/cm2 brass. The proton and electron spectra were determined with an omnidirectional spectrometer using solid state detectors. The spectral measurements discussed here include geomagnetically trapped protons with energies in the range of 15 to 200 MeV. The proton spectra and dose rates are presented as profiles in terms of the McIlwain parameters of L (1.5, 2.0 and 2.5 earth radii) and the magnetic field B (0.050 to 0.250 gauss). The excellent agreement between the measured dose rate and the theoretically predicted dose rate based on the measured spectra provides justification for the radiation transport techniques now being employed to predict the doses to be encountered during future manned space missions. It was found, however, that a more adequate description of the proton fluxes for energies greater than 50 MeV will be necessary to predict dose rate accurately behind shields of 2.5 g/cm2 thickness or greater.

  1. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  2. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  3. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  4. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  5. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  6. Chiral nonracemic alpha-alkylidene and alpha-silylidene cyclopentenones from chiral allenes using an intramolecular allenic Pauson-Khand-type cycloaddition.

    PubMed

    Brummond, Kay M; Kerekes, Angela D; Wan, Honghe

    2002-07-26

    We have successfully effected a transfer of chirality from a chiral nonracemic allene to an alpha-alkylidene and an alpha-silylidene cyclopentenone. The molybdenum-mediated examples possessing a silyl group on the terminus of the allene show good facial selectivities, but isomerization of the (E)-silylidene cyclopentenone to the (Z)-silylidene cyclopentenone occurs upon purification of these products. Alternatively, an alkyl group on the terminus of the allene undergoes cycloaddition with moderate selectivities but gives products that undergo an isomerization of the (Z)-alkylidene cyclopentenone to the (E)-alkylidene cyclopentenone when exposed to acidic conditions. Thus, erosion of the enantiomeric excesses is observed for one of the two products as a result of this isomerization. The allenic Pauson-Khand-type cycloaddition has also been effected by first isolation the (eta(6)-arene)molybdenum tricarbonyl complex, demonstrating for the first time that this is most likely the active complex in the molybdenum-mediated reactions. Attempts to increase the facial selectivity by increasing the size of the arene moiety resulted in a marginal increase in the selectivity at the expense of the yield. Based upon these results, we have concluded that altering the approach for the preparation of nonracemic alpha-alkylidene cyclopentenones is necessary in order to obtain synthetically useful levels of stereocontrol.

  7. Status of the SOFIA Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2015-01-01

    The SOFIA observatory has been in routine science operations since returning in January from a 6 month-long heavy maintenance period for the aircraft and the telescope assembly. These operations include a successful 6 week deployment to the Southern hemisphere. This presentation will provide an update to the current operational status of the SOFIA observatory, concentrating on the improvements and upgrades that have been implemented since the heavy maintenance period.

  8. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; Jakob, Holger; Killebrew, Jana; Lampater, Ulrich; Mandushev, Georgi; Marcum, Pamela; Meyer, Allan; Pfueller, Enrico; Reinacher, Andreas; Roeser, Hans-Peter; Savage, Maureen; Teufel, Stefan; Wiedemann, Manuel

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  9. In Brief: Chandra Observatory marks 10 years in space

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    NASA's Chandra X-ray Observatory, originally envisioned as a 5-year mission, was deployed into an elliptical orbit around Earth 10 years ago, on 23 July 1999. The most powerful X-ray telescope yet, Chandra has provided a peak into the high-energy universe and has independently confirmed the existence of dark energy. Martin Weisskopf, Chandra project scientist at NASA's Marshall Space Flight Center, Huntsville, Ala., said discoveries made possible by the observatory “have made dramatic changes to our understanding of the universe and its constituents.” “The Great Observatories program—of which Chandra is a major part—shows how astronomers need as many tools as possible to tackle the big questions out there,” said Ed Weiler, associate administrator of NASA's Science Mission Directorate at NASA Headquarters in Washington. The Hubble Space Telescope, Compton Gamma Ray Observatory, and Spitzer Space Telescope are NASA's other Great Observatories. For more information, visit http://chandra.harvard.edu/ten/ and http://chandra.nasa.gov.

  10. First results from the first Croatian geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Mandic, Igor; Herak, Davorka; Heilig, Balazs

    2013-04-01

    The first Croatian geomagnetic observatory was established in the area of the Nature Park Lonjsko Polje, after a century of sporadic efforts originating from the proposals of Andrija Mohorovicic. The location was chosen after exhaustive surveys of possible sites. It is located far enough from sources of civilization noise, and was found to be an area without magnetic anomalies and with a low field gradient. The construction of the observatory buildings was completed in the autumn of 2011. The furnishing and installation of instruments and test measurements were completed by the beginning of summer 2012, ever since we have continuous recordings of the geomagnetic elements. In the beginning of December 2012 the fluxgate magnetometer LEMI-035 (H,D,Z orientation) has been installed under the framework of the PLASMON project in cooperation with the Tihany Observatory (Hungary). Permanent data of high quality from our observatory will contribute to the monitoring of the Earth's magnetic field on the regional and global levels, thus enabling further development of geomagnetism in Croatia through collaboration with scientists from the other countries, participation in the international projects, eventual membership in the International Real-time Magnetic Observatory Network (INTERMAGNET), etc. The field elements for the epoch 2012,75 and the baselines are presented together with highlights of some recorded geomagnetic events so far. Furthermore, the comparison between the variation data recorded by the dIdD and the fluxgate LEMI-035 magnetometer is presented.

  11. Geomagnetic disturbances imprints in ground and satellite altitude observatories

    NASA Astrophysics Data System (ADS)

    Yahiat, Yasmina; Lamara, Souad; Zaourar, Naima; Hamoudi, Mohamed

    2016-04-01

    The temporal evolution of the geomagnetic field and its variations have been repeatedly studied from both ground observatories and near-earth orbiting platforms. With the advent of the space ageand the launches of geomagnetic low altitude orbits satellites, a global coverage has been achieved. Since Magsat mission, more satellites were put into orbit and some of them are still collecting data enhancing the spatial and temporal descriptions of the field. Our study uses new data gathered by the latest SWARM satellite mission launched on November, 22nd 2013. It consists of a constellation of three identical satellites carrying on board high resolution and accuracy scientific equipment. Data from this constellation will allow better understanding the multiscale behavior of the geomagnetic field. Our goal is to analyze and interpret the geomagnetic data collected by this Swarm mission, for a given period and try to separate the external disturbances from internal contributions. We consider in the study the variation of the horizontal component H, for different virtual geomagnetic observatories at the satellite altitude. The analysis of data by Swarm orbital segments shows clearly the external disturbances of the magnetic field like that occurring on 27th of August 2014. This perturbation is shown on geomagnetic indexes and is related to a coronal mass ejection (CME). These results from virtual observatories are confirmed, by the equivalent analysis using ground observatories data for the same geographic positions and same epochs. Key words: Geomagnetic field, external field, geomagnetic index, SWARM mission, virtual observatories.

  12. Van Allen Probe measurements of the electric drift E × B/B2 at Arecibo's L = 1.4 field line coordinate

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2016-07-01

    We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E × B/B2 at one field line coordinate set to Arecibo's incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2) the equatorial electric drift displays a dependence in magnetic local time, with a pattern consistent with the mapping of the Arecibo ionosphere dynamo electric fields along equipotential magnetic field lines. The electric fields due to the ionosphere dynamo are therefore expected to play a significant role when discussing, for instance, the structure and dynamics of the plasmasphere or the transport of trapped particles in the inner belt.

  13. Rhodium-catalyzed dynamic kinetic asymmetric transformations of racemic allenes by the [3+2] annulation of aryl ketimines.

    PubMed

    Tran, Duc N; Cramer, Nicolai

    2013-09-27

    Racemization required: Rhodium(I)-catalyzed C-H activation directed by unprotected ketimines initiates selective [3+2] cycloaddition with allenes, providing access to highly substituted indenylamines. The reaction proceeds through the dynamic kinetic asymmetric transformation of racemic allenes. The catalyst controls the enantio- and diastereoselectivity, the regioselectivities of the C-H activation and allene incorporation, as well as the E/Z ratio.

  14. MMS Observatory Thermal Vacuum Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  15. A FLINN Station at Pinon Flat Observatory

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr; Wyatt, Frank

    1997-01-01

    The main objectives are: (1) To develop Pinon Flat Observatory (PFO) as a prototype 'integrated' FLINN station: one from which many types of data are collected, combined, and made available to the DOSE program to enhance studies of local and regional strains; (2) To develop the theoretical framework and methods to integrate the various types of auxiliary data which are to be collected by NASA at space-geodetic sites of the FLINN network, with the aim of learning as much as possible about the nature of earth deformation; (3) To develop procedures for the efficient and useful storage and retrieval of such auxiliary data so that they may be efficiently utilized by DOSE investigators; (4) To investigate the stability of ground monumentation now used in space-geodetic measurements, including the field testing of existing and new monument designs.

  16. STS-37 Gamma Ray Observatory (GRO) grappled by RMS

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Backdropped against the Earth's cloud-covered surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners).

  17. The Orbiting Carbon Observatory: Sampling Approach and Anticipated Data Products

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2006-01-01

    This viewgraph presentation reviews the mission and the architecture of NASA's Orbiting Carbon Observatory (OCO). It also discusses the method of making precise measurements of CO2 from space. Due to be launched in September of 2008, the OCO will fly 12 minutes ahead of the EOS Aqua platform in the Earth Observing System (EOS) Afternoon Constellation (A-Train). The OCO's mission is to identify the sources and sinks for atmospheric CO2.

  18. Unique Science Needs: CAWSES-II and Virtual Observatories (Invited)

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Fox, P. A.; Avery, S. K.; Rodger, A. S.; Melkers, J. E.; Paxton, L. J.; Barnes, R. J.

    2009-12-01

    A focus on the interaction between Sun-Earth system elements in space research is not new. However, two recent events have pushed us within reach of a comprehensive attack on system-science frontiers. During the last solar cycle, we acquired the capability to observe simultaneously in regions from the Sun to the Earth, in the neighborhoods of other solar system planets and even at locations approaching the boundary between the heliosphere and interplanetary space. Simultaneity is critical because only under these conditions can interactions between components be observed and unraveled. Of equal importance is the implementation (still ongoing) of open data policies in the US and in other countries that has resulted in a worldwide flow of data served through the Internet directly and by Virtual Observatories. These open data sets and underlying cyber-infrastructure provide the framework around which a system science observatory can be fashioned and directed toward grand challenge investigations. This effort must be both interdisciplinary and international in scope. The development of just such a virtual environment is a major goal of the Climate and Weather of the Sun-Earth System (CAWSES) - II effort (covering 2009-2013) within SCOSTEP, which is a program of the International Council for Science (ICSU) representing 113 member nations and 29 international scientific unions. With the collaboration of ongoing programs in countries around the world, this virtual environment is envisioned as a means to combine worldwide capabilities inherent in virtual observatories and other types of cyber-infrastructure in ways that support and enable system science investigations, allow international and interdisciplinary communities to develop focused system-level science objectives, exchange information intuitively between discipline areas, share resources, educate students, advise policy makers, and reach out and inform a worldwide public of exciting new discoveries and their

  19. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  20. Multi-Spacecraft Data Assimilation and Reanalysis During the THEMIS and Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.

    2013-12-01

    consideration of the innovation vector may lead to a new physical understanding of the radiation belt system, which can later be used to improve our model forecasts. In the current study, we explore the radiation belt dynamics of the current era including data from the THEMIS, Van Allen Probes, GPS satellites, Akebono, NOAA and Cluster spacecraft. Intercalibration is performed between spacecraft on an individual energy channel basis, and in invariant coordinates. The global reanalysis allows an unprecedented analysis of the source-acceleration-transport-loss relationship in Earth's radiation belts. This analysis is used to refine our model capabilities, and to prepare the 3-D reanalysis for real-time data. The global 3-D reanalysis is an important step towards full-scale modeling and operational forecasting of this dynamic region of space.

  1. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  2. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system.

    PubMed

    Sunkin, Susan M; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L; Thompson, Carol L; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.

  3. Citizen Observatories: A Standards Based Architecture

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    built-in sensing technologies, automates the upload of the raw data, and handles conflation services to match quality requirements and analysis challenges. The strict implementation of all components using internationally adopted standards ensures maximal interoperability and reusability of all components. The Citizen Observatory Toolkit is currently developed as part of the COBWEB research project. COBWEB is partially funded by the European Programme FP7/2007-2013 under grant agreement n° 308513; part of the topic ENV.2012.6.5-1 "Developing community based environmental monitoring and information systems using innovative and novel earth observation applications.

  4. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  5. GEOSCOPE Observatory Recent Developments

    NASA Astrophysics Data System (ADS)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  6. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  7. Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Wygant, J. R.; Kletzing, C. A.; Lessard, M. R.; Huang, C.-L.; Spence, H. E.; Smith, C. W.; Singer, H. J.; Omura, Y.; Horne, R. B.; Reeves, G. D.; Baker, D. N.; Gkioulidou, M.; Oksavik, K.; Mann, I. R.; Raita, T.; Shiokawa, K.

    2015-07-01

    Although most studies of the effects of electromagnetic ion cyclotron (EMIC) waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on 23 February 2014 that extended over 8 h in UT and over 12 h in local time, stimulated by a gradual 4 h rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 h at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern foot point of the Van Allen Probes observed 30-80 keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event.

  8. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  9. Space Weather data processing and Science Gateway for the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2013-12-01

    A near real-time data processing pipeline for the Space Weather broadcast data from the Van Allen Probes is presented. The Van Allen Probes broadcasts a sub-set of the science data in real-time when not downlinking the principal science data. This broadcast is received by several ground stations and relayed to APL in near real time to be ingested into the space weather processing pipeline. This pipeline processes the available level zero space weather data into higher level science data products. These products are made available to the public via the Van Allen Probes Science Gateway website (http://athena.jhuapl.edu). The website acts as pivotal point though which all other instrument SOC's can be accessed. Several other data products (e.g KP/DST indices) and tools (e.g orbit calculator) are made also available to the general public.

  10. Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft

    NASA Astrophysics Data System (ADS)

    Němec, F.; Hospodarsky, G.; Pickett, J. S.; Santolík, O.; Kurth, W. S.; Kletzing, C.

    2016-08-01

    We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very quiet, and the events occurred inside the plasmasphere. The modulation period observed by the Van Allen Probes and THEMIS E spacecraft (duskside) was in both events about twice larger than the modulation period observed by the Cluster spacecraft (dawnside). Moreover, individual QP elements occur about 15 s earlier on THEMIS E than on Van Allen Probes, which might be related to a finite propagation speed of a modulating ULF wave.

  11. A C–H bond activation-based catalytic approach to tetrasubstituted chiral allenes

    PubMed Central

    Wu, Shangze; Huang, Xin; Wu, Wangteng; Li, Pengbin; Fu, Chunling; Ma, Shengming

    2015-01-01

    Enantioselective synthesis of fully substituted allenes has been a challenge due to the non-rigid nature of the axial chirality, which spreads over three carbon atoms. Here we show the commercially available simple Rh complex may catalyse the CMD (concerted metalation/deprotonation)-based reaction of the readily available arenes with sterically congested tertiary propargylic carbonates at ambient temperature affording fully substituted allenes. It is confirmed that the excellent designed regioselectivity for the C–C triple bond insertion is induced by the coordination of the carbonyl group in the directing carbonate group as well as the steric effect of the tertiary O-linked carbon atom. When an optically active carbonate was used, surprisingly high efficiency of chirality transfer was realized, affording fully substituted allenes in excellent enantiomeric excess (ee). PMID:26246391

  12. Colonization of subsurface microbial observatories deployed in young ocean crust

    PubMed Central

    Orcutt, Beth N; Bach, Wolfgang; Becker, Keir; Fisher, Andrew T; Hentscher, Michael; Toner, Brandy M; Wheat, C Geoffrey; Edwards, Katrina J

    2011-01-01

    Oceanic crust comprises the largest hydrogeologic reservoir on Earth, containing fluids in thermodynamic disequilibrium with the basaltic crust. Little is known about microbial ecosystems that inhabit this vast realm and exploit chemically favorable conditions for metabolic activities. Crustal samples recovered from ocean drilling operations are often compromised for microbiological assays, hampering efforts to resolve the extent and functioning of a subsurface biosphere. We report results from the first in situ experimental observatory systems that have been used to study subseafloor life. Experiments deployed for 4 years in young (3.5 Ma) basaltic crust on the eastern flank of the Juan de Fuca Ridge record a dynamic, post-drilling response of crustal microbial ecosystems to changing physical and chemical conditions. Twisted stalks exhibiting a biogenic iron oxyhydroxide signature coated the surface of mineral substrates in the observatories; these are biosignatures indicating colonization by iron oxidizing bacteria during an initial phase of cool, oxic, iron-rich conditions following observatory installation. Following thermal and chemical recovery to warmer, reducing conditions, the in situ microbial structure in the observatory shifted, becoming representative of natural conditions in regional crustal fluids. Firmicutes, metabolic potential of which is unknown but may involve N or S cycling, dominated the post-rebound bacterial community. The archaeal community exhibited an extremely low diversity. Our experiment documented in situ conditions within a natural hydrological system that can pervade over millennia, exemplifying the power of observatory experiments for exploring the subsurface basaltic biosphere, the largest but most poorly understood biotope on Earth. PMID:21107442

  13. Australian network of magnetic observatories

    NASA Astrophysics Data System (ADS)

    Barton, C. E.

    Six magnetic observatories are presently operated by the Australian Bureau of Mineral Resources, Geology and Geophysics (BMR), with assistance from various other organizations. Variometer recordings are made of three or more elements of the field at minute intervals, and absolute measurements are made weekly. There are four observatories on the continent (Canberra, Gnangara, Charters Towers, and Learmonth), one on Macquarie Island, and one at Mawson Station in eastern Antarctica (Figure 1). In addition, semiweekly absolute observations of the field (D, H, and F) are made at the other two permanent Australian Antarctic bases (Casey and Davis). A three-axis fluxgate magnetometer (EDA Electronics, Toronto , Canada) is operated independently by the Upper Atmosphere Physics group at Davis. Monthly mean values, K indices, and information about magnetic disturbances are published monthly in the BMR Geophysical Observatory Report.

  14. Environmental Observatories and Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2006-12-01

    During the past several years, the environmental sciences community has been attempting to design large- scale obsevatories that will transform the science. A watershed-based observatory has emerged as an effective landscape unit for a broad range of environmental sciences and engineering. For an effective observatory, modeling is a central requirement because models are precise statements of the hypothesized conceptual organization of watersheds and of the processes believed to be controlling hydrology of the watershed. Furthermore, models can serve to determine the value of existing data and the incremental value of any additional data to be collected. Given limited resources, such valuation is mandatory for an objective design of an observatory. Modeling is one part of a "digital watershed" that must be constructed for any observatory, a concept that has been developed by the CUAHSI Hydrologic Information Systems project. A digital watershed has three functions. First, it permits assembly of time series (such as stream discharge or precipitation measurements), static spatial coverages (such as topography), and dynamic fields (such as precipitation radar and other remotely sensed data). Second, based upon this common data description, a digital observatory permits multiple conceptualizations of the observatory to be created and to be stored. These conceptualizations could range from lumped box-and-arrow watershed models, to semi-distributed topographically based models, to three-dimensional finite element models. Finally, each conceptualization can lead to multiple models--that is, a set of equations that quantitatively describe hydrologic (or biogeochemical or geomorphologic) processes through libraries of tools that can be linked as workflow sequences. The advances in cyberinfrastructure that allow the storage of multiple conceptualizations and multiple model formulations of these conceptualizations promise to accelerate advances in environmental science both

  15. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  16. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  17. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  18. The Lunar X-ray Observatory (LXO)

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  19. Regiodivergent Intermolecular [3+2] Cycloadditions of Vinyl Aziridines and Allenes: Stereospecific Synthesis of Chiral Pyrrolidines.

    PubMed

    Lin, Tao-Yan; Zhu, Chao-Ze; Zhang, Peichao; Wang, Yidong; Wu, Hai-Hong; Feng, Jian-Jun; Zhang, Junliang

    2016-08-26

    The first rhodium-catalyzed intermolecular [3+2] cycloaddition reaction of vinyl aziridines and allenes for the synthesis of enantioenriched functionalized pyrrolidines was realized. [3+2] cycloaddition with the proximal C=C bond of N-allenamides gave 3-methylene-pyrrolidines in high regio- and diastereoselectivity, whereas, 2-methylene-pyrrolidines were obtained as the major products by the cycloadditions of vinyl aziridines with the distal C=C bond of allenes. Use of readily available starting materials, a broad substrate scope, high selectivity, mild reaction conditions, as well as versatile functionalization of the cycloadducts make this approach very practical and attractive. PMID:27485044

  20. Experiments in no-impact control of dingoes: comment on Allen et al. 2013.

    PubMed

    Johnson, Christopher N; Crowther, Mathew S; Dickman, Chris R; Letnic, Michael I; Newsome, Thomas M; Nimmo, Dale G; Ritchie, Euan G; Wallach, Arian D

    2014-01-01

    There has been much recent debate in Australia over whether lethal control of dingoes incurs environmental costs, particularly by allowing increase of populations of mesopredators such as red foxes and feral cats. Allen et al. (2013) claim to show in their recent study that suppression of dingo activity by poison baiting does not lead to mesopredator release, because mesopredators are also suppressed by poisoning. We show that this claim is not supported by the data and analysis reported in Allen et al.'s paper. PMID:24558973

  1. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    PubMed Central

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  2. Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.

    PubMed

    Pham, Hung V; Houk, K N

    2014-10-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels-Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate.

  3. Differentiating mechanistic possibilities for the thermal, intramolecular [2 + 2] cycloaddition of allene-ynes.

    PubMed

    Siebert, Matthew R; Osbourn, Joshua M; Brummond, Kay M; Tantillo, Dean J

    2010-09-01

    Intramolecular [2 + 2] cycloaddition reactions of allene-ynes offer a quick and efficient route to fused bicyclic ring structures. Insights into the mechanism and regiochemical preferences of this reaction are provided herein on the basis of the results of quantum chemical calculations (B3LYP/6-31+G(d,p)) and select experiments; both indicate that the reaction likely proceeds through a stepwise diradical pathway where one radical center is stabilized through allylic delocalization. The influences of the length of the tether connecting the alkyne and allene and substituent effects are also discussed.

  4. Copper-catalyzed regiodivergent silacarboxylation of allenes with carbon dioxide and a silylborane.

    PubMed

    Tani, Yosuke; Fujihara, Tetsuaki; Terao, Jun; Tsuji, Yasushi

    2014-12-24

    A regiodivergent silacarboxylation of allenes under a CO2 atmosphere with PhMe2Si-B(pin) as a silicon source in the presence of a copper catalyst at 70 °C has been developed. The regioselectivity of the reaction is successfully reversed by the proper choice of ligand; carboxylated vinylsilanes are obtained with rac-Me-DuPhos as the ligand, whereas the use of PCy3 affords carboxylated allylsilanes. Thus, two different carboxylated silanes can be selectively and regiodivergently synthesized from a single allene substrate. PMID:25469703

  5. Intermolecular sequential [4 + 2]-cycloaddition-aromatization reaction of aryl-substituted allenes with DMAD affording phenanthrene and naphthalene derivatives.

    PubMed

    Jiang, Xuefeng; Kong, Wangqing; Chen, Jie; Ma, Shengming

    2008-10-01

    An efficient entry to phenanthrene and naphthalene derivatives through intermolecular sequential [4 + 2]-cycloaddition-aromatization reactions of aryl-substituted allenes with DMAD in the absence of any catalyst was discovered. In this reaction the aromatic ring and the adjacent carbon-carbon double bond of the allene unit acted as the 1,3-diene.

  6. A Critique of Mark D. Allen's "The Preservation of Verb Subcategory Knowledge in a Spoken Language Comprehension Deficit"

    ERIC Educational Resources Information Center

    Kemmerer, David

    2008-01-01

    Allen [Allen, M. (2005). "The preservation of verb subcategory knowledge in a spoken language comprehension deficit." "Brain and Language, 95", 255-264.] reports a single patient, WBN, who, during spoken language comprehension, is still able to access some of the syntactic properties of verbs despite being unable to access some of their semantic…

  7. What have we learned about the energetic particle dynamics in the inner belt and slot region from Van Allen Probes and CSSWE missions?

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Baker, Daniel N.; Kanekal, Shrikanth; Fennell, Joseph; Selesnick, Richard; Claudepierre, Seth; Blake, Bernard; Zhao, Hong; Jaynes, Allison

    2016-07-01

    Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (2Allen Probes, in a geo-transfer-like orbit, revealed new features of these energetic protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron-Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  8. Calculated limits for particle fluxes in Jupiter's Van Allen belts

    NASA Technical Reports Server (NTRS)

    Haffner, J.

    1972-01-01

    Electron and proton fluxes in Jupiter's radiation belts are calculated, along with the envelopes of dose rates. The following assumptions are made: the particles in the Jupiter belts are influenced only by the magnetic field of the planet; the particles act correspondingly to the particles in the Earth's belts and the Earth's belts can be used as a model; the magnetic field of Jupiter is essentially a dipole; the radiation of a decimetric nature received from Jupiter is synchrotron radiation due to the electrons, and to a first approximation it is emitted isotropically; and the strength of the emission in the decimetric wavelength range gives an upper bound considering how strong the field can be and how many electrons there are. The point dose rates for tissue and 0.1 gram/cm aluminum shielding at about 3 Jupiter radii are 10000 rads/hr for electrons and 1000 rads/hr for protons.

  9. The National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Michener, W. K.

    2006-05-01

    The National Ecological Observatory Network (NEON) is a research platform designed to advance understanding of how ecosystems and organisms respond to variations in climate and changes in land use. NEON is the first long-term ecological observatory conceived as a continental-scale network; equipped with standardized sensors, cyberinfrastructure, and data-collection protocols across the network; and designed to simultaneously address a common set of research questions and support investigator-driven ecological research in all regions of the United States. The Observatory focuses on variations in climate and land use because they are primary drivers of the Nation's environmental challenges, as identified by the National Research Council--i.e., biodiversity, biogeochemical cycles, climate change, hydroecology, infectious disease, invasive species, and land use. At the broadest scale, NEON links the complexity of climate variation to the behavior of ecological systems, a core aspect of ecological complexity. At the same time, because of the complexity of the interactions among humans and ecosystems, the network design includes NEON sites in wild, managed and urban systems within climate domains. Observatory data will also be part of a national education program designed to advance ecological science literacy through new programs and activities that develop and promote scientific ways of thinking.

  10. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  11. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  12. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  13. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  14. The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2008-01-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.

  15. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  16. Cobalt/rhodium heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and bisallenes to Pauson-Khand-type reaction products.

    PubMed

    Park, Ji Hoon; Kim, Eunha; Kim, Hyeong-Mook; Choi, Soo Young; Chung, Young Keun

    2008-05-28

    The first catalytic intra- and intermolecular [2+2+1] cocyclization reactions of allenes and carbon monoxide have been developed. In the Co(2)Rh(2) heterobimetallic nanoparticle-catalyzed carbonylative [2+2+1] cycloaddition of allenes and carbon monoxide, the allenes formally serve both as an excellent alkene- and alkyne-like moiety within a Pauson-Khand-type process.

  17. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  18. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  19. Homoallylic amines by reductive inter- and intramolecular coupling of allenes and nitriles

    PubMed Central

    Manojlovic, Marija D

    2011-01-01

    Summary The one-pot hydrozirconation of allenes and nitriles followed by an in situ transmetalation of the allylzirconocene with dimethylzinc or zinc chloride provides functionalized homoallylic amines. An intramolecular version of this process leads to 3-aminotetrahydrofurans and 3-aminotetrahydropyrans. PMID:21804878

  20. Improving the Collection of Student Accounts at Allen County Community College.

    ERIC Educational Resources Information Center

    Geffert, Barbara

    During the past several years, Allen County Community College has experienced a growing number of uncollected student accounts. In an effort to encourage timely payment of student charges, lower the number of students receiving payment deferments, increase cash flow at the beginning of each semester, and reduce the number of bad debts being…

  1. The Native Speaker, the Student, and Woody Allen: Examining Traditional Roles in the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Finger, Anke

    This paper uses a language classroom role-playing scene from a Woody Allen movie to examine the language student who has traditionally been asked to emulate and copy the native speaker and to discuss roles that teachers ask students to play. It also presents the changing paradigm of the native speaker and his or her role inside and outside the…

  2. Rotationally resolved photoelectron spectroscopic study of the Jahn-Teller effect in allene

    NASA Astrophysics Data System (ADS)

    Schulenburg, A. M.; Merkt, F.

    2009-01-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectra of allene (C3H4) and perdeuterated allene have been recorded from the first adiabatic ionization energy up to 2200 cm-1 of internal energy in the cations at a resolution sufficient to observe the full rotational structure. The intensity distributions in the spectra are dominated by vibrational progressions in the torsional mode, which were analyzed in the realm of a two-dimensional model of the E ⊗(b1⊕b2) Jahn-Teller effect in the allene cation [C. Woywod and W. Domcke, Chem. Phys. 162, 349 (1992)]. Whereas the rotational structure of the transitions to the lowest torsional levels (00 and 41) are regular and can be qualitatively analyzed in terms of a simple orbital ionization model, the rotational structure of the spectra of the 42 and 43 levels are strongly perturbed. The photoelectron spectrum of C3H4 also reveals several weak vibrational bands in the immediate vicinity of these levels that are indicative of (ro)vibronic perturbations. A slight broadening of the transitions to the 41 levels compared to that of the vibronic ground state and the increase of the number of sharp features in the rotational structure of the spectrum of the 42 level point at the importance of large-amplitude motions not considered in previous treatments of the Jahn-Teller effect in the allene cation.

  3. Regioselective Allene Hydrosilylation Catalyzed by NHC Complexes of Nickel and Palladium

    PubMed Central

    Miller, Zachary D.; Li, Wei; Belderrain, Tomás R.; Montgomery, John

    2013-01-01

    Regioselective methods for allene hydrosilylation have been developed, with regioselectivity being governed primarily by choice of metal. Alkenylsilanes are produced via nickel catalysis with larger N-heterocyclic carbene ligands, and allylsilanes are produced via palladium catalysis with smaller N-heterocyclic carbene ligands. These complementary methods allow either regioisomeric product to be obtained with exceptional regiocontrol. PMID:24079389

  4. Nathaniel Topliff Allen, Early Professional and 19th Century Risk Taker.

    ERIC Educational Resources Information Center

    Cadwallader, Lynn

    Nathaniel T. Allen's life (1823-1903) offers insights into 19th century professionalization of education in the United States. His independent political views set him apart as a strong-willed and dauntless supporter of equal education opportunity. Appointed by Horace Mann as principal of a model school connected with the first public normal school…

  5. An Interview with Dr. Roach van Allen (Leaders in Reading Research and Instruction).

    ERIC Educational Resources Information Center

    Searfoss, Lyndon; Jerrolds, Bob W.

    1989-01-01

    Presents an interview with Dr. Roach van Allen in which he describes how he became involved in education, who influenced him professionally, his proudest accomplishments (a theoretical model for a language experience program), what he sees as the current problems in reading education, and what he sees in the future. (RS)

  6. A Call to Action: JoBeth Allen, NCTE's 2012 Outstanding Educator in the Language Arts

    ERIC Educational Resources Information Center

    Tisdale, Carmen

    2012-01-01

    This article is a tribute to JoBeth Allen, recipient of the Elementary Section's 2012 award for Outstanding Educator in the English Language Arts. Each year, this award recognizes a distinguished educator who has made major contributions to the field of language arts in elementary education. This article was written by second-grade teacher and…

  7. All Together Now: Valerie Allen--U.S. Department of Energy

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    When Valerie Allen decided she did not want to be a Montessori teacher any longer, she began work on her MLIS. Immediately she learned concepts she could apply to her new job as information specialist for the Department of Energy's (DOE) Office of Scientific and Technical Information (OSTI) at Oak Ridge National Laboratory, TN. While the LIS…

  8. Rh(I)-Catalyzed Insertion of Allenes into C-C Bonds of Benzocyclobutenols.

    PubMed

    Zhao, Chunliang; Liu, Li-Chuan; Wang, Jing; Jiang, Chenran; Zhang, Qing-Wei; He, Wei

    2016-01-15

    Herein we report a Rh(I)-catalyzed two carbon insertion into C-C bonds of benzocyclobutenols by employing symmetrical and unsymmetrical allenes. This reaction provides rapid access to alkylidene tetralins bearing two adjacent stereogenic centers in good yields and diasteroselectivities.

  9. No Radio Flaring Detected from Cygnus X-3 at 3 GHz by Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Bower, G. C.; Tomsick, J. A.; Bodaghee, A.; Corbet, R. H. D.

    2011-01-01

    Following the announcement of a 98 GHz flare from the microquasar Cygnus X-3 (ATel #3130), we observed it with the Allen Telescope Array (Welch et al., 2009 Proc. IEEE 97 1438 for 2.5 hours beginning at 2011 January 28.848 UT (MJD 55589.848), about 4.0 hours after the 98 GHz observations concluded.

  10. Complex polycyclic scaffolds by metathesis rearrangement of Himbert arene/allene cycloadducts.

    PubMed

    Lam, Jonathan K; Schmidt, Yvonne; Vanderwal, Christopher D

    2012-11-01

    The intramolecular arene/allene cycloaddition first described 30 years ago by Himbert and Henn permits rapid access to strained polycyclic compounds. Alkene metathesis processes cleanly rearrange appropriately substituted cycloadducts into complex, functional-group-rich polycyclic lactams of potential utility for natural product synthesis and medicinal chemistry.

  11. Highly selective cobalt-mediated [6 + 2] cycloaddition of cycloheptatriene and allenes.

    PubMed

    Clavier, Hervé; Le Jeune, Karel; de Riggi, Innocenzo; Tenaglia, Alphonse; Buono, Gérard

    2011-01-21

    [6 + 2] Cycloadditions between cycloheptatrienes with allenes have been investigated. Cobalt salts were found to promote this transformation efficiently. Moreover, this reaction was found to be highly selective since only one regioisomer was obtained with an excellent E/Z-selectivity.

  12. Studies on Lewis acid-mediated intramolecular cyclization reactions of allene-ene systems.

    PubMed

    Hiroi, K; Watanabe, T; Tsukui, A

    2000-03-01

    The Lewis acid-mediated reactions of allene-ene compounds, derived from 3-methylcitronellal or dimethyl malonate, were carried out using various Lewis acids such as ethylaluminum dichloride, diethylaluminum chloride, titanium chloride, zinc chloride etherate, or boron trifluoride etherate, affording unexpectedly intramolecular [2+2]cycloaddition products under some particular reaction conditions without any formation of intramolecular ene reaction products.

  13. Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes.

    PubMed

    González, Ana Z; Toste, F Dean

    2010-01-01

    An enantioselective gold(I)-catalyzed intramolecular [4 + 2]-cycloaddition of allenes and dienes is reported. The reactions allow for the asymmetric synthesis of trans-hexahydroindenes and pyrrolidine products using C(3)-symmetric phosphitegold(I) and ortho-arylphosphoramiditegold(I) complexes as catalysts, respectively.

  14. Enantioselective [2 + 2 + 2] cycloaddition reaction of isocyanates and allenes catalyzed by nickel.

    PubMed

    Miura, Tomoya; Morimoto, Masao; Murakami, Masahiro

    2010-11-17

    The enantioselective intermolecular [2 + 2 + 2] cycloaddition reaction of two molecules of isocyanate and one molecule of allene is catalyzed by a nickel(0)/(S,S)-i-Pr-FOXAP complex, providing an efficient access to enantiomerically enriched dihydropyrimidine-2,4-diones.

  15. Gold-catalyzed stereocontrolled oxacyclization/[4+2]-cycloaddition cascade of ketone-allene substrates.

    PubMed

    Teng, Tse-Min; Liu, Rai-Shung

    2010-07-14

    We report the first success on the Au-catalyzed tandem oxacyclization/[4+2]-cycloaddition cascade using ketone-allene substrates to give highly substituted oxacyclics with excellent stereocontrol. In contrast to oxo-alkyne substrates, the resulting cycloadducts are isolable and efficiently produced from a reasonable scope of enol ethers.

  16. Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes.

    PubMed

    González, Ana Z; Toste, F Dean

    2010-01-01

    An enantioselective gold(I)-catalyzed intramolecular [4 + 2]-cycloaddition of allenes and dienes is reported. The reactions allow for the asymmetric synthesis of trans-hexahydroindenes and pyrrolidine products using C(3)-symmetric phosphitegold(I) and ortho-arylphosphoramiditegold(I) complexes as catalysts, respectively. PMID:19961192

  17. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    NASA Astrophysics Data System (ADS)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  18. Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Zhi; Wang, Zi-Han; Zong, Qiu-Gang; Rankin, Robert; Kivelson, Margaret G.; Chen, Xing-Ran; Blake, J. Bernard; Wygant, John R.; Kletzing, Craig A.

    2016-04-01

    Ultralow frequency (ULF) electromagnetic waves in Earth's magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift resonance theory, a default assumption is that the wave growth rate is time independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the waves have to be damped with a negative growth rate. Therefore, a more generalized theory on particle behavior during different stages of ULF wave evolution is required. In this paper, we introduce a time-dependent imaginary wave frequency to accommodate the growth and damping of the waves in the drift resonance theory, so that the wave-particle interactions during the entire wave lifespan can be studied. We then predict from the generalized theory particle signatures during different stages of the wave evolution, which are consistent with observations from Van Allen Probes. The more generalized theory, therefore, provides new insights into ULF wave evolution and wave-particle interactions in the magnetosphere.

  19. Telescope Formation at L2 for Observing Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Behcet; Breckenridge, William; Macenka, Steven; Hein, Randall; Tubbs, Eldred

    2007-01-01

    Two documents describe a proposed Earth-atmosphere observatory to orbit the Sun at the Sun-Earth L2 Lagrange point -- a point of unstable equilibrium in the shadow of the Earth, about 1.5 million km from the Earth along an outward projection of the Earth-Sun axis. The observatory would comprise two spacecraft flying in precision formation: (1) a primary-aperture spacecraft, from which would be deployed a 25-m diameter membrane primary mirror aimed at the Earth, and (2) a secondary-telescope spacecraft at the focal plane of the primary mirror, 125-m distant along the axis towards the Earth. The secondary telescope would be aimed at the primary mirror and slowly rotated to scan the focused annular image of the visible illuminated portion of the Earth's atmosphere during continuous occultation of the Sun.

  20. Asteroid Lightcurve Analysis at the Palmer Divide Observatory: 2011 June - September

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.

    2012-01-01

    Lightcurves for 28 asteroids were obtained at the Palmer Divide Observatory (PDO) from 2011 June to September: 903 Nealley, 1103 Sequoia, 2052 Tamriko, 2083 Smither, 2150 Nyctimene, 2272 Montezuma, 2306 Bauschinger, 4125 Lew Allen, 5571 Lesliegreen, (7660) 1993 VM1, 7933 Magritte, (16256) 2000 JM2, (16959) 1998 QE17, (17822) 1998 FM135, (18890) 2000 EV26, (27568) 2000 PT6, (31898) 2000 GC1, (32953) 1996 GF19, (32928) 1995 QZ, (33356) 1999 AM3, (35055) 1984 RB, (54234) 2000 JD16, (60365) 2000 AT109, (62117) 2000 RC102, (67404) 2000 PG26, 70030 Margaretmiller, (140428) 2001 TT94, (282081) 2000 NG. Observations of 70030 Margaretmiller indicate that the asteroid is a probable binary with a secondary period being detected but no mutual events.

  1. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  2. Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Jamnejad, V.; Cesarone, R.

    2003-01-01

    Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.

  3. US earthquake observatories: recommendations for a new national network

    SciTech Connect

    Not Available

    1980-01-01

    This report is the first attempt by the seismological community to rationalize and optimize the distribution of earthquake observatories across the United States. The main aim is to increase significantly our knowledge of earthquakes and the earth's dynamics by providing access to scientifically more valuable data. Other objectives are to provide a more efficient and cost-effective system of recording and distributing earthquake data and to make as uniform as possible the recording of earthquakes in all states. The central recommendation of the Panel is that the guiding concept be established of a rationalized and integrated seismograph system consisting of regional seismograph networks run for crucial regional research and monitoring purposes in tandem with a carefully designed, but sparser, nationwide network of technologically advanced observatories. Such a national system must be thought of not only in terms of instrumentation but equally in terms of data storage, computer processing, and record availability.

  4. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  5. Night-sky brightness at observatories and sites

    NASA Astrophysics Data System (ADS)

    Garstang, R. H.

    1989-03-01

    A model previously constructed for night-sky brightness calculations has been modified to allow for the curvature of the earth. The model has been applied to calculate the brightness at the following observatories: Mount Wilson, Lick, Mount Palomar, Kitt Peak, Sacramento Peak, Mauna Kea, McDonald, San Pedro Martir, Mount Hopkins, Mount Lemmon, Lowell (Mars Hill), Lowell (Anderson Mesa), Fick, Iowa, Van Vleck, David Dunlap, Anglo-Australian, Haute Provence, and Cerro Tololo. Calculations have also been carried out for the following prospective observatory sites: Junipero Serra, Mount Graham, Charleston Peak, Wheeler Peak, Miller Peak, San Benito Mountain, Lowell (Hutch Mountain), Lowell (Saddle Mountain), and South Baldy (New Mexico). The model is extended to calculate magnitudes in the B photometric band.

  6. Real-time control of the robotic lunar observatory telescope

    USGS Publications Warehouse

    Anderson, J.M.; Becker, K.J.; Kieffer, H.H.; Dodd, D.N.

    1999-01-01

    The US Geological Survey operates an automated observatory dedicated to the radiometry of the Moon with the objective of developing a multispectral, spatially resolved photometric model of the Moon to be used in the calibration of Earth-orbiting spacecraft. Interference filters are used with two imaging instruments to observe the Moon in 32 passbands from 350-2500 nm. Three computers control the telescope mount and instruments with a fourth computer acting as a master system to control all observation activities. Real-time control software has been written to operate the instrumentation and to automate the observing process. The observing software algorithms use information including the positions of objects in the sky, the phase of the Moon, and the times of evening and morning twilight to decide how to observe program objects. The observatory has been operating in a routine mode since late 1995 and is expected to continue through at least 2002 without significant modifications.

  7. Deeper and earlier penetrations of oxygen ions than protons into the inner magnetosphere Observed by Van Allen probes.

    NASA Astrophysics Data System (ADS)

    Mitani, K.; Seki, K.; Keika, K.; Lanzerotti, L. J.; Gkioulidou, M.; Mitchell, D. G.; Kletzing, C.

    2015-12-01

    It is observationally known that proton and oxygen ions are main components of the ring current during magnetic storms and that the proton and oxygen ions are considered to have different source and supply mechanisms. However, detailed properties of the ion supply and their dependence on ion species is far from well understood. To characterize the ion supply to the ring current during magnetic storms, we report studies of the properties of energetic proton and oxygen ion phase space densities (PSDs) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We used energetic ion (~50 - ~600keV protons, ~140 - ~1100keV oxygen) and magnetic field data obtained by the RBSPICE and EMFISIS, respectively, on the Van Allen Probes. We calculated ion PSDs for the specific first adiabatic invariant, mu (0.3 < mu < 12 keV/nT), and ion pitch angles near 90 degrees as a function of L for each spacecraft orbit. The results show that both proton and oxygen ions penetrated directly to L<5 during the main phase of the magnetic storm. Protons with smaller mu values (mu = 0.3 and 0.5 keV/nT) penetrated earlier than those with larger mu values (mu = 1.0 keV/nT). This result appears consistent with the energy dependence of the Alfven layer. The timing of oxygen ion penetration is approximately the same for all mu values (mu = 0.8, 1.0 and 1.2 keV/nT). The observations also show that oxygen ions penetrated more deeply in L and earlier in time than protons for the same mu value (mu = 1.0keV/nT). These results suggest that the source of the transported oxygen ions is located closer to the Earth than the inner edge of protons. The results imply the importance of the contribution from subauroral oxygen ions to the storm-time ring current. We will also discuss the possibility of non-adiabatic acceleration of oxygen ions in the inner magnetosphere.

  8. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  9. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  10. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  11. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  12. Ny-Alesund Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Sieber, Moritz

    2013-01-01

    In 2012 the 20-m telescope at Ny-Alesund, Svalbard, operated by the Norwegian Mapping Authority (NMA), took part in 163 out of 168 scheduled sessions of the IVS program. Since spring, all data was transferred by network, and the receiver monitoring computer was replaced by a bus-coupler. In autumn, the NMA received building permission for a new observatory from the Governor of Svalbard. The bidding process and first construction work for the infrastructure will start in 2013.

  13. Upcoming observations of whistler-mode waves in the outer Van Allen belt: multicomponent wave analyzer ELMAVAN for the Resonance mission

    NASA Astrophysics Data System (ADS)

    Santolik, Ondrej; Korepanov, Valery; Chugunin, Dmitriy; Kolmasova, Ivana; Uhlir, Ludek; Pronenko, Vira; Mogilevsky, Mikhail; Lan, Radek; Boychev, Boycho

    The instrument ELMAVAN is being prepared at the Institute of Atmospheric Physics, Prague in the frame of the Russian Resonance project with international participation. The aim of this four-spacecraft mission is to investigate properties of wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth with the focus on phenomena occurring within the same flux tube of the Earth's magnetic field. The wave emissions attract increasing attention because of their influence on the dynamics of the Earth’s radiation belts. The Resonance project therefore represents an excellent opportunity for the magnetospheric research, and together with the recently launched two-spacecraft US mission Van Allen Probes, it will contribute to our understanding of the Earth’s Van Allen radiation belts and the inner magnetosphere. ELMAVAN will measure intensity, polarization, coherence, and propagation properties of waves in magnetospheric plasmas. Three orthogonal magnetic search coil antennas and four electric monopoles will be used for the measurements. The instrument will measure fluctuations of the electric and magnetic field in the frequency range 10 Hz - 20 kHz. The scientific motivation is to investigate properties of whistler-mode chorus and hiss, and both equatorial and auroral emissions. Nonlinear wave-particle interactions will be the main target of these measurements. The input signals of ELMAVAN will consist of 3 analog signals from orthogonal magnetic search coil antennas and 4 analog signals from electric monopoles. The instrument ELMAVAN uses the state of the art electronics and mechanical design taking into account specific requirements for the orbit inside the radiation belts. From this point of view this instrument will also be important as a technological experiment. Engineering model of the analyzer was developed and tested in 2012-2013. Qualification model and the flight models are under preparation.

  14. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  15. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  16. Earth's City Lights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  17. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE PAGES

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after havingmore » traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  18. Palladium-catalyzed synthesis of endocyclic allenes and their application in stereoselective [2 + 2]cycloaddition with ketenes.

    PubMed

    Ogasawara, Masamichi; Okada, Atsushi; Nakajima, Kiyohiko; Takahashi, Tamotsu

    2009-01-01

    Palladium-catalyzed reactions of various 2-bromo-3-exo-methylenecycloalkenes with a stabilized nucleophile were examined. When the carbocycles were nine-membered or larger, the corresponding endocyclic allenes were isolated in excellent yields. In a reaction of the eight-membered cyclic substrate, initial formation of a cycloocta-1,2-diene derivative was detected; however, it dimerized slowly. The seven-membered carbocycle was inert to the reaction. Using a chiral Pd-catalyst, an axially chiral endocyclic allene was obtained in 65% ee. The cyclic allenes were applied to [2 + 2]cycloaddition with ketenes, and the stereoselectivity was studied.

  19. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  20. Millimeter wavelength spectroscopy of trace atmospheric constituents from the Five College Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Huguenin, G. R.; Irvine, W. M.

    1978-01-01

    The Five College Radio Astronomy Observatory system, located in western Massachusetts, is described. It is suggested that high sensitivity in the three-millimeter wavelength band facilitates detection and monitoring of a number of trace molecules in the earth's atmosphere as well as astonomical observation at radio wavelengths. Line formation and radiative transfer in the earth's atmosphere are discussed, and the receiver sensitivity is considered.